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We consider a minimization problem whose objective function is the sum of a fidelity
term, not necessarily convex, and a regularization term defined by a positive regulariza-
tion parameter A multiple of the £y norm composed with a linear transform. This problem
has wide applications in compressed sensing, sparse machine learning and image recon-
struction. The goal of this paper is to understand what choices of the regularization
parameter can dictate the level of sparsity under the transform for a global minimizer
of the resulting regularized objective function. This is a critical issue but it has been
left unaddressed. We address it from a geometric viewpoint with which the sparsity par-
tition of the image space of the transform is introduced. Choices of the regularization
parameter are specified to ensure that a global minimizer of the corresponding regu-
larized objective function achieves a prescribed level of sparsity under the transform.
Results are obtained for the spacial sparsity case in which the transform is the identity
map, a case that covers several applications of practical importance, including machine
learning, image /signal processing and medical image reconstruction.

Keywords: Sparse regularization; sparse optimization; the £p norm.

Mathematics Subject Classification 2020: 90C26, 90C30

1. Introduction

The aim of this work is to understand a global minimizer of regularization prob-
lems whose objective functions have the form of a fidelity term plus a regularization
term involving the £3 norm. Regularization problems of this type appear frequently
in recent studies of machine learning [16, 17, 211, 29], computer graphics [8, [27],
signal processing [6], 15 [35], image processing [24, [25, [34], medical imaging [37]
and statistics [10, [36]. Many published results have demonstrated that the use of
the £y norm in regularization models promotes sparsity for the regularized solu-
tions or the transformed regularized solutions. Most of the existing works focus on
developing numerical algorithms and considering convergence issues of the devel-
oped algorithms. It remains to be understood how choices of the regularization
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parameter balance the sparsity of a global minimizer of the regularization prob-
lem and its approximation to a global minimizer of the fidelity function. It is the
goal of this paper to provide mathematical understanding on how the use of the £,
norm as a regularization term promotes sparsity of the regularized solutions or the
transformed regularized solutions.

We now describe precisely the problem to be considered in this paper. Let d
be a fixed positive integer. For + € R% we use |z|jo to denote the number of
the nonzero components of x. Although | - ||o does not satisfy the axiom of vector
norms, it is widely referred to as the £y norm in the sparse optimization community.
We follow the custom of the community to call it the £3 norm. Let m be another
positive integer, which may be equal to d or may be different from d. Suppose that
g :R™ — R is a given function and M is a real d x m matrix. For a parameter
A > 0, we define the function

f(z) :=g(z) + AN[|Mzl|o, zecR™ (1.1)
and consider the related regularization problem
min{ f(z): z € R™}. (1.2)

Here, A > 0 is a regularization parameter. Its choices may impose sparsity of a global
minimizer of the corresponding function (L.1l). Clearly, the function f defined by
Eq. (1)) depends on the parameter A and the transform matrix M. Although for
conciseness of notation, we do not label the dependence of f on A or M in its
notation, we always assume that f depends on these quantities.

In the context of regularization, the function g appearing in (I.1]) is the data
fidelity term derived from a linear [12] or nonlinear ill-posed problem [J], and as
well as a fidelity term plus a usual 5 regularization |30} [31]. It may also describe
a network [I3] in machine learning. For more linear ill-posed problems, see [3H5].
The function g that appears in application is often convex, (for example, the least
squares error). It can also be non-convex. For instance, fidelity terms for deep
learning are non-convex [28]. It can be differentiable or non-differentiable. In this
paper, in order to enlarge the applicability of the established theory, we consider a
wide class of fidelity terms g, without imposing convexity or differentiability.

The matrix M that appears in the regularization term is often chosen as a math-
ematical transform such as a discrete cosine transform [26], a wavelet transform
[T, 14, 18-20] or a framelet transform [2, 22], depending on specific applications.
It can also be a difference matrix (for example, the £3-TV). For TV-regularization,
the readers are referred to [23]. The matrix M does not have to be a square matrix.
However, we confine ourselves to matrices of full rank, since most of mathematical
transforms used frequently in applications have this property and the case with
matrices of arbitrary rank may be treated by employing the singular value decom-
position, on which we will comment at the end of the last section.

