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emission tomography (PET) image reconstruction. In par-
ticular, we considered the use of SDP with the block
sequential regularized expectation maximization (BSREM)
approach with the relative difference prior (RDP) regu-
larizer due to its prior clinical adaptation by vendors.
Because the RDP regularization promotes smoothness in
the reconstructed image, the directions of the gradients in
smooth areas more accurately point toward the objective
function’s minimizer than those in variable areas. Moti-
vated by this observation, tiwo SDPs have been designed
to increase iteration step-sizes in the smooth areas and
reduce iteration step-sizes in the variable areas relative
to a conventional expectation maximization preconditioner.
The momentum technique used for convergence acceler-
ation can be viewed as a special case of SDP. We have
proved the global convergence of SDP-BSREM algorithms
by assuming certain characteristics of the preconditioner.
By means of numerical experiments using both simulated
and clinical PET data, we have shown that the SDP-BSREM
algorithms substantially improve the convergence rate,
as compared to conventional BSREM and a vendor’s imple-
mentation as Q.Clear. Specifically, SDP-BSREM algorithms
converge 35%-50% faster in reaching the same objective
function value than conventional BSREM and commercial
Q.Clear algorithms. Moreover, we showed in phantoms
with hot, cold and background regions that the SDP-BSREM
algorithms approached the values of a highly converged
reference image faster than conventional BSREM and com-
mercial Q.Clear algorithms.

Index Terms—Image reconstruction, ordered-subsets,
positron emission tomography, preconditioner, relative dif-
ference prior.

I. INTRODUCTION

OSITRON emission tomography (PET) data are inher-
Pently count limited due to health consideration, basic
physical processes, and patient tolerance. Moreover, these
data must be reconstructed into images within a few minutes
of acquisition. This creates a challenging situation in which
vendors strive to produce high quality images in a clinically
viable time frame. In this study, we introduce a method for
accelerating the reconstruction of high quality PET images.

Over last 20 years, the non-penalized maximum-likelihood
(ML) statistical approaches have become a preferred model
for the reconstruction of PET [1], [2]. However, when iterated
to full convergence, ML methods produce extremely noisy
images, and are sensitive to small statistical perturbations
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in the data. Hence, these methods are seldom run to full
convergence and iterations are stopped before fitting noise
becomes unacceptable at the expense of excessive blur in the
reconstructed images. It has been demonstrated that applica-
tions of penalized likelihood (PL) models that include a data
fidelity term (Kullback-Leibler divergence) and a regulariza-
tion term leads to improved quantification and better noise
suppression, as compared to non-penalized reconstructions [3].
To reduce the computational expense, ordered-subsets expec-
tation maximization (OSEM) algorithms proposed by Hudson
and Larkin are widely used in unregularized PET image recon-
struction [4]. However, OSEM is unsuitable for regularized
image reconstruction leading to the development of relax-
ation [5], [6] and the block sequential regularized expectation
maximization (BSREM) algorithm [7].

Initially, quadratic penalties were explored [8], [9], but they
had resulted in over-smoothed edges and loss of details in
the reconstructed images. Later, a number of other penalties
were developed to address these problems but they often
had undesirable properties including nonsmooth [10], [11],
noncovex [12], or requiring additional hyper-parameters [13].
An example of such an approach is the total variation
penalty that is able to preserve sharp boundaries between
low-variability regions [10], [14]. Thus, ability to deal with
non-smooth priors became an urgent issue, However, only a
few reconstruction algorithms have been able to combine the
Poisson noise model and non-smooth priors [15]-[17].

In an alternative approach, Nuyts ef al. [18] introduced
the relative difference prior (RDP) that preserved high spa-
tial frequencies in reconstructed images while still being
smooth and convex. This RDP was adopted by General
Electric (GE) Healthcare as the penalty term in their PL PET
reconstruction model. The penalty term is controlled by a
single user-defined parameter called beta. The GE Healthcare
introduced a modified BSREM algorithm [8] to solve the PL
model in their commercial clinical software, called Q.Clear,
that is currently available on GE PET/CT scanners [3]. Other
interesting methods, suitable for optimization with smooth
penalties, include the optimization transfer descent algorithm
(OTDA) [19], [20] and the preconditioned limited-memory
Broyden-Fletcher-Goldfarb-Shanno with boundary constraints
algorithm (L-BFGS-B-PC) [9]. While these algorithms con-
verge very rapidly, they represent a substantial departure from
the BSREM algorithm complicating their implementation.

The choice of preconditioners in the algorithm is well
known to strongly affect the convergence rate [9], [16], [21],
[22]. The widely used preconditioners have been designed
based on the EM matrix [16], [21]-[23] or the Hessian
matrix [9]. As part of the BSREM convergence proof, Ahn
and Fessler [8] presented the subiteration-independent precon-
ditioner, which can be viewed as a uniform operator of the
image for all subiteration. However, a subiteration-independent
preconditioner is overly restrictive and may result in a slower
convergence rate. We believe that a well-designed subiteration-
dependent preconditioner (SDP) will accelerate the algorithm
convergence.

In the present study, we propose a subiteration-dependent
preconditioned BSREM (SDP-BSREM) for the RDP regular-

ized PET image reconstruction. We prove that it is convergent
under certain assumptions imposed on the preconditioner.
According to the smoothness-promoting property of the RDP
regularization in the reconstructed image, the directions of the
gradients in smooth areas more accurately point toward the
objective function’s minimizer than those in variable areas.
Inspired by this observation, we propose two SDPs satisfying
the assumptions needed for the convergence proof. We note
that the momentum technique is a special case of SDP.
We have used the numerical gradient of the image to measure
its smoothness. These two SDPs achieve larger step-sizes
in the smooth areas of the image and smaller step-sizes in
the variable areas of the image. The proposed algorithms
have been compared with BSREM for simulations and with
the Q.Clear method with data acquired from a GE PET/CT.
In simulations, two numerical phantoms were used. In the
clinical comparisons, data from a whole-body PET patient and
an American College of Radiology (ACR) quality assurance
phantom (Esser Flangeless PET phantom) were used both with
and without time-of-flight data.

This paper is organized in five sections. In section II, we first
describe the RDP regularized PET image reconstruction model
and the modified BSREM algorithm and then develop our new
SDP-BSREM algorithm. In section III, proofs for convergence
of SDP-BSREM are provided with and without an interior
assumption and four SDPs satisfying the convergence con-
ditions are presented as well. Comprehensive comparisons of
the results obtained for simulated and clinical data obtained by
means of our proposed SDP-BSREM methods versus BSREM
and Q.Clear are provided in section IV. The conclusions are
presented in section V. Two appendices with additional details
are also provided.

Il. METHODOLOGY

In this section, we develop the SDP-BSREM algorithm for
solving the RDP regularized PET image reconstruction model.

