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ABSTRACT

The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian
updating problems into structural reliability to address challenges of updating with equality information
and improve computational efficiency. However, as the number of observations increases, the resulting
failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of
evaluations of the likelihood function. To overcome this limitation especially for complex computational
models, this paper presents a new approach where the probability estimation problem of the very rare event
associated with updating is decomposed into a set of sub-reliability problems with uncertain failure
thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function
(DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train
Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and
a practical corrosion problem in marine environments are investigated to analyze the efficiency of the
proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed
method can reduce computational costs by about an order of magnitude while maintaining high accuracy;
therefore, enabling Bayesian updating of complex computational models.

Key words: Bayesian updating,; Bayesian Inference; Calibration; Reliability Analysis; Kriging, Markov
Chain Monte Carlo; Subset simulation;

1. Introduction

Uncertainties in physical phenomena and in models that attempt to represent these phenomena may
significantly affect perceptions and subsequently decisions [1]. Although information in many cases may
not be directly available for a parameter or response of interest, available observations can be used for
indirect inference. These observations such as system capacities, structural deformations, system dynamic
features and geometric and material deteriorations can be obtained by the state-of-the-art sensing and
monitoring techniques. Therefore, it is highly necessary to derive computational methods to better
characterize aforementioned uncertainties and infer probabilistic information for target uncertain responses
of interest. As for the mainstream technique of uncertainty quantification, Bayesian updating has the
capability to achieve this goal [2].

Bayesian updating while present a solid analytical framework, is computationally very demanding
especially when the information is of equality type. This paper aims to substantially improve the
computational efficiency of Bayesian updating through deep integration of advanced sampling methods
and surrogate modeling. Generally, methodologies for estimating posterior distribution can be categorized
into approximation-based approaches such as Laplace approximation [3] and simulation-based techniques
such as Markov Chain Monte Carlo sampling (MCMC) [4]. The first category can be computationally
efficient for cases with low dimensions, however, their performance degrades as the number of uncertain
variables and the complexity of the posterior density increase [5]. On the other hand, samples with posterior
distribution can be asymptotically generated through MCMC sampling [1]. The MCMC sampling method
relies on the proposal or the so-called jumping function. This process requires the samples following the
posterior distribution to be generated in a sequential manner. The previously generated samples affect the
proposal sampling function (i.e., uniform distribution or normal distribution) by changing its mean value
before each new point is added. However, MCMC sampling may face difficulty in converging to a
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stationary state if the definition of acceptance rate or the batch size is inappropriate [5S]-[7]. To overcome
the aforementioned shortcomings, Ching et al. [8], proposed the transitional Markov chain Monte Carlo
sampling method (TMCMC) which adaptively generates samples with a group of intermediate probability
distributions and asymptotically obtains samples that follow the posterior probability distribution. However,
the computational efficiency of the TMCMC sampling method decays as the dimension of the problem
increases [5], [9]. By reinterpreting Bayesian updating as a structural reliability problem, Straub and
Papaioannou [6] proposed Bayesian Updating with Structural reliability (BUS) method. This framework
introduces a limit state function through which the accepted samples are equivalently defined as the failure
samples in structural reliability problems. It is shown that subset simulation can be leveraged to efficiently
generate accepted samples in the process of implementing MCS-based simple rejection sampling algorithm
based on the reformulated limit state function [6], [10]-[13]. The subset simulation-based BUS method
adaptively detects and identifies the path to the acceptance area defined by the equivalent limit state function.
Bayesian updating has also been applied to the fields of analysis of rare events, analysis of deteriorating
systems, parameter estimation of spatially-varying phenomena, detection-related problems in water
distribution networks, remaining useful life estimation and system degradation [14]-[23]. Moreover, Wang
and Shafieezadeh [24] proposed BUAK to transform the Bayesian updating problem into a system reliability
problem and enhance the computational performance of BUS with adaptive Kriging-based MCS.
Subsequently, Liu and et al. [25], further improved this framework by proposing a variant called BUS-AK*
to address the case that the magnitude adjusting constant is not known in advance. Moreover, BUS has been
integrated with adaptive importance sampling [26], [27] for improved performance.

Although BUS avoids problems associated with the instability of Markov chain in MCMC sampling by
reinterpreting Bayesian updating as a reliability analysis problem, it has a large computational cost which
stems from the simulation-based evaluation of the likelihood function. The computational demand increases
significantly as the acceptance rate becomes very small [5], [7]. Taking the subset simulation-based BUS
for example, the total number of evaluations of the likelihood function N_,;; can be determined as [6],

Neauy = Ngs " Nip + N¢ — Nis (1)

where N¢¢ denotes the number of subsets, N;,, is the number of samples in each intermediate subset, N; is
the number of target samples and N, is the number of seeds in the final subset. Though N.,;; estimated
through subset simulation is relatively smaller compared to the crude Monte Carlo simulation or MCMC,
it can easily reach thousands or even larger for sophisticated models. An efficient way to significantly
reduce N_,; 1s to use surrogate models. It is known that many state-of-the-art surrogate models or machine
learning tools [28] such as Response Surface [7], [8], [9], Polynomial Chaos Expansion [32], Support
Vector Regression [33], [34], Physics-informed Neural Networks (PINN) [35] or Kriging [36], [37] have
great computational efficiency in solving structural reliability problems. As one of the most promising
techniques, Kriging-based reliability analysis methods have achieved high accuracy and computational
efficiency [13], [36], [38], [39], [40]. However, the very small acceptance rate caused by the large number
of observations makes the direct implementation of regular Kriging-based reliability analysis methods very
inefficient. This limitation stems from the fact that a significantly large number of candidate design samples
should be prepared to realize the failure or accepted areas, otherwise the Kriging surrogate model cannot
guarantee the accuracy for the point classification task of MCS [36]. Therefore, we propose BUS-SSAK to
control the number of candidate design samples, substantially reduce the computational cost while
achieving a robust and high accuracy.

Building on the BUS approach, BUS-SSAK adaptively searches for seeds that are located in the accepted
domain via the construction of Kriging surrogate models and subsequently generates samples through
MCMC technique based on the well-constructed Kriging models. However, a critical challenge for this
integration is finding intermediate acceptance thresholds. Two models called CARC and DLF are proposed
to identify the thresholds in the acceptance regions, while facilitating adaptive training of the Kriging
models. CARC is a novel model that builds a relation between the changeable intermediate failure threshold
and intermediate failure probability. On the other hand, DLF is a novel learning function that can
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strategically add training samples according to the changeable intermediate failure threshold. Using the
analytical derivation of the confidence intervals for the intermediate failure probability, the intermediate
failure thresholds are adaptively identified as more training samples are added in the Kriging surrogate
model. These new capabilities in BUS-SSAK facilitate accurate estimation of posterior distributions with
high computational efficiency without the need to investigate a large number of evaluations to the likelihood
function for all candidate design samples in each subset. This consequently enables Bayesian updating of
computationally complex models, where each run of the model can be very costly. One should note that the
work represented in [24] is the first attempt in incorporating the BUS algorithm with AK-MCS to improve
the performance of Bayesian updating. It is found that BUAK becomes increasingly inefficient and Kriging
experiences substantial computational burden when the acceptance rate decreases, or the number of
observations increases. Inspired by the fact that subset simulation can successfully tackle reliability
problems with small failure probability, this paper proposes integrating Kriging with subset simulation to
address these limitations. CARV and DLF are two proposed concepts that are devised to facilitate this
integration. Therefore, the major novel contribution of this research lies in the proposed BUS-SSAK
algorithm that enables Bayesian updating with small acceptance rate and control the computational demand,
which is significantly different from the classic Bayesian Updating method such as ABC-SubSim [42].

