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ABSTRACT  10 

The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian 11 
updating problems into structural reliability to address challenges of updating with equality information 12 
and improve computational efficiency. However, as the number of observations increases, the resulting 13 
failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of 14 
evaluations of the likelihood function. To overcome this limitation especially for complex computational 15 
models, this paper presents a new approach where the probability estimation problem of the very rare event 16 
associated with updating is decomposed into a set of sub-reliability problems with uncertain failure 17 
thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function 18 
(DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train 19 
Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and 20 
a practical corrosion problem in marine environments are investigated to analyze the efficiency of the 21 
proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed 22 
method can reduce computational costs by about an order of magnitude while maintaining high accuracy; 23 
therefore, enabling Bayesian updating of complex computational models.  24 
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 27 
1. Introduction 28 
Uncertainties in physical phenomena and in models that attempt to represent these phenomena may 29 
significantly affect perceptions and subsequently decisions [1]. Although information in many cases may 30 
not be directly available for a parameter or response of interest, available observations can be used for 31 
indirect inference. These observations such as system capacities, structural deformations, system dynamic 32 
features and geometric and material deteriorations can be obtained by the state-of-the-art sensing and 33 
monitoring techniques. Therefore, it is highly necessary to derive computational methods to better 34 
characterize aforementioned uncertainties and infer probabilistic information for target uncertain responses 35 
of interest. As for the mainstream technique of uncertainty quantification, Bayesian updating has the 36 
capability to achieve this goal [2]. 37 

Bayesian updating while present a solid analytical framework, is computationally very demanding 38 
especially when the information is of equality type. This paper aims to substantially improve the 39 
computational efficiency of Bayesian updating through deep integration of advanced sampling methods 40 
and surrogate modeling. Generally, methodologies for estimating posterior distribution can be categorized 41 
into approximation-based approaches such as Laplace approximation [3] and simulation-based techniques 42 
such as Markov Chain Monte Carlo sampling (MCMC) [4]. The first category can be computationally 43 
efficient for cases with low dimensions, however, their performance degrades as the number of uncertain 44 
variables and the complexity of the posterior density increase [5]. On the other hand, samples with posterior 45 
distribution can be asymptotically generated through MCMC sampling [1]. The MCMC sampling method 46 
relies on the proposal or the so-called jumping function. This process requires the samples following the 47 
posterior distribution to be generated in a sequential manner. The previously generated samples affect the 48 
proposal sampling function (i.e., uniform distribution or normal distribution) by changing its mean value 49 
before each new point is added. However, MCMC sampling may face difficulty in converging to a 50 
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stationary state if the definition of acceptance rate or the batch size is inappropriate [5]–[7]. To overcome 51 
the aforementioned shortcomings, Ching et al. [8], proposed the transitional Markov chain Monte Carlo 52 
sampling method (TMCMC) which adaptively generates samples with a group of intermediate probability 53 
distributions and asymptotically obtains samples that follow the posterior probability distribution. However, 54 
the computational efficiency of the TMCMC sampling method decays as the dimension of the problem 55 
increases [5], [9]. By reinterpreting Bayesian updating as a structural reliability problem, Straub and 56 
Papaioannou [6] proposed Bayesian Updating with Structural reliability (BUS) method. This framework 57 
introduces a limit state function through which the accepted samples are equivalently defined as the failure 58 
samples in structural reliability problems. It is shown that subset simulation can be leveraged to efficiently 59 
generate accepted samples in the process of implementing MCS-based simple rejection sampling algorithm 60 
based on the reformulated limit state function [6], [10]–[13]. The subset simulation-based BUS method 61 
adaptively detects and identifies the path to the acceptance area defined by the equivalent limit state function. 62 
Bayesian updating has also been applied to the fields of analysis of rare events, analysis of deteriorating 63 
systems, parameter estimation of spatially-varying phenomena, detection-related problems in water 64 
distribution networks, remaining useful life estimation and system degradation [14]–[23]. Moreover, Wang 65 
and Shafieezadeh [24] proposed BUAK to transform the Bayesian updating problem into a system reliability 66 
problem and enhance the computational performance of BUS with adaptive Kriging-based MCS. 67 
Subsequently, Liu and et al. [25], further improved this framework by proposing a variant called BUS-AK2 68 
to address the case that the magnitude adjusting constant is not known in advance. Moreover, BUS has been 69 
integrated with adaptive importance sampling [26], [27] for improved performance. 70 

Although BUS avoids problems associated with the instability of Markov chain in MCMC sampling by 71 
reinterpreting Bayesian updating as a reliability analysis problem, it has a large computational cost which 72 
stems from the simulation-based evaluation of the likelihood function. The computational demand increases 73 
significantly as the acceptance rate becomes very small [5], [7]. Taking the subset simulation-based BUS 74 
for example, the total number of evaluations of the likelihood function 𝑁𝑐𝑎𝑙𝑙 can be determined as [6], 75 

 76 
𝑁𝑐𝑎𝑙𝑙 = 𝑁𝑠𝑠 ∙ 𝑁𝑖𝑛 + 𝑁𝑡 − 𝑁𝑡𝑠 (1) 77 

 78 
where 𝑁𝑠𝑠 denotes the number of subsets, 𝑁𝑖𝑛 is the number of samples in each intermediate subset, 𝑁𝑡 is 79 
the number of target samples and  𝑁𝑡𝑠 is the number of seeds in the final subset. Though 𝑁𝑐𝑎𝑙𝑙 estimated 80 
through subset simulation is relatively smaller compared to the crude Monte Carlo simulation or MCMC, 81 
it can easily reach thousands or even larger for sophisticated models. An efficient way to significantly 82 
reduce 𝑁𝑐𝑎𝑙𝑙 is to use surrogate models. It is known that many state-of-the-art surrogate models or machine 83 
learning tools [28] such as Response Surface [7], [8], [9], Polynomial Chaos Expansion [32], Support 84 
Vector Regression [33], [34], Physics-informed Neural Networks (PINN) [35] or Kriging [36], [37] have 85 
great computational efficiency in solving structural reliability problems. As one of the most promising 86 
techniques, Kriging-based reliability analysis methods have achieved high accuracy and computational 87 
efficiency [13], [36], [38], [39], [40]. However, the very small acceptance rate caused by the large number 88 
of observations makes the direct implementation of regular Kriging-based reliability analysis methods very 89 
inefficient. This limitation stems from the fact that a significantly large number of candidate design samples 90 
should be prepared to realize the failure or accepted areas, otherwise the Kriging surrogate model cannot 91 
guarantee the accuracy for the point classification task of MCS [36]. Therefore, we propose BUS-SSAK to 92 
control the number of candidate design samples, substantially reduce the computational cost while 93 
achieving a robust and high accuracy.  94 

Building on the BUS approach, BUS-SSAK adaptively searches for seeds that are located in the accepted 95 
domain via the construction of Kriging surrogate models and subsequently generates samples through 96 
MCMC technique based on the well-constructed Kriging models. However, a critical challenge for this 97 
integration is finding intermediate acceptance thresholds. Two models called CARC and DLF are proposed 98 
to identify the thresholds in the acceptance regions, while facilitating adaptive training of the Kriging 99 
models. CARC is a novel model that builds a relation between the changeable intermediate failure threshold 100 
and intermediate failure probability. On the other hand, DLF is a novel learning function that can 101 
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strategically add training samples according to the changeable intermediate failure threshold. Using the 102 
analytical derivation of the confidence intervals for the intermediate failure probability, the intermediate 103 
failure thresholds are adaptively identified as more training samples are added in the Kriging surrogate 104 
model. These new capabilities in BUS-SSAK facilitate accurate estimation of posterior distributions with 105 
high computational efficiency without the need to investigate a large number of evaluations to the likelihood 106 
function for all candidate design samples in each subset. This consequently enables Bayesian updating of 107 
computationally complex models, where each run of the model can be very costly. One should note that the 108 
work represented in [24] is the first attempt in incorporating the BUS algorithm with AK-MCS to improve 109 
the performance of Bayesian updating. It is found that BUAK becomes increasingly inefficient and Kriging 110 
experiences substantial computational burden when the acceptance rate decreases, or the number of 111 
observations increases. Inspired by the fact that subset simulation can successfully tackle reliability 112 
problems with small failure probability, this paper proposes integrating Kriging with subset simulation to 113 
address these limitations. CARV and DLF are two proposed concepts that are devised to facilitate this 114 
integration. Therefore, the major novel contribution of this research lies in the proposed BUS-SSAK 115 
algorithm that enables Bayesian updating with small acceptance rate and control the computational demand, 116 
which is significantly different from the classic Bayesian Updating method such as ABC-SubSim [42]. 117 

In the remaining parts of this paper, the elements of BUS method and subset simulation are briefly 118 
introduced in Section 2. In Section 3, the proposed method that integrates the state-of-the-art BUS method 119 
and Kriging-based subset simulation technique (i.e., methods for seeking the seeds and generating samples 120 
with posterior distribution) is elaborated. To investigate the computational performance of BUS-SSAK, four 121 
numerical examples are implemented in Section 4. In Section 5, the conclusions of this research are 122 
presented. 123 

 124 
2. Background 125 
While physical models become increasingly sophisticated in a deterministic sense, input and model 126 
uncertainties still persist and must be dealt with. Characterizing and reducing these uncertainties are critical 127 
for the understanding of the phenomena and decisions that may rely on these models. In many cases, 128 
however, it is not affordable either technologically or cost-wise to collect information directly for the 129 
uncertainties of interest. For example, for constructed structures that are in service determining the stiffness 130 
of its structural components via destructive testing is impractical. The uncertainty of the structural stiffness, 131 
however, can be deduced via statistical inference using other auxiliary observations such as eigen 132 
frequencies of the structure [6]. Bayesian updating, regarded as an efficient tool for uncertainty 133 
quantification, assumes an empirical prior probability distribution for unknown parameters (i.e., the 134 
structural stiffness in the previous example). Let 𝑓(𝒙) denote the probability density function(pdf) of 135 
assumed prior distribution of unknown variables and 𝑓′(𝒙) represents the pdf of posterior distribution of 𝒙. 136 
Therefore, the Bayesian updating formulation can be represented as follows, 137 
 138 

𝑓′(𝒙) =
𝐿(𝒙)𝑓(𝒙)

∫ 𝐿(𝒙)𝑓(𝒙)𝑑𝒙
𝑿

(2) 139 

 140 
where 𝑿 is the random variable, 𝒙 is a stochastic realization of 𝑿 and 𝐿(𝒙) is the likelihood function, which 141 
is proportional to the conditional probability of observations according to [6],       142 
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𝐿(𝒙) ∝ Pr(𝑍|𝑿 = 𝒙) (3) 144 
 145 
where Z denotes the concept of event. If the MCMC technique is adopted to estimate 𝑓′(𝒙) , the 146 
denominator in Eq. (2) is trivial as numerator can be easily normalized to one [5]. Typically, the likelihood 147 
function 𝐿(𝒙) is composed of three parts: observations 𝑍, responses from the model ℎ(𝒙) and error ε, 148 
which reflects the difference between ℎ(𝒙) and 𝑍. Concerning the measuring error and modeling errors, the 149 
corresponding relation can be represented as, 150 
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 151 
ε =  𝑍 − ℎ(𝒙) (4) 152 

 153 
In Eq. (4), it is assumed that the information and errors can be directly observed and measured in the 154 
majority of engineering cases. However, there are situations where likelihood function is not linear around 155 
the error term [41]. For cases where linear representation is adequate, if the probability density function 156 
(PDF) of the error ε is known, 𝐿(𝒙) can be parameterized by the observation and the responses from the 157 
model as, 158 
 159 