A. RDP Regularized PET Image Reconstruction Model

We denote by R, the set of all nonnegative real numbers,
by Ry, the set of all positive real numbers, by N the set
of positive integers, and by Ny := N U {0}. For p,q € N,
we let A € R7*? denote the PET system matrix whose entries
are the probability of detection of the positron annihilation
gamma photon pairs emitted from a particular voxel containing
PET radiotracer, and let y € R7, denote the mean value
of the background events produced by random and scatter
coincidences. The relation of the radiotracer distribution f €
R? within a patient with the projection data g € RY acquired
by a PET scanner is described by the Poisson model

ey

where Poisson(x) denotes a Poisson-distributed random vector
with mean x.
Model (1) may be solved by minimizing the fidelity term

F(f) := (Af,1,) — (In (Af +¥),8), 2

g = Poisson(Af + ),
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where 1, € R? denotes the vector with all components 1,
Inx :=[lnxy,Inxy,..., lrlx,,]T is the logarithmic function at
a vector x € R’ | and x; is the i-th component of x, and
(x,y) == DI, x;y; denotes the inner product of x,y € R".
It is well known that model (2) is ill-posed [24] and its
solutions may result in over-fitting in reconstructed images.
Regularization is often used to avoid the over-fitting prob-
lem. A commonly used regularized PET image reconstruction
model has the following form:

arg min @(f), 3
feRL
where
O(f) :== F(f) + BR(), )

with # € R, being the regularization parameter and R(f)
representing the regularization term. In this study, we will
consider the RDP [18] regularization term that is given by

2
R(f) _ZZ — Ji)

i Ui +fL)+J’R|f;

where yr € R, controls the degree of edge preservation, and
N; is the neighborhood of pixel j.

In model (5), a small constant € > 0 is added to the denom-
inator to avoid singularities when both f; and f; are equal to
zero. By its definition, RDP is a function of both differences of
neighboring pixels and their sums. The inclusion of the sums
term makes RDP differ from conventional regularization terms
and causes the regularizer to be activity-dependent. We note
that the function @(f) is twice differentiable since both F(f)
and R(f) are twice differentiable [16], [18]. The inclusion of
a small constant € in the denominator of RDP provides the
objective function @ with two useful properties (the proofs
are provided in appendix I): (i) it is strictly convex under
an assumption that ATg is a nonzero vector; and (ii) it has
a Lipschitz continuous gradient on R‘j’r.

(5)

fk|+€’

B. Modified BSREM Algorithm

A modified BSREM [8] was adopted by GE Healthcare as
the optimizer in the Q.Clear method [3] for solving the model
(3). Here we describe and review the modified BSREM.

Minimization problem (3) is often solved by the gradient
descent method. However, computing the whole gradient V@
is computationally expensive. To alleviate this issue, the
ordered-subsets (OS) algorithm was developed to accelerate

its convergence [4]-[7]. Forn e¢ N, let N, := {1,2,...,n}.
For McN,letT:={I;:ic NH} be a collection of dlS_]Olﬂl
subsets of N, such that U, 1 Ii = Np. The partition 7 is

chosen as in [8]. According to the partition 7, we partition
the system matrix A into M row sub-matrices A;, and g and
y into M sub-vectors g; and y;, respectively, for i € Ny.
We use [Q| to denote the cardinality of set Q. For i € Ny,
we define

@ (f):=Aif, L) — (In (Af +75) , gf}'f"%R(f)- (6)

It follows that ®(f) = >¥, @;(f). An OS algorithm com-
putes only one V®; at each subiteration step.

A subiteration-independent preconditioned OS algorithm
was proposed in [8]. The preconditioner is designed by using
an upper bound of the solution set of minimization problem
(3). It was proved in [8] that for any projection data g, there
exists a constant U > 0 such that the solution set &* of
minimization problem (3) is contained in the bounded set

B::{f:fe]Rq, <fi< (7

That is, S* C B. For f € B, a subiteration-independent
diagonal preconditioner S(f) is defined as

fi/pij
W —1i/(pj)

where p; are defined by

o [ AT1,);/M if AT1,); >0,
-

U, jeNg}

if0<fj <U/2,

ifU/2< f; <U, ®)

S(jj = [

for jeN, (9
1/M if (471,); =0, 763212
Note that the preconditioner § is uniform for all iterations.

For a small r € (0, U) and f € R9, an operator P; : RY —
B is defined by

t if f; <0,
Plf); =fU—t ¥ f; U (10)
fi 0therw1se.

Using operator P;, the modified BSREM algorithm [8] may
be described as for k € Ny, i € Ny,

.\.k,f =i = -
If o 1'_ Sy ve; i, 5
fk,l = ‘P.I‘OJ("),
with fk L. f" f"“ , where A; > 0 is the relaxation

parameter. For sm'lplnclt)r of notation, we will refer to the
modified form of BSREM simply as BSREM.

C. BSREM With Subiteration-Dependent Preconditioners

In this subsection we propose subiteration-dependent pre-
conditioners (SDPs). To motivate them, we review the momen-
tum approach. The momentum is an acceleration technique
widely used in optimization [25]-[27]. The Nesterov momen-
tum [25] has been combined with OS by Kim ef al. [28] for
CT image reconstruction. Recently, Lin ef al. [22] success-
fully applied a different form of momentum to PET image
reconstruction. However, no explicit convergence proof has
been provided for the OS combined momentum methods.
Instead, Kim erf al. proved that the expectation of the succes-
sive steps converged, while Lin ef al. proved convergence for
the non-OS method. The momentum technique used in [22]
can be described as follows: for k € Ny, i € Ny,

..k,‘ = 1) -

f =maxft - asgtHveirtth o)
= = a ) raf

where ay ; i > 1 is the momentum sequence. Under an assump-

tion that f are non-negative, one can obtain

= e SEH Y Ve . (13)
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TABLE |
SDP-BSREM ALGORITHM

Preparation: F0, M, T, P; is defined in (10)
for k=0,1,2,...,T
fk 0 fk
fori=1,2,...,M
fk,l' — fk,l'—l _ AkSk’i(fk‘i_l)VQ,'(fk‘i_l)
fk,‘ - Pt(fk")
end
fk+l = fk.M
end

By letting S5/ (f) := ax;S(f), we may reinterpret S*
as an SDP and (13) as a BSREM algorithm with S%.
Inspired by this, we introduce SDPs by setting S5/(f) :=
diag(a®')S(f), where aX-' is a positive vector sequence and
diag(y) denotes the diagonal matrix with the diagonal entries
being the components of the vector y. Using the same notation
as for BSREM above, we have arrived at the SDP-BSREM
algorithm for solving model (3) given in Table 1.

Bearing in mind the momentum concept defined in [22],
it is clear that the iteration sequence provided in (13) is a
special case of our proposed SDP-BSREM algorithm with
abi = at,ilg. For this reason, we expect that our proposed
SDP-BSREM algorithm setting will allow us to choose an
SDP to yield the convergence acceleration. We will evaluate
its performance by means of numerical experiments to be
presented in section IV.

I1l. CONVERGENCE OF SDP-BSREM ALGORITHM

In this section we present convergence properties of the
SDP-BSREM algorithm. We also describe four specific SDPs
that satisfy the convergence condition. To this end, we assume
that the objective function @ satisfies the hypothesis:

(i). @ has a unique minimizer on B;
(ii). @ is convex and twice differentiable on B;
(iii). V®@; are Lipschitz continuous on B for all i € Ny,.

The use of SDPs results in scaled subset gradients with their
sum inconsistent with the scaled full gradient. It complicates
the convergence proof and requires additional assumptions
on the preconditioner to make the inconsistencies asymp-
totically approach zero. For a general SDP, our proposed
SDP-BSREM algorithm may not converge [8]. Nevertheless,
by imposing certain assumptions on %/ convergence to the
desired optimum point can be ensured. For a SDP Ski(f) =
diag(a®')S(f) with S(f) defined in (8), the required additional
assumptions are as follows:

(iv). The relaxation sequence satisfies D> jo, Ax = oo and
2020 4 < 00;

There exists a positive vector & such that limj_, o o5 =
o for all i € Nyy;

The vector series > o k(e — ') converge for
all i € Ny.