In the remaining parts of this paper, the elements of BUS method and subset simulation are briefly
introduced in Section 2. In Section 3, the proposed method that integrates the state-of-the-art BUS method
and Kriging-based subset simulation technique (i.e., methods for seeking the seeds and generating samples
with posterior distribution) is elaborated. To investigate the computational performance of BUS-SSAK, four
numerical examples are implemented in Section 4. In Section 5, the conclusions of this research are
presented.

2. Background

While physical models become increasingly sophisticated in a deterministic sense, input and model
uncertainties still persist and must be dealt with. Characterizing and reducing these uncertainties are critical
for the understanding of the phenomena and decisions that may rely on these models. In many cases,
however, it is not affordable either technologically or cost-wise to collect information directly for the
uncertainties of interest. For example, for constructed structures that are in service determining the stiffness
of'its structural components via destructive testing is impractical. The uncertainty of the structural stiffness,
however, can be deduced via statistical inference using other auxiliary observations such as eigen
frequencies of the structure [6]. Bayesian updating, regarded as an efficient tool for uncertainty
quantification, assumes an empirical prior probability distribution for unknown parameters (i.e., the
structural stiffness in the previous example). Let f(x) denote the probability density function(pdf) of
assumed prior distribution of unknown variables and f'(x) represents the pdf of posterior distribution of x.
Therefore, the Bayesian updating formulation can be represented as follows,

1) — L)

= (2)
J LOOf(x)dx

where X is the random variable, x is a stochastic realization of X and L(x) is the likelihood function, which

is proportional to the conditional probability of observations according to [6],

L(x) x Pr(Z|X = x) 3

where Z denotes the concept of event. If the MCMC technique is adopted to estimate f'(x), the
denominator in Eq. (2) is trivial as numerator can be easily normalized to one [5]. Typically, the likelihood
function L(x) is composed of three parts: observations Z, responses from the model h(x) and error €,
which reflects the difference between h(x) and Z. Concerning the measuring error and modeling errors, the
corresponding relation can be represented as,
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e=Z—h(x) (4)

In Eq. (4), it is assumed that the information and errors can be directly observed and measured in the
majority of engineering cases. However, there are situations where likelihood function is not linear around
the error term [41]. For cases where linear representation is adequate, if the probability density function
(PDF) of the error € is known, L(x) can be parameterized by the observation and the responses from the
model as,

L(x) = ¢(e) = ¢:(Z — h(x)) (5)

where @, (-) denotes the PDF of €. Note that the likelihood function in Eq. (5) can be decomposed into m
sub-likelihood functions L;(x),i = 1,2, ..., m;, which can be represented as,

1@ = | [1e =] [z - ) (6)
i=1 i=1

where m; denotes the number of mutually independent measurements. In this article, it is assumed that the
likelihood functions are mutually independent.

2.1. Bayesian Updating with Structural Reliability Methods

As stated in Introduction, the stability of the Markov chain through conventional MCMC algorithms may
not be guaranteed if the sample size is insufficient. To address this limitation, Straub and Papaioannou [6]
proposed BUS (Bayesian Updating with Structural reliability methods) to take advantage of structural
reliability methods to improve the accuracy and efficiency of estimating f'(x). BUS implements Simple
Rejection Method (SRM), which is briefly reviewed in this subsection. Note that the accepted domain (.
can be defined based on the augmented outcome space [x,p] where P is an auxiliary uniform random
variable with its random realizations represented by p,

Qace = [p < CL(x)] = [h(x; p) < 0] (7

where,
h(x,p) = p — cL(x) ®

h(x,p) is the equivalent limit state function parameterized by the random variables [x,p] and c is a
constant satisfying cL(x) < 1 for all the outcomes of X. ¢ can be defined as,

1

= - 9
¢ max(L(x)) ®
The posterior distribution f'(x) can be defined as,
Joeq,, . f®)dp " 19 ([x, p] € Que)f(X)d
F1(x) = PEQce _ fo p ace)f p (10)

f[x,P]EQacc f(x)dpdx - fX fol IaCC([x’ p] € 'Qacc)f(x)dpdx

where 19°¢([x, p] € Qqcc) is the indicator function corresponding to the structural reliability problem with
limit state function h(x, p) = p — cL(x). The corresponding numerator and denominator in Eq. (10) can
be further expanded as,
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cL(x)

[ rwar=[ " rea = s (11)
PEQqgcc 0

and

1
[ r@apar=[ [ 1wl € Qudr@dpax =
[x,p]€Qqcc X J0
1
f { f 1oce(p < cL(x))dp} FGOdx = f LD f (O dx (12)
X 0 X

Eq. (11) and (12) are the exact formulations in Eq. (10). In this context, the simple rejection sampling
algorithm is summarized and presented in Algorithm 1. The simple rejection sampling algorithm faces the
limitation that the acceptance rate is low. This rate significantly decreases as the number of observations m

. . . . . 1
increases. Straub and Papaioannou [6] pointed out that the average acceptance rate is proportional to =

when all measurements are independent and identically distributed (iid). This limitation makes the process
of Bayesian updating computationally intractable since only very few accepted samples can be used to
estimate the posterior distribution, while a large number of unnecessary samples are prepared. This
limitation becomes a major challenge for sophisticated, time-consuming models such as high-fidelity Finite
Element models.

Algorithm 1. Simple Rejection Sampling
I. i=1
2. Generate a sample x* from f (x)
3. Generate a sample p’ from the standard uniform distribution [0,1]
4. If [, '] € Quec
(a) Yes, accept x', i =i +1
(b) No, reject x%, i =i
5. Stopifi = N, else go to step 2

2.2. BUS with Subset Simulation (SS)

In this subsection, the subset simulation method for estimating the probability of failure is first reviewed.
Subsequently, the integration of BUS with Subset simulation algorithm is explained. Different from the
goal in Bayesian updating, structural reliability methods are aimed at estimating the probability of failure
as follows,

P; = P(h(X) < 0) (13)

where Py denotes the probability of failure and h(X) is the so-called limit state function or performance
function in structural reliability problems: A(X) < 0 indicates failure and h(X) > 0 means safe state. The
contour where h(X) = 0 is called the limit state. Au and Beck [10] proposed subset simulation to estimate
the probability of failure, here denoted as PfS, by decomposing of the original limit state function into a
series of easily computable LSFs with intermediate failure thresholds. Generally, let the subsets be divided
as 21 DMy O+ DMy =N and Ny = L, Q;, where (2 denotes the failure domain. Therefore, the
subsets (2;s are the failure domains that correspond to the LSFs as follows,

0; ={x:h(x) < t;} (14)
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where t;s are the intermediate failure thresholds that satisfy t; > t, > --- > t,,, = 0. The process of subset
simulation is illustrated in Fig. 1. The failure probability using subset simulation 13155 can be estimated as,

m

m-—1
Pf ~ BY® = P(0,,) = P (ﬂ ni> =p@) - | [P@ial0) (15)
i=1

i=1

where P(2,) and P(£2;,10;) are determined through crude Monte Carlo simulation with the following
intermediate limit state functions h(x) < t;. The intermediate conditional probability can be commonly set
as: P(2;4112;) = p, = 0.1. However, p, is not merely a fixed value and can be set toward an optimal goal.
Interested readers can refer to [42] for more information. Finally, the probability of failure through subset
simulation is estimated as,

m-—1
B = @) - | | Pl = PRt BE (16)
i=1

Details of the implementation for subset simulation is summarized in Algorithm 1A of Appendix 1.