𝐿(𝒙) = 𝜑ε(ε) = 𝜑ε(𝑍 − ℎ(𝒙)) (5) 160 

 161 
where 𝜑ε(∙) denotes the PDF of ε. Note that the likelihood function in Eq. (5) can be decomposed into 𝑚 162 
sub-likelihood functions 𝐿𝑖(𝒙), i = 1,2, … , 𝑚𝑙, which can be represented as, 163 
 164 

𝐿(𝒙) = ∏ 𝐿𝑖(𝒙)

𝑚𝑙

𝑖=1

= ∏ 𝜑ε(𝑍𝑖 − ℎ𝑖(𝒙))

𝑚𝑙

𝑖=1

(6) 165 

 166 
where 𝑚𝑙 denotes the number of mutually independent measurements. In this article, it is assumed that the 167 
likelihood functions are mutually independent.  168 
 169 
2.1. Bayesian Updating with Structural Reliability Methods 170 
As stated in Introduction, the stability of the Markov chain through conventional MCMC algorithms may 171 
not be guaranteed if the sample size is insufficient. To address this limitation, Straub and Papaioannou [6] 172 
proposed BUS (Bayesian Updating with Structural reliability methods) to take advantage of structural 173 
reliability methods to improve the accuracy and efficiency of estimating 𝑓′(𝒙). BUS implements Simple 174 
Rejection Method (SRM), which is briefly reviewed in this subsection. Note that the accepted domain Ω𝑎𝑐𝑐 175 
can be defined based on the augmented outcome space [𝒙, 𝑝] where 𝑃 is an auxiliary uniform random 176 
variable with its random realizations represented by 𝑝, 177 
 178 

Ω𝑎𝑐𝑐 = [𝑝 ≤ 𝑐𝐿(𝒙)] = [ℎ(𝒙, 𝑝) ≤ 0] (7) 179 
 180 
where, 181 

ℎ(𝒙, 𝑝) =  𝑝 − 𝑐𝐿(𝒙) (8) 182 
 183 
ℎ(𝒙, 𝑝)  is the equivalent limit state function parameterized by the random variables [𝒙, 𝑝]  and 𝑐  is a 184 
constant satisfying 𝑐𝐿(𝒙) ≤ 1 for all the outcomes of 𝑿. 𝑐 can be defined as, 185 
 186 

𝑐 =
1

𝑚𝑎𝑥(𝐿(𝒙))
(9) 187 

 188 
The posterior distribution 𝑓′(𝒙) can be defined as, 189 
 190 

𝑓′(𝒙) =
∫ 𝑓(𝒙)𝑑𝑝

𝑝∈Ω𝑎𝑐𝑐

∫ 𝑓(𝒙)𝑑𝑝𝑑𝒙
[𝒙,𝑝]∈Ω𝑎𝑐𝑐

=
∫ 𝐼𝑎𝑐𝑐([𝒙, 𝑝] ∈ Ω𝑎𝑐𝑐)𝑓(𝒙)𝑑𝑝

1

0

∫ ∫ 𝐼𝑎𝑐𝑐([𝒙, 𝑝] ∈ Ω𝑎𝑐𝑐)𝑓(𝒙)𝑑𝑝𝑑𝒙
1

0𝑿

(10) 191 

 192 
where 𝐼𝑎𝑐𝑐([𝒙, 𝑝] ∈ Ω𝑎𝑐𝑐) is the indicator function corresponding to the structural reliability problem with 193 
limit state function ℎ(𝒙, 𝑝) = 𝑝 − 𝑐𝐿(𝒙). The corresponding numerator and denominator in Eq. (10) can 194 
be further expanded as, 195 
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∫ 𝑓(𝒙)𝑑𝑝
𝑝∈Ω𝑎𝑐𝑐

= ∫ 𝑓(𝒙)𝑑𝑝
𝑐𝐿(𝒙)

0

= 𝑐𝐿(𝒙)𝑓(𝒙) (11) 196 

 197 
and 198 

∫ 𝑓(𝒙)𝑑𝑝𝑑𝒙
[𝒙,𝑝]∈Ω𝑎𝑐𝑐

= ∫ ∫ 𝐼𝑎𝑐𝑐([𝒙, 𝑝] ∈ Ω𝑎𝑐𝑐)𝑓(𝒙)𝑑𝑝𝑑𝒙
1

0𝑿

=

∫ {∫ 𝐼𝑎𝑐𝑐(𝑝 ≤ 𝑐𝐿(𝒙))𝑑𝑝
1

0

}
𝑿

𝑓(𝒙)𝑑𝒙 = ∫ 𝑐𝐿(𝒙)𝑓(𝒙)𝑑𝒙
𝑿

(12)

 199 

 200 
Eq. (11) and (12) are the exact formulations in Eq. (10). In this context, the simple rejection sampling 201 
algorithm is summarized and presented in Algorithm 1. The simple rejection sampling algorithm faces the 202 
limitation that the acceptance rate is low. This rate significantly decreases as the number of observations 𝑚 203 

increases. Straub and Papaioannou [6] pointed out that the average acceptance rate is proportional to 
1

√𝑚
, 204 

when all measurements are independent and identically distributed (iid). This limitation makes the process 205 
of Bayesian updating computationally intractable since only very few accepted samples can be used to 206 
estimate the posterior distribution, while a large number of unnecessary samples are prepared. This 207 
limitation becomes a major challenge for sophisticated, time-consuming models such as high-fidelity Finite 208 
Element models.  209 
 210 

Algorithm 1. Simple Rejection Sampling  

1. 𝑖 = 1  

2. Generate a sample 𝒙𝑖 from 𝑓(𝒙) 

3. Generate a sample 𝑝𝑖 from the standard uniform distribution [0,1] 
4. If [𝒙𝑖 , 𝑝𝑖] ∈ Ω𝑎𝑐𝑐 

(a) Yes, accept 𝒙𝑖, 𝑖 = 𝑖 + 1 

(b) No, reject 𝒙𝑖, 𝑖 = 𝑖 
5. Stop if 𝑖 = 𝑁𝑠, else go to step 2 

 211 
2.2. BUS with Subset Simulation (SS) 212 
In this subsection, the subset simulation method for estimating the probability of failure is first reviewed. 213 
Subsequently, the integration of BUS with Subset simulation algorithm is explained. Different from the 214 
goal in Bayesian updating, structural reliability methods are aimed at estimating the probability of failure 215 
as follows,  216 
 217 

𝑃𝑓 = 𝑃(ℎ(𝑿) ≤ 0) (13) 

 218 
where 𝑃𝑓 denotes the probability of failure and ℎ(𝑿) is the so-called limit state function or performance 219 

function in structural reliability problems: ℎ(𝑿) ≤ 0 indicates failure and ℎ(𝑿) > 0 means safe state. The 220 
contour where ℎ(𝑿) = 0 is called the limit state. Au and Beck [10] proposed subset simulation to estimate 221 
the probability of failure, here denoted as 𝑃̂𝑓

𝑠𝑠, by decomposing of the original limit state function into a 222 

series of easily computable LSFs with intermediate failure thresholds. Generally, let the subsets be divided 223 
as 𝛺1 ⊃ 𝛺2 ⊃ ⋯ ⊃ 𝛺𝑚 = 𝛺𝑓  and 𝛺𝑓 = ⋂ 𝛺𝑖

𝑚
𝑖=1 , where 𝛺𝑓  denotes the failure domain. Therefore, the 224 

subsets 𝛺𝑖s are the failure domains that correspond to the LSFs as follows, 225 
 226 

𝛺𝑖 = {𝒙: ℎ(𝒙) ≤ 𝑡𝑖} (14) 227 
  228 
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where 𝑡𝑖s are the intermediate failure thresholds that satisfy  𝑡1 > 𝑡2 > ⋯ > 𝑡𝑚 = 0. The process of subset 229 
simulation is illustrated in Fig. 1. The failure probability using subset simulation 𝑃̂𝑓

𝑠𝑠 can be estimated as, 230 

 231 

𝑃𝑓 ≈ 𝑃̂𝑓
𝑠𝑠 = P(𝛺𝑚) = P (⋂ 𝛺𝑖

𝑚

𝑖=1

) = P(𝛺1) ∙ ∏ P(𝛺𝑖+1|𝛺𝑖)

𝑚−1

𝑖=1

(15) 232 

 233 
where P(𝛺1) and P(𝛺𝑖+1|𝛺𝑖) are determined through crude Monte Carlo simulation with the following 234 
intermediate limit state functions ℎ(𝒙) ≤ 𝑡𝑖. The intermediate conditional probability can be commonly set 235 
as: P(𝛺𝑖+1|𝛺𝑖) ≈ 𝑝0 = 0.1. However, 𝑝0 is not merely a fixed value and can be set toward an optimal goal. 236 
Interested readers can refer to [42] for more information. Finally, the probability of failure through subset 237 
simulation is estimated as, 238 

𝑃̂𝑓
𝑠𝑠 = P(𝛺1) ∙ ∏ P(𝛺𝑖+1|𝛺𝑖)

𝑚−1

𝑖=1

= 𝑃0
𝑚−1𝑃̂0

𝑚 (16) 239 

Details of the implementation for subset simulation is summarized in Algorithm 1A of Appendix 1.  240 
 241 

Note that subset simulation technique is aimed at estimating the probability of failure 𝑃̂𝑓
𝑠𝑠, which is different 242 

from the goal of BUS that is drawing all the failure (acceptable) samples. By adjusting the procedure in 243 
subset simulation for estimating the probability of failure, BUS focuses on the strategy to draw failure 244 
samples. The modified methodology that integrates BUS and subset simulation is summarized in Algorithm 245 
1B of Appendix 1. However, even with integrated with subset simulation, BUS faces several challenges. 246 
First, the acceptance rate becomes significantly small as the number of observations increases. In this 247 
circumstance, estimating posterior distributions using BUS become equivalent to analyzing the reliability 248 
of rare events, which becomes rather computationally expensive for simulation-based approaches including 249 
subset simulation. As shown in Eq. (1), 𝑁𝑐𝑎𝑙𝑙 can easily reach thousands in BUS with subset simulation. 250 
Although this number is relatively smaller compared to the crude Monte Carlo simulation or MCMC, it is 251 
still computationally inefficient for Bayesian updating when sophisticated computational models are 252 
involved. Kriging-based reliability analysis methods are known for their capabilities in substituting time-253 
consuming performance functions and improving the computational efficiency [36]. Note that, there are 254 
two crucial steps in the implementation of BUS and subset simulation: identifying the seeds located in or 255 
close to the failure domain and drawing the samples following 𝑓′(𝒙) in the final failure subset (acceptance 256 
domain). The first step is computationally demanding since it requires a large number of evaluations to 257 
explore the path to failure domain. The goal of this paper is to efficiently search for the seeds or the path to 258 
the failure domain with the assistance of Kriging surrogate models. This approach can substantially reduce 259 
the computational demand associated with large samples drawn in each intermediate subset. Moreover, 260 
Kriging-based reliability analysis is also adopted in the final subset to draw the target failure samples.  261 
Details of this approach are elaborated in the next section. 262 
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 263 
Fig. 1. 2D illustration of subset simulation. 264 