Note that condition (iv) was imposed in [8], [29] for
convergence proofs for relaxed OS algorithms. Conditions

(v).
(vi).

(v) and (vi) were imposed to overcome difficulties caused by

the use of different preconditioners in different subiterations.
We now state a lemma regarding the Lipschitz continuity

properties of SDPs. The proof is included in Appendix II.

Lemma 1: If conditions (iii) and (v) are satisfied, then
S5 (f)V®; (f) are uniformly bounded and Lipschitz continu-
ous on B with Lipschitz constants bounded above by a uniform
constant, for all k € Np,i € Ny.

The inclusion of the operator P; in the SDP-BSREM algo-
rithm complicates the convergence proof. Here, we present
our approach in dealing with this difficulty. Let int B denote
the interior of B. We prove the convergence of SDP-BSREM
in two steps. We first prove it with the interior assumption
_fk" € intB for all k € Ng,i € Ny, and then prove it by
showing that the interior assumption holds true under certain
conditions. -+

We now proceed the first step. If f

) e s
No,i € Ny, then f5 = ") = ' and the iteration
scheme can be formulated as

3 e intB for all k

A= — 4 sHk-hve, -l a)
=1

We first establish a technical lemma.
Lemma 2: Suppose condlnons (iii) and (v) are satisfied.

If limg .00 4k = 0, andf cintB, for all k € Ny, i € Ny,
then llmk_,oo(f ) =0, forall i € Ny.

Proof: By Lemma 1, sk ’(f)VCD (f), k € No,i € Ny, are
uniformly bounded on B. This combined with limy .o Ax =
0 and (14) yields the desired result. ]

Let 8% := ¢ — ok | & := max;cy,, jeNy |¢5k |. We state a
technical lemma whose proof is included in Appendlx 1L

Lemma 3: Suppose conditions (iii)-(vi) are satisfied and
7' < intB for all k € No,i € Ny. If 77 e U
for all i € Ny, then

ff— 1 =uf [—L + 0@ + 0. (15)
If £~ €[U/2,U) for all i € Ny, then
i k
- = — 2220 4 o) + oG
pj ofj
(16)

We recall that a cluster point of a sequence f° k is defined as
the limit of a convergent subsequence of f ¥ and state a lemma
whose proof is included in Appendix IL

Lemma 4: If conditions (i)-(vi) are satisfied and fk cintB
for all k € Np,i € Ny, then (a) tD(f") converges in R,
(b) there exists a cluster point f* of f* with S(F*)V®(f*) = 0,
and (c) such a cluster point f* described in (b) is a global
minimizer of @ over B. _

We are ready to prove convergence of fk and fk" with the
interior assumption.

Proposition 5: If conditions (i)-(vi) are satisfied and f
int B for all k € Ny, i € Ny, then bothf and f ki converge
to the global minimizer of @ on B.
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Proof: According to Lemma 4 (c), f* is a global min-
imizer of @ over B. Suppose there exists another cluster
point f** # f* By Lemma 4 (a), ®(f*) converges in R,
which implies that ®(f*) = ®(f**). Then f** is also a
minimizer of @(f), which is a contradiction since @(f) has
a unique minimizer on B. Then we obtain lim; . f"' =
argming .5 @(f). The convergence of f""' follows from
Lemma 2 and the convergence of f". ] |

We have shown that condition fk’l € intB for all k €
Np, i € Ny is sufficient for the convergence of SDP-BSREM
algorithm. Next, we prove the convergence of SDP-BSREM
without the interior assumption. The proof of convergence is

completed by proviﬂgf'k'l cintB foralli € Ny and k > K
for some K > 0. We now state a lemma to prove it.
Lemma 6: Suppose condition (iii) is satisfied. If o

..k‘ .
is bounded and limg_.o0 A = 0, then f ' ¢ intB for all
i € Ny and k > K for some K > 0. -

Proof: It suffices to prove that f;‘" e (0,U) for
all i € Ny, j € Ng,k > K, for some K > 0. By condition
(iii), (8/0f;)®@i(f) is bounded over BB for all i € Ny, j €
N,. Combining this with the boundedness of a®, there
exists ¢; > 0 such that |af"/p_,-(6/6f_;)(l),-(f)| < ¢, for
all i € Ny,j € Ng,k € Ny, and all f € B. Because
limg_, o0 Ax = 0, there exists K > 0 such that |)_.k| < 1/¢y
for all k > K, so that |Aka’;"/,pj(a/afj)q),-(f‘"f—‘)| < 1k
Hence, for k > K, i € Ny, if ﬂ‘”_‘ € (0,U/2), the precon-
ditioner S5 (FBi=1);; = af”fj “=1/p; gives rise to f;" =
£ = a7 pj(@/0fj)®i (1)1, from which we can
show that ' e (0, U). Likewise, if f1'~'  [U/2,U), the
preconditioner S(f%~1);; = aj:" (U — ff"_l)/pj gives that
U — 7)) = U — £} "D+ axa/pj /01 @i FH 1)),
from which we can show that ff" € (0, U). |

We now arrive at the following theorem for the convergence
of SDP-BSREM algorithm without an interior assumption.

Theorem 7: If conditions (i)-(vi) are satisfied, then f""
converges to the global minimizer of @ on B.

Proof: We have that limj_, 4 = 0 and okt is bounded
from conditions (iv) and (v) respectively. Thus, by Lemma 6,

there exists K > 0 such r.hatfh’r cintB forall k > K,i €
Nys. Then the proof follows from Proposition 5. |

We next propose four specific SDPs which satisfy the
convergence conditions (iv)-(vi). For o (f) = diag(a"’f )S(f),
let o := a ;v5, where ay ; is a scalar sequence and v&* is
a vector sequence to be determined. Other, potentially better,
choices of a* are left as future work.

In this case, inspired by momentum techniques [22], [25],
we consider the following two choices of aj ;. The first one
is derived from Nesterov momentum [25]:

api= 1+ (i — 1)/ t,it1,

k,i

(17)
where ft i1 := (1 + 1+4‘f,;)z’2v fo,1 := 1 and fgyyy =

tr,M+1,k € No,i € Ny. The second one has the following
form:

ari =@M +i—-1)+&)/kM+i—1+6), (18)

for k € Np,i € Ny, where p,d1 and & are positive
parameters. We notice that this a;; is an extension of the
momentum proposed in [22].

The motivation for the design of v%i is presented as
follows. The use of different step-sizes for different regions
in the image can accelerate the convergence of the algorithm.
The diagonal nonnegative definite preconditioner plays an
important role in rescaling the step-sizes of the algorithm.
Hence, a good preconditioner can significantly accelerate the
convergence of the algorithm. We propose a type of precondi-
tioner that is related to the regularization term that promotes
smoothness in the reconstructed image. Our goal is to find
the minimizer of the objective function which consists of the
fidelity term and the regularization term. The fidelity term esti-
mates the fitting quality of the reconstructed image to the data
and the regularization term defined in (5) promotes smoothness
in the reconstructed image. Smaller fidelity term makes the
reconstructed image more consistent with the data and smaller
regularization term leads to a smoother reconstructed image.