Note that subset simulation technique is aimed at estimating the probability of failure P, which is different

from the goal of BUS that is drawing all the failure (acceptable) samples. By adjusting the procedure in
subset simulation for estimating the probability of failure, BUS focuses on the strategy to draw failure
samples. The modified methodology that integrates BUS and subset simulation is summarized in Algorithm
1B of Appendix 1. However, even with integrated with subset simulation, BUS faces several challenges.
First, the acceptance rate becomes significantly small as the number of observations increases. In this
circumstance, estimating posterior distributions using BUS become equivalent to analyzing the reliability
of rare events, which becomes rather computationally expensive for simulation-based approaches including
subset simulation. As shown in Eq. (1), N.4;; can easily reach thousands in BUS with subset simulation.
Although this number is relatively smaller compared to the crude Monte Carlo simulation or MCMC, it is
still computationally inefficient for Bayesian updating when sophisticated computational models are
involved. Kriging-based reliability analysis methods are known for their capabilities in substituting time-
consuming performance functions and improving the computational efficiency [36]. Note that, there are
two crucial steps in the implementation of BUS and subset simulation: identifying the seeds located in or
close to the failure domain and drawing the samples following f'(x) in the final failure subset (acceptance
domain). The first step is computationally demanding since it requires a large number of evaluations to
explore the path to failure domain. The goal of this paper is to efficiently search for the seeds or the path to
the failure domain with the assistance of Kriging surrogate models. This approach can substantially reduce
the computational demand associated with large samples drawn in each intermediate subset. Moreover,
Kriging-based reliability analysis is also adopted in the final subset to draw the target failure samples.
Details of this approach are elaborated in the next section.



263
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

Failure domain

h(x)=t, =0
h(x) = tz
Safe domain h(x) = t,
Qs h(x) >0
— X

Fig. 1. 2D illustration of subset simulation.

3. Bayesian Updating with Subset Simulation using Adaptive Kriging

This section presents a new approach to Bayesian updating via integration of BUS and Kriging-based subset
simulation. This method, called BUS-SSAK, substantially improves the computational efficiency of
Bayesian updating. The elements of Kriging model are briefly recapped in Appendix 2. Generally, this
paper aims to significantly improve the performance of BUS-SS algorithm by strategically incorporating
adaptive Kriging surrogate models. However, when a surrogate model is introduced, reaching the set
thresholds cannot be guaranteed; therefore, finding the intermediate acceptance threshold in this integration
process becomes very critical, as it is detrimental to the outcome of reliability analysis. Toward this goal,
we proposed two techniques called Conditional Acceptance Rate Curve (CARC) and Dynamic Learning
Function (DLF) to identify the intermediate failure thresholds in the acceptance regions. CARC establishes
a relation between the intermediate failure threshold and intermediate failure probability and estimates the
corresponding confidence intervals. DLF supports identifying optimal training samples for the Kriging
surrogate model. The process of BUS-SSAK can be briefly explained as follows. Initially, a number of
candidate design samples are generated via the crude MCS technique and the training samples are randomly
selected from these candidate design samples. Subsequently, the Kriging model is constructed based on the
selected training samples. As training proceeds, the ratio of the width of the confidence intervals of
estimated failure probability to the estimated failure probability in the vicinity of the estimated intermediate
failure threshold reduces, which facilitates gradual identification of the intermediate failure threshold. After
an intermediate failure threshold is accurately identified, the seeds for implementing MCMC in the next
subset are prepared. The seeds searching process is repeated several times (i.e., the same process followed
in regular subset simulation) until the identified intermediate threshold is smaller than zero. Eventually, the
seeds for generating samples with the posterior distribution via MCMC can be obtained in the accepted
domain. By implementing adaptive Kriging-based reliability method based on candidate design samples in
the last subset, the Kriging surrogate model can be well constructed. Samples with posterior distribution
can be finally generated based on the well-trained Kriging surrogate model and the seeds identified in the
last subset. By adaptively identifying the acceptable samples and searching for the path to the failure domain,
BUS-SSAK can significantly reduce the number of evaluations to the likelihood function and simultaneously
maintain a desirable accuracy. Details of this method is elaborated in the following subsections.

3.1. Seed Seeking using Adaptive Kriging
It is known that subset simulation is aimed adaptively identifying the intermediate thresholds t;,i =
1,2, ..., muntil t,, is smaller than zero,
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P(02;41102;) = P(h(x) < t;) =Dy, X € () 17)
s.t.t; = 0

where g(x) is the limit state function in structural reliability problems and p, is the conditional failure
probability in each subset. Eq. (17) is normally interpreted in the context of reliability analysis. Here, we
redefine p, as the conditional acceptance rate in BUS + SS. Note that the true performance function h(x)
should be substituted by the Kriging surrogate model A (x), which means the true value of t; in Eq. (17)
cannot be precisely identified. Therefore, the key point of BUS+SSAK is to identify a value {; so that {; =
t; as the training samples enrich the Kriging surrogate model. To enable accurate identification of t;, two
new concepts are introduced. First, we introduce Conditional Acceptance Rate Curve (CARC) that
represents the relation between the conditional failure probability and the conditional acceptance ratio (i.e.,
equivalent to the conditional failure probability in reliability estimation),

BPe ) =Phx)<t?), t°=0 (18)

where t* is a variable that needs to be adaptively estimated and PS,..(t*) represents the conditional failure
probability parameterized by variable t*. In this article, the probabilistic classification-based Monte Carlo
simulation (PC-MCS) is adopted to estimate PS..(t*) as follows,

NLTL

_ (.uh(xl) =t )
cc(t ) - jzlh(xut ) :z ( Uh(xl) >: (19)

where Ny, is the number of samples in each subset, I (") is a probabilistic indicator that measures the
probability of x; belonging to acceptance domain (i.e., equivalent to failure in reliability estimation) and
Uz () and o (+) are the mean value and standard deviation estimated from the Kriging model, respectively.
Details of this probabilistic classification-based MCS have been documented in the literature [43]-[45]. As
shown in Fig 2. (a), the confidence intervals can be estimated with Kriging model trained by several samples
X¢,. Note that if £ changes, the failure probability estimated through the PC-MCS also changes. In Fig. 2,
the black solid and red dashed lines denote the mean and confidence interval (CI) of PS,., respectively.
Moreover, £ is the estimated intermediate failure threshold with maximum likelihood satisfying Eq. (17),
which subsequently leads to,

P(h(x)<t)=py, x€80;, i=12,..m (20)
——— Mean of BS,, pPe | ——— Meanof P,
------------ CI of paccc /'/ o Clof Paccc
po-———ﬁf“--------—-,;r‘f’--I Po ----"*“"""""-“_;;—I’/"/
£ t* t t*
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(a) (b)
Fig. 2. Conditional Acceptance Rate Curve (CARC) with (a) merely initial training samples and (b)

sufficient training samples in the vicinity of the limit state A(x) — £ = 0.

As the training samples in the Kriging surrogate model increases, ¢ = t; is asymptotically satisfied. The
CI for P¢,.. can be obtained using the approach proposed by the authors in [43]. If the current subset of
candidate design samples is denoted as (2;, then the conditional acceptance rate can be computed as,

- NE..(t
P = i) (21)
n

where N¢,. is the expected number of accepted samples in £2;. In this approach, for each candidate design
sample, x;, the outcome of the indicator function follows a Bernoulli distribution,

150 t)~B (up (£, 02 (6, ), x € 21 =12,.m (22)

—(#E(x)—f*))
o;(x)

and of is the corresponding variance with oZ(x,t*) = pp(x, t*)(1 — pp(x,t)). Since NS, can be
regarded as the expected value of the sum of I5(x,t*), x € 2, it follows a Poisson binomial distribution
(PBD). According to [43], the distribution of NS..(t*) can be denoted as,

where B denotes the Bernoulli distribution, p, (x;) is the Bernoulli mean with uy, (x,t*) = @ (

Néee(t)~PB (ugg, (£, 0 _(t) (23)

where puge (t*) and 055“ (t*) are the mean value and variance of NS (t*), respectively. It can be shown
that pge (t*) = Zf’z”ll up (x,t*) and alégcc(t*) = Zf]:”l‘ pp (x, t)(1 — pp (x, t*)) . Therefore, the CI of