 265 
3. Bayesian Updating with Subset Simulation using Adaptive Kriging  266 
This section presents a new approach to Bayesian updating via integration of BUS and Kriging-based subset 267 
simulation. This method, called BUS-SSAK, substantially improves the computational efficiency of 268 
Bayesian updating. The elements of Kriging model are briefly recapped in Appendix 2. Generally, this 269 
paper aims to significantly improve the performance of BUS-SS algorithm by strategically incorporating 270 
adaptive Kriging surrogate models. However, when a surrogate model is introduced, reaching the set 271 
thresholds cannot be guaranteed; therefore, finding the intermediate acceptance threshold in this integration 272 
process becomes very critical, as it is detrimental to the outcome of reliability analysis. Toward this goal, 273 
we proposed two techniques called Conditional Acceptance Rate Curve (CARC) and Dynamic Learning 274 
Function (DLF) to identify the intermediate failure thresholds in the acceptance regions. CARC establishes 275 
a relation between the intermediate failure threshold and intermediate failure probability and estimates the 276 
corresponding confidence intervals. DLF supports identifying optimal training samples for the Kriging 277 
surrogate model. The process of BUS-SSAK can be briefly explained as follows. Initially, a number of 278 
candidate design samples are generated via the crude MCS technique and the training samples are randomly 279 
selected from these candidate design samples. Subsequently, the Kriging model is constructed based on the 280 
selected training samples. As training proceeds, the ratio of the width of the confidence intervals of 281 
estimated failure probability to the estimated failure probability in the vicinity of the estimated intermediate 282 
failure threshold reduces, which facilitates gradual identification of the intermediate failure threshold. After 283 
an intermediate failure threshold is accurately identified, the seeds for implementing MCMC in the next 284 
subset are prepared. The seeds searching process is repeated several times (i.e., the same process followed 285 
in regular subset simulation) until the identified intermediate threshold is smaller than zero. Eventually, the 286 
seeds for generating samples with the posterior distribution via MCMC can be obtained in the accepted 287 
domain. By implementing adaptive Kriging-based reliability method based on candidate design samples in 288 
the last subset, the Kriging surrogate model can be well constructed. Samples with posterior distribution 289 
can be finally generated based on the well-trained Kriging surrogate model and the seeds identified in the 290 
last subset. By adaptively identifying the acceptable samples and searching for the path to the failure domain, 291 
BUS-SSAK can significantly reduce the number of evaluations to the likelihood function and simultaneously 292 
maintain a desirable accuracy. Details of this method is elaborated in the following subsections.  293 

 294 

3.1. Seed Seeking using Adaptive Kriging  295 
It is known that subset simulation is aimed adaptively identifying the intermediate thresholds 𝑡𝑖 , 𝑖 =296 
1, 2, … , 𝑚 until 𝑡𝑚 is smaller than zero,  297 

𝑋1 

𝑋2 

Failure domain 

Ω𝑓: ℎ(𝒙) ≤ 0 

Safe domain 

Ω𝑠: ℎ(𝒙) > 0 

ℎ(𝒙) = 𝑡1 

ℎ(𝒙) = 𝑡𝑚 = 0 

ℎ(𝒙) = 𝑡2 
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 298 
𝑃(𝛺𝑖+1|𝛺𝑖) = 𝑃(ℎ(𝒙) ≤ 𝑡𝑖) = 𝑝0 , 𝒙 ∈ 𝛺𝑖 (17) 299 

𝑠. 𝑡. 𝑡𝑖 ≥ 0  300 
 301 
where 𝑔(𝒙) is the limit state function in structural reliability problems and 𝑝0 is the conditional failure 302 
probability in each subset. Eq. (17) is normally interpreted in the context of reliability analysis. Here, we 303 
redefine 𝑝0 as the conditional acceptance rate in BUS + SS. Note that the true performance function ℎ(𝒙) 304 

should be substituted by the Kriging surrogate model ℎ̂(𝒙), which means the true value of 𝑡𝑖 in Eq. (17) 305 
cannot be precisely identified. Therefore, the key point of BUS+SSAK is to identify a value 𝑡̂𝑖 so that 𝑡̂𝑖 ≅306 
𝑡𝑖 as the training samples enrich the Kriging surrogate model. To enable accurate identification of 𝑡𝑖, two 307 
new concepts are introduced. First, we introduce Conditional Acceptance Rate Curve (CARC) that 308 
represents the relation between the conditional failure probability and the conditional acceptance ratio (i.e., 309 
equivalent to the conditional failure probability in reliability estimation), 310 
 311 

𝑃̂𝑎𝑐𝑐
𝑐 (𝑡∗) =  𝑃(ℎ̂(𝒙) ≤ 𝑡∗), 𝑡∗ ≥ 0 (18) 312 

 313 
where 𝑡∗ is a variable that needs to be adaptively estimated and 𝑃̂𝑎𝑐𝑐

𝑐 (𝑡∗) represents the conditional failure 314 
probability parameterized by variable 𝑡∗. In this article, the probabilistic classification-based Monte Carlo 315 
simulation (PC-MCS) is adopted to estimate 𝑃̂𝑎𝑐𝑐

𝑐 (𝑡∗) as follows, 316 
 317 

𝑃̂𝑎𝑐𝑐
𝑐 (𝑡∗) =

1

𝑁𝑖𝑛
∑ 𝐼ℎ̂(𝒙𝑖 , 𝑡∗)

𝑁𝑖𝑛

𝑖=1

=
1

𝑁𝑖𝑛
∑ Φ (

−(𝜇ℎ̂(𝒙𝑖) − 𝑡∗)

𝜎ℎ̂(𝒙𝑖)
)

𝑁𝑖𝑛

𝑖=1

, (19) 318 

 319 
where 𝑁𝑖𝑛 is  the number of samples in each subset,  𝐼ℎ̂(∙) is a probabilistic indicator that measures the 320 
probability of 𝒙𝑖 belonging to acceptance domain (i.e., equivalent to failure in reliability estimation) and 321 
𝜇ℎ̂(∙) and 𝜎ℎ̂(∙) are the mean value and standard deviation estimated from the Kriging model, respectively. 322 
Details of this probabilistic classification-based MCS have been documented in the literature [43]–[45]. As 323 
shown in Fig 2. (a), the confidence intervals can be estimated with Kriging model trained by several samples 324 
𝒙𝑡𝑟. Note that if 𝑡̂ changes, the failure probability estimated through the PC-MCS also changes. In Fig. 2, 325 
the black solid and red dashed lines denote the mean and confidence interval (CI) of 𝑃̂𝑎𝑐𝑐

𝑐 , respectively. 326 
Moreover, 𝑡̂ is the estimated intermediate failure threshold with maximum likelihood satisfying Eq. (17), 327 
which subsequently leads to, 328 
 329 

𝑃(ℎ̂(𝒙) ≤ 𝑡̂) = 𝑝0 , 𝒙 ∈ 𝛺𝑖 , 𝑖 = 1,2, … , 𝑚 (20) 330 

 331 

  𝑡∗ 𝑡̂ 

CI of 𝑃̂𝑎𝑐𝑐
𝑐  

  

Mean of 𝑃̂𝑎𝑐𝑐
𝑐  

  

𝑝0 

CI of 𝑃̂𝑎𝑐𝑐
𝑐  

  

Mean of 𝑃̂𝑎𝑐𝑐
𝑝𝑐

 

  

𝑃̂𝑎𝑐𝑐
𝑝𝑐

 

𝑝0 

𝑡̂ 𝑡∗ 
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            (a)              (b) 

Fig. 2. Conditional Acceptance Rate Curve (CARC) with (a) merely initial training samples and (b) 332 

sufficient training samples in the vicinity of the limit state ℎ̂(𝒙) − 𝑡̂ = 0. 333 
 334 
As the training samples in the Kriging surrogate model increases,  𝑡̂ = 𝑡𝑖 is asymptotically satisfied. The 335 
CI for 𝑃̂𝑎𝑐𝑐

𝑐  can be obtained using the approach proposed by the authors in [43].  If the current subset of 336 
candidate design samples is denoted as 𝛺𝑖, then the conditional acceptance rate can be computed as, 337 
 338 

𝑃̂𝑎𝑐𝑐
𝑐 (𝑡∗) =  

𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗)

𝑁𝑖𝑛

(21) 339 

 340 
where 𝑁̂𝑎𝑐𝑐

𝑐  is the expected number of accepted samples in 𝛺𝑖. In this approach, for each candidate design 341 
sample, 𝒙𝑖, the outcome of the indicator function follows a Bernoulli distribution, 342 
 343 

𝐼ℎ̂(𝒙, 𝑡∗)~𝐵 (𝜇𝑏(𝒙, 𝑡∗), 𝜎𝑏
2(𝒙, 𝑡∗)) , 𝒙 ∈  𝛺𝑖 , 𝑖 = 1,2, … , 𝑚 (22) 344 

 345 

where B denotes the Bernoulli distribution, 𝜇𝑏(𝒙𝑖) is the Bernoulli mean with 𝜇b(𝒙, 𝑡∗) =  Φ (
−(𝜇ℎ̂(𝒙)−𝑡∗)

𝜎ℎ̂(𝒙)
) 346 

and 𝜎𝑏
2  is the corresponding variance with 𝜎𝑏

2(𝒙, 𝑡∗) =  𝜇b(𝒙, 𝑡∗)(1 − 𝜇b(𝒙, 𝑡∗)) . Since 𝑁̂𝑎𝑐𝑐
𝑐  can be 347 

regarded as the expected value of the sum of 𝐼ℎ̂(𝒙, 𝑡∗), 𝒙 ∈  𝛺𝑖, it follows a Poisson binomial distribution 348 

(PBD). According to [43], the distribution of 𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗) can be denoted as, 349 

 350 

𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗)~𝑃𝐵 (𝜇𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗), 𝜎𝑁̂𝑎𝑐𝑐
𝑐

2 (𝑡∗)) (23) 351 

 352 

where 𝜇𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗) and 𝜎𝑁̂𝑎𝑐𝑐

𝑐
2 (𝑡∗) are the mean value and variance of 𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗), respectively. It can be shown 353 

that 𝜇𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗)   =  ∑ 𝜇b(𝒙, 𝑡∗)𝑁𝑖𝑛

𝑖=1  and 𝜎𝑁̂𝑎𝑐𝑐
𝑐

2 (𝑡∗) =  ∑ 𝜇b(𝒙, 𝑡∗)(1 − 𝜇b(𝒙, 𝑡∗))
𝑁𝑖𝑛 
𝑖=1 . Therefore, the CI of 354 

𝜇𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗) can be determined as, 355 

 356 

𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗) ∈ (𝜣𝑁̂𝑎𝑐𝑐

𝑐
−1 (

𝛼

2
, 𝑡∗) , 𝜣𝑁̂𝑎𝑐𝑐

𝑐
−1 (1 −

𝛼

2
, 𝑡∗)) (24) 357 

 358 

where 𝜣𝑁̂𝑎𝑐𝑐
𝑐

−1 (∙) is the inverse cumulative distribution function of PBD with mean 𝜇𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗) and variance 359 

𝜎𝑁̂𝑎𝑐𝑐
𝑐

2 (𝑡∗) and 𝛼 is the confidence level (e.g. 𝛼 = 0.05). For computational simplicity, the Central Limit 360 

Theorem shows that 𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗) follows a normal distribution [43],  361 

 362 

𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗)  ~ 𝑁 (𝜇𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗), 𝜎𝑁̂𝑎𝑐𝑐
𝑐

2 (𝑡∗)) (25) 363 

 364 
It should be noted that the approximation of Poisson Binomial distribution to a Normal distribution has 365 
been demonstrated in [43]. Moreover, PBD should be treated as a Poisson distribution if 𝑁𝑖𝑛 is set to be as 366 
small as 𝑁𝑖𝑛 ≤ 50. However, for all numerical cases here, 𝑁𝑖𝑛 ≥ 5000, which is sufficiently large to 367 
guarantee that PBD can be well approximated by a Normal distribution according to the CLT.  Therefore, 368 
the CI of 𝑁̂𝑎𝑐𝑐