The regularization problem ([L2]) often raises in the scenarios that the function
g has a global minimizer which itself may not be sparse while a sparse minimizer
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is desirable. Bringing forward such a model enables us to find a global minimizer
of f having the desired sparsity under the transform while keeping it as close to
the global minimizer of g as possible. A desirable solution of the problem ([Z)) is
the one achieving the desired sparsity and being close to the global minimizer of the
fidelity term g. For this reason, we shall assume that the function g has a global
minimizer in R™.

We are also interested in minimization problems of sparse regularization in the
spacial domain, that is, the special case of (1)) with d = m and M = I, the identity
matrix. In this case, the function f has the spacial form

f(z) = g(z) + Alzlo, zeR™ (1.3)

Although the model (3] has its practical importance, we shall not present special
results for this case since they can be obtained from general results by restricting
M=1.

Motivated from approzimately sparse regularization such as regularization with
the envelope of the fy-norm and capped-£;, we introduce the function

f(z,y) = g(z,y) + A|zllo, for all (z,y) € R? x RY, (1.4)

where g : R% x R? — R is a continuous function, not necessarily convex. Typ-
ical examples of function f in the form (L) include the objective functions in
wavelet inpainting with the £, sparse regularization [25], inverting an incomplete
Fourier transform [33] and medical image reconstruction [37]. In these applications,
the function g is a sum of two or three convex functions which measure the data
fidelity and define other convex constraints. We shall study what choices of the
positive parameter A will balance the sparsity of global minimizers of function f
and its approximation to global minimizers of function g. We do not intend to pro-
vide practical methods for choices of the regularization parameter A, and rather,
we supply a mathematical understanding of the relation among choices of the regu-
larization parameter, and global/local minimizers of the two functions f and g. We
are also interested in understanding the relation between local minimizers of these
two functions when the regularization parameter A is fixed.

Our key approach is the understanding of the “surface” geometry of the function
f defined by (1)) or (L3)). When A = 0, f clearly reduces to the function g. We
regard the surface determined by the function g as the original “landscape” and
imagine its animation controlled by the parameter A > 0. At the moment when
we start to increase the value of the parameter A from 0 to a positive number, the
original “landscape” begins to change like vertical fractures of the earth crust during
an earthquake. The parts of the landscape corresponding to Mz = 0 will stay in
their original positions and other parts will lift upward according to A||Mz|[p. This
geometry motivates us to partition the space R? according to the values of the £
norm of the vectors in the space, that is, the sparsity levels. This sparsity partition
of the Euclidean space will enable us to understand how the value of the parameter
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A will determine the sparsity level of a global minimizer of f. We shall introduce
the sparsity partition of the space RY, the image space of the transform M, and
understand how this partition will result in a partition of the preimage space R™.
Through these partitions we shall be able to visualize the animation as the value of
the parameter A increases. As a result, we can clearly determine how large the value
of A will be in order to achieve a desired level of sparsity for a global minimizer of
f and at the same time to keep the minimizer as close to the global minimizer of
the function g as possible.

We organize this paper in five sections. In Sec. 2 we introduce a partition of
the image space of a transform M according to the levels of sparsity and consider
its corresponding partition of the preimage space. We study both algebraic and
topological properties of the sets in these partitions. We devote Sec. 3] to a study
of choices of the parameter A > 0 that ensure desired levels of sparsity under
the transform of a global minimizer of function f having the form (I.IJ). Several
necessary conditions of a global minimizer of f are presented. In Sec.H], for functions
f having the form ([L4]), we investigate the same issues as those considered in Sec.[3l
for function f in the form ([.T]). We also present a relation between local minimizers
of minimization problem (A1) and its reduced minimization problem without the
term involving the £p-norm. We briefly discuss in Sec. [{] extension of the results
presented in Secs. B] and M involving matrix M and potential practical uses of the
main results of this paper.

2. Sparsity Partition of the Euclidean Space

We introduce in this section a partition of the space R?, the image space of the
linear transform M, according to levels of sparsity, and study its corresponding
partition of the preimage space R™. For the purpose of understanding the sparsity
of a global minimizer of the function f defined by (I.1l), we present algebraic and
topological properties of the sets in the partitions.

