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Srujan Deolasee1, Qin Lin2, Jialun Li3, and John M. Dolan4

Abstract— Safety-guaranteed motion planning is critical for
self-driving cars to generate collision-free trajectories. A layered
motion planning approach with decoupled path and speed
planning is widely used for this purpose. This approach is
prone to be suboptimal in the presence of dynamic obstacles.
Spatial-temporal approaches deal with path planning and speed
planning simultaneously; however, the existing methods only
support simple-shaped corridors like cuboids, which restrict the
search space for optimization in complex scenarios. We propose
to use trapezoidal prism-shaped corridors for optimization,
which significantly enlarges the solution space compared to
the existing cuboidal corridors-based method. Finally, a piece-
wise Bézier curve optimization is conducted in our proposed
corridors. This formulation theoretically guarantees the safety
of the continuous-time trajectory. We validate the efficiency
and effectiveness of the proposed approach in numerical and
CommonRoad simulations.

Index Terms— Autonomous vehicle, motion planning, trajec-
tory optimization

I. INTRODUCTION

Motion planning is one of the key modules in autonomous
driving systems. The task of motion planning in a dynamic
traffic environment is to generate trajectories for a low-
level controller to follow considering collision-free safety
constraints, dynamic feasibility, and comfort. A Frenet frame
[1] is commonly used for motion planning due to the
significant advantage of its independence from complex
road geometry. The lateral motion (in the L direction) and
longitudinal motion (in the S direction) can be projected
onto the reference, which is usually the centerline of the
road with an arbitrary shape. Including the time dimension
T , a 3D S−L−T coordinate system can be established for
insightful and convenient planning.

Path-speed (or Layered planning) is a practical real-
time solution to decompose a planning problem into two
stages: path planning and speed planning [2]–[5]. A path
(S−L) is generated in the first stage in a static or low-speed
environment. The generation of the speed profile (S − T or
L−T ) in the speed planning stage allows an AV to respond
to dynamic obstacles. The significant limitation of layered
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planning is that it is prone to be suboptimal in the presence
of dynamic obstacles in complicated scenarios.

Spatio-temporal planning considers spatial and temporal
maneuvers simultaneously [6]–[8]. This method of direct
optimization in the 3D S−L−T space is generally superior
to the layered planning approach due to the larger search
space. See the motivating example illustrated in Fig. 1
(discussed in detail in Section III.A): in driving scenarios
involving even small deviations along the lateral direction,
coupled longitudinal and lateral planning helps guarantee
global optimality.

(a) (b)

(c) (d)

Fig. 1: Yielding example. (a) bird’s-eye view; (b) our spatio-
temporal planning in 3D S−L−T graph; (c) another angle
of view for car C; (d) another angle of view for car A.

Ensuring safety is the vital objective of motion planning.
Many existing speed planning methods use discrete time
instants to impose safety constraints. However, a provable
safety guarantee independent of sampling time in continuous
time space is preferable. To address this problem, the spatial
corridor is widely applied in trajectory generation. We are
motivated by these efforts to further extend the spatial
corridor to the spatio-temporal domain to cope better with
dynamic obstacles. The convex hull property of Bézier poly-
nomials is leveraged to enforce that the continuous trajectory
always falls into a safe spatio-temporal region. In addition,
such an optimization problem’s solution space is enlarged



via our proposed trapezoidal-prism-shaped corridors.
The main contributions of our work can be briefly de-

scribed as follows:
1) We propose an efficient convexification algorithm to

construct 3D convex-feasible regions consisting of
trapezoidal-prism-shaped corridors.

2) We provide a sufficient condition on coefficients of
the Bézier polynomials to theoretically guarantee the
trajectory’s safety in trapezoidal-prism corridors. Com-
pared with existing cuboidal corridors [6], the condi-
tion is relaxed and the solution space is significantly
enlarged, which leads to a higher chance of finding an
optimal solution.

The remainder of this paper is structured as follows. We
review related works in Sec. II. We introduce necessary
notations and background materials in Sec. III. The 3D
convex safe region construction is presented in Sec. IV.
In Sec. V, we present our optimization formulation. The
simulation results and analysis can be found in Sec. VI. We
make concluding remarks in Sec. VII.