Kag,, (t*) can be determined as,

Ry € (07 (5.07) 07 (1-5.0)) @)

where OI_VECC (*) is the inverse cumulative distribution function of PBD with mean “ﬁécc(t*) and variance
UI\Z/ECC (t*) and « is the confidence level (e.g. @ = 0.05). For computational simplicity, the Central Limit

Theorem shows that NS..(t*) follows a normal distribution [43],
Réoe(t) ~ N (e, (6,0 (1) (25)

It should be noted that the approximation of Poisson Binomial distribution to a Normal distribution has
been demonstrated in [43]. Moreover, PBD should be treated as a Poisson distribution if Nj,, is set to be as
small as Ny, < 50. However, for all numerical cases here, N;,, = 5000, which is sufficiently large to
guarantee that PBD can be well approximated by a Normal distribution according to the CLT. Therefore,
the CI of N, parameterized by the confidence interval a can then be obtained as,

Néee(t™) € [uge, (87 = Veioge, (%), pge, (%) + veioge, (t9)], (26)
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where Y. = 1.96 for the confidence level o = 0.05. As N, is large in Kriging-based reliability analysis
problems, the above confidence bounds for NS..(t*) are accurate. Accordingly, the CI for PS..(t*) can be
derived by combining Eq. (21) and (26),

~ 1
Picc(t) € N_m[“ﬁécc(t*) ~ Yeiomg, (), pge, () + veoge, (9], (27)

x€ 0;,i=12,..,m

It is clear that the confidence bound of BS,. tightens as training samples in the Kriging model increase and
accumulate in the vicinity of the limit state A(x) — £ = 0 as shown in Fig. 2. However, lack of strategic
selection of training samples from the candidate design samples in each subset can lead to unnecessary
training or even incorrect identification of £. Therefore, it is necessary to develop an approach to
strategically select next training samples. In the next section, a new learning function is introduced for

optimal selection of training samples so that the uncertainty of £ or S, can be significantly reduced.

3.2. Dynamic Learning Function

In this section, an active learning function is introduced to adaptively refine the Kriging model and
asymptotically identify the intermediate acceptance (failure) threshold t; in Eq. (17). First, let x}, denote
the selected next best training point that aims to optimally reduce the uncertainty UI%ECC () as follows,

£ _ before ;a\ gfter 2 } C

Xiy arg Eg:ax {UN{icc (3] Ty O, i=12,..,m (28)

where algff oT¢ () and 01%[ ter (£) denote the standard deviation, oge,.» of N¢.. at t* = £ before and after
acc acc

the new training point enriches the Kriging model, respectively. After enrichment by the new training point

X}, it can be shown that the mean value uy, (x},, £) limits to 0 or 1 and o/ (x},., ) limits to 0,

—(up(xty) — D

— 2 * A\ * R _ * —
O-iAl(er) >0 ) =0or 1'O-b (xtrl t) - Hb(xtTJ t)(l .ub(xtr" t)) 0 (29)

o (Xtr) t) = CD(

Without considering Kriging correlation, Eq. (28) can be further interpreted by combining Eq. (28) and Eq.
(29),

x;, = arg maxo?(x,t),i=12,..,m (30)
X EQ;

This equation can be expanded as follows,

cb(M) 1_¢<M> ) i=12,..,m (31)
o7 (%) o5 (%)

The procedure to adaptively estimate the true intermediate acceptance ratio t; is presented in Algorithm 2.
The corresponding stopping criterion for dynamic active learning can be set as,

Xi, = arg max
X EN;

» Ox¢
t=t;whenl = —< [, (32)
“Ivg.CC
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where I' is the stopping measure and Iy, is the corresponding stopping threshold. At the beginning of the
process, t may not be highly accurate to satisfy £ = t; as the number of initial training samples is likely
insufficient for that purpose. However, £ asymptotically converges to t; as new optimal training samples in
the vicinity of the limit state A(x) — £ = 0 are identified and used in the refinement of the Kriging model.
Two dynamic processes constitute the adaptive core of the proposed algorithm. First, the uncertainty or the
variance at £ (e.g. o7 (x,t)) is gradually reduced as new training samples are identified and used through
the proposed dynamic learning function. Second, { is also adaptively estimated as it converges to the true
one (e.g., t; in Eq. (17)) with the addition of the new training samples.

Algorithm 2. Searching for ¢; using dynamic learning function and CARC
1. Prepare the initial training samples x;, and keep x;;,, and g(x;,,) unchanged for all
simulations. Also generate candidate design samples S; from the subset £; (if i >
2)
Construct the Kriging model &;(-) based on the current training samples x..
Build the Conditional Acceptance Rate Curve (CARC) according to Eq. (19)
Search for ¢ according to Eq. (20)
Search for next training point X}, using dynamic learning function according to
Eq. (31) and update the training samples X,
6. Check if the stopping criterion is satisfied according to Eq. (32):

(a) If satisfied, go to step 7.

(b) If not satisfied, estimate the response for x}, and return to step 2.
7. Report £.

ok W

3.3. Estimating Posterior Distributions

Algorithm 2 can determine if the identified intermediate failure threshold ¢; in the current subset (2; satisfies
t = t; > 0. After £ = t; < 0 and the seeds located in the failure (acceptance) domain are identified and the
last Kriging surrogate is well trained h(x) = 0, samples following the posterior distribution can be drawn
in the final step of BUS+SS. Subsequently, the problem is slightly changed to the equivalent structural
reliability problem as follows,

P(2m|Qy-1) = P(h(x) < ;) = P(h(x) <0),  x €0y (33)

Similar to the goal of structural reliability analysis that seeks for failure samples, Bayesian updating is
aimed at drawing acceptance samples. After the candidate design samples S,,,_; are drawn from the subset
£),,_1, estimating the posterior distribution can be reinterpreted as a classification problem. Therefore, the
estimated limit state with Kriging surrogate model in the last subset (i.e., A(x) = 0) plays a very important
role in this classification task. Algorithm 3 elaborates the process for achieving this goal.

Algorithm 3. Draw acceptance samples in the last subset

1.  Generate candidate design samples S,,,_; from the subset £2,,,_

2. Construct the Kriging model A, (+) based on current training samples x,,

3. Estimate the mean o7 (x) and standard deviation o (x) for S,,,_; with R ()

4.  Search for the next best training samples X}, using the learning function in Eq. (31),
where £ = 0. Update the training samples X,

5. Check if the stopping criterion is satisfied or not:
(a) If satisfied, go to step 7
(b) If not satisfied, estimate the response g(x},) for xz, and go back to Step 3

6.  The limit state A(x) = 0 is accurately defined

11



439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

456
457
458
459
460

After the estimated limit state h(x) = 0 is accurately defined, samples following posterior distribution can
be drawn according to the last step in BUS+SS algorithm but based on the well-trained Kriging surrogate
model i.e., A(x). The last step of BUS-SSAK follows the same computational path as Kriging-based
reliability analysis algorithms such as AK-MCS does [36]. However, there are two differences that are
worth mentioning. First, the set of candidate design samples for Bayesian updating in the last step mainly
comes from the local subset (2,,,_; but not the global sampling domain {2, and the size of S,,,_; is much
smaller than the size of candidate design samples in AK-MCS. Second, as more failure (accepted) samples
are generated in the last subset after the limit state A(x) = 0 is well constructed, the probabilistic property
of the posterior distribution can be better inferred due to the sufficient information rendered by these
samples. Main steps for the proposed Bayesian updating with subset simulation using Adaptive Kriging
(BUS-SSAK) are summarized in Algorithm 4. Note that errors of f’(x) mainly come from two sources.
First, the surrogate limit state 2(x) = 0 cannot be perfectly equal to the true performance function h(x) =
0, which can unavoidably lead to wrong classification of acceptance and rejection. Second, the various
settings of MCMC in the original framework (BUS-SS) regarding for example the jumping function can
introduce error in the estimation of f'(x). In the next section, the performance of the proposed method
BUS-SSAK is explored by investigating three numerical examples.