It is convenient to introduce the level of sparsity for a vector in R?. To this
end, for a positive integer d, we define two index sets Ny := {1,2,...,d} and
Zq :={0,1,...,d — 1}. Precisely, a vector z € R? is said to have sparsity of level
£ € Zgy1 if = has exactly £ number of nonzero components. Clearly, the zero vector
has sparsity of level 0 and a vector whose components are all nonzero have sparsity
of level d. Vectors having sparsity of level d are not sparse. Sparse vectors are those
located on the coordinate axes or coordinate planes of space R%. For example, in
R3, vectors on the three coordinate axes but not at the origin have sparsity of level
1, vectors on the three coordinate planes but not on the three coordinate axes have
sparsity of level 2 and vectors not on the three coordinate planes have sparsity of
level 3. Most vectors in the space R? are not sparse. In fact, the set of the sparse
vectors in R? has zero measure.

We now define the sparsity partition of R¢. We need the canonical basis for the
space R?. For each j € Ny, by e; € R?, we denote the unit vector with 1 for the
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jth component and 0 otherwise. The vectors e;, j € Ng, form the canonical basis

for R%. Let
A == {0 € RY},

Ay = Z:t:kj.ekj czp, € R\{0}, for 1 <ky <ka<---<ke<dp, forleNg
JEN;
(2.1)
In the next proposition, we show that the sets A,, £ € Zg,1, defined by ([Z1])
indeed form a partition for the space R%.

Proposition 2.1. If the sets Ay, £ € Zgy1, are defined by (1), then
(i) they are mutually disjoint,
(ii) they form a partition for the space R, that is,

R'= | ] A. (2.2)

[ 1=y /AER]

Proof. (i) It suffices to show that
A;jnAy =0, foralljj’ eZay withyj#j'. (2.3)

Without loss of generality, we assume that j < j'. Suppose that = € A; N Aj. By
the definition of A;, there exist 1 < ky < ko < --- < k; < d and zx, € R\{0} such
that

= Z Lh; Ckys (24)
iEN;
and by the definition of A, there exist 1 <k} < k3 < --- <k}, < d and 7}, €
R\{0} such that
T = Z Ty €k - (2.5)
€N,
Subtracting Eq. (24)) from ([Z3]) yields
Z IL;ek; - Z g, ex, = 0. (2.6)
€N iEN;
We introduce two index sets I := {k1,ko,...,k;} and I' := {k{, ks, ...,k }. Since
j < j', we observe that I # I'. It follows that there exists an index k; € I' but

k{ ¢ L. Since e;, j € Ng, are linearly independent, according to (Z6), we conclude
that zj, = 0. This contradicts the hypothesis that z, # 0 and confirms (2.3).

(ii) Assume that = € R?. Let £ := ||z||p. Then, £ € Zgy;. Thus, we have that
x € Ay. This ensures that
RIC ] A

[ 1=y /AER]
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Clearly, we have that
U 4. cre

Eezd“
These two inclusions imply the validity of Eq. (Z2), which together with part (i)
of this proposition confirms that the sets Ay, £ € Zg,1, form a partition for R. O

We illustrate Proposition 2-1] by R2. Clearly, for d = 2, R?2 = Ay U A; U A,

where

Ao = {(0,0)}, A1 :={(z,0):z € R\{0}}U{(0,y):y € R\{0}},

As = {(z,y) : (z,y) E R x R,z # 0 and y # 0}.

That is, A; contains points on the two axes except the origin and Ay contains the
four quadrants of the two-dimensional plane.

We remark that according to (2.1]), for each £ € Zg11, A; is the set of all vectors
in R? having sparsity of level £. According to Proposition[Z ], the space R? has the
sparsity partition A;, j € Zg1, which groups the vectors in R? according to their
sparsity levels. We further observe that the sets A,, £ € Ny, are closed under the
operation of nonzero scalar multiplication, but not closed under the operation of
addition. For example, e1,e9 € A1 but e; + e5 € As.

It is also convenient to define the set of vectors in R? whose sparsity levels do
not exceed £. For £ € Zg 1, we let

Qg = U Aj.
JE€Lg4n
Clearly, €2, is the set of vectors in R? whose sparsity levels do not exceed £. Moreover,
we have that
Qo=Ap, Q1= UAj1, j€Zsyr and Qz=R% (2.7)
These equations yield that
Ag =RNQq_1.

The set A4 consists of the vectors in R? whose components are all nonzero. By the
definition of the sets €); and properties of A;, we see that ; for j € Ng_; are
closed under the operation of nonzero scalar multiplication, but not closed under
the operation of addition.

We now consider a partition of the space R™, the preimage space of the trans-
form M, induced by the sparsity partition of R%. Suppose that

MR™ = R%. (2.8)

When condition (2.8)) is satisfied, we say that M is of full rank. We introduce d +1
subsets Bj, j € Zgy1, of the preimage space R™ according to the sparsity partition
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Aj, j € ZLgpq by
B ={zeR™: Mz e A;}.