II. RELATED WORKS
A. Speed Planning

Speed planning techniques can be classified into three
categories: 1) search and optimization; 2) sampling lattices
and selecting the minimum-cost trajectory; 3) approximated
optimization. The Search and optimization method searches
for the best candidate speed profile and optimizes the curve
for smoothness; see the post-optimization method [3], the
Baidu EM motion planner [9], and the Piecewise-Jerk Speed
Optimization [10]. The Sampling approach samples different
speed lattices combined with path lattices. The generated
local spatial-temporal trajectories are evaluated and the one
with minimum cost is selected. Related works can be found
in [2]–[5]. Most works in the first and the second categories
conduct search and optimization directly in the S−T graph.
Approximated optimization considers a vehicle dynamic
model in a sequential optimization problem; see convex
feasible set algorithm [11] and optimal control methods, such
as model predictive control (MPC) [12] and constrained iter-
ative linear quadratic regulator (CiLQR) [13]. The advantage
of these approaches is that they mitigate the planning and
control inconsistency problem since the dynamic model has
already been considered in the planning layer. However, the
disadvantage is the high computation cost.

B. Corridor generation for Autonomous Vehicles

The spatial corridor is widely used in trajectory generation.
Some previous works generate the corridors in a static
environment and cannot deal with dynamic obstacles [14],
[15]. Liu et al. [16] find a convex feasible set around the
reference trajectory, but the computation complexity restricts
the method for real-time applications. Our previous work
proposes the use of trapezoidal corridors for convexifying 2D
space in the S−T graph [17]. Zhang et al. present a general
convex spatio-temporal corridors-based approach [18]. Xu
et al. propose using a modified vertical cell decomposition

approach for speed planning in [19]. All these methods
suffer from the limitations of the layered planning approach
discussed in the previous section. Ding et al. use the spatio-
temporal semantic corridor (SSC) method to uniformly ex-
press obstacles and traffic rules in the 3D S − L− T space
[6]. However, restricting the shape of the corridors to simple
cuboids drastically limits the search space for optimization
in complex scenarios. Our proposed method of extending
trapezoid-shaped 2D corridors in S − T to 3D S − L − T
space significantly enlarges the solution space for trajectory
optimization. This enables us to extend the spatial corridor to
the spatio-temporal domain to cope with dynamic obstacles
while meeting the real-time requirement.

C. Bézier Polynomials-Based Planning

Previously, monomial basis polynomials have been used
to generate trajectories [1], [9]. However, these methods
often fail to represent highly constrained maneuvers in the
presence of dynamic obstacles. They also fail to give safety
guarantees between sample points, as the constraints are
only enforced/checked on a finite set of sampled points.
In [20], a smooth and continuous speed profile is com-
puted by proper curve concatenation without optimization
and dynamic obstacles. Bézier polynomials combined with
rectangular corridors was originated in the area of unmanned
aerial vehicles (UAVs) [21], [22]. Ding et al. extended it
for motion planning of unmanned ground vehicles (UGVs)
[6]. The significant limitation is that the proposed cuboidal
corridor representation fails to make the most of free space
for optimization. In our work, we propose to use time-
dependent trapezoidal prism-shaped corridors and give suf-
ficient conditions to enforce Bézier curves in these time-
dependent corridors for safety. It is theoretically proved
that the trapezoidal prism-shaped corridors can enlarge the
solution space for improved optimization.

III. S − L− T GRAPH AND TRAJECTORY
REPRESENTATION

In this section, we briefly introduce background materials
on the S −L− T graph, Bézier polynomials, and trajectory
representations using piecewise Bézier polynomials.

A. Representing Dynamic Agents in S − L− T graph

The S − L − T graph represents all traffic participants’
positions at each time step including the past, current, and
prediction. As an example, in Fig. 1a, we take the case of two
cars moving at constant speeds for simplicity. The scenario is
described as follows: car A and the ego vehicle are driving in
a lane which has a static obstacle (e.g., a construction site).
A lane change maneuver is enforced for both vehicles. We
list the following typical entities:

1) Static obstacle (6-zero-slope-faces type): As the most
simple entity, all the six faces have zero slopes, see the bird’s-
eye view of the yellow block in Fig. 1a and the cuboid in
the S − L− T plot in Fig. 1b.