𝑐  parameterized by the confidence interval 𝛼 can then be obtained as, 369 
 370 

𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗)  ∈ [𝜇𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗) −  𝛾𝑐𝑖𝜎𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗),   𝜇𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗) +  𝛾𝑐𝑖𝜎𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗)], (26)

 371 
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 372 
where  𝛾𝑐𝑖 = 1.96 for the confidence level   α = 0.05. As 𝑁𝑖𝑛 is large in Kriging-based reliability analysis 373 
problems, the above confidence bounds for 𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗)  are accurate. Accordingly, the CI for 𝑃̂𝑎𝑐𝑐
𝑐 (𝑡∗)  can be 374 

derived by combining Eq. (21) and (26), 375 
 376 

𝑃̂𝑎𝑐𝑐
𝑐 (𝑡∗)   ∈

1

𝑁𝑖𝑛
[𝜇𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗) −  𝛾𝑐𝑖𝜎𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗),   𝜇𝑁̂𝑎𝑐𝑐

𝑐 (𝑡∗) +  𝛾𝑐𝑖𝜎𝑁̂𝑎𝑐𝑐
𝑐 (𝑡∗)], (27)

𝒙 ∈  𝛺𝑖  , 𝑖 = 1,2, … , 𝑚

 377 

 378 
It is clear that the confidence bound of 𝑃̂𝑎𝑐𝑐

𝑐  tightens as training samples in the Kriging model increase and 379 

accumulate in the vicinity of the limit state ℎ̂(𝒙) − 𝑡̂ = 0 as shown in Fig. 2. However, lack of strategic 380 
selection of training samples from the candidate design samples in each subset can lead to unnecessary 381 
training or even incorrect identification of 𝑡̂ . Therefore, it is necessary to develop an approach to 382 
strategically select next training samples. In the next section, a new learning function is introduced for 383 
optimal selection of training samples so that the uncertainty of 𝑡̂ or 𝑃̂𝑎𝑐𝑐

𝑐  can be significantly reduced. 384 
 385 
3.2. Dynamic Learning Function 386 
In this section, an active learning function is introduced to adaptively refine the Kriging model and 387 
asymptotically identify the intermediate acceptance (failure) threshold 𝑡𝑖 in Eq. (17). First, let 𝒙𝑡𝑟

∗  denote 388 

the selected next best training point that aims to optimally reduce the uncertainty 𝜎𝑁̂𝑎𝑐𝑐
𝑐

2 (𝑡̂) as follows,  389 

 390 

𝒙𝑡𝑟
∗ = arg  max

𝒙 ∈𝛺𝑖

{𝜎
𝑁̂𝑎𝑐𝑐

𝑐
𝑏𝑒𝑓𝑜𝑟𝑒

(𝑡̂) − 𝜎
𝑁̂𝑎𝑐𝑐

𝑐
𝑎𝑓𝑡𝑒𝑟

(𝑡̂)} , 𝑖 = 1,2, … , 𝑚 (28) 391 

 392 

where 𝜎
𝑁̂𝑎𝑐𝑐

𝑐
𝑏𝑒𝑓𝑜𝑟𝑒

(𝑡̂) and 𝜎
𝑁̂𝑎𝑐𝑐

𝑐
𝑎𝑓𝑡𝑒𝑟

(𝑡̂) denote the standard deviation, 𝜎𝑁̂𝑎𝑐𝑐
𝑐 , of 𝑁̂𝑎𝑐𝑐

𝑐  at 𝑡∗ = 𝑡̂ before and after 393 

the new training point enriches the Kriging model, respectively. After enrichment by the new training point 394 
𝒙𝑡𝑟

∗ , it can be shown that the mean value 𝜇b(𝒙𝑡𝑟
∗ , 𝑡̂) limits to 0 or 1 and 𝜎𝑏

2(𝒙𝑡𝑟
∗ , 𝑡̂) limits to 0, 395 

 396 

𝜇b(𝒙𝑡𝑟
∗ , 𝑡̂) =  Φ (

−(𝜇ℎ̂(𝒙𝑡𝑟
∗ ) − 𝑡̂)

𝜎ℎ̂(𝒙𝑡𝑟
∗ ) → 0

) = 0 𝑜𝑟 1, 𝜎𝑏
2(𝒙𝑡𝑟

∗ , 𝑡̂) =  𝜇𝑏(𝒙𝑡𝑟
∗ , 𝑡̂)(1 − 𝜇𝑏(𝒙𝑡𝑟

∗ , 𝑡̂)) = 0 (29) 397 

 398 
Without considering Kriging correlation, Eq. (28) can be further interpreted by combining Eq. (28) and Eq. 399 
(29), 400 
 401 

𝒙𝑡𝑟
∗ = arg  max

𝒙 ∈𝛺𝑖

𝜎𝑏
2(𝒙 , 𝑡̂) , 𝑖 = 1,2, … , 𝑚 (30) 402 

 403 
This equation can be expanded as follows, 404 
 405 

𝒙𝑡𝑟
∗ = arg  max

𝒙 ∈𝛺𝑖

[Φ (
−(𝜇ℎ̂(𝒙) − 𝑡̂)

𝜎ℎ̂(𝒙)
) (1 − Φ (

−(𝜇ℎ̂(𝒙) − 𝑡̂)

𝜎ℎ̂(𝒙)
))] , 𝑖 = 1,2, … , 𝑚 (31) 406 

 407 
The procedure to adaptively estimate the true intermediate acceptance ratio 𝑡𝑖 is presented in Algorithm 2. 408 
The corresponding stopping criterion for dynamic active learning can be set as, 409 
 410 

𝑡̂ ≅ 𝑡𝑖  𝑤ℎ𝑒𝑛 𝛤 =  
𝜎𝑁̂𝑎𝑐𝑐

𝑐

𝜇𝑁̂𝑎𝑐𝑐
𝑐

≤ 𝛤𝑡ℎ𝑟 (32) 411 

 412 
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where 𝛤 is the stopping measure and 𝛤𝑡ℎ𝑟 is the corresponding stopping threshold. At the beginning of the 413 
process, 𝑡̂ may not be highly accurate to satisfy 𝑡̂ = 𝑡𝑖 as the number of initial training samples is likely 414 
insufficient for that purpose. However, 𝑡̂ asymptotically converges to 𝑡𝑖 as new optimal training samples in 415 

the vicinity of the limit state ℎ̂(𝒙) − 𝑡̂ = 0 are identified and used in the refinement of the Kriging model. 416 
Two dynamic processes constitute the adaptive core of the proposed algorithm. First, the uncertainty or the 417 
variance at  𝑡̂ (e.g. 𝜎𝑏

2(𝒙, 𝑡̂)) is gradually reduced as new training samples are identified and used through 418 
the proposed dynamic learning function. Second, 𝑡̂ is also adaptively estimated as it converges to the true 419 
one (e.g., 𝑡𝑖 in Eq. (17)) with the addition of the new training samples.  420 
 421 

Algorithm 2. Searching for 𝑡𝑖 using dynamic learning function and CARC 

1. Prepare the initial training samples 𝒙𝑖𝑛 and keep 𝒙𝑖𝑛 and 𝑔(𝒙𝑖𝑛) unchanged for all 

simulations. Also generate candidate design samples 𝑆𝑖 from the subset 𝛺𝑖 (if 𝑖 ≥
2) 

2. Construct the Kriging model ℎ̂𝑖(∙) based on the current training samples 𝒙𝑡𝑟 

3. Build the Conditional Acceptance Rate Curve (CARC) according to Eq. (19) 

4. Search for 𝑡̂ according to Eq. (20) 

5. Search for next training point 𝒙𝑡𝑟
∗  using dynamic learning function according to 

Eq. (31) and update the training samples 𝒙𝑡𝑟 

6. Check if the stopping criterion is satisfied according to Eq. (32): 

(a) If satisfied, go to step 7. 

(b) If not satisfied, estimate the response for 𝒙𝑡𝑟
∗  and return to step 2. 

7. Report 𝑡̂. 

 422 
3.3. Estimating Posterior Distributions  423 
Algorithm 2 can determine if the identified intermediate failure threshold 𝑡𝑖 in the current subset 𝛺𝑖 satisfies 424 
𝑡̂ ≅ 𝑡𝑖 > 0. After 𝑡̂ ≅ 𝑡𝑖 < 0 and the seeds located in the failure (acceptance) domain are identified and the 425 

last Kriging surrogate is well trained ℎ̂(𝒙) = 0, samples following the posterior distribution can be drawn 426 
in the final step of BUS+SS. Subsequently, the problem is slightly changed to the equivalent structural 427 
reliability problem as follows, 428 
 429 

𝑃(𝛺𝑚|𝛺𝑚−1) = 𝑃(ℎ(𝒙) ≤ 𝑡𝑚) = 𝑃(ℎ(𝒙) ≤ 0) , 𝒙 ∈ 𝛺𝑚−1 (33) 430 
 431 
Similar to the goal of structural reliability analysis that seeks for failure samples, Bayesian updating is 432 
aimed at drawing acceptance samples. After the candidate design samples 𝑆𝑚−1 are drawn from the subset 433 
𝛺𝑚−1, estimating the posterior distribution can be reinterpreted as a classification problem. Therefore, the 434 

estimated limit state with Kriging surrogate model in the last subset (i.e., ℎ̂(𝒙) = 0) plays a very important 435 
role in this classification task. Algorithm 3 elaborates the process for achieving this goal.  436 
 437 

Algorithm 3. Draw acceptance samples in the last subset 

1. Generate candidate design samples 𝑆𝑚−1 from the subset 𝛺𝑚−1 

2. Construct the Kriging model ℎ̂𝑚(∙) based on current training samples 𝒙𝑡𝑟 

3. Estimate the mean 𝜎ℎ̂(𝒙) and standard deviation 𝜎ℎ̂(𝒙) for 𝑆𝑚−1 with ℎ̂𝑚(∙) 

4. Search for the next best training samples 𝒙𝑡𝑟
∗  using the learning function in Eq. (31), 

where 𝑡̂ = 0. Update the training samples 𝒙𝑡𝑟 

5. Check if the stopping criterion is satisfied or not: 

 (a) If satisfied, go to step 7 

 (b) If not satisfied, estimate the response 𝑔(𝒙𝑡𝑟
∗ ) for 𝒙𝑡𝑟

∗  and go back to Step 3 

6. The limit state ℎ̂(𝒙) = 0 is accurately defined 

 438 



12 

 

After the estimated limit state ℎ̂(𝒙) = 0 is accurately defined, samples following posterior distribution can 439 
be drawn according to the last step in BUS+SS algorithm but based on the well-trained Kriging surrogate 440 

model i.e., ℎ̂(𝒙) . The last step of BUS-SSAK follows the same computational path as Kriging-based 441 
reliability analysis algorithms such as AK-MCS does [36]. However, there are two differences that are 442 
worth mentioning. First, the set of candidate design samples for Bayesian updating in the last step mainly 443 
comes from the local subset 𝛺𝑚−1 but not the global sampling domain 𝛺, and the size of 𝑆𝑚−1 is much 444 
smaller than the size of candidate design samples in AK-MCS. Second, as more failure (accepted) samples 445 

are generated in the last subset after the limit state ℎ̂(𝒙) = 0 is well constructed, the probabilistic property 446 
of the posterior distribution can be better inferred due to the sufficient information rendered by these 447 
samples. Main steps for the proposed Bayesian updating with subset simulation using Adaptive Kriging 448 
(BUS-SSAK) are summarized in Algorithm 4. Note that errors of 𝑓′(𝒙) mainly come from two sources. 449 