Algorithm 4. Bayesian updating with subset simulation using adaptive Kriging (BUS-SS4K)
1. Generate N, samples xi, k = 1, ... Ny, using crude MCS and estimate their responses
h(xi), k=1, .. Ny
2. i=1
3. (a)Ifi =1, identify t; using Algorithm 2 according to following steps:
i. Construct the Kriging model &; (+) based on current training samples X,
ii. Build the Conditional Acceptance Rate Curve (CARC) according to Eq. (19)
iii. Search for ; according to Eq. (20)
iv. Search for the next training point x}, using dynamic learning function according to
Eq. (31) and update the set of training samples x;,
v. Check if the stopping criterion is satisfied according to Eq. (32): if satisfied go to
step 3 vi; Otherwise, estimate the response for x;,. and return to step 3 i.
vi. Output £;.
(b) If i > 1, determine the intermediate acceptance rate t;, using Algorithm 2 such that the
conditional acceptance rates satisfies P(2;,112;) = po
4. Generate samples in 2; through crude MCS (if the probability of failure is not rare) or
MCMC based on the remaining samples (i.e., seeds)
i =i+ 1. Return to step 3 if £ > 0; otherwise, continue to step 6
6. Estimate the limit state A(x) = 0 according to following steps:
i. Generate candidate design samples S,,,_; from the subset £2,,,_4
ii. Construct the Kriging model h,,, () based on current training samples X,
iii. Estimate the mean o (x) and standard deviation o (x) for S,,,_; with R ()
iv. Search for the next best training samples x7, using the learning function in Eq.
(31), where £ = 0. Update the set of training samples X,
v. Check if the stopping criterion is satisfied. Go to step 7, if it is satisfied; Otherwise,
estimate the response g(x},) for x7, and go back to Step 6 iii
7. Estimate the posterior distribution

9]

4. Numerical Investigation

In this section, four examples are implemented to investigate the performance of the proposed method BUS-
SSAK. The first example is tailored to showcase the implementation procedures of BUS-SSAK, while the
rest of the examples are investigated to explore the computational performance compared to BUS, aBUS
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[7] and ANN-aBUS [5] approaches. aBUS enhances the computational performance of BUS through
adaptively adjusting the value of constant ¢, and therefore, does not need c as an input [7]. Moreover, ANN-
aBUS integrates the aBUS algorithm with artificial neutral networks to substantially improve the
computational performance of Bayesian model updating [5]. It should be noted that the time-complexity of
the proposed method depends on the construction of the Kriging surrogate, which is in the order of 0(n?)
[46], [47]. The run time of the implemented codes is negligible compared to the run time of model
evaluations. Therefore, the run time of the Bayesian updating methods is assessed using the number of
model evaluations, N_,;;. Moreover, the accuracy of the proposed method has been investigated based on
the ratio of estimated parameters through advanced techniques over the values estimated using MCS, e.g.,

f'/p and 6 /o . It should be noted that Ny is the number of layers of subset, which is based on how rare
the acceptance rate is. Moreover, N;,, should be set sufficiently large so that the intermediate acceptance
rate can be accurately identified. Based on several experiments performed in this study, Ny, = 5000 can
offer a reliable estimate of the posterior distribution for cases where the acceptance rate is larger than 1076,
Moreover, N; and N, can set to be very large due to the fact that generating samples in the accepted region
is extremely fast using a well-trained Kriging surrogate model for the last subset.

4.1 Example 1: Illustration of methodology

The first example is implemented here to elaborate the implementation details of the proposed BUS-SSAK
method . It investigates a one-dimensional problem where the random variable follows a standard normal
prior distribution, denoted as ¢@(x). The likelihood of this case follows a normal distribution with mean

1
oo 1.33,

= 0.752. Therefore, the reformulated limit state h(x, p) can be written as:

#; = 3 and standard deviation g; = 0.3. And the maximum value of likelihood is L4, =
1

which means c = ——
max(Lmax)

h(x,p) = p — cd(x|w, a7) (34)

where p is an auxiliary random variable following the standard uniform distribution and ¢ (x|y;, a;)
denotes the probability density function of a normal distribution parameterized by y; and g;. To reduce the
nonlinearity, the logarithmic formulation of the limit state function is used as follows [7]:

9G.p) = In(p) - In(c) — In($(xl, 37)) (35)
In this example, the acceptance rate, P, ., is 4.63 X 1073, which indicates that there are totally three subsets
for the implementation of BUS-SSAK. The number of initial training samples is selected as 10. The
performance of the considered methods is evaluated in terms of the number of calls to the likelihood
function, N.,;; and ratios of the true and estimated mean and standard deviation of the posterior distribution
(ie., fi/uand 6 /o).

The true/estimated limit states and training samples generated through BUS-SSAK in each subset are
illustrated in Fig. 3. It can be observed that the estimated limit state in each subset is very close to the true
one after applying CARC and DLF. Moreover, figures depicting the evolution of A(x,p) = 0 with
increasing training samples 10, 20, 30 and 40 are also shown in Fig. 4. One can observe that the limit state
h(x,p) = 0 gets increasingly close to h(x,p) = 0 as training samples increase. Consequently, the
proposed approach, BUS-SSAK, can dramatically reduce the number of calls to the performance function

to N.qip = 98, while offering a high accuracy with ﬁ— = 1.031 and i = 0.9723. The reason for the high

u [
computational efficiency is that the proposed method strategically calls the performance function to explore
and refine the limit state.
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Fig. 3. lllustration of BUS-SSAK with the true/estimated limit states and training samples in (a) the first
subset, (b) the second subset, (c) the third subset, and (d) the last subset.
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Fig. 4. Ilustration of A(x, p) = 0 with (a) 10 training samples, (b) 20 training samples, (c) 30 training
samples, and (d) 40 training samples.

4.2 Example 2: Unimodal distribution

The first example concerns determining the posterior distribution in a problem with » random variables [5],
[48]. First, the prior probability density function of the random variables can be represented as f(x) =
[T, @(x;), where @(-) denotes the PDF of the standard normal distribution. Moreover, the likelihood
function L(x) can be represented as,

n

1 = [ oCabu o) (36)

i=1

where o is set as 0.2 and y; can be computed as follows,

where cg is the model evidence. In this paper, the case of n = 2 and ¢z = 10™* is investigated. The
analytical mean and standard deviation of the posterior of each mutually independent standard normal
random variable x can be calculated as,

’ Hy 1 0
= , o = 38
140} 1+ af (38)

U

As suggested in [7], the logarithmic form of the likelihood function is computationally more efficient, thus,
the equivalent limit state function can be expressed as,

h(x,p) = In(p) — In(c) — ln(L(x)) (39)

For this example, the number of candidate design samples in each subset is set as 5000 (i.e., the size of
Sm—1 in Algorithm 3 is equal to 5000). Moreover, the initial number of training samples is set as 10. In this
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paper, the computational accuracy and efficiency of the considered methods are evaluated in terms of the
estimated mean and standard deviation of the posterior distribution (i.e., i'and 6') and the number of
evaluations to the performance function (i.e., N.q;;). Simulation results for the BUS, aBUS and ANN-aBUS
together with the proposed BUS-SSAK method are summarized in Table 1. The parameters of aBUS is set
exactly the same as BUS, and the number of training samples for each subset in ANN-aBUS is set as 100
for this example. For ANN-aBUS, the parameters of the three layers including input, hidden and output
layers are optimized based on Levenberg-Marquardt optimization algorithm[5]. The acceptance ratio, P,
is equal to 2.451 X 1075, therefore 5 subsets should be generated in the BUS+SS algorithm. The analytical
posterior mean and standard deviation are estimated as u' = 2.659 and ¢’ = 0.1961, respectively,
according to Eq. (39). The convergence history of identifying intermediate acceptance rate (i.e., the
intermediate failure thresholds in the equivalent reliability problem) £; is shown in Fig. 5. Moreover, Fig. 6
illustrates the evolution of accepted candidate design samples through the BUS-SSAK approach. Fig. 7
showcases the process of adaptively enriching the set of training samples in each subset.