Suppose f* is a minimizer of the objective function ® and
the iteration scheme of the algorithm converges to f*. Let I,
and I, be the smooth and variable areas of f*, respectively.
Suppose V; @ and V;, @ are the subsets of V® defined
in the areas I; and I,, respectively. Then for the smooth
areas I, the descent directions of the fidelity term and the
regularization term are consistent whereas for the variable
areas [,. the descent directions of the fidelity term and the
regularization term are inconsistent. Thus the direction of
Vi, @ more accurately points toward the minimizer than the
direction of Vj, @. Therefore, we conclude that the directions
of Vi, ®(F"%") and V;, ®(* ') are more consistent than
the directions of V;, ®(f*") and V;, ®(f%*!). We illustrate
this conjecture (the subset gradient is used in practice) via
numerical experiments (see Fig. 2). The preconditioner is
designed to achieve larger iteration step-sizes in the smooth
areas I, and smaller iteration step-sizes in the variable areas
I,. The numerical gradient (the gradient function in Matlab)
of f* is applied to measure the smoothness degree of the image
f*- Then larger and smaller step-sizes will be used in the areas
having smaller and larger numerical gradients, respectively.

Suppose f € ]RT”XI is a 2D image with size
g1 x q2. Let mat(f) e R¥™® be the matrix form of
f. Using the gradient function in Matlab, we compute
the gradients of mat(f) along the x and y directions,

namely, grad,(mat(f)) and grad,(mat(f)). Let grad(f) :=
J (grad, (mat(f)))? + (grad, (mat(f)))?, where the square and

square root operations are element-wise. For PET patients
data, the minimizer f* is unknown and we use f""' to approx-
imate f*. Based on the consideration that areas with larger
numerical gradients should have smaller step-sizes, we first let
pki := max(0.01, grad(f**)/mean(f*')), where mean(f) :=
Z‘}=1 fi/q is used to normalize the fk’i. Instead of directly
letting vbi be the 1/puf, we define a projection operator
to avoid too large or too small step-sizes. For two positive

numbers v, < vy, and f € R?Y a projection operator PJ:"’ »
R? — R is defined by P, (f); := min {vy, max { f;,vm}}.
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Let Ji; :=kM +i,k € Ny, i EINM. For 0 < v; < vp, and
0 < Jo < Ji :=kiM + iy, the v*' is determined by

14 if Ji,i < Jo,
Vol .= 1 P2 (mean(ub?) /bty if Jo < Jei < B, (19)
pkisit if Ji; > Ji.

For the first Jp subiterations, the v""'_ is set to the identity
vector since the approximation of fk" to f* is poor. The
approximation becomes better as the iteration continues, hence
different step-sizes for different regions of the image are used
for Jo < Ji; < Ji. After J;-th subiteration v%' is then fixed
due to improved approximation. The preconditioners sk (f) =
S(f)diag(ak,;v*') are denoted by P1 and P2 depending on
ay,; defined in (17) and (18) respectively. The momentum-like
preconditioners S*(f) = S(f)diag(axi1,) are denoted by
M1 and M2 depending on ai; defined in (17) and (18)
respectively. Then we have the following theorem. The proof
can be found in the appendix II.

Theorem 8: The SDP-BSREM algorithm with @ defined
in (4), and with relaxation Ay := Ap/(ak + 1), 4p,a > 0, and
preconditioner P1, P2, M1, or M2 is convergent.

IV. NUMERICAL RESULTS

In this section, we present results of evaluations of the
SDP-BSREM algorithms performance obtained by means of
numerical experiments using both simulated and clinical PET
data, in comparison with BSREM and with the clinical version
of BSREM (Q.Clear, GE).

A. Simulation Setup

The algorithms were implemented using a 2D PET sim-
ulation model developed in the Matlab environment [22],
[30]. The projection matrix, based on a single detector ring
of a GE D710 PET/CT, was built using a ray-driven model
with 32 parallel rays per detector pair. Cylindrical detector
ring, consisting of 576 detectors whose width are 4 mm, was
applied. The field of view (FOV) was set to 300 mm and
288 projection angles were used to reconstruct a 256x256
image with pixel size 1.17 mmx1.17mm. The true count
projection data were obtained by forward projecting the
phantom convolved in image space with an idealized point
spread function (PSF). The PSF was a shift-invariant Gaussian
function with full width at half maximum (FWHM) equal to
6.59 mm [31]. Uniform water attenuation, with attenuation
coefficient 0.096 cm—!, was simulated using the PET image
as support. Scatter was simulated by adding highly smoothed
and scaled projection of the phantom to the attenuated image
sinograms. The scaling factor was equal to the estimated
scatter fraction SF := S/(T + §), where T and § are true
and scatter counts respectively [32]. Random counts were
simulated by adding a uniform distribution to the true and
scatter count distributions scaled by a random fraction RF :=
R/(T + S+ R), where R is the random count [32]. The total
count was defined as TC := T + S + R. In the simulations,
it was TC = 6.8 x 10° for high count data and TC =
6.8 x 10° for low count data. In both cases SF = RF = 0.25.

a) b)

Fig. 1. Numerical phantom used in simulations. a) Brain phantom.
b) Uniform phantom: uniform background (1 ROI with radius 25 pixels
is shown) with 6 uniform spheres of different radii (2 cold spheres and
4 hot spheres).

The individual noise realizations were generated by adding the
Poisson noise to the total count distribution. The same system
matrix was used to simulate the data and to reconstruct them.

To investigate the convergence acceleration and its
impact on reconstructed images fidelity, two figures-of-
merit were computed: the objective function ((D(fk)) and
the normalized root mean square difference (NRMSD). The
region of interest (ROI) based NRMSD is defined by

VZicaUF = 17992/ X jca ()2, where [ is the con-
verged image at 1000 iterations by BSREM algorithm with
24 subsets in simulations, and € is the ROI. In the simulations
the global NRMSD is obtained by setting the ROI as the whole
image.

Two 256 x256 numerical 2D phantoms shown in Fig. 1 were
used in simulations. The brain phantom [30] was obtained
from a high quality clinical PET image. The uniform phantom
consists of 4 uniform hot spheres and 2 uniform cold spheres
with distinct radii: 4, 6, 8 (cold), 10 (cold), 12, 14 pixels.
The contrast ratio for the cold and hot spheres are 0 : 1 and
1 : 10, respectively. All simulations were performed in a 64-bit
Windows 10 OS laptop with Intel Core i7-8550U Processor at
1.80 GHz, 16 GB of DDR4 memory and 512 GB SATA SSD.

The parameter ¢ in P, was set to 10~*. The constant € was
set to 102, The regularization parameter £ in model (3) was
set to 0.1 and 0.8 for high and low count data respectively.
In RDP regularization term, the parameter yg was set to 2 and
8-point neighborhood was considered. The initialization fo
was set to 1, to examine the setting of v5/. We used the
relaxation sequence defined by Ag/(ak + 1),a > 0 . In all
simulation experiments, for simplicity, we empirically set g =
1,Jop = 3, J> = 1000 and é; = J;. Other parameter values,
shown in Table II, were chosen based on the performance of
objective function value.