2) Moving car with only longitudinal motion (4-zero-
slope-faces type): Car C moving straight forward is an



example shown in Fig. 1a. The top and bottom faces of Car C
in Fig. 1b have zero slopes. The two faces (see another angle
of view for left and right faces in Fig. 1c) are perpendicular
to the S − L plane without slopes. The side length of the
parallelogram along the L axis is the width of the vehicle
plus the safety region. The side length of the parallelogram
along the S axis is the length of the vehicle plus half the
length of the ego vehicle as a safety region.

3) Moving car with longitudinal and lateral motions
(2-zero-slope-faces type): Car A moving left and forward is
an example shown in Fig. 1a. As we can see in Fig.1b, only
the top and down faces are zero-slope.

The 3D free space in the S − L − T graph is non-
convex in general. We propose an over-approximation of
the 2-zero-slope-faces type parallelepiped, e.g., car A in
Fig. 1b, into a 4-zero-slope-faces type parallelepiped, see
the pink inflated space in Fig. 1b and Fig. 1d. There are
two significant benefits of doing so: 1) we will show that
in the presence of such parallelepipeds, we can extend our
2D corridor construction algorithm [17] to construct 3D
trapezoidal prism-shaped corridors efficiently; 2) though we
pay the cost of losing some space due to over-approximation,
the safety corridor is still significantly larger than the existing
cuboidal corridors. Note that the transformation between
2D and 3D in our method is without the loss of search
space. Thus, in summary, we make a good trade-off between
exactness and efficiency. The faces chosen for the over-
approximation step are decided by a simple minimization
of the volume of search space compromised in the process.
Intuitively, if the lateral velocity is less than the longitudinal
velocity of the vehicle, the corresponding faces are chosen
for over-approximation.

B. Bézier Polynomials and Properties
A Bézier polynomial is a polynomial function represented

by linear combinations of Bernstein bases. The nth-order
Bézier polynomial is written as

B(t) = c0b
0
n(t) + c1b

1
n(t) + · · ·+ cnb

n
n(t) =

n∑
i=0

cib
i
n(t)

where the Bernstein bases satisfy bin(t) = Cn
i · ti · (1−

t)n−i, t ∈ [0, 1]. The coefficients of the polynomial ci(i =
0, 1, . . . , n) are also called control points. Compared to
monomial polynomials, Bézier curves have the following
properties:

• The time interval is defined on t ∈ [0, 1].
• The Bézier polynomial starts at control point B(0) = c0

and ends at B(1) = cn.
• Convex hull property: The Bézier curve B(t) is confined

within the convex hull of control points.
• Hodograph property: By the hodograph property, the

derivative of B(t), Ḃ(t), can also be written as a Bézier
polynomial with control points c1i = n ·(ci+1 − ci) , i =
0, 1, . . . , n−1. By applying the convex hull property to
the derivative Bézier curve, the entire dynamical profile
of the original curve B(t) can be confined within a
given dynamical range.

C. Trajectory Representation using Bézier Polynomials

To mitigate the numerical instability issue, piecewise
Bézier polynomials with lower orders are used instead of
using a high-order Bézier polynomial for the whole planning
horizon. Each piece of the trajectory is associated with one
trapezoidal-prism corridor. Note that B(t) is defined on a
fixed time interval [0, 1]. For a whole trajectory with m+ 1
pieces, in each piece [Tk, Tk+1] (k = 0, 1, . . . ,m), we use a
scaling transformation and translation transformation in the
time domain to map it into the interval [0, 1] [13]. Then, the
whole piece-wise trajectory in one dimension σ ∈ {s, l} is:

fσ(t) =



h0B0

(
t−T0

h0

)
, t ∈ [0, T1]

h1B1

(
t−T1

h1

)
, t ∈ [T1, T2]

...

hmBm

(
t−Tm

hm

)
, t ∈ [Tm, Tm+1] .

where hi is the scaling transformation factor and Ti is the
translation transformation factor for i = 0, 1, . . . ,m with
setting T0 = 0.

IV. CORRIDOR GENERATION
In this section, a convexification algorithm is introduced

to construct convex corridors from the original non-convex
optimization problem for real-time solving. A reference
trajectory is often used to provide a warm start to the
optimization process. In this work, we use simple piecewise
functions for generating valid reference waypoints in the
configuration space of the ego vehicle.