First, the surrogate limit state ℎ̂(𝒙) = 0 cannot be perfectly equal to the true performance function ℎ(𝒙) =450 
0, which can unavoidably lead to wrong classification of acceptance and rejection. Second, the various 451 
settings of MCMC in the original framework (BUS-SS) regarding for example the jumping function can 452 
introduce error in the estimation of 𝑓′(𝒙). In the next section, the performance of the proposed method 453 
BUS-SSAK is explored by investigating three numerical examples.  454 
 455 

Algorithm 4. Bayesian updating with subset simulation using adaptive Kriging (BUS-SSAK) 

1. Generate 𝑁𝑖𝑛 samples 𝒙𝑘 , 𝑘 = 1, … 𝑁𝑖𝑛 using crude MCS and estimate their responses 

ℎ(𝒙𝑘), 𝑘 = 1, … 𝑁𝑖𝑛 

2. 𝑖 = 1 

3. (a) If 𝑖 = 1, identify 𝑡1 using Algorithm 2 according to following steps: 

i. Construct the Kriging model ℎ̂𝑖(∙) based on current training samples 𝒙𝑡𝑟 

ii. Build the Conditional Acceptance Rate Curve (CARC) according to Eq. (19) 

iii. Search for 𝑡̂1 according to Eq. (20) 

iv. Search for the next training point 𝒙𝑡𝑟
∗  using dynamic learning function according to 

Eq. (31) and update the set of training samples 𝒙𝑡𝑟 

v. Check if the stopping criterion is satisfied according to Eq. (32): if satisfied go to 

step 3 vi; Otherwise, estimate the response for 𝒙𝑡𝑟
∗  and return to step 3 i.  

vi. Output 𝑡̂1. 

(b) If 𝑖 > 1, determine the intermediate acceptance rate 𝑡𝑘 using Algorithm 2 such that the 

conditional acceptance rates satisfies P(𝛺𝑖+1|𝛺𝑖) ≈ 𝑝0 

4. Generate samples in 𝛺𝑖 through crude MCS (if the probability of failure is not rare) or 

MCMC based on the remaining samples (i.e., seeds) 

5. 𝑖 = 𝑖 + 1. Return to step 3 if 𝑡̂ > 0; otherwise, continue to step 6 

6. Estimate the limit state ℎ̂(𝒙) = 0 according to following steps: 

i. Generate candidate design samples 𝑆𝑚−1 from the subset 𝛺𝑚−1 

ii. Construct the Kriging model ℎ̂𝑚(∙) based on current training samples 𝒙𝑡𝑟 

iii. Estimate the mean 𝜎ℎ̂(𝒙) and standard deviation 𝜎ℎ̂(𝒙) for 𝑆𝑚−1 with ℎ̂𝑚(∙) 

iv. Search for the next best training samples 𝒙𝑡𝑟
∗  using the learning function in Eq. 

(31), where 𝑡̂ = 0. Update the set of training samples 𝒙𝑡𝑟 

v. Check if the stopping criterion is satisfied. Go to step 7, if it is satisfied; Otherwise, 

estimate the response 𝑔(𝒙𝑡𝑟
∗ ) for 𝒙𝑡𝑟

∗  and go back to Step 6 iii 

7. Estimate the posterior distribution   

 456 
4. Numerical Investigation 457 
In this section, four examples are implemented to investigate the performance of the proposed method BUS-458 
SSAK. The first example is tailored to showcase the implementation procedures of  BUS-SSAK, while the 459 
rest of the examples are investigated to explore the computational performance compared to BUS, aBUS 460 
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[7] and ANN-aBUS [5] approaches. aBUS enhances the computational performance of BUS through 461 
adaptively adjusting the value of constant c, and therefore, does not need c as an input [7]. Moreover, ANN-462 
aBUS integrates the aBUS algorithm with artificial neutral networks to substantially improve the 463 
computational performance of Bayesian model updating [5]. It should be noted that the time-complexity of 464 
the proposed method depends on the construction of the Kriging surrogate, which is in the order of 𝑂(𝑛2) 465 
[46], [47]. The run time of the implemented codes is negligible compared to the run time of model 466 
evaluations. Therefore, the run time of the Bayesian updating methods is assessed using the number of 467 
model evaluations, 𝑁𝑐𝑎𝑙𝑙. Moreover, the accuracy of the proposed method has been investigated based on 468 
the ratio of estimated parameters through advanced techniques over the values estimated using MCS, e.g., 469 

𝜇̂ ′/𝜇 ′ and 𝜎̂ ′/𝜎′. It should be noted that 𝑁𝑠𝑠 is the number of layers of subset, which is based on how rare 470 
the acceptance rate is. Moreover, 𝑁𝑖𝑛 should be set sufficiently large so that the intermediate acceptance 471 
rate can be accurately identified. Based on several experiments performed in this study, 𝑁𝑖𝑛 = 5000 can 472 
offer a reliable estimate of the posterior distribution for cases where the acceptance rate is larger than 10−6. 473 
Moreover, 𝑁𝑡 and 𝑁𝑡𝑠 can set to be very large due to the fact that generating samples in the accepted region 474 
is extremely fast using a well-trained Kriging surrogate model for the last subset. 475 
 476 
4.1 Example 1: Illustration of methodology 477 
The first example is implemented here to elaborate the implementation details of the proposed BUS-SSAK 478 
method . It investigates a one-dimensional problem where the random variable follows a standard normal 479 
prior distribution, denoted as φ(𝑥). The likelihood of this case follows a normal distribution with mean 480 

𝜇𝑙 = 3 and standard deviation 𝜎𝑙 = 0.3. And the maximum value of likelihood is 𝐿𝑚𝑎𝑥 =
1

𝜎𝑙√2𝜋
= 1.33, 481 

which means 𝑐 =
1

𝑚𝑎𝑥(𝐿𝑚𝑎𝑥)
= 0.752. Therefore, the reformulated limit state ℎ(𝑥, 𝑝) can be written as: 482 

 483 
ℎ(𝑥, 𝑝) =  𝑝 − 𝑐𝜙(𝑥|𝜇𝑙 , 𝜎𝑙) (34) 484 

 485 
where 𝑝  is an auxiliary random variable following the standard uniform distribution and 𝜙(𝒙|𝜇𝑙 , 𝜎𝑙) 486 
denotes the probability density function of a normal distribution parameterized by 𝜇𝑙 and 𝜎𝑙. To reduce the 487 
nonlinearity, the logarithmic formulation of the limit state function is used as follows [7]: 488 

𝑔(𝑥, 𝑝) =  𝑙𝑛(𝑝) − 𝑙𝑛(𝑐) − 𝑙𝑛(𝜙(𝑥|𝜇𝑙 , 𝜎𝑙)) (35) 489 

In this example, the acceptance rate, 𝑃𝑎𝑐𝑐 , is 4.63 × 10−3, which indicates that there are totally three subsets 490 
for the implementation of BUS-SSAK. The number of initial training samples is selected as 10. The 491 
performance of the considered methods is evaluated in terms of the number of calls to the likelihood 492 
function, 𝑁𝑐𝑎𝑙𝑙 and ratios of the true and estimated mean and standard deviation of the posterior distribution 493 

(i.e., 𝜇̂/𝜇 ′and 𝜎̂′/𝜎′). 494 
The true/estimated limit states and training samples generated through BUS-SSAK in each subset are 495 

illustrated in Fig. 3. It can be observed that the estimated limit state in each subset is very close to the true 496 

one after applying CARC and DLF. Moreover, figures depicting the evolution of ℎ̂(𝑥, 𝑝) = 0  with 497 
increasing training samples 10, 20, 30 and 40 are also shown in Fig. 4. One can observe that the limit state 498 

ℎ̂(𝑥, 𝑝) = 0  gets increasingly close to ℎ(𝑥, 𝑝) = 0  as training samples increase. Consequently, the 499 
proposed approach, BUS-SSAK, can dramatically reduce the number of calls to the performance function 500 

to 𝑁𝑐𝑎𝑙𝑙 = 98, while offering a high accuracy with  
𝜇̂′

𝜇′
= 1.031 and 

𝜎̂′

𝜎′
= 0.9723. The reason for the high 501 

computational efficiency is that the proposed method strategically calls the performance function to explore 502 
and refine the limit state.  503 
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         (a)          (b) 

  
         (c)          (d) 

Fig. 3. Illustration of BUS-SSAK with the true/estimated limit states and training samples in (a) the first 504 
subset, (b) the second subset, (c) the third subset, and (d) the last subset. 505 
 506 

  
         (a)          (b) 
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         (c)          (d) 

Fig. 4. Illustration of ℎ̂(𝑥, 𝑝) = 0 with (a) 10 training samples, (b) 20 training samples, (c) 30 training 507 
samples, and (d) 40 training samples. 508 
 509 
4.2 Example 2: Unimodal distribution 510 
The first example concerns determining the posterior distribution in a problem with n random variables [5], 511 
[48]. First, the prior probability density function of the random variables can be represented as 𝑓(𝒙) =512 
∏ φ(𝑥𝑖)𝑛

𝑖=1 , where φ(∙) denotes the PDF of the standard normal distribution. Moreover, the likelihood 513 
function 𝐿(𝒙) can be represented as, 514 
 515 

𝐿(𝒙) = ∏
1

𝜎𝑙
𝜙(𝑥𝑖|𝜇𝑙 , 𝜎𝑙)

𝑛

𝑖=1

(36) 516 

 517 
where 𝜎𝑙 is set as 0.2 and 𝜇𝑙 can be computed as follows, 518 
 519 

𝜇𝑙 = √−2(1 + 𝜎𝑙
2) ∙ 𝑙𝑛 [𝑐𝐸

1/𝑛
∙ √2𝜋 ∙ √1 + 𝜎𝑙

2] (37) 520 

 521 
where 𝑐𝐸  is the model evidence. In this paper, the case of 𝑛 = 2  and 𝑐𝐸 = 10−4  is investigated. The 522 
analytical mean and standard deviation of the posterior of each mutually independent standard normal 523 
random variable 𝒙 can be calculated as, 524 
 525 

𝜇′ =
𝜇𝑙

1 + 𝜎𝑙
2 , 𝜎′ = √

𝜎𝑙
2

1 + 𝜎𝑙
2

(38) 526 

 527 
As suggested in [7], the logarithmic form of the likelihood function is computationally more efficient, thus, 528 
the equivalent limit state function can be expressed as, 529 
 530 

ℎ(𝒙, 𝑝) =  𝑙𝑛(𝑝) − 𝑙𝑛(𝑐) − 𝑙𝑛(𝐿(𝒙)) (39) 531 

 532 
For this example, the number of candidate design samples in each subset is set as 5000 (i.e., the size of 533 

𝑆𝑚−1 in Algorithm 3 is equal to 5000). Moreover, the initial number of training samples is set as 10. In this 534 
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paper, the computational accuracy and efficiency of the considered methods are evaluated in terms of the 535 
estimated mean and standard deviation of the posterior distribution (i.e., 𝜇̂′and 𝜎̂′) and the number of 536 
evaluations to the performance function (i.e., 𝑁𝑐𝑎𝑙𝑙). Simulation results for the BUS, aBUS and ANN-aBUS 537 
together with the proposed BUS-SSAK method are summarized in Table 1. The parameters of aBUS is set 538 
exactly the same as BUS, and the number of training samples for each subset in ANN-aBUS is set as 100 539 
for this example. For ANN-aBUS, the parameters of the three layers including input, hidden and output 540 
layers are optimized based on Levenberg-Marquardt optimization algorithm[5]. The acceptance ratio, 𝑃𝑎𝑐𝑐, 541 
is equal to 2.451 × 10−5, therefore 5 subsets should be generated in the BUS+SS algorithm. The analytical 542 
posterior mean and standard deviation are estimated as 𝜇′ = 2.659  and 𝜎′ = 0.1961 , respectively, 543 
according to Eq. (39). The convergence history of identifying intermediate acceptance rate (i.e., the 544 
intermediate failure thresholds in the equivalent reliability problem) 𝑡̂𝑖 is shown in Fig. 5. Moreover, Fig. 6 545 
illustrates the evolution of accepted candidate design samples through the BUS-SSAK approach. Fig. 7 546 
showcases the process of adaptively enriching the set of training samples in each subset.  547 