B. Simulation Results

1) Comparison of Gradient Consistency: To measure the
directional consistency of two vectors, we computed the
angle between them. The angle between vectors v and v; is
defined as 6(vi,v2) := arccos((vi,v2) /(Ivil2llv2ll2))-
We define the smooth areas sequence by Isk" =
{j €N, : grad(f®'); < 0.01-mean(f*')}, and the variable
areas sequence by I5' = {[j e N, : grad(f®’); >
0.2 -mean(f""')]. In order to estimate the consistency of
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TABLE Il
ALGORITHMIC PARAMETERS FOR 2D SIMULATION RECONSTRUCTION

Parameters Brain phantom Uniform phantom
high count: a = 1/400
RIREM(12) low count: a = 1/18 )
high count: a = 1/13,
=1.6,1p =24
SDPFA12) ;;lw CDI.IIII::? =0.5 -
v; = 1.6, =24
high count: @ = 1/5,p = 5,
81 =5,11 = 08,10 =22
SDP-F2(12) | 100 count: @ = 1.3,0=17.5, -
51 = 5,]/1 = 1.3,1/2 =21
high count: a = 1/35 high count:
BSEENC) low count: a = 1/5 a=1/35
high count: a = 0.35,
v = 1.6, =24 high count: @ = 0.5,
SDP-P1(24) low count: @ = 1.3, v =18,v2 =25
v = 14,1, =25
h‘;fh;ogmsl ZT] g‘i’ i=1 :' high count: @ = 0.7,
SDPPA2) low Dou;n: a= 1:,‘; o= 2:2 e=30=17,
h=lih=lnm—94 | ASHAM=AD
150 ——smooth areas | , /\\—,_,_,_._,__
——variable areas| 2100 3
s o
L9 o
50 § &0 ]
<
0 40
150 2
o iy 3
© 100 e i
2 - / '
50 § &0 ]
a
0 40
0 2 4 5 8 10 2 4 H 8 10
Iterations Iterations
Fig. 2. Angle (left) and average angle (right) between the gradients

of the successive subiterations vs. iterations projected in the smooth
areas and variable areas in the reconstructed images, respectively, for
the brain phantom with high count data. Top row: SDP-P1 (24). Bottom
row: SDP-P2(24).

Vlsk,j (l),'_l(f""'_l) and Vls’“f tl);(fk’i), we computed the angle
between them. For smooth areas, we define the angle sequence
by i = O(Vri®i1(f"), Vs @i (), and the
average angle in each iteration by 6 := Z:‘it O,i /M, where
@ := Dyy. Similarly, for variable areas, we computed ék,; -
OV, i1 (F51), Vi @ (F%)) and 6 == 33 T, i
In Fig. 2, we observed that for SDP-P1 and SDP-P2, the angle
and average angle in smooth areas were smaller than those
in the areas with more variability. This is consistent with our
conjecture that the directions of gradients in the smooth areas
more accurately point toward the minimizer than those in the
variable areas. Hence, larger step-sizes in the smooth areas
and smaller step-sizes in the variable areas are reasonable.
2) Comparison of Preconditioners: In order to reveal the
improvement due to the application of a preconditioner,
as compared to the use of a momentum, we compared
SDP-BSREM algorithm with four different precondition-
ers: P1, P2, M1, and M2, where M1 and M2 are surro-
gates of momenta. The parameter a in SDP-M1(12) and
SDP-M1(24) was set to 1/50 and 1/6, respectively. And the

x107 %107
-3.647 --SDP-M1(12)1 -3.647 ---SDP-M1(24)
-+-SDP-M2(12) . -+--SDP-M2(24)
§-364701} | —SDP-P1(12) {-3.64701[| ——SDP-P1(24)
5 © . —=—SDP-P2(12) Ly —~SDP-P2(24)
*3ea702| I, -3.64702 Y
3
-3.64703 R ., -3.64703
N
-3.64704 20044-3.64704
5 10 15 20 5 10 15 20
CPU Time (sec) CPU Time (sec)
Fig. 3. Comparison of performance of preconditioners investigated in

this study. Objective function vs. elapsed CPU time in reconstructions
performed with SDP-BSREM algorithm with four preconditioners: M1,
M2, P1, and P2, and with 12 subsets (left) and 24 subsets (right),
respectively, for the brain phantom with high count data. Preconditioners
P1 and P2 were generalized from M1 and M2, respectively.

100 100
. —BSREM(12) —BSREM(24)
g —SDP-P1(12) —SDP-P1(24)
2 s0 —SDP-P2(12){ 50 —SDP-P2(24)
E L
o P T
100 100
. —BSREM(12) —BSREM(24)
£ —SDP-P1(12) —SDP-P1(24)
g so —SDP-P2(12){ 50 —SDP-P2(24)
[
=
\__ _

0 0
0 20 40 60 80 100 0 20

Iterations

40 60 80 100
Iterations

Fig. 4. Global NRMSD vs. lterations in reconstructions per-
formed with different algorithms: BSREM(12), SDP-P1(12), SDP-P2(12),
BSREM(24), SDP-P1(24), SDP-P2(24) for the brain phantom with low
(top row) and high (bottom row) count data, respectively.

parameters a, g, 41 in SDP-M2(12) and SDP-M2(24) were set
to 1/15,3,1 and 1/5,2.6, 0.5, respectively. In Fig. 3, one can
observe that SDP-P1 and SDP-P2 outperform SDP-M1 and
SDP-M2, in reaching the same objective function value, by
25-30% and 25%, respectively.

3) Comparison of SDP-BSREM With BSREM: In this subsec-
tion, we analyzed the performance of SDP-BSREM algorithms
compared to the BSREM algorithm. First, we showed the
global NRMSD for all the algorithms, with 12 and 24 sub-
sets, in Fig. 4, using the brain phantom. It showed that all
algorithms converged to the same solution for both low and
high count data. Further, this figure showed that SDP-P1
and SDP-P2 outperformed BSREM with respect to global
NRMSD. To analyze convergence acceleration, we showed the
objective function values of each algorithm in Fig. 5. In this
figure, one can observe that both proposed algorithms, SDP-P1
and SDP-P2, outperform the BSREM algorithm, in reaching
the same objective function value, by roughly a factor of two
for all cases: 12 and 24 subsets for both low and high count
data using the brain phantom.

Next, we examined the local convergence performance of
SDP-BSREM algorithms by ROI based NRMSD in 8 different
ROIs with different contrast ratios in the reconstructions of the
uniform phantom. High count data and 24 subset were used
in this experiments. In Fig. 6, we observed that the proposed
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%108 %108 w
g 208813 ~BSREM(12)| 298| - BSREM(24) R By
£ ~—SDP-P1(12) ——SDP-P1(24) %R
i —-SDP-P2(12) | "2:08335 —~SDP-P2(24) TN
O 20834 20834[ ey Gy
x10 x10 ,ﬁg
e —~—BSREM(12) | -3-64692 —~BSREM(24) a)
€ a6ae0sl | —SDP-P1(12) | 5 pcoc||  —SDP-P1(24)
o ——SDP-P2(12) ’ ——SDP-P2(24) Fig. 7. Clinical PET patient and ACR phantom. a) Clinical PET patient:
g -3.647 -3.647 Coronal maximum _intensﬂy projecti_on (MIP) of a clinical whole-body
18F-FDG PET patient image acquired on a GE D710 PET/CT and
-3.64704 k== -3.64704 ==——= 3 reconsiructed using the Q.Clear clinical method [3]. b) Clinical ACR
5 10 15 20 5 10 15 20 quality assurance phantom showing the regions of interest for cold/hot
CPU Time (sec) CPU Time (sec) cylinders, 0:1 and 2.5:1 activity concentration ratios, respectively, and
background [34].
Fig. 5. Comparison of performance of SDP-BSREM vs. BSREM

algorithm. Objective function vs. elapsed CPU time in reconstructions
performed with BSREM, SDP-P1, and SDP-P2, with 12 (left) and 24
(right) subsets for the brain phantom with low (top row) and high (bottom
low) count data, respectively. The dash lines represent the objective
function values of BSREM at 20 seconds CPU time.

radius = 6 ot radius = § cold radius = 10 cold
B0 50
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115, 15
o 10
5 5|
0 L] o o
5 w0 L1 20 5 L1 %5 L w 1% E- ] s w 15 =
CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec)

Fig. 6. Comparison of local convergence performance of SDP-BSREM
vs. BSREM algorithms for the uniform phantom with high count data. ROI
based normalized root mean square difference (NRMSD) vs. iterations
is shown. The eight ROIs are the 4 hot spheres, 2 cold spheres,
1 background spheres, and the region consisting of all the former 7 ROIs,
named “all ROIs™.