Because Ag = {0}, the set By is the null space of matrix M. Moreover, we have the
following simple fact.

Proposition 2.2. If M is a d x m full rank matriz, then
MBj = Aj, forall j € Zd+1.

Proof. Let j € Zgy1 be fixed. We assume that y € M B;. Thus, there exists = € B;
such that y = Mxz. By the definition of B;, we have that Mz € A;. Hence, y € A;.
This implies the inclusion M B; C A;.

Conversely, we let y € A;. By Proposition [ZI] the sets A;, j € RY, form a
partition for the space R? and thus, y € R%. Since M is of full rank, according to
Eq. (2.3), there exists £ € R™ such that y = Mz. Since Mz € A;, we find that
z € Bj. Thus, we have that y € M B;. This yields the inclusion A; C MB;. We
therefore establish the desired equation of this proposition. |

Proposition [Z2] clearly reveals that for each j € Zgy1, the set B; is the preimage
set of A;, the set of the vectors in R? having sparsity of level j, under the transform
M. However, vectors in B; do not necessarily have sparsity of level j. In the next
proposition, we show that the sets Bj, j € Zg41, form a partition for the preimage
space R™ of the transform M.

Proposition 2.3. If M is a d x m full rank matriz, then the sets B;, j € Zay1,
form a partition for the space R™.

Proof. It suffices to establish that

R™= |J B (2.9)
JE€ELg 41
and
B;nBj =0 forall j,j" € Zgyq with j # 7. (2.10)

To show (Z.3]), we let z € R™. By the hypothesis on matrix M, we see that Eq. (28]
holds and thus, Mz € R?. Employing the sparsity partition Aj, 7 € Lgy1, for the
space RY, we see that there exists j € Zg,1 such that Mz € A;j. By the definition
of the set Bj, we conclude that z € B;. Hence, we have that

rR"C |J B
JE€ELg 41
By the definition of the sets Bj, each of these sets is contained in R™. Thus,
U B;cr™
JELg 41
Consequently, Eq. (Z.9]) holds true.



908 Y. Xu

It remains to prove Eq. (ZI0). Suppose that = € B; N By for a fixed pair of
indices j,j’ € Zgt1, with j # j'. By the definition of the set B;, we have that
Mz € A; and by the definition of the set Bj:, we have that Mz € A;. According
to Proposition [Z1] the two sets A; and A; are disjoint. This clearly implies that
Mz € (), a contradiction. This yields Eq. (Z.I0). |

In the remaining part of this section, we study useful topological properties of
the sets that we introduced earlier in this section.

Proposition 2.4. The following statements holds true:

(i) The set Ag is closed, the sets Ay, £ € Ng_1, are neither closed nor open, and
Ay is open.
(ii) For j € Zqg, 25 are closed sets.

Proof. (i) Since Ap contains only one point 0, it is closed. It is straightforward to
see that the sets A;, j € Ng_1, are not open since in every neighborhood of a vector
in A; contains vectors that are not in A;. We now show that the sets A;, 7 € Ng_1,
are not closed either. To this end, we consider a sequence of vectors r,, n € Z, in
R? whose first j — 1 components are all equal to 1, last d — j components are all
equal to zero and jth component is 1/n, that is,

Tn = (1,...,1,1/n,0,...,0), forallneZ.

Clearly, =, € A;, for all n € Z and ||z, — £[|2 = 1/n — 0 as n — oo, where & € R?
whose first 7 — 1 components are all equal to 1 and last d — j + 1 components are
all equal to zero, that is, £ :=(1,...,1,0,0,...,0). In other words, x,, converges to
a vector in A;j_; not in A;. Therefore, A;, j € Ng_1, are not closed.

It remains to show that Ay is open. Suppose that & € A;. Then, we have that
& = (t1,%2,...,tq) with fj- # 0, for all j € Ng. Hence, for all j € N; there exists
€ > 0 such that for all ¢} € (t; — €/dY?,t; + €/d'/?), we have that t; # 0. Let
x’ = (t],15,...,t,). We observe that 2’ € Ag. That is, the open ball

Bo(i,€) :={z e R : ||z — Z[2 < €}

is contained in Ag4. Thus, A4 is an open set.