According to Table 1, the proposed BUS-SSAK approach is computationally very efficient and accurate. 548 
Essentially, the ratios between the estimated and true mean and standard deviation (i.e., 𝜇̂′/𝜇′and 𝜎̂′/𝜎′) 549 
are computed as 1.018 and 1.009, while they are estimated as 1.007 and 1.051 via the BUS+SS method. 550 
However, the total number of evaluations of the likelihood function is only 34 for the proposed BUS-SSAK 551 
method while these numbers are 2838, 2643 and 603 for the BUS+SS, aBUS and ANN-aBUS approaches, 552 
respectively. This large number of function evaluations through BUS and aBUS poses a computational 553 
challenge for Bayesian updating of sophisticated models. Moreover, BUS+SSAK substantially 554 
overperforms ANN-aBUS due to the fact that the former approach selects training samples that are located 555 
in the vicinity of the limit state as opposed to the latter approach that tends to select training samples purely 556 
randomly.  The intermediate acceptance rate 𝑡̂𝑖, shown by dashed line in Fig. 5, asymptomatically converges 557 
to the true 𝑡𝑖 shown by the solid line in Fig. 5. Specifically, 𝑡̂1 to 𝑡̂4 are identified 94.71, 31.24, 6.82 and -558 
0.25 as shown in Fig. 5.  Note that the number of subsets is 4, which is different with the one estimated 559 
through BUS+SS (i.e., 5). This is due to the variation of the MCMC technique applied in two algorithms, 560 
which determines the paths to the failure region but not the destination (failure region). However, it does 561 
not affect the training process of the Kriging model in the last subset, which plays an important role in 562 
determining the computational performance of BUS+SSAK. Moreover, according to Fig. 6(a), candidate 563 
design samples for the prior distribution are first generated by the MC sampling technique. Then, the initial 564 
training samples 𝒙𝑖𝑛 are randomly selected from the first set of candidate design samples as shown in Fig. 565 
7(a). Subsequently, the first intermediate 𝑡̂1 is accurately identified by Algorithm 2. In this process, new 566 
training samples are selected for the construction of the Kriging model as shown in Fig. 7(b). Repeating 567 
this process as presented in Algorithm 4, the candidate design samples are finally drawn for the last subset. 568 
Samples in the last subset follow the posterior distribution. From Fig. 6 and 7, it is evident that the training 569 
samples spread toward the final subset, which is also the acceptance (failure) region. This trend can also be 570 
explained by the two new concepts introduced in this paper. First, the estimated intermediate acceptance 571 
rate thresholds are adaptively identified to be smaller than zero. Second, the proposed dynamic learning 572 
function is applied to enrich the training set with samples that are close to the limit state ℎ(𝒙, 𝑝) =   𝑡̂𝑖.  This 573 
approach tends to select samples that are close to the failure domain with extremely low probability density 574 
in the equivalent reliability problem. This process is adaptive so that the training samples are not passively 575 
selected beforehand, rather the training set is enriched sequentially based on the information provided by 576 
the responses of the likelihood function. This adaptive strategy can significantly improve the computational 577 
efficiency. In its current form, the process enriches one training point in each iteration. This means that the 578 
aggregated time of simulation is proportional to 𝑁𝑐𝑎𝑙𝑙 . The computational time can be shortened by 579 
implementing appropriate parallel training strategies. Developing such strategies can be an important future 580 
research direction. 581 
 582 

Table 1. Bayesian updating results of BUS+SS and BUS-SSAK for 583 
Example 1, where 𝜇̂′/𝜇′and 𝜎̂′/𝜎′ denote the estimated/true means and 584 
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standard deviations of the posterior distribution. 585 
Methodology 𝑁𝑐𝑎𝑙𝑙 𝜇̂′ 𝜎̂′ 𝜇̂′/𝜇′ 𝜎̂′/𝜎′ 

BUS+SS  2838 2.6765 0.2061 1.007 1.051 

aBUS 2634 2.695 0.1949 1.000 0.994 

ANN-aBUS 603 2.6643 0.1867 1.002 0.952 

BUS-SSAK 10 + 24 2.7067 0.1978 1.018 1.009 

 586 

 587 
Fig. 5. Convergence history of identifying 𝑡̂𝑖 till 𝑡̂𝑖 ≤ 0. 588 

  
         (a) MC samples          (b) BUS-SSAK samples in subset 1 
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        (c) BUS-SSAK samples in subset 2         (d) BUS-SSAK samples in subset 3 

 
        (e) BUS-SSAK samples in the final subset 

 589 
Fig. 6. Simulation Results of BUS-SSAK with accepted samples in each subset. 590 

  
         (a) Initial training samples          (b) Training samples in subset 1 
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        (c) Training samples in subset 2         (d) Training samples in subset 3 

 
        (e) Training samples in the final subset 

 591 
Fig. 7. Simulation results of BUS-SSAK with training samples in each subset. 592 

 593 
4.3 Example 3: Two degrees-of-freedom structure 594 
The second example involves a two-degrees-of-freedom (two-DOF) dynamic system which was developed 595 
in [4] and then investigated in [5]–[7] to explore the performance of BUS. By measuring the eigen-596 
frequencies of the structure, the posterior distribution of inter-story stiffnesses is estimated using the 597 
Bayesian updating technique. Fig. 8 illustrates the configuration of this structure. The masses of the two 598 
stories are defined as 𝑚1 = 16.531 ∙ 103 𝑘𝑔 and 𝑚2 = 16.13.1 ∙ 103 𝑘𝑔. The inter-story stiffnesses are 599 
modeled as 𝐾1 = 𝑋1𝑘𝑛 and 𝐾2 = 𝑋2𝑘𝑛, where 𝐾1 and 𝐾2 are the stiffness values of the first and second 600 
stories, respectively,  𝑘𝑛 = 29.7 ∙ 106 𝑁/𝑚 is the nominal value, and 𝑋1 and 𝑋2 are correction factors to 601 
be updated. Damping is not considered in this case. Observations of the first two eigen-frequencies 𝑓1 and 602 
𝑓2 are used to update the distribution of 𝑿 = [𝑋1, 𝑋2]. According to [4], [6], the likelihood function for this 603 
problem can be expressed as, 604 
 605 

𝐿(𝒙) ∝ exp [−
𝐽(𝒙)

2𝜎𝜀
2 ] (40) 606 

where  607 
 608 
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𝐽(𝒙) = ∑ 𝜆𝑗
2

2

𝑗=1

[
𝑓𝑗

2(𝒙)

𝑓𝑗
2

− 1]

2

(41) 609 

 610 
is a measure-of-fit function.  𝑓𝑗

2(𝒙) is the jth eigen-frequency estimated from the structural model with 611 

random variables 𝒙, and 𝑓𝑗
2 is the measurement of the jth eigen-frequency. 𝜆1 = 𝜆2 = 1 are the means and 612 

𝜎𝜀 =
1

16
 is the standard deviation of the prediction error. Two measurements of eigen-frequencies are 613 

available: 𝑓1 = 3.13 Hz and 𝑓2 = 9.83 Hz. However, one should note that the parameters of the structures 614 
can be also updated based on the data allow inferring about the mode shapes or a combination of data on 615 
frequency and mode shapes. Moreover, the present study assumes that the structure is not damaged. In the 616 
case where the structure is damaged, the mode-switching problem may emerge as the loss of stiffness in 617 
structural elements may unevenly impact some of the modal frequencies more than others and therefore 618 
switch the order of the modes. More information about this issue can be found in [49]. The prior distribution 619 
of 𝑋1  and 𝑋2  are uncorrelated lognormal distributions with modes 1.3 and 0.8 and standard deviations 620 
𝜎𝑋1

= 𝜎𝑋2
= 1.  621 

 622 

 623 
Fig. 8. Two-DOF shear building model. 624 

 625 
The limit state function can be rewritten as, 626 
 627 

ℎ(𝒙, 𝑝) =  𝑝 − 𝑐 ∙ exp [−
𝐽(𝒙)

2𝜎𝜀
2 ] (42) 628 

 629 
The acceptance rate of the undecomposed limit state function in Eq. (42) is approximately 0.0016; 630 

therefore, three subsets are needed to implement BUS. Similar to the previous examples, the logarithmic 631 
form of Eq. (42) is used here. 𝑁𝑖𝑛  and the initial number of training samples are set as 5000 and 10, 632 
respectively. The BUS+SS, aBUS, ANN-aBUS and the proposed BUS-SSAK methods are implemented to 633 
assess their performance for this example. The results are summarized in Table 2. The parameters of aBUS 634 
are set the same as BUS, and the number of training samples for each subset in ANN-aBUS is set as 300 for 635 
this example.  Fig. 9 illustrates the convergence of 𝑡̂𝑖 to the true rate. Moreover, the evolution of the set of 636 
accepted candidate design samples in the BUS-SSAK method is shown in Fig. 10. In addition, Fig. 11 637 
showcases the evolution of the set of training samples in each subset. According to Table 2, the mean and 638 
standard deviation of the estimated 𝑓′(𝑥)  via BUS+SS and BUS-SSAK are close ∆ 𝜇̂′(𝐿)= (0.499 −639 

0.497)/0.499 = 0.004 , ∆ 𝜇̂′(𝑅)= (1.832 − 1.819)/1.832 = 0.0071 , ∆ 𝜎̂′(𝐿)= (0.038 − 0.035)/640 

0.038 = −0.0789  and ∆ 𝜎̂′(𝑅)= (0.140 − 0.134)/0.140 = 0.0429 . However, the total number of 641 

evaluations of the likelihood function is only 151 for the proposed BUS-SSAK method compared to 3432, 642 
3165, 2447 evaluations for BUS+SS, aBUS and ANN-aBUS, respectively. Moreover, the posterior 643 

𝑚2 

𝑚1 

𝑘1 

𝑘2 
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parameters estimated through BUS-SSAK are found to be more accurate than ANN-aBUS. Approximately 644 
120, 13, and 18 evaluations of the likelihood function are used in subsets 1, 2, and 3 via BUS+SS, 645 
respectively, according to Fig. 9. Specifically, 𝑡̂1 to 𝑡̂3 are identified 32.3, 3.94 and -1.22 as shown in Fig. 646 
12. Comparing Fig. 10 and 11, one can find that the new training samples are strategically added in the area 647 
located in the final subset in Fig. 11(d). Therefore, the computational accuracy and efficiency of the 648 
proposed method are demonstrated for the three considered examples. 649 
 650 

Table 2. Bayesian updating results for example 2.  651 
Methodology 𝑁𝑐𝑎𝑙𝑙 𝜇̂′(𝐿) 𝜎̂′(𝐿) 𝜇̂′(𝑅) 𝜎̂′(𝑅) 