SDP-P1 and SDP-P2 algorithms converged fast than BSREM
algorithm in all 8 ROIs.

C. Clinical Results

The reconstructions were performed with our SDP-BSREM
algorithm with P2 preconditioner and with commercial
Q.Clear by means of the GE toolbox [33] with the penalty
weight (f) set to the default value of 350. Because the
2D-projectors used in the simulations and 3D-projectors used
in clinical data reconstructions were scaled differently, the
penalty values used in respective reconstructions differed
substantially.

To mimic the GE’s clinical implementation of Q.Clear,
25 and 8 iterations were used for non-TOF and TOF data,
respectively, with 24 subsets in the experiments. For the same
reason we initialized both the non-TOF and TOF reconstruc-
tions using OSEM with 2 iterations and 24 subsets. The
reconstructions with TOF data were further initialized using
3 iterations with 24 subsets of non-TOF algorithm. This gives
a more clinically realistic view of the performance, but at the
cost of being able to isolate TOF performance.

TABLE 1l
ALGORITHMIC PARAMETERS FOR 3D PATIENT RECONSTRUCTION
Algorithm Parameters
Q.Clear(nonTOF) AM=2,a=1/5
Q.Clear(TOF) A=12,a=1/5
A=16,a=1/4,0=22,
SDRP2(ooaTOF) | 5o 0.1, 8 = 1.6,14 = 08,14 = 1.25
MM=11a=1/3,0=24,
SOPP2IOF) | 5, — 06,8, =16, = 06,05 =125
.o nonTOF
5.20375
;.:i 520370 \ “ [\
© 5 zusss~:\ T '\I
:g"x"-ﬁc‘ \ \\ ’
520355 | \"‘-‘.A .
10" _,:. 10® - t
330590 T Geariteration-25) - Q.Clesr(iteration-8) ﬁ A
g A —=-sop-8sREM 284711R, o SpPSSREM - S - -
=1 5.30585 1R | \ o]
[l L_ 244710} | _____% B
-_gSBﬂ:BO ‘K 244709 | ' 4
5395"5:_.}?:.“__ ‘,moa;.....ﬂ.'?‘f:_\‘_;_:}b, --------------
2

4 8 B

5 10 15 20 5 L]
Iterations

Iterations

Fig. 8. Comparison of performance of SDP-BSREM vs. Q. Clear (8 =
350) algorithms. A whole-body 18F-FDG clinical PET patient scan was
used. Eight patient bed positions separated by dashed lines are shown
in the coronal maximum intensity projection (MIP) image. The objective
function vs. iterations is shown for PET scanner patient bed positions
4 and 6 (red arrows) for nonTOF (left) and TOF data (right). The dashed
lines represent the objective function values at the final Q_Clear iterations.

The parameter values are shown in Table I1I. For simplicity,
since good initializations were used, we set Jy = 0 and
Ji = 1000. The other algorithmic parameters were found
via an iterative golden search procedure using a single bed
position (centered on the Derenzo region) from an ACR PET
phantom [35] with similar count characteristics as the patient’s
data. Using this phantom each parameter was sequentially
optimized with 5% tolerance and then used in search for
the next parameter until parameter values ceased to change
(~3 iterations).

In Fig. 8 we show convergence, via the objective function
value as a function of iteration for non-TOF/TOF data, for an
I8F_FDG whole-body PET clinical patient (shown in Fig. 7a).
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Fig. 9. Local convergence is assessed using the 8 regions of interest
from an ACR quality assurance test with TOF data [34]. These regions
of interest can be seen in Fig. 7b. Each subplot represents one of the
eight regions, which are from left to right and top to bottom: background,
cold Teflon/air/water, and hot 8/12/16/25 mm cylinders, respectively.

This data was obtained from 8 bed positions acquired on a
GE D710 PET/CT. The nominal administered activity and
post-administration acquisition were 444 MBq and 1-hour,
respectively, with 3-minute dwell times and 25% overlap,
resulting in [4.1/3.4/4.2/4.5/4.6/3.8/3.1/2.6] x 107 total
counts, where the bolded numbers are from the bed positions
4 and 6 shown in Fig. 8.

We observed that our SDP-BSREM method outperformed
the Q.Clear algorithm, in reaching the same objective function
value, by 40-50% and 35-50% for non-TOF and TOF data,
respectively. We note that both the clinical 3D projection and
penalty operator have much greater computational complex-
ity than the convergence acceleration scheme described in
section III. Hence, the increased computational cost required
for the use of the SDP is negligible.

To evaluate the local convergence, TOF data from a quar-
terly ACR quality assurance test was used. Following ACR
guidelines [34] the activity corresponded to a nominal 444
MBq (12 mCi) of '8F-FDG administration used at MSKCC.
The upper proton of this phantom contains 8 regions (3 cold,
4 hot, and background) with nominal contrast ratios of 0:1
and 2.5:1 for the cold and hot cylinders, respectively. ROI
were defined using the cylinder boundaries from registered CT
images. Using the methodology described by Kim ef al. [36],
for each ROI we measured the NRMSD, where the f* in
NRMSD is the converged image at 300 iterations by Q.Clear
without subsets. These reconstructions used the same parame-
ters as those used in the whole body patient reconstructions
(i.e., Jo =0, J; = 1000 and Table III). The results are shown
in Fig. 9. For each ROI, the SDP-BSREM method converged
to f* faster than Q.Clear.

V. CONCLUSION

In this paper, we have presented the SDP-BSREM
algorithms with two SDPs and their global convergence
theorems. The two SDPs were designed based on the
smoothness-promoting property in the reconstructed images
of the regularization term. We tested these algorithms using

both simulated and clinical PET data. Using two simulated
phantoms, our numerical studies showed that, for solving
the RDP regularized PET image reconstruction model, our
proposed algorithms converged more quickly than BSREM.
Similarly, when using clinical patient and phantom PET
data, our proposed algorithm SDP-P2 outperformed Q.Clear.
We plan to test the SDP-BSREM algorithm on more varied
data sets acquired under a wide range of conditions seen in
the clinic.

APPENDIX |

This appendix includes the proof of strict convexity and
Lipschitz continuous gradient of the objective function @.
Proposition 9: If ATg # 0, then the objective function
@(f) in (4) is strictly convex on RY.
Proof: From (2), the gradient of fidelity term F is given
by VF :AT(lp —g/(Af + y)). Then the Hessian matrix of
F can be computed as follows:

V2F(f)=ATGA (20)

with G a diagonal matrix and G = diag(g/(Af + 7)%). The

first-order partial derivative of the RDP term R(f) is given by
@:22 (fi = fOGRISj — fil+ fi+3fi+2€)
ofi i, (fj+ fit+yrIfi — fil+€)?