(ii) For a fixed j € Zq4, we assume that a sequence =, n € Z, in (), converges to
a point = € R as n — oo, and we show that z € ); by contradiction. Assume, to
the contrary, that = ¢ ;. By the second equation of (Z1]), we have that £; C ;4.
Without loss of generality, we assume that = € ;. Hence, z € A;;,. That is,
x has exactly j 4+ 1 nonzero components. Therefore, for sufficiently large n, x,, has
at least j + 1 nonzero components. This contradicts the assumption that z,, € €;,
which implies that = has at most 7 nonzero components. This contradiction proves
that €; is closed. O

The next result translates the openness of A4 to its preimage set By.



Sparse regularization with the £y norm 909

Proposition 2.5. If M is a d x m full rank matriz, then the set By is an open set
in R™.

Proof. By Proposition[2.2] we have that M B; = A;. According to Proposition[2.4]
Ay is open. Note that M can be viewed as a continuous mapping from R™ to RY.
Hence, we see that By is open since the preimage of an open set under a continuous
mapping is open. O

It is clear that the £y norm is not a continuous function in the sense that the
condition ||z, — Z||2 — 0 does not guarantee that ||zn|lo — ||Z||o. This is seen from
the example =, :=(1/n,1/n,...,1/n) and £ = 0.

It is important to understand how the sparsity of a vector in R? influences the
sparsity of vectors in its neighborhood. To this end, for a given index set 7 C Ny
we define a subspace of R? by letting

Cr:={z e R%: S(z) C I}, (2.11)

where S(x) denotes the support of = € R%, that is, S(z) := {i € Ng : =; # 0}, for
x € RY. Clearly, Cr is convex. It is convenient to define the set

Cr == {x e R*: S(z) =T}. (2.12)
We first establish a technical lemma.
Lemma 2.6. If for some £ € Zgy1, T € Ay, then
dist(, A¢\8Cs(s)) > 0, (2.13)
where

dist(z, A) := min{||z — z[|2: z € A}.

Proof. Since & € Ay, we may assume that S(z) = {k1, ko,..., ke}, where 1 < k; <
ko < --- < kg < d. It follows that & may be represented as

= Z Ty;ex;, for some ix; € R\{0}, jeN,.
JEMN,
Forall z € A¢\OCg(s), we have that S(Z) # S(z), and there exist integers k;;, j € N,
with 1 < k] < kj <--- < kj < d such that
z = Z Zk €k, for some 2k, € R\{0}, jeN,.
JEN;

Hence, there exists some k; € S(z) but k; ¢ S(z). This fact together with the above
representations of & and z implies that for all z € A,\0Cg(3), || — 2|2 = |T&,| > 0.
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From this we conclude that
dist(:f.'., Ag\@Cs(j)) = |:E'kj| = 0,

which completes the proof of this lemma. |

With the help of Lemma [Z.6], we prove the following proposition. We define the
closed ball with the center € R% and radius € > 0 by

B(i,€e) :=={zx € R%: ||z — £||2 < €}.
Proposition 2.7. The following statements hold true:

(i) If for some £ € Zgy1, T € Ag, then there exists 6 > 0 such that for all z €
B(z,9), there holds = € U?:gAj: that s, ||z]|o = [|Z]o-

(ii) If for some £ € Zgy1, T € Ag, then there exists 6 > 0 such that for all z €
B(z,6)\Cz with T := S(z), there holds © € Aj, for some j > £+ 1, that is,
lzllo > ll£llo + 1.

Proof. (i) We prove this assertion by contradiction. Assume to the contrary
that the statement is not true. Then, for any d > 0, there exists 5 € B(z,d)
such that x5 € ;1. By Item (ii) of Proposition [Z4] the set 2, 1 is closed. This
implies that £ € Q,_;, which contradicts the assumption that & € A,. Therefore,
there exists § > 0 such that for all = € B(z,6), = € A;, for some j > {. This further
implies that ||z|lp > ||Z]o.

(ii) By Lemma 2.6] we may choose dy > 0 such that

dist(%, A,\OCs(s)) > do.

By Item (i) of this proposition, there exists a § with dp > § > 0 such that for all

z € B(z,6), we have that = € A;, for some j > £. Hence, for this positive number
4, there holds

(B(2,0)\0Cs(z)) N Ag = 0.