A. Piecewise Convex Safe Regions Representations

Suppose the whole safe region is divided into m+1 pieces
with time intervals [T0, T1] , . . . , [Tm, T ] and T = Tm+1,
with each interval corresponding to a convex safe region. The
details of such a convexification algorithm will be introduced
in the next section. The k-th convex safe region in S−L−T
space can be represented as

Sk = { (ti, si, li) |

pk0 + hkp
k
1

ti − Tk

hk
≤ si ≤ pk0 + hkpk1

ti − Tk

hk
,

lbeg ≤ li ≤ lend, ti ∈ [Tk, Tk+1] }

where si and li are the longitudinal and lateral coordinates
of the ith control point respectively, pk0 , p

k
1 are bias and skew

of the lower bound and pk0 , p
k
1 are those of the upper bound.

hk denotes the length of the k-th time interval and satisfies
hk = Tk+1 − Tk, k = 0, 1, . . . ,m.

Then, the whole safe region is the union of a set of
piecewise-safe sub-regions: S = S0 ∪ · · · ∪ Sm. The speed
planning is safe if ∀t0 ∈ [0, T ], s (t0) ∈ S, l (t0) ∈ S, which
is equivalent to for t0 ∈ [Tk, Tk+1] , s (t0) ∈ Sk, l (t0) ∈
Sk, k = 0, 1, . . . ,m, i.e.,

pk0 + hkp
k
1

t0 − Tk

hk
≤ s (t0) ≤ pk0 + hkpk1

t0 − Tk

hk

lbeg ≤ l (t0) ≤ lend



B. Construction of Piecewise-Convex Safe Regions

(a) S − L− T graph (b) over-approximation (red)

(c) S − T graph for l ∈ [1, 3) (d) S−T graph for l ∈ [3, 6.7)

Fig. 2: Scenario in Fig. 1b after over-approximating car A

Algo. 1 outlines the 3D trapezoidal corridor generation
process. The original non-convex space is sliced along the L
axis at the starting or ending L coordinates of any obstacles
in the S − L − T graph. This generates 3D chunks of the
non-convex space which can be projected in a 2D S − T
graph without the loss of any search space. As an example,
in Fig. 2a, any slices at L coordinates in the range [1, 3)
will give us the 2D S − T cross-section as seen in Fig. 2c.
Similarly, any slice at an L coordinate between [3, 6.7) will
give us the S − T graph as seen in Fig. 2d. The inputs to
Algo. 1 are the upper and lower bounds in the S and L
direction w.r.t. the ego vehicle and the road. The bounds are
measured over a time horizon using a discrete time interval
∆. For each slice, we construct 2D convex corridors in the
corresponding S − T graph. In this work, we extend the
2D convex trapezoidal corridor generation algorithm in our
previous work [17]. The new algorithm is presented as Algo.
2.

Algo. 2 outlines the construction of 2D piecewise-convex
safe regions in any given S − T cross-section along the L
axis. The lower and upper bounds in the S direction serve as
inputs to this algorithm. We refer readers to [17] for further
details about the working of Algo. 2. A key modification in
our work is that in the subroutine SingleRegionCaculate(),
we also initialize the upper and lower boundaries of the
regions in the L direction (Algo. 3. Lines 6,7). Our over-
approximation step and the design of Algo. 1 guarantee
that these boundaries are the same for all 2D convex re-
gions generated by Algo. 2. Thus, we essentially get 2D
trapezoidal-shaped corridors dragged along the L axis to
form 3D trapezoidal prism-shaped convex corridors. Finally,
RegionSplit() is used to check the length of each 2D convex
region. If it is above a user-defined threshold (e.g., 1 s in
our experimental setting), it will be split into multiple sub-
regions, for which the time intervals are all below the thresh-
old. This refinement operation aims to avoid underfitting.

This 2D corridor generation process is repeated for all
distinct obstacle boundaries in our S − L − T graph (Line
1, Algo. 1). The initialization of bounds along the L axis
ensures that we get 3D trapezoidal-shaped convex corridors.
Since the length of the corridors in the L direction is given by
the starting or ending of the obstacles in the S−L−T space,
we can guarantee the safety of all the corridors generated
using Algo. 1. Note that for the space divided by obstacles,
we select the unique space enclosing the reference trajectory
using the SelectCorridors() method. For yielding to car
A, the corridors lying in the green region of Fig. 2c and 2d
are chosen according to the 3D reference waypoints. Note
that once the corridors are selected, the whole optimization
is solved as a single problem and not decomposed into
individual optimizations for separate corridors.