Then we have the second-order partial derivative of R as
follows:

(21

2
421 +€) —
&R iaw, Ui+ fi+ve|fi — il + ¢
afjofk _A(4fifi +2e(fi + fi) +€Y) —_—
(fi + fe +yR|fi — fi| + €03
0 otherwise.
(22)

For any 0 # x € R, ignoring the zero entries of V2R, we
obtain

q
£TV2Rx = Z f2 x7 ;Zf:c; fjaf ———xjx. (23)
By (22) and (23), we have
2
*TV2Rx —ZZ (2fk+E)IJ (zf_;‘!‘f)xk) 24)

(fi+fitrr|fi—fil +?

We can see that xT V2Rx > 0 and for any x # 0,x' V2Rx =
0 if and only if there exists a nonzero constant ¢, such that
x = c(2f+€). Forany x = c(2f +€) # 0, we have x ' V2 Fx =
c2|G'?AQ2f + €)||?, thus xTV2Fx > 0 by using A" g # 0.
Since V2®(f) = V2F(f) + BVZR(f), one can obtain that
x"V2®x > 0 for all x # 0. Then @ is strictly convex on RY.
|
Proposition 10: The objective function @(f) in (4) has a
Lipschitz continuous gradient on ]Rfr.
Proof: From (20), one can obtain that ||V2F Il <
IAI2lglloo/7min, Where ymin > O is the minimum entry
of y. For any x ¢ R? with |ix]p = 1 and f € R?,

j=1keN;
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let A(f) := x' V2R(f)x. From (24), we know that h(f) is
continuous on RY and limysy, .o A(f) = 0. Thus there exists
Ci > 0 such that |A(f)] < C; for any x with ||x|2 =
1. Then we have ||[V2R|» < C; which, when combined
with the boundedness of ||[V2F||,, implies that ||[V2®|, <
IAI311glloo/?min + C1. Using Lemma 1.2.2 in [37], one can
obtain that V@(f) is Lipschitz continuous with constant C :=
(I1Al3lIglloo)/ (7min) + C1 on RY. =

APPENDIX Il

This appendix includes proofs of Lemma 1, Lemma 3,

Lemma 4, and Theorem 7. Here is the proof of Lemma 1.
Proof: We present only a proof of the Lipschitz con-

tinuity and the uniform boundedness can be shown in a
similar manner. For any f, _f € B, we consider the quantities
A = SH(O)VO;(f) — SSHVOi(f), A1 = VO;(f) —
V@;(f), and A; := S5 () — S5 ().

By the triangle inequality and the Cauchy-Schwarz inequal-
ity, we have that

Al < IS* @)l A1ll2 + 1VD: D)2l Azlla-
According to condition (v), ol s bounded. This together with
the definition of S(f) implies that S5 (f) := diag(e*)S(f) is
bounded for all k € Np,i € Ny and f € B. By condition (iii),
there exists ¢p > 0 such that for all k € Ny, i € Ny

IS (N2l Atllz < e2llf —Flz-
We next prove that S5 (f) are Lipschitz continuous on B with
Lipschitz constants bounded above by a constant. For any
. f € B, if both fj,fj are in [0, U/2) or in [U/2, U], then
IS%i(F); — SEi(F)ji| = laf"/pjl - 1fj — fjl. 1f f; and fj are

not in the same interval, w1thout lose of generality, assuming
fi € 0,U/2), fj € [U/2,U], then |fj — (U — fj)I <
|55 = fj|. Therefore, one can get |SXi(f);; — S""'(f)jﬂ <
\a;"'/pjl - 1f; = fil- Thus, A2l < lle*ll2/pollf — Fll,
where po := min{p; : j € N;}. Since ¥ and V®;(f) are
bounded and pgy > 0, there exists a constant c3 > 0 such that
forall k € Ny, i € Ny,

IVOi ()l Azll2 < e3llf —F - @7)
let L := ¢ + 3. It follows from (25), (26) and (27) that
IAll2 < L|f — fll2. That is, S/ (f)V®;(f) are Lipschitz
continuous with Lipschitz constants bounded above by L for

(25)

(26)

all k e Ng,i € Ny. |
The proof of Lemma 3 is presented as follows.
Proof: Let b5 := diag(a — 85)V@;(f51) for k

No,i € Ny. For f =1 e Wy
that Ski(fbi-1),; = (aj —
f’“ = Pt(fk) fki The definition of f* yields
f}" = " 1 ).;,/p_,bk‘) which 1mp11es f"“ =
f" ](1 Ak/pjb N By the boundednessofb ‘Ipj, we
have f"“ = f’f(l—zkxp, M b5 +0@D). Ve Rt
mate Z,’:lbh- By definition, b* = diag(a)V®; (') —
diag(8%")V®; (f*'~!). To estimate the first term of the

i € Ny, we have
éf”)f;"/pj. By assumption,

last equation, we write V(I);(f"’i_l) = A& 4 th),-(fk),
where AN = Vo5 — Vo). It follows that
M Vot = M, Ak Vo (k). By condition (iii),
there exists ¢4 > 0 such that [| A5 |12 < ea|[f*—1—f¥|2. Since
f'k" € intB, by (14) and Lemma 1, there exists a constant
¢s > 0 such that

5=t —rfll2 < esMig. (28)
Hence ||A"*i_l|2 = O(4x) and this gives that
Z;’il vo; (1) = vot) + O(ir). Moreover, by con-

dition (iii), we have that || XM diag(85")Va; (f* 1), =
O(&). Therefore, > M b5 = diag(@)VO(*) + O(x) +
O(dy). Thus, we obtain (15).

Equatlon (16) may be shown in a similar manner. Indeed,
for f; o e [U/2,U).ie Ny, we have that Sk (Fbi-1) .. =

f'(U f‘f ")/pj. The definition of _f’“ yields that (U —
) =w—puga i zk;pjbj~‘). This equation with
similar arguments leads to (16). [ ]

The proof of Lemma 4 is presented as follows.

Proof: We first prove part (a). Let H (f) denote the Hessian
matrix of @(f), ‘©’ denote the component-wise multiplication
of two vectors, and k¥ := - f" By the Taylor expansion,
we have that

o) = o (") + (Vo k) Th* + Ry, (29)

where Rp := (hk ) H (fk +00h* )hk , for some vector @ < Ri
with 8; € (0,1) for all j € N,. We now estimate Ry.
By condition (iii), V@(f) is Lipschitz continuous. Hence
H(f) is bounded on B. Then we have |Rx| = O(||h"||%).
We next evaluate the term h*. For notation simplicity, we let
L ::Sk.i(fk)vq)i(fk)_Sk,i(fk,i—l)vq)‘,(fk,i—i), K.
> ¥ €. By Lemma 1, we have [le* || < LIf% " — X2
This combined with (28) implies that ||e" ll2 = O(A), and
thus [e¥|; = O(Jt). By assumption, f € int B, from (14),
we obtain that

M

K = —AkZS"’f(f")V(D,- ") + Are*. (30)

i=1
Let @& := S@ETY, diag($h')Vd;(f*), and i =
(VO(r*) " diag(@)S(F*)VO(*). Then [d*]2 = O@) by
condition (v) and Lemma 1, and J > 0 by the positive
semi-definiteness of diag(er)S(f). Since S5 (f¥) = diag(a —
85H)S(F), then we have

M
S skirk) Ve, (+) = diag(@)S () VO (1) .

i=1

(3D

Combining this with (30), we have
I* = —iidiag(@)SEFHVOF*) + @ + 5.  (32)

By the boundedness of diag(e)S(f)V®(f) and the norm of e
and d*, we have ||h¥| = O(4x) and hence, |Ri| = oud).
This combined with (29), (32) and the boundedness of VO (f)
yields that

o) = (%) — Aedi + O(de) +OGF).  (33)

Authonzed licensed use limited to: Memonal Sloan-Kettering Cancer Center. Downloaded on January 06,2023 at 00:12:51 UTC from IEEE Xplore. Restinctions apply.