BUS+SS  3432 0.497 0.038 1.819 0.140 

aBUS 3165 0.499 0.040 1.821 0.141 

ANN-aBUS 2447 0.487 0.033 1.837 0.127 

BUS-SSAK 10+ 131 0.499 0.035 1.832 0.134 

 652 

 653 
Fig. 9. Convergence history of identifying 𝑡̂𝑖 till 𝑡̂𝑖 ≤ 0. 654 

 655 

  
       (a) MC samples      (b) BUS-SSAK samples in subset 1 
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           (c) BUS-SSAK samples in subset 2          (d) BUS-SSAK samples in the final subset 

 656 
Fig. 10. Simulation results of BUS-SSAK with accepted samples in each subset 657 

  
              (a) Initial training samples               (b) Training samples in subset 1 

  
               (c) Training samples in subset 2                 (d) Training samples in the final subset 

 658 
Fig. 11. Simulation Results of BUS-SSAK with training samples in each subset. 659 
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 660 
4.4 Example 4: A model of chloride and carbonation-based corrosion 661 
This section investigates the computational performance of the proposed surrogate-based Bayesian 662 
updating approach for an engineering application related to durability modeling for chloride corrosion. The 663 
mechanism of chloride ingress in a partially carbonated concrete medium is first introduced followed by 664 
the modeling process that is based on the finite difference method. Finally, the derivation of the posterior 665 
distributions of model parameters using the proposed BUS-SSAK method is presented for the case where 666 
two observations for chloride concentration and carbonation depth are available.  667 
 668 
4.4.1 Model description 669 
Engineered structures such as cross-sea bridges are exposed to highly corrosive environments. Durability 670 
of these structures that are often made of concrete against deterioration processes such as chloride and 671 
carbonation-induced corrosions is one of the most challenging issues for life-cycle management. As shown 672 
in Fig. 12, the tidal zones of the concrete columns of the cross-sea suspension bridge are subject to 673 
simultaneous deterioration by chloride corrosion and carbonation. The darker dots in Fig. 12 represent 674 
chloride ions, while the brighter dots indicate carbon dioxide.  675 

 
 

(a) (b) 
Fig. 12. A suspension bridge in marine environment: (a) A conceptual plot of the bridge and the 

corrosive environment and (b) Corrosion profile for different zones 

Through diffusion across carbonated and uncarbonated regions of concrete, chloride ions ingress the 676 
protective layer of concrete located in the submerging zone and reach the surface of the very exterior steel 677 
reinforcement in concrete elements. The subsequent chemical reactions of chloride with steel can 678 
significantly affect the functionality of concrete structures during their service life. Chloride transport is 679 
typically described by the Fick’s second law, which can be represented by the following partial differential 680 
equations, 681 
 682 

𝜕𝐶𝑐𝑙

𝜕𝑡
= 𝐷1

𝜕2𝐶𝑐𝑙

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 𝐿𝑐 683 

 684 
𝜕𝐶𝑐𝑙

𝜕𝑡
= 𝐷2

𝜕2𝐶𝑐𝑙

𝜕𝑥2
, 𝑥 > 𝐿𝑐 (43) 685 

 686 
where 𝐶𝑐𝑙 denotes chloride concentration, 𝐷1 and 𝐷2 are the two diffusion coefficients of uncarbonated and 687 
carbonated regions and 𝐿𝑐 denotes the depth of the carbonation, which can be calculated as follows, 688 
 689 

𝐿𝑐 = 𝑘𝑐√𝑡𝑐 (44) 690 

 691 
where 𝑘𝑐 denotes the carbonation coefficient and 𝑡𝑐 denotes the time (year). A conceptual illustration of 692 
chloride diffusion process is shown in Fig. 13. The initial and boundary conditions for the above partial 693 
differential equations are as follows, 694 



24 

 

 695 
𝐶𝑐𝑙(𝑡𝑐 = 0) = 𝑐0,  696 

𝐶𝑐𝑙(𝑥 = 0, 𝑡𝑐 > 0) = 𝑐𝑠 > 𝑐0, 697 
𝐶𝑐𝑙|𝑥=𝐿𝐶

− = 𝐶𝑐𝑙|𝑥=𝐿𝐶
+ , 698 

𝐷1

𝜕𝐶𝑐𝑙

𝜕𝑥
|𝑥=𝐿𝐶

− = 𝐷2

𝜕𝐶𝑐𝑙

𝜕𝑥
|𝑥=𝐿𝐶

+ (45) 699 

 

 
Fig. 13. Illustration of chloride transport in partially carbonated concrete. Dark circles indicate chloride 

ions. 

 

The corrosion model of Eq.(43) is solved using finite difference method. It should be noted that this 700 
approach and the proposed Bayesian updating method can be applied to any type of diffusion-based 701 
corrosion simulation such as those involving convection with pore solution flow.  702 
 703 
4.4.2 Finite difference discretization 704 
The diffusion process of chloride ions in partially carbonated concrete can be simulated using finite 705 
difference method through the following discretization, 706 
 707 

𝐶𝑐𝑙
𝑖,𝑗+1

− 𝐶𝑐𝑙
𝑖,𝑗

∆𝑡
= 𝐷𝑐𝑙

𝐶𝑐𝑙
𝑖,𝑗+1

− 2𝐶𝑐𝑙
𝑖,𝑗

+ 𝐶𝑐𝑙
𝑖,𝑗−1

∆𝑥2
, 0 ≤ 𝑥 ≤ 𝐿𝑐 708 

 709 

𝐶𝑐𝑙
𝑖,𝑗+1

− 𝐶𝑐𝑙
𝑖,𝑗

∆𝑡
= 𝐷𝑐𝑙

𝐶𝑐𝑙
𝑖,𝑗+1

− 2𝐶𝑐𝑙
𝑖,𝑗

+ 𝐶𝑐𝑙
𝑖,𝑗−1

∆𝑥2
, 𝑥 > 𝐿𝑐 (46) 710 

 711 
The explicit formulation of finite difference is adopted in this paper due to its computational simplicity. 712 

Based on Eq.(45), the specific initial conditions for this problem are defined as 𝐶𝑐𝑙
𝑖,0 = 𝑐0, 𝐶𝑐𝑙

0,𝑗>0
= 𝑐𝑠 >713 

𝑐0 and 𝐶
𝑐𝑙

∞,0
= 0, where 𝑐0 = 0 and 𝑐𝑠 > 0 denote the surface chloride concentration and the value of 𝐶𝑐𝑙 714 

at initial time 𝑡𝑐 = 0. Moreover, parameters for finite difference discretization, i.e. ∆𝑥 and ∆𝑡 are set as 715 
0.0001m and 0.05 year, respectively. An illustration of the finite difference discretization and chloride 716 
concentration, 𝐶𝑐𝑙 at 𝑡𝑐 = 20 years are presented in Fig. 14. The time for one simulation is about 10.21 717 
seconds. 718 
  719 
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(a) finite difference discretization in 2D  

  
 (b) chloride concentration with 𝑡𝑐 = 20 years, where the gray region is the carbonated part of concrete 

Fig. 14. Illustrations of chloride and carbonation-based corrosion using finite difference method 720 
 721 
4.4.3 Results of Bayesian updating 722 
This subsection showcases the computational process to infer the posterior distribution of chloride 723 
concentration and carbonation depth based on the observed data using the proposed method. The prior 724 
distributions of four parameters including 𝑐𝑠 , 𝐷1 , 𝐷2  and 𝑘𝑐  are summarized in Table 3. An agency in 725 
charge of bridge management plans to estimate the posterior distribution of 𝐶𝑐𝑙  and 𝑘𝑐  based on field 726 
observations in support of decisions for future maintenance and inspection. Note that knowing the 727 
distribution of 𝑘𝑐, one can determine the distribution of 𝐿𝑐 using Eq.(44). A concrete sample is taken from 728 
the tidal zone of a bridge column and analyzed using Volhard’s Titration Method to determine 𝐶𝑐𝑙 and 𝐿𝑐 729 
at 𝑡𝑐 = 5 years. Analysis of the specimen yielded 𝐶𝑐𝑙|𝑥=0.005,𝑡𝑐=5 = 1.823 mol/m3 and 𝐿𝑐|𝑥=0.005,𝑡𝑐=5 =730 

0.0057 m. The errors associated with these measurements are modeled with 𝜀𝑚1, a normal distribution with 731 
mean 0 and standard deviation 0.05, and 𝜀𝑚2, a normal distribution with mean 0 and standard deviation 732 
0.0005, respectively. Thus, the likelihood function can be represented as: 733 
 734 

𝐿(𝒙) = 𝜑1(𝜀𝑚1) ∙ 𝜑2(𝜀𝑚2) = 𝜑1(1.823 − 𝐶𝑐𝑙|𝑥=0.005,𝑡=5) ∙ 𝜑2(0.0057 − 𝐿𝑐|𝑥=0.005,𝑡=5)  (47) 

 735 
where 𝜑1 is the PDF of a normal distribution with mean 0 and standard deviation 0.05 and 𝜑2 is the PDF 736 
of a normal distribution with mean 0 and standard deviation 0.0005. The limit state function for the BUS 737 
approach can be rewritten as, 738 
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 739 
ℎ(𝒙, 𝑝) =  𝑝 − 𝑐𝐿(𝒙) (48) 740 

 741 
By taking the logarithmic form of Eq.(48), a mathematically equivalent but simpler linear form of the 742 
equation can be derived as: 743 
 744 

ℎ(𝒙, 𝑝) =  𝑙𝑛(𝑝) − 𝑙𝑛(𝑐) − 𝑙𝑛(𝐿(𝒙)) (49) 745 

 746 
Simulation results are presented in Fig. 15. Specifically, Fig. 15(a) showcases the convergence history of 747 
the identified intermediate acceptance rate with the solid line denoting the true value and the dashed line 748 
denoting the dynamically estimated quantity. Moreover, the evolution of parameters 𝑐𝑠 and 𝑘𝑐 from prior 749 
to posterior distributions are plotted in Fig. 15(b). Fig. 15(c) shows the modes and 95% confidence intervals 750 
(CIs) for the prior and posterior distribution of 𝐶𝑐𝑙 at time 𝑡𝑐 = 50 years along the concrete protective depth 751 
𝑥 ∈ [0,0.05] m. In this figure, the red/black solid lines denote the mode of posterior/prior distribution of 752 
𝐶𝑐𝑙 with yellow/gray shadow regions representing 95% CIs. Moreover, the modes and 95% confidence 753 
intervals for prior and posterior distribution of 𝐶𝑐𝑙 at location 𝑥 = 0.05 in the period of 𝑡𝑐 ∈ [0,50] years 754 
are plotted in Fig. 15(d). The proposed BUS-SSAK algorithm converges with 199 evaluations of the finite 755 
difference-based chloride ingress model and the total simulation time of Ts = 10.21 s × 199 = 2032 756 
seconds. Without the proposed BUS-SSAK method, BUS will take more than 10.21 s × 1500 = 4.25ℎ. 757 
Therefore, it significantly improves the computational efficiency for this relatively simple corrosion 758 
benchmark problem. This efficiency can be more distinct as the FEM becomes more sophisticated. 759 
Moreover, the simulation time for estimating posterior distribution for those parameters through other 760 
approaches such as BUS-SS, aBUS and ANN-aBUS are prohibitively large. Therefore, the proposed 761 
algorithm enables estimation of the posterior distribution of properties even when complex models and 762 
simulations are involved.  763 
 764 

Table 3. Prior distribution of parameters. 765 
Random variable Distribution Mean C.O.V 