Algorithm 1: Piecewise 3D Convex Regions Gener-
ation

Input: obs, lbs[obs], ubs[obs], lbl[obs], ubl[obs], nums,∆
Output: 3D Region

1 Initialize: for i← 0 to obs do
2 corridor =

Convexify2D(lbs[i], ubs[i], lbl[i], ubl[i], nums,∆);
3 new corridor.append(corridor);
4 end
5 final corridor = SelectCorridors(new corridor);
6 Return final corridor

V. PIECEWISE BÉZIER POLYNOMIAL
OPTIMIZATION

In this section, we discuss more about the limitations of
using the cuboidal corridors. We then discuss the safety
enforcement in our trapezoidal prism-shaped corridors. The
formulation of quadratic optimization using the newly de-
signed convex solution space is introduced thereafter.

A. Limitations of Safety Enforcement in Cuboidal Corridors

As discussed in Sec. III C, the convex hull property of
the Bézier curves is used to enforce that the trajectory in the
S−L−T graph stays in the safe region S. We first formally
define a corridor for our trajectory generation:

Definition 1. Let the coefficients of the Bézier Polynomial
be ci ∈ Ω, i = 0, 1, . . . , n. Each control point has two
dimensions - {S,L}. These control points lying in the safe
region S form a subset Scor ⊆ S, which is called a corridor.

Ding et al. presented the construction of cuboidal corridors
in the S−L−T graph [6]. Constraints of the control points
of cuboidal corridors are given by the following proposition:

Proposition 1. If a trajectory has control points in each
time interval satisfying cki ∈ Ωk

cub = {ck|pk0 + hkp
k
1 ≤

ck,s ≤ pk0 , l
k
beg ≤ ck,l ≤ lkend, i = 0, 1, . . . , n, k =

0, 1, . . . ,m}, f(t) is guaranteed to be safe, and the upper
bounds and lower bounds form cuboidal corridors Scub.



Algorithm 2: Convexify2D
Input: lbs, ubs, lbl, ubl, nums,∆
Output: regions

1 Initialize: regions[0], i = 0, j = 1 /* i and j are
counters for meta-pieces and
resulting convex regions,
respectively */

2 SingleRegionCalculate(region, 0, lbs[0], ubs[0], lbs[1],
3 ubs[1], lbl, ubl)
4 regions.append(region)
5 for i← 2 to nums− 1 do
6 lskew = (lbs[i]− lbs[i− 1])/∆ /* lower

bound’s skew for two consecutive
meta-pieces */

7 uskew = (ubs[i]− ubs[i− 1])/∆ /* upper
bound’s skew */

8 if ||lskew − regions[j − 1].lskew|| >
ϵ or ||uskew − regions[j − 1].uskew|| > ϵ then

9 regions[j − 1].tend = i
10 regions[j − 1].t =

(regions[j − 1].tend − regions[j − 1].tbeg) ∗∆
11 SingleRegionCalculate(region, j, lbs[i], ubs[i],
12 lbs[i+ 1], ubs[i+ 1], lbl, ubl)
13 regions.append(region)
14 j ← j + 1
15 end
16 end
17 regions[j − 1].tend = nums− 1
18 regions[j − 1].t =

(regions[j − 1].tend − regions[j − 1].tbeg) ∗∆
19 RegionSplit(regions)
20 Return regions

Algorithm 3: Single Region Caculate
Input: region, j, lbs[i], ubs[i], lbs[i+ 1], ubs[i+

1], lbl, ubl
Output: region

1 region.tbeg = j
2 region.lskew = (lbs[i+ 1]− lbs[i])/∆
3 region.lbias = lbs[i]
4 region.uskew = (ubs[i+ 1]− ubs[i])/∆
5 region.ubias = ubs[i]
6 region.lbeg = lbl
7 region.lend = ubl

The proof of safety enforcement in rectangular corridors
can be found in [17], and can be straightforwardly extended
to the third dimension L for cuboidal corridors.

The optimization fails if any lower bound (pk
0
+ hkp

k
1) is

greater than the upper bound (pk0). In order to avoid this, the

time interval of the k-th corridor must satisfy hk ≤ pk
0−pk

0

pk
1

.