According to Table 1, the proposed BUS-SSAK approach is computationally very efficient and accurate.
Essentially, the ratios between the estimated and true mean and standard deviation (i.e., i’ /u'and 6'/a")
are computed as 1.018 and 1.009, while they are estimated as 1.007 and 1.051 via the BUS+SS method.
However, the total number of evaluations of the likelihood function is only 34 for the proposed BUS-SSAK
method while these numbers are 2838, 2643 and 603 for the BUS+SS, aBUS and ANN-aBUS approaches,
respectively. This large number of function evaluations through BUS and aBUS poses a computational
challenge for Bayesian updating of sophisticated models. Moreover, BUS+SSAK substantially
overperforms ANN-aBUS due to the fact that the former approach selects training samples that are located
in the vicinity of the limit state as opposed to the latter approach that tends to select training samples purely
randomly. The intermediate acceptance rate £;, shown by dashed line in Fig. 5, asymptomatically converges
to the true t; shown by the solid line in Fig. 5. Specifically, ; to £, are identified 94.71, 31.24, 6.82 and -
0.25 as shown in Fig. 5. Note that the number of subsets is 4, which is different with the one estimated
through BUS+SS (i.e., 5). This is due to the variation of the MCMC technique applied in two algorithms,
which determines the paths to the failure region but not the destination (failure region). However, it does
not affect the training process of the Kriging model in the last subset, which plays an important role in
determining the computational performance of BUS+SS4AK. Moreover, according to Fig. 6(a), candidate
design samples for the prior distribution are first generated by the MC sampling technique. Then, the initial
training samples x;, are randomly selected from the first set of candidate design samples as shown in Fig.
7(a). Subsequently, the first intermediate £, is accurately identified by Algorithm 2. In this process, new
training samples are selected for the construction of the Kriging model as shown in Fig. 7(b). Repeating
this process as presented in Algorithm 4, the candidate design samples are finally drawn for the last subset.
Samples in the last subset follow the posterior distribution. From Fig. 6 and 7, it is evident that the training
samples spread toward the final subset, which is also the acceptance (failure) region. This trend can also be
explained by the two new concepts introduced in this paper. First, the estimated intermediate acceptance
rate thresholds are adaptively identified to be smaller than zero. Second, the proposed dynamic learning
function is applied to enrich the training set with samples that are close to the limit state h(x,p) = ;. This
approach tends to select samples that are close to the failure domain with extremely low probability density
in the equivalent reliability problem. This process is adaptive so that the training samples are not passively
selected beforehand, rather the training set is enriched sequentially based on the information provided by
the responses of the likelihood function. This adaptive strategy can significantly improve the computational
efficiency. In its current form, the process enriches one training point in each iteration. This means that the
aggregated time of simulation is proportional to N_,;. The computational time can be shortened by
implementing appropriate parallel training strategies. Developing such strategies can be an important future
research direction.

Table 1. Bayesian updating results of BUS+SS and BUS-SSAK for
Example 1, where '/p'and 6’ /o’ denote the estimated/true means and
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standard deviations of the posterior distribution.

Methodology N.an a' é' a'Ju é'/a’
BUS+SS 2838 2.6765 0.2061 1.007 1.051
aBUS 2634 2.695 0.1949 1.000 0.994
ANN-aBUS 603 2.6643 0.1867 1.002 0.952
BUS-SSAK 10 + 24 2.7067 0.1978 1.018 1.009
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Fig. 5. Convergence history of identifying £; till ; < 0.
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4.3 Example 3: Two degrees-of-freedom structure

The second example involves a two-degrees-of-freedom (two-DOF) dynamic system which was developed
in [4] and then investigated in [5]-[7] to explore the performance of BUS. By measuring the eigen-
frequencies of the structure, the posterior distribution of inter-story stiffnesses is estimated using the
Bayesian updating technique. Fig. 8 illustrates the configuration of this structure. The masses of the two
stories are defined as m; = 16.531- 103 kg and m, = 16.13.1- 103 kg. The inter-story stiffnesses are
modeled as K; = Xk, and K, = X,k,,, where K; and K, are the stiffness values of the first and second
stories, respectively, k, = 29.7 - 10® N/m is the nominal value, and X; and X, are correction factors to
be updated. Damping is not considered in this case. Observations of the first two eigen-frequencies f; and
f, are used to update the distribution of X = [X;, X,]. According to [4], [6], the likelihood function for this
problem can be expressed as,

L(x) «x exp (40)

J(x)
207
where
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J(x) = 2,1} [fJ (Zx) - 1] (41)
j=1

fj

is a measure-of-fit function. sz (x) is the jth eigen-frequency estimated from the structural model with
random variables x, and sz is the measurement of the jth eigen-frequency. 1; = 4, = 1 are the means and

0. = — 1s the standard deviation of the prediction error. Two measurements of eigen-frequencies are
T

available: f; = 3.13 Hz and f, = 9.83 Hz. However, one should note that the parameters of the structures
can be also updated based on the data allow inferring about the mode shapes or a combination of data on
frequency and mode shapes. Moreover, the present study assumes that the structure is not damaged. In the
case where the structure is damaged, the mode-switching problem may emerge as the loss of stiffness in
structural elements may unevenly impact some of the modal frequencies more than others and therefore
switch the order of the modes. More information about this issue can be found in [49]. The prior distribution
of X; and X, are uncorrelated lognormal distributions with modes 1.3 and 0.8 and standard deviations

le = O-XZ =1.

ky

Fig. 8. Two-DOF shear building model.

The limit state function can be rewritten as,

(42)

h(x,p) = p—c-exp [_]Z(sz)

The acceptance rate of the undecomposed limit state function in Eq. (42) is approximately 0.0016;
therefore, three subsets are needed to implement BUS. Similar to the previous examples, the logarithmic
form of Eq. (42) is used here. Nj, and the initial number of training samples are set as 5000 and 10,
respectively. The BUS+SS, aBUS, ANN-aBUS and the proposed BUS-SSAK methods are implemented to
assess their performance for this example. The results are summarized in Table 2. The parameters of aBUS
are set the same as BUS, and the number of training samples for each subset in ANN-aBUS is set as 300 for
this example. Fig. 9 illustrates the convergence of £; to the true rate. Moreover, the evolution of the set of
accepted candidate design samples in the BUS-SSAK method is shown in Fig. 10. In addition, Fig. 11
showcases the evolution of the set of training samples in each subset. According to Table 2, the mean and
standard deviation of the estimated f'(x) via BUS+SS and BUS-SSAK are close A gr(y= (0.499 —

0.497)/0.499 = 0.004 , Aprpy= (1.832 — 1.819)/1.832 = 0.0071 , A= (0.038 — 0.035)/
0.038 = —0.0789 and A/ ()= (0.140 — 0.134)/0.140 = 0.0429 . However, the total number of

evaluations of the likelihood function is only 151 for the proposed BUS-SSAK method compared to 3432,
3165, 2447 evaluations for BUS+SS, aBUS and ANN-aBUS, respectively. Moreover, the posterior
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644  parameters estimated through BUS-SSAK are found to be more accurate than ANN-aBUS. Approximately
645 120, 13, and 18 evaluations of the likelithood function are used in subsets 1, 2, and 3 via BUS+SS,
646  respectively, according to Fig. 9. Specifically, £; to £5 are identified 32.3, 3.94 and -1.22 as shown in Fig.
647  12. Comparing Fig. 10 and 11, one can find that the new training samples are strategically added in the area
648  located in the final subset in Fig. 11(d). Therefore, the computational accuracy and efficiency of the
649  proposed method are demonstrated for the three considered examples.