GUO et al: FAST CONVERGENT ORDERED-SUBSETS ALGORITHM WITH SDPs

3299

For s € N, summing both sides of (33) for £ from O to s,
we obtain that
5
(%) + D [—Adk + OUsd) + OGPL.  (34)
k=0

We now prove the convergence of the right hand side of
(34). By condition (vi), > oo Ak 8% is convergent, and hence
> ieo Akdk is convergent. Notice the facts we have in hand:
(i) Ziiu A% < oo (by condition (iv)); (ii) the convergence of
> teo Akdk, it remains to show that > o, Az Ji is convergent.
In view of the facts (i), (ii) and the boundedness of @(f) on
B, the partial sum ) ;_, AxJi is bounded, which combined
with its monotonicity (4xJx = 0) implies its convergence.

We next prove part (b). Since for each k, J; > 0, there exists
a subsequence J k= such that lim,_, oo J*» = 0. In fact, assume
to the contrary that there exists ep > 0 and Ko € N such that
Ji = €, for all Kk > K. Because Z:io Ak = 00, by condition
(iv), and Ax > 0, we would have D> ;_o AxJik = €0 D 4o Ak —
00, a8 § — 00, a contradiction. Moreover, since fk" is
bounded, there exists a convergent subsequence f"; having
the limit f* € B. Thus, (V(D(f“))Tdiag(a)S(f*)V(D(f*) =
lim, .00 J = 0. Letting rj := (8/3f;)®(f*) and s; :=
S(f*)jj, the last equation yields Z‘}=‘ ajs‘;r} = 0. Since

>0 and a; > 0, we have for all j € N, that ajsj-r} =0,
which implies that s;r; = O for all j € N,. That is,
S(FIVO(*) = 0.

Finally, we show part (c). According to [38, Page 203],
it suffices to prove that for each j € Ng, (i) if 0 < f <,
then rj = 0; (ii) if f =0, then r; > 0; and if f} = U then
rj < 0. Case (i) clearly follows from part (b), from which we
have s;r; = 0 for all j € N;. By the definition (8) of S(f),
sj > 0for0 < f} < U, and thus, r; =0.

It remains to prove case (ii). To this end, we let [J; := [ =

N, : £ =0,rj <0}, oi={j" €Ng:f3 =U,rin> 0},
J = J1UJ, and show J = @. Assume to the contrary
that 7 # @. Then, either J; # @ or Jp # @. Assume
J1 # @, then for any j' € Ji, since V@(f) is continuous
at f*, there exists 6 € (0,U/4) such that for all f <
Bs == {f € B: |If —f*l2 < 4}, there holds (8/8f;)®@(f) <
0. By Lemma 2, there exists K1 € N such that for k > K,
|lfk":_1 —f¥ll2 < . Then for k > Ky, if f* € B;, we have
5= —f*12 < 26 < U/2, and hcrlce,_f‘;';’,'_l e (0,U/2)
for all i € Ny, j’ € Ji. In this case, S&i(fH1),, =
a??ifﬁ’ifpjf for all i € Ny, and hence Lemma 3 ensures
that (15) holds. Since (8/8f;)®(f*) < 0 for f¥ € Bs and
Ak, 0 — 0 as k — oo, then there exists K> > K such that
if k > K, and f* € B;, we have f}‘,“ > ff, for any j' € Ji.
Therefore, for k > K>, iffk € Bj, then we have ff,“ s fj",
for any j’ € J;. Similarly, if J» # @, for any j” € J5, there
exists K3 > K> such that for k > K3, iff" € Bj, then (16)
ensures that f“’] > ff‘,,.

(I)Ofs+]) A0

Since llm,,_,oof; :f*, there exists K4 > K3 such that
if k, > Ka, f* < Bs. Suppose k),
Lett, :=max {k: K4 <k <k +m,f" ¢ B;} . If for some n,

> K4 for some np.

f € Bs forall Ky <k < k,,Ho, set f, := K4, and hence
t, > Ky. Clearly, we have f" eBsift, +1< k <Kk, Y.
Moreover, f, is a monotone increasing sequence. Then either
(@) limp ,00fp = fop = K4, or (b) limp.of, = +o0.
If it is the case (a), then f" € Bs for all k > ty. Thus, for
m > | > 1p that f}? > f;, > 0 for j" € J1. This contradicts
the fact that f; = 0 for j' € Ji. Hence, it must be the
case (b). Sincefk eBsfort, +1 <k < k;Hu,
f.;n-i—ng ta+1

> f7" > 0for j'e Jy and f, B o f;ﬁ“ < U for

j" € Jh. 1t follows that lim, . f;ﬁ'“ =0 for j' € J) and
lim,_ 0o f"‘+1 = U for j” € Jp. Then, Lemma 2 ensures
that lim, o0 f;; = 0 for j’ € 7y and limy o0 f}, = U for
j" € Ja. Thus, we can find a convergent subsequence ™ of
= such that lim;_, o f™ = f** with fir=0for j e
and ,, = U for j” € Jh. Since f™ ¢ Bj, we observe that

e 85, which ensures that f** # f*. By part (a), ®(f*) is
convergent, which implies that ®(f**) = ®(f*). Let D :
{feB:fi=0forj’ecJ and fj»=U for j” € J'g}.Thus,
5™ € D. It can be verified for any f € D that
(f —f*.Vo(f*)) > 0. By [38, Page 203], f* is a minimizer
of @ over D. Hence, ® has two different minimizers f* and
[** over the convex set D. This contradicts the assumption
that @ has a unique minimizer on B. Thus, we have that
J=0. ]

Here is the proof of Theorem 8.

Proof: From Proposition 9 and Proposition 10, we have
that @ satisfies conditions (i)-(iii). One can directly obtain that
the relaxation sequence A; satisfies condition (iv).

By Theorem 7, to prove the convergence of SDP-BSREM
algorithm with 2; and S%, it is sufficient to show that
J; and S*' satisfy conditions (v) and (vi). To do this,
for the subiteration-dependent preconditioner S""'(f N =
diag(ax ;v5")S(f), one need to show that limg_ocar; =
a > 0 for all i € Ny, and Zfozo Ar(a — ag;) converges
for all i € Ny since v&' is a positive vector sequence and
vhi — ykM for k > ky and i € Nyy.

For aj; defined in (17), the sequence f;; is increasing.
By induction, we have that #; > (kM + i)/2. Further,
it can be shown that limg .o fti/k = M/2, and thus
limg_.o0 fti/fkiv1 = 1 for all i € Ny. Then we can obtain
img ,0ar; = 1+ img,o0(te,i — 1)/fit1 = 2 > 0.
By computing 2 — ar; = 1/Quip1(/1+41¢; +41,:)) +
3/(2tx,i+1), we have that limg_, o0 k(2 — at;) = 3/M. Thus
the series > pe o Ak (2—ax, ;) converges since > po, 1/k% < co.
Therefore, for preconditioners P1 or M1 and relaxation A,
conditions (v) and (vi) are satisfied.

For a; ; defined in (18), we have that a; ; is monotone and
lim; .0 ar; = ¢ > 0. It can be shown that limi_,~ k(o —
ai;) = (o061 — d2)/M. Hence for precondition P2 or M2 and
relaxation A, conditions (v) and (vi) are satisfied. |

we have that
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