In [6], Ding et al. propose a seed generation and cube
inflation method to adjust time intervals. However, this
method generates a significant number of corridors and
optimized variables, which leads to a high computation cost.
In common driving scenarios (Fig. 1), we have pk1 > 0 or
pk1 > 0, due to which the cuboidal corridors fail to cover all
the safe regions. As a result, the search space is sub-optimal

and the constraints on control points to enforce the trajectory
are overtightened.

B. Safety Enforcement in Trapezoidal-Prism Corridors

The sufficient conditions of control points ci to keep
the longitudinal and the lateral trajectory safe and in our
proposed trapezoidal-prism corridors are built upon the fol-
lowing lemma.

Lemma 1. Let M ∈ R(n+1)×(n+1) denote the transition
matrix from the Bernstein basis

{
b0n(t), b

1
n(t), . . . , b

n
n(t)

}
to the monomial basis

{
1, t, t2, . . . , tn

}
. We have Mi,0 =

1, 0 ≤ Mi,j ≤ 1, i = 0, 1, . . . , n, j = 0, 1, . . . , n.

The proof can be found in [17]. We leverage the following
theorem meant for 2D trapezoidal corridors to construct 3D
trapezoidal prism-shaped corridors.

Theorem 1. For a trajectory, if it has control points in each
time interval satisfying cki ∈ Ωk, where Ωk = {ck|pk0 +

hkp
k
1Mi,1 ≤ ck,si ≤ pk0 + hkpk1Mi,1, l

k
beg ≤ ck,li ≤ lkend, i =

0, 1, . . . , n, k = 0, 1, . . . ,m}, f(t) is guaranteed to be safe.
The upper and lower bounds in the S and L directions help
form a trapezoidal prism-shaped corridor Strp.

The proof for the 2D case of the above theorem can
be found in [17], and can be easily extended to another
dimension L.

In Theorem 1, conditions on csi are pk0 + hkp
k
1Mi,1 ≤

ck,si ≤ pk0 + hkpk1Mi,1. Compared to the safety enforce-
ment in cuboidal corridors in Proposition 1, we have pk0 +

hkp
k
1Mi,1 ≤ pk0 + hkp

k
1 and pk0 + hkpk1Mi,1 ≥ pk0 . The

advantage of having trapezoidal corridors is twofold: i) By
the proof of pk0 + hkp

k
1Mi,1 ≤ ck,si ≤ pk0 + hkpk1Mi,1,

the lower boundaries are guaranteed to be smaller than the
upper boundaries all the time. Recall that for the rectangular
corridors, we need to always check hk ≤ pk

0−pk
0

pk
1

; ii) The con-
straints are relaxed, therefore the solution space is enlarged
compared with the rectangular corridors (see the illustration
for the comparison in Fig. 3).

C. Trajectory Optimization Formulation

The objective function is established as

J = Js + Jl

Js = w1

∫ T

0

(s(t)− sr(t))
2
dt+ w2

∫ T

0

(ṡ(t)− vrs)
2
dt

+ w3

∫ T

0

s̈(t)2 dt+ w4

∫ T

0

...
s (t)2 dt+ w5 (s(T )− sr(T ))

2

Jl = w6

∫ T

0

(l(t)− lr(t))
2
dt+ w7

∫ T

0

(
l̇(t)− vrl

)2

dt

+ w8

∫ T

0

l̈(t)2 dt+ w9

∫ T

0

...
l (t)2 dt+ w10 (l(T )− lr(T ))

2

(1)
where sr(t) and lr(t) are the reference longitudinal and
lateral trajectories, and vrs and vrl are the reference velocities
in the two directions. For Js and Jl, their first terms penalize



the deviation from the reference; the second ones penalize
the deviation between the actual and reference speed; the
third and the fourth terms penalize acceleration and jerk,
respectively. The last terms penalize the deviation of the
ending position from the reference. We used Optuna [23]
for tuning all the 10 parameters.

The optimization considers the following constraints:
• Boundary Constraints: The piecewise curve starts from

fixed position, speed, and acceleration, i.e.,

c0,li h
(1−l)
k =

dlf(t)

dtl

∣∣∣∣
t=0

, l = 0, 1, 2,

where ck,li is the control point for the lth-order deriva-
tive of the k-th Bézier curve. Note that ck,li has two
dimensions: {S,L}.