650
651 Table 2. Bayesian updating results for example 2.
Methodology Nean ') 6'(L) £'(R) 6'(R)
BUS+SS 3432 0.497 0.038 1.819 0.140
aBUS 3165 0.499 0.040 1.821 0.141
ANN-aBUS 2447 0.487 0.033 1.837 0.127
BUS-SSAK 10+ 131 0.499 0.035 1.832 0.134
652
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Fig. 11. Simulation Results of BUS-SSAK with training samples in each subset.
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4.4 Example 4: A model of chloride and carbonation-based corrosion

This section investigates the computational performance of the proposed surrogate-based Bayesian
updating approach for an engineering application related to durability modeling for chloride corrosion. The
mechanism of chloride ingress in a partially carbonated concrete medium is first introduced followed by
the modeling process that is based on the finite difference method. Finally, the derivation of the posterior
distributions of model parameters using the proposed BUS-SSAK method is presented for the case where
two observations for chloride concentration and carbonation depth are available.

4.4.1 Model description

Engineered structures such as cross-sea bridges are exposed to highly corrosive environments. Durability
of these structures that are often made of concrete against deterioration processes such as chloride and
carbonation-induced corrosions is one of the most challenging issues for life-cycle management. As shown
in Fig. 12, the tidal zones of the concrete columns of the cross-sea suspension bridge are subject to
simultaneous deterioration by chloride corrosion and carbonation. The darker dots in Fig. 12 represent
chloride ions, while the brighter dots indicate carbon dioxide.

Air Zone

Tidal Zone

) N
Tidal zone

Subpmerging Zone

— (! ® . ® ||

i "e . ° o | = Mudding Zone

Corrosion level
(a) (b)
Fig. 12. A suspension bridge in marine environment: (a) A conceptual plot of the bridge and the
corrosive environment and (b) Corrosion profile for different zones
Through diffusion across carbonated and uncarbonated regions of concrete, chloride ions ingress the
protective layer of concrete located in the submerging zone and reach the surface of the very exterior steel
reinforcement in concrete elements. The subsequent chemical reactions of chloride with steel can
significantly affect the functionality of concrete structures during their service life. Chloride transport is
typically described by the Fick’s second law, which can be represented by the following partial differential
equations,

dCg a%¢c,
S =D~ 0<x<L
aC 2%C,
at = DZ axz , X > LC (4‘3)

where C; denotes chloride concentration, D; and D, are the two diffusion coefficients of uncarbonated and
carbonated regions and L. denotes the depth of the carbonation, which can be calculated as follows,

L= kcx/t_c (44)

where k. denotes the carbonation coefficient and t. denotes the time (year). A conceptual illustration of
chloride diffusion process is shown in Fig. 13. The initial and boundary conditions for the above partial
differential equations are as follows,
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Fig. 13. Illustration of chloride transport in partially carbonated concrete. Dark circles indicate chloride

ions.

The corrosion model of Eq.(43) is solved using finite difference method. It should be noted that this
approach and the proposed Bayesian updating method can be applied to any type of diffusion-based
corrosion simulation such as those involving convection with pore solution flow.

4.4.2 Finite difference discretization
The diffusion process of chloride ions in partially carbonated concrete can be simulated using finite
difference method through the following discretization,

i,j+1 i,j i,j+1 i,j i,j—1
Ccl B Ccl =D Ccl - ZCcl + Ccl 0<x<L
At cl Ax? UEX= e

clitt _ ol _, A ZCCi,lj 4 i1

cl cl — cl cl

At ct Ax?

,x > L, (46)

The explicit formulation of finite difference is adopted in this paper due to its computational simplicity.

Based on Eq.(45), the specific initial conditions for this problem are defined as Cci'l0 = ¢y, C Col'j >0 = cs >

co and C;'O = 0, where ¢, = 0 and ¢, > 0 denote the surface chloride concentration and the value of C,;
at initial time t. = 0. Moreover, parameters for finite difference discretization, i.e. Ax and At are set as
0.0001m and 0.05 year, respectively. An illustration of the finite difference discretization and chloride
concentration, C,; at t, = 20 years are presented in Fig. 14. The time for one simulation is about 10.21
seconds.
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Fig. 14. Illustrations of chloride and carbonation-based corrosion using finite difference method

4.4.3 Results of Bayesian updating

This subsection showcases the computational process to infer the posterior distribution of chloride
concentration and carbonation depth based on the observed data using the proposed method. The prior
distributions of four parameters including cg, D4, D, and k. are summarized in Table 3. An agency in
charge of bridge management plans to estimate the posterior distribution of C,; and k. based on field
observations in support of decisions for future maintenance and inspection. Note that knowing the
distribution of k., one can determine the distribution of L. using Eq.(44). A concrete sample is taken from
the tidal zone of a bridge column and analyzed using Volhard’s Titration Method to determine C,; and L,
att, = 5 years. Analysis of the specimen yielded C¢;lx=0.005,;,=5 = 1.823 mol/m® and Lelx=0.005,t,=5 =
0.0057 m. The errors associated with these measurements are modeled with &,,;, a normal distribution with
mean 0 and standard deviation 0.05, and &,,,,, a normal distribution with mean 0 and standard deviation
0.0005, respectively. Thus, the likelihood function can be represented as:

L(x) = @1(em1) * 92(em2) = @1(1-823 - Ccl|x=0.005,t=5) ) ‘P2(0-0057 - Lc|x=0.005,t=5)
where ¢, is the PDF of a normal distribution with mean 0 and standard deviation 0.05 and ¢, is the PDF

of a normal distribution with mean 0 and standard deviation 0.0005. The limit state function for the BUS
approach can be rewritten as,
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15+

10+

h(x,p) = p — cL(x) (48)

By taking the logarithmic form of Eq.(48), a mathematically equivalent but simpler linear form of the
equation can be derived as:

h(x,p) = In(p) — In(c) — ln(L(x)) (49)

Simulation results are presented in Fig. 15. Specifically, Fig. 15(a) showcases the convergence history of
the identified intermediate acceptance rate with the solid line denoting the true value and the dashed line
denoting the dynamically estimated quantity. Moreover, the evolution of parameters c; and k. from prior
to posterior distributions are plotted in Fig. 15(b). Fig. 15(c) shows the modes and 95% confidence intervals
(ClIs) for the prior and posterior distribution of C,; at time t, = 50 years along the concrete protective depth
x € [0,0.05] m. In this figure, the red/black solid lines denote the mode of posterior/prior distribution of
C.; with yellow/gray shadow regions representing 95% Cls. Moreover, the modes and 95% confidence
intervals for prior and posterior distribution of C,; at location x = 0.05 in the period of t. € [0,50] years
are plotted in Fig. 15(d). The proposed BUS-SSAK algorithm converges with 199 evaluations of the finite
difference-based chloride ingress model and the total simulation time of Ty = 10.21 s X 199 = 2032
seconds. Without the proposed BUS-SSAK method, BUS will take more than 10.21 s X 1500 = 4.25h.
Therefore, it significantly improves the computational efficiency for this relatively simple corrosion
benchmark problem. This efficiency can be more distinct as the FEM becomes more sophisticated.
Moreover, the simulation time for estimating posterior distribution for those parameters through other
approaches such as BUS-SS, aBUS and ANN-aBUS are prohibitively large. Therefore, the proposed
algorithm enables estimation of the posterior distribution of properties even when complex models and
simulations are involved.

Table 3. Prior distribution of parameters.