𝑐𝑠 Lognormal 1.52[mol/m3] 0.1 

𝐷1 Lognormal 2.5 × 10−4[m2/y] 0.1 

𝐷2 Lognormal 1.5 × 10−4[m2/y] 0.1 

𝑘𝑐 Lognormal 0.004 [m/y1/2] 0.1 

 766 

  
              (a)           (b)  
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               (c)                  (d)  

Fig. 15. Illustrations of results of Example 3 using the proposed method: (a) the convergence history of 767 
identified intermediate failure thresholds; (b) the evolution of samples from prior to posterior distribution 768 
based; (c) modes and 95% CIs for prior and posterior estimates of 𝐶𝑐𝑙 at location 𝑥 = 0.05 m in the period 769 
of 𝑡𝑐 ∈ [0,50] years; and (d) modes and 95% CIs for the prior and posterior estimates of 𝐶𝑐𝑙 at time 𝑡𝑐 =770 
50[year] along the concrete protective depth 𝑥 ∈ [0,0.05] m  771 
 772 
5. Conclusion 773 
This paper proposes a new approach to Bayesian updating called BUS-SSAK, to improve the computational 774 
efficiency of estimating the posterior distribution of random variables and enable Bayesian updating for 775 
complex computational models. Generally, the main idea behind BUS-SSAK is to identify the sampling 776 
seeds of MCMC located in the final accepted domain. Two concepts are introduced to enable this process: 777 
Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF). CARC is a model 778 
that relates the value of intermediate failure threshold to intermediate failure probability as well as the 779 
corresponding confidence interval. DLF is a learning model that enables strategically adding training 780 
samples in the vicinity of the equivalent limit state with intermediate failure thresholds. After the seeds 781 
located in the accepted domain are accurately captured, Kriging-based reliability analysis methods are 782 
implemented to train the surrogate model for the equivalent limit state function reinterpreted by BUS. The 783 
final accepted samples following the posterior distribution are generated by implementing the MCMC 784 
sampling based on aforementioned seeds and the well-trained Kriging surrogate model. Three examples are 785 
investigated in this paper. Compared to the approach via the combination of BUS and pure subset simulation 786 
(BUS+SS), the proposed BUS-SSAK method significantly reduces the computational cost by one to two 787 
orders of magnitude and simultaneously maintain high accuracy in the estimate of posterior distributions.  788 

Despite the significant computational advancements offered by the proposed method, it can be further 789 
enhanced in the future. First, the proposed method, similar to other techniques, can face high computational 790 
demands as the dimension of the problem, i.e., the number of random variables becomes very large. This 791 
is in part due to the inherent shortcomings of Kriging surrogate models when facing the challenge of curse 792 
of dimensionality. Moreover, advanced stopping criteria that can associate termination of active training to 793 
error in posterior estimation can avoid costs of unnecessary training or risks of premature termination. 794 
 795 
Appendix 1: Algorithms of subset simulation and BUS-SS 796 

Algorithm 1A. Subset simulation for failure probability estimation 

1. Generate 𝑁𝑆𝑆 samples 𝒙𝑘 , 𝑘 = 1, … 𝑁𝑆𝑆 through crude MCS and estimate their responses 

𝑔(𝒙𝑘), 𝑘 = 1, … 𝑁𝑆𝑆 

2. 𝑖 = 1 

3. (a) If 𝑖 = 1, determine 𝑡1 such that P(𝛺1) ≈ 𝑝0 
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(b) If 𝑖 > 1, determine the intermediate failure thresholds 𝑡𝑖s such that the conditional probabilities 

satisfy P(𝛺𝑖+1|𝛺𝑖) ≈ 𝑝0 

4. Generate samples in 𝛺𝑖+1(i.e., if the probability of failure is not rare, pure MCS is recommended; 

otherwise, MCMC is appropriate) 

5. 𝑖 = 𝑖 + 1. Return to step 3 if 𝑡𝑖 > 0; otherwise, continue to step 6. 

6. Estimate the last failure probability 𝑃̂0
𝑚 = P(𝛺𝑚|𝛺𝑚−1) in the final subset 𝛺𝑚with 𝑡𝑚 = 0 

7. Estimate the failure probability 𝑃̂𝑓
𝑠𝑠 according to Eq. (16).  

 797 

Algorithm 1B. BUS with Subset simulation 
1. Define the parameters: 

    (a) Target number of samples 𝑁𝑡 

(b) Number of samples in each intermediate step 𝑁𝑖𝑛 

(c)  Probability of intermediate subsets 𝑝0 

(d)  Constant 𝑐 according to Eq. (9) 

2. Draw 𝑁𝑖𝑛 samples [𝒙𝒌, 𝑝𝑘], 𝑘 = 1,2, … 𝑁𝑖𝑛 from the prior distribution [𝑿, 𝑃] 
3. Define the subset domain such that Ω1 = {ℎ(𝒙, 𝑝) ≤ 𝑡1}, where 𝑡1 is defined according to the 𝑝0 

percentile of the responses of samples ℎ(𝒙𝒌, 𝑝𝑘), 𝑘 = 1,2, … 𝑁𝑖𝑛 
4. 𝑖 = 1 

5. While 𝑡𝑖 > 0, 

    (a) 𝑖 = 𝑖 + 1 

(b) Draw 𝑁𝑖𝑛 samples from the domain Ω𝑖−1 with MCMC technique 

(c) Define the next subset Ω𝑖 = {ℎ(𝒙, 𝑝) ≤ 𝑡𝑖}, where 𝑡𝑖 is defined according to the 𝑝0 

percentile of the responses of samples ℎ(𝒙𝒌, 𝑝𝑘), 𝑘 = 1,2, … 𝑁𝑖𝑛 in subset Ω𝑖−1 

6. Define the last subset Ω𝑖+1 = {ℎ(𝒙, 𝑝) ≤ 0}, identify the number of samples 𝑁𝑠 in Ω𝑖+1 and keep 

these samples as seeds 

7. Draw 𝑁𝑡 samples in the subset Ω𝑖+1 with those seeds in Step 6 using MCMC technique 

 798 
Appendix 2: Elements of Kriging Model 799 
The Kriging model, also called Gaussian Process Regression, makes a prior assumption that the estimated 800 
response 𝑦̂(𝒙) and the known true response 𝑦 follow a joint Gaussian distribution [24], [50], [51]. It has 801 
been widely used for surrogate-based reliability analysis [40], [52]–[56]. Based on this assumption, Kriging 802 
combines the process of interpolation and regression. The estimated stochastic response 𝐾(𝒙) for input x 803 
can be described as follows, 804 
 805 

𝑲(𝒙) = 𝜷𝑇𝒇𝑘(𝒙) + 𝒁𝑘(𝒙, 𝒘) (A1) 
 806 
where 𝒇𝑘(𝒙)  is the basis function and 𝜷  is the vector of regression coefficients of 𝒇𝑘(𝒙) . 𝜷𝑇𝒇𝑘(𝒙) 807 
represents the mean value of 𝑲(𝒙), which is often assumed to have ordinary (𝛽0), linear (𝛽0+∑ 𝛽𝑖𝒙𝑖

𝑁
𝑖=1 ) or 808 

quadratic (𝛽0+∑ 𝛽𝑖𝒙𝑖
𝑁
𝑖=1 +𝛽0+∑ ∑ 𝛽𝑖𝑗𝒙𝑖𝒙𝑗

𝑁
𝑗=𝑖

𝑁
𝑖=1 ) forms, where N is the dimension of the random input 809 

vector x. More details on 𝒇𝑘(𝒙) and 𝜷 in Kriging models can be found in [51]. In this study, the ordinary 810 
Kriging model is used, meaning that both 𝒇𝑘(𝒙) and 𝜷 are constant. 𝒁𝑘(𝒙)  is a stationary normal Gaussian 811 
process with zero mean and the following covariance matrix, 812 
 813 

𝐶𝑂𝑉(𝒁𝑘(𝒙), 𝒁𝑘(𝒘)) =  𝜎2𝑹(𝒙, 𝒘, 𝜽) (A2) 

 814 
where 𝒙 and 𝒘 are two arbitrary samples, and 𝜎2 is the process variance, which represents the generalized 815 
mean square error in the regression process. Moreover, 𝑹(𝒙, 𝒘, 𝜽), called the kernel function, represents 816 
the correlation function of the process with hyper-parameter 𝜽. A set of correlation functions have been 817 
implemented in Kriging including, but not limited to, linear, exponential, Gaussian and Matérn functions. 818 



29 

 

In this article, the separable anisotropic Gaussian function is used which has the following form, 819 
 820 

𝑹(𝒙, 𝒘, 𝜽) = ∏ exp(−𝜽𝑖(𝒙𝑖 − 𝒘𝑖)2)

𝑁

𝑖=1

 (A3) 

 821 
The hyper-parameter 𝜽 can be determined using methods such as Maximum Likelihood Estimation (MLE) 822 
or Cross-Validation (CV) [51], among others. Here, 𝜽𝑖  is found using MATLAB optimization toolbox 823 
DACE [57], [58] that uses the MLE method. The Maximum Likelihood Estimation approach is described 824 
below, 825 
 826 

𝜽 =  argmin
𝜃∗∈Θ

(|𝑹(𝒙, 𝒘, 𝜽)|
1
𝑚 𝜎2) (A4) 

 827 
In the Kriging model, the regression coefficient 𝜷 and the estimated mean response and variance can be 828 
determined as follows, 829 
 830 

𝜷 =  (𝑭𝑇𝑹−1𝑭)−1𝑭𝑇𝑹−1𝒚 (A5) 
 831 

𝝁𝑲(𝒙) = 𝒇𝑘
𝑇(𝒙)𝜷 + 𝒓𝑇(𝒙)𝑹−1(𝒚 − 𝑭𝜷) (A6) 

 832 
𝝈𝑲

2 (𝒙) = 𝜎2(1 − 𝒓𝑇(𝒙)𝑹−1𝒓(𝒙) + (𝑭𝑇𝑹−1𝒓(𝒙) − 𝒇𝑘(𝒙))𝑇(𝑭𝑇𝑹−1𝑭)−1(𝑭𝑇𝑹−1𝒓(𝒙)
− 𝒇𝑘(𝒙))) 

(A7) 

 833 
where 𝑭 is the matrix of basis functions 𝒇𝑘(𝒙) evaluated at known training samples, i.e. 𝑭𝑖𝑗 =  𝒇𝑘𝑗

(𝒙𝑖), 834 

𝑖 = 1, 2, … , 𝑚; 𝑗 = 1,2, … , 𝑝. 𝒓(𝒙) is the vector of correlations between known training samples 𝒙𝑖 and an 835 
unknown point 𝒙 : 𝒓𝑖 = 𝑹(𝒙, 𝒙𝑖 , 𝜽) , 𝑖 = 1,2 … 𝑚 . 𝑹  is the autocorrelation matrix for known training 836 

samples: 𝑹𝑖𝑗 =  𝑹(𝒙𝑖 , 𝒙𝑗 , 𝜽) , 𝑖 = 1,2, … , 𝑚; 𝑗 = 1,2, … , 𝑚 . The stochastic response 𝑲(𝒙)  can then be 837 

represented using a normal distribution as, 838 
 839 

𝑲(𝒙) ~ 𝑁 (𝜇𝐾(𝒙), 𝜎𝐾
2(𝒙)) (A8) 

 840 
According to this model, response predictions of samples close to known training samples will have higher 841 
confidence compared to those that are further away from the training samples. The probabilistic information 842 
provided by the Kriging model including the expected value of predictions and their variance can be 843 
leveraged to select next evaluation samples in the reliability estimation more effectively. This statistical 844 
property has been used in adaptive Kriging reliability analysis for sequential selection of training samples 845 
for model refinement. 846 
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