• Continuity Constraints: The piecewise curve must be
continuous at the connected time points for position,
speed, and acceleration.

ck,ln h
(1−l)
k = ck+1,l

0 h
(1−l)
k+1 , l = 0, 1, 2, k = 0, 1, . . . ,m−1

• Safety Constraints: With our proposed trapezoidal-prism
corridors, safety constraints for the longitudinal dimen-
sion of the control point can be given as

pk0+hkp
k
1Mi,1 ≤ ck,0i ≤ pk0+hkpk1Mi,1, k = 0, 1, . . . ,m

and those for the lateral dimension of the control point
can be given as

lbeg ≤ ck,0i ≤ lend

• Physical Constraints: The physical constraints under
consideration include the limit of a vehicle’s velocity,
acceleration, and jerk. We can use the hodograph prop-
erty of a Bézier curve to calculate velocity, acceleration,
and jerk. The constraints are given by

βk,1 ≤ ck,li ≤ βk,1

βl ≤ ck,li ≤ βl, l = 2, 3

where k = 0, 1, . . . ,m and it follows that ck,l+1
i = (n−

l)
(
ck,li+1 − ck,li

)
. The upper bounds βk,1 are determined

by speed limits on road and centripetal acceleration
constraints. Let acm be the maximum acceleration per-
mitted and κk the maximum curvature of the path
for t ∈ [Tk, Tk+1] (see [24] for details). The lateral
acceleration constraints are given by

ck,li ≤ βk,1 =

√
acm
κk

.

The bounds on longitudinal and lateral accelerations and
jerks are constant for different pieces of speed profiles.

Then, the trajectory optimization process can be formulated
as a quadratic programming (QP) problem as

P : min
c

1

2
cTQcc+ qT

c c+ const

s.t. Aeqc = beq

Aiec ≤ bie.

We refer readers to the appendix of our previous work [25]
for the detailed formulation process. This problem can be
solved in real-time by a modern solver such as OSQP [26].

VI. SIMULATIONS AND RESULTS ANALYSIS

Our framework has been implemented using C++11. All
simulations are carried out on a personal computer with a
2.60 GHz Intel i10-10750H processor.

A. Numerical Simulations

We conduct numerical simulations to compare the pro-
posed approach with cuboidal corridors [6]. The planning
horizon is 7 s. Different road scenarios are as follows:

1) Merging into another lane due to road construction:
Consider the scenario in Fig. 1. We project different stations
of the vehicles onto the S − L − T graph. The initial
velocity and the acceleration of the ego vehicle are vs(0) =
7.0 m/s, vl(0) = 0 m/s and as(0) = 0 m/s2, al(0) = 0 m/s2,
respectively.

(a) (b)
Generated trajectory using both methods (green:

trapezoidal, red: cuboidal)

(c) Longitudinal Acceleration
profiles

(d) Lateral Acceleration pro-
files

(e) Longitudinal Velocity pro-
files

(f) Lateral Velocity profiles

Fig. 3: Piecewise Bézier polynomial and its dynamic profile

Fig. 3a and Fig. 3b show Bézier curves generated by
cuboidal (red, [6]) and trapezoidal-prism (green, ours) cor-
ridors for the scenario presented in Fig. 1. From Fig. 3c,
we observe that the maximum acceleration required for our
method is less than that needed by the cuboidal corridors



approach. The superiority of using trapezoidal corridors is
more clear from Fig. 3d, which records the lateral acceler-
ation of both the methods. We observe that our approach
yields a smoother acceleration plot with minimal jerk and
the lower maximum acceleration. We also test the maximum
initial conditions of both the methods for the same scenario
to show the effect of the enlarged search space. While using
trapezoidal corridors, we can generate a trajectory for as = 2
m/s2, vs = 10.5 m/s, al = 1.2 m/s2, vl = 2 m/s where
the bounds on longitudinal acceleration are [−3, 2] m/s2 and
those on lateral acceleration are [−2, 2] m/s2. Using the
cuboidal corridors fails to generate a trajectory for these
initial conditions and is only successful when the initial
velocity in the longitudinal direction is reduced to 9 m/s.