Random variable Distribution Mean C.0V
Cg Lognormal 1.52[mol/m’] 0.1
D, Lognormal 2.5 x 10~ *[m%y] 0.1
D, Lognormal 1.5 X 10™4[m?/y] 0.1
k. Lognormal 0.004 [m/y'?] 0.1
5 %107
' ] o prior samples
S — )
oy * posterior samplesp o o
5 =
<&
-~. 4+
.r’ = 3 L
50 100 150 200 1 1.2 1.4 1.6 1.8 2 2.2
Ncall Cs
(a) (b)
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Fig. 15. Illustrations of results of Example 3 using the proposed method: (a) the convergence history of
identified intermediate failure thresholds; (b) the evolution of samples from prior to posterior distribution
based; (c) modes and 95% Cls for prior and posterior estimates of C; at location x = 0.05 m in the period
of t. € [0,50] years; and (d) modes and 95% CIs for the prior and posterior estimates of C,; at time t, =
50[year] along the concrete protective depth x € [0,0.05] m

5. Conclusion
This paper proposes a new approach to Bayesian updating called BUS-SSAK, to improve the computational
efficiency of estimating the posterior distribution of random variables and enable Bayesian updating for
complex computational models. Generally, the main idea behind BUS-SSAK is to identify the sampling
seeds of MCMC located in the final accepted domain. Two concepts are introduced to enable this process:
Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF). CARC is a model
that relates the value of intermediate failure threshold to intermediate failure probability as well as the
corresponding confidence interval. DLF is a learning model that enables strategically adding training
samples in the vicinity of the equivalent limit state with intermediate failure thresholds. After the seeds
located in the accepted domain are accurately captured, Kriging-based reliability analysis methods are
implemented to train the surrogate model for the equivalent limit state function reinterpreted by BUS. The
final accepted samples following the posterior distribution are generated by implementing the MCMC
sampling based on aforementioned seeds and the well-trained Kriging surrogate model. Three examples are
investigated in this paper. Compared to the approach via the combination of BUS and pure subset simulation
(BUS+SS), the proposed BUS-SSAK method significantly reduces the computational cost by one to two
orders of magnitude and simultaneously maintain high accuracy in the estimate of posterior distributions.
Despite the significant computational advancements offered by the proposed method, it can be further
enhanced in the future. First, the proposed method, similar to other techniques, can face high computational
demands as the dimension of the problem, i.e., the number of random variables becomes very large. This
is in part due to the inherent shortcomings of Kriging surrogate models when facing the challenge of curse
of dimensionality. Moreover, advanced stopping criteria that can associate termination of active training to
error in posterior estimation can avoid costs of unnecessary training or risks of premature termination.

Appendix 1: Algorithms of subset simulation and BUS-SS
Algorithm 1A. Subset simulation for failure probability estimation
1. Generate Ngg samples xj, k = 1, ... Ngg through crude MCS and estimate their responses
g(xx), k=1,.. Ngg
2. i=1
3. (a)Ifi = 1, determine t; such that P(2,) = p,
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(b) If i > 1, determine the intermediate failure thresholds ¢;s such that the conditional probabilities
satisfy P(2;41142;) = po
4. Generate samples in £2;,1(i.e., if the probability of failure is not rare, pure MCS is recommended;
otherwise, MCMC is appropriate)
i =i+ 1. Return to step 3 if t; > 0; otherwise, continue to step 6.
Estimate the last failure probability PJ* = P(£2,,,|2,,—1) in the final subset £2,,with t,,, = 0
7. Estimate the failure probability ﬁ]fs according to Eq. (16).

oW

Algorithm 1B. BUS with Subset simulation

1.  Define the parameters:
(a) Target number of samples N,
(b) Number of samples in each intermediate step N;,
(c) Probability of intermediate subsets p,
(d) Constant ¢ according to Eq. (9)

2. Draw Ny, samples [xy, pi], k = 1,2, ... Ny, from the prior distribution [X, P]

3. Define the subset domain such that Q; = {h(x,p) < t;}, where t, is defined according to the p,

percentile of the responses of samples h(xy, px), k = 1,2, ... Nip,

4. i=1
5. Whilet; > 0,
(@i=i+1

(b) Draw N;;, samples from the domain €2;_; with MCMC technique
(c) Define the next subset Q; = {h(x,p) < t;}, where t; is defined according to the p,
percentile of the responses of samples h(xy, i), k = 1,2, ... N;;, in subset Q;_,
6. Define the last subset Q;,; = {h(x, p) < 0}, identify the number of samples N, in ;,, and keep
these samples as seeds
7. Draw N, samples in the subset (1;,; with those seeds in Step 6 using MCMC technique

Appendix 2: Elements of Kriging Model

The Kriging model, also called Gaussian Process Regression, makes a prior assumption that the estimated
response y(x) and the known true response y follow a joint Gaussian distribution [24], [50], [51]. It has
been widely used for surrogate-based reliability analysis [40], [52]-[56]. Based on this assumption, Kriging
combines the process of interpolation and regression. The estimated stochastic response K (x) for input x
can be described as follows,

Kx) =B fr(x) + Z(x,w) (A1)

where fj(x) is the basis function and B is the vector of regression coefficients of fi (x). BT f (x)
represents the mean value of K (x), which is often assumed to have ordinary (8,), linear (By+X. -, B;x;) or
quadratic (Bo+Xieq BiXitBotoieq ?Liﬁi jx;x;) forms, where N is the dimension of the random input
vector x. More details on f;(x) and B in Kriging models can be found in [51]. In this study, the ordinary
Kriging model is used, meaning that both f, (x) and B are constant. Z, (x) is a stationary normal Gaussian

process with zero mean and the following covariance matrix,

CoV(Z,(x),Z,(w)) = d?R(x,w,0) (A2)
where x and w are two arbitrary samples, and o2 is the process variance, which represents the generalized
mean square error in the regression process. Moreover, R(x, w, 8), called the kernel function, represents

the correlation function of the process with hyper-parameter 8. A set of correlation functions have been
implemented in Kriging including, but not limited to, linear, exponential, Gaussian and Matérn functions.
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In this article, the separable anisotropic Gaussian function is used which has the following form,

N

R(x,w,0) = 1_[ exp(—0;(x; —w;)?) (A3)

i=1

The hyper-parameter 8 can be determined using methods such as Maximum Likelihood Estimation (MLE)
or Cross-Validation (CV) [51], among others. Here, 6; is found using MATLAB optimization toolbox
DACE [57], [58] that uses the MLE method. The Maximum Likelihood Estimation approach is described
below,

1
0 = argmin (lR(x, w,0)|m 02) (A4)
6*€6

In the Kriging model, the regression coefficient 8 and the estimated mean response and variance can be
determined as follows,

B = (FTR‘lF)‘lFTR‘ly (A5)
pg(x) = fr(OB +rT ()R *(y — FB) (A6)
05 (x) = 2(1 =T ()R r(x) + (FTR 'r(x) — f1, )T (FTR™F)"*(FTR 'r(x) (A7)

— [(x)))

where F is the matrix of basis functions f (x) evaluated at known training samples, i.e. F;j = f i (x;),

i=1,2,..,m;j=12,..,p. r(x) is the vector of correlations between known training samples x; and an
unknown point x: r; = R(x,x;,0), i = 1,2..m. R is the autocorrelation matrix for known training
samples: R;; = R(xi,xj,G), i=12,..,m;j=1.2,..,m. The stochastic response K(x) can then be
represented using a normal distribution as,

K ~ N (), 0 () (a8)

According to this model, response predictions of samples close to known training samples will have higher
confidence compared to those that are further away from the training samples. The probabilistic information
provided by the Kriging model including the expected value of predictions and their variance can be
leveraged to select next evaluation samples in the reliability estimation more effectively. This statistical
property has been used in adaptive Kriging reliability analysis for sequential selection of training samples
for model refinement.
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