2) Overtaking a low-speed vehicle in front: We test our
planner on overtaking a slowly moving car in front by lane
changing twice (second time to merge back into the original
lane of the ego vehicle). In layered planning techniques,
these kinds of scenarios are typically tackled by considering
the obstacle to be static for a few seconds. Hence, this
approach proves to be conservative. The differences in the
longitudinal acceleration graphs between the two corridor
generation techniques can be seen in Fig. 4. Clearly, using
the trapezoidal corridors generates a trajectory with much
lower acceleration. Here, the vehicle in front is assumed to
be moving with vs = 5 m/s and the ego vehicle’s initial
condition is vs = 7 m/s.

(a) Longitudinal acceleration (b) matplotlib animation

Fig. 4: Overtaking scenario

3) Unprotected left turn: As shown in Fig. 5a, there are
two cars coming from the front which obstruct the ego
vehicle from making a left turn without yielding to them.
As seen in Fig. 5b, our planner can successfully find a tra-
jectory while meeting all the safety and dynamic feasibility
constraints. Since the ego vehicle needs to yield to the cars
in front, we also test the maximum initial velocity (vs = 1
m/s) and acceleration (as = 0.5 m/s2) in the longitudinal
direction for this case. If the distance between Car A and Car
B is sufficient for the ego vehicle to go in between them, our
planner finds the corresponding trajectory (Fig. 5c). In this
scenario, the additional search space obtained by trapezoidal
corridors is not used at all, as the trajectory passing through
the enlarged search space can only result in a lane change,
which is not desired. Hence, both the trajectories obtained
are the same and overlap each other, as seen in Fig. 5.

(a) ego vehicle is shown in blue with the corresponding
reference trajectory

(b) (c)

Fig. 5: Unprotected Left Turn at an Intersection- trajectories
obtained from both corridor construction methods (green:
trapezoidal, red: cuboidal) are identical

B. CommonRoad Simulations

The simulations in this part are conducted on the Com-
monRoad platform [27], which provides an interactive sim-
ulated and non-interactive real traffic environment for val-
idating motion planning algorithms. A given scenario is
considered “solved” when the ego vehicle reaches the desired
goal region while satisfying all the constraints. We visualize
the bird’s-eye view simulation of the lane change scenario in
Fig. 1. The results obtained using our approach can be seen
in Fig. 6. The cuboidal corridor approach did not yield a
collision-free trajectory as it failed to replan owing to the lack
of search space. It also had significantly high acceleration as
can be observed in Fig. 3c.

VII. CONCLUSION

In this paper, we propose a novel convexification algo-
rithm for generating safety corridors in the S − L − T
space. We show that our method of trapezoidal prism-shaped
corridors enlarges the solution space as compared to the
existing cuboidal corridors-based method. We provide the
sufficient conditions of control points in the trapezoidal
corridors to provably guarantee the safety of trajectories
represented by Bézier polynomials. Finally, we formulate the
trajectory optimization as a QP problem. The numerical and
CommonRoad simulations show that the proposed approach
is superior in terms of optimality and low failure rates.
Future work includes using a dynamic programming-based
approach to generate a comfort-optimal reference trajectory
in the S − L− T space.
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2016 IEEE 19th international conference on intelligent transportation
systems (ITSC). Ieee, 2016, pp. 826–833.

[13] Y. Pan, Q. Lin, H. Shah, and J. M. Dolan, “Safe planning for self-
driving via adaptive constrained ilqr,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 2377–2383.

[14] Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization
approach to smooth trajectories for motion planning with car-like
robots,” in 2015 54th IEEE conference on decision and control (CDC).
IEEE, 2015, pp. 835–842.

[15] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Safe driving envelopes
for shared control of ground vehicles,” IFAC Proceedings Volumes,
vol. 46, no. 21, pp. 831–836, 2013.

[16] C. Liu, C.-Y. Lin, and M. Tomizuka, “The convex feasible set algo-
rithm for real time optimization in motion planning,” SIAM Journal
on Control and optimization, vol. 56, no. 4, pp. 2712–2733, 2018.

[17] J. Li, X. Xie, J. He, Q. Lin, and J. Dolan, “Motion planning by search
in derivative space and convex optimization with enlarged solution
space,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 07 2022.

[18] W. Zhang, P. Yadmellat, and Z. Gao, “A sufficient condition for convex
hull property in general convex spatio-temporal corridors,” in 2022
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2022, pp. 1033–
1039.

[19] W. Xu and J. M. Dolan, “Speed planning in dynamic environments
over a fixed path for autonomous vehicles,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
3321–3327.
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