It follows that for all = € B(%,0)\Cg(s), there holds = € A;, for some j > £ + 1.
Consequently, for all z € B(Z,0)\Cg(z), we have that ||z|[o > [|Z]/o + 1. O

3. Sparsity Regularization Under a Transform

In this section, we consider the minimization problem of sparsity regularization
under a transform. The rationale for considering the regularization problem (I.2])
with the function f having the form (L.I]) is that g has a global minimizer but it
may not be sparse under the transform. We then impose the regularization term.
By choosing the parameter A appropriately, we seek a global minimizer of f having
sparsity of a prescribed level and close to the global minimizer of g. Specifically, we
intend to understand how choices of the regularization parameter A lead to sparsity



Sparse regularization with the fg norm 911

(under the transform M) of a global minimizer of the function f defined by (LI
when M is a real d x m matrix of full rank.

We first comment on a connection between the sets A, defined by Eq. (Z1]) and
the £y norm. By the definition of the £y norm, for any = € R? we have that

lz|lo=¢, ifze Ay forsomel e Zgy. (3.1)

Formula (BI) can simplify the function f defined by (IIl) on each set By and
provides a key to understand the solution of the related regularization problem (LZ).
In fact, by employing formula (BI)) and the partition B;, j € Zg+1, of R™, connected
with the sets A;, £ € Zgy1 via Proposition[Z2] we have an alternative representation
of function f defined by (I1]). Namely,

flx)=g(z)+ A, forallze By, £ Zayq. (3.2)

Geometric interpretation of the function f defined by (LII) provides insights
to sparsity of a global minimizer of f under the transform M. By adding the
regularization term A||M - || to g results in lifting the graph of g according to the
sparsity in the range of M. In other words, the regularization term A||M - ||o terraces
the graph of function g. Specifically, the values of function g that stay unchanged
are g(z) for all z € By (that is, in the null space of M) and every other value g(z) is
lifted according to which set B; the points x belong to. For example, for all z € By,
the values g(z) are lifted to g(z) + A. In general, for all z € Bj, the values g(x) are
lifted to g(z) + Aj, for 7 € Zgs1. On the highest level of the terraces are g(z) + Ad,
for all x € By, where all components of Mz are nonzero. Hence, by changing the
value of the parameter A, the landscape of the graph of the associated function f
is changed and accordingly the sparsity of the global minimizer of f is changed.
For instance, if the most sparse global minimizer is desired (that is, a point in the
null space of M as a global minimizer of f), then a value of A is chosen so that the
function values g(z) + Aj, for all = € B;, j € Ny, are greater than the value g(z),
where I is in the null space of the matrix M. This understanding is a key to guide
for choices of the parameter A.

When a global minimizer of f that are most sparse is desired, we have the
parameter choice strategy described in the next theorem.

Theorem 3.1. Let z* € R™ be a global minimizer of g and =o € By be a minimizer
of g on By. If the parameter A is chosen to satisfy

A = g(zo) — g(z"), (33)
then xq is a global minimizer of f in the space R™, Mxq has sparsity of level 0 and

the global minimum value of f is given by g(zo).

Proof. Let £ € R™ be an arbitrarily fixed vector. We make use of the partition
Bj, j € Zg41, of R™ to conclude that there exists j' € Zgq1 such that = € By, We
consider two cases: 7/ = 0 and 7' € Ny.
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In the case when j' = 0, we have that £ € By and Mz = 0. In this case, by
employing Eq. (8:2)), from the assumption that =y € By is a minimizer of g on By
we get that

f(z) = g(x) = g(xzo) = f(z0).

Next, we consider the case when j' € Ng. In this case, we have that = € By,
that is, Mz € Aj. Once again, we employ Eq. (3Z) to obtain that

f(z) =g(z)+ A" = g(z) + A\

Combining this inequality with the assumption on z* and condition (3.3]), we obtain

that

f(z) = g(z) + A = g(z*) + A = g(zo) = f(zo0)-

In both of the cases, we have shown that f(x) > f(zo) for all £ € R™. Therefore,
xp is a global minimizer of f on the space R™. |

Theorem [3.1] also provides the error bound between the regularized global mini-
mum value f(zg) and the original global minimum value g(z*) when the parameter
A is chosen according to (B.3]). Indeed, since f(zo) = g(zo) and z* is a global mini-
mizer of g, we observe that f(zg) — g(z*) = g(xzo) — g(z*) = 0. Hence, by ([B.3]), we
obtain that

0 < f(zo) —g(z™) < A

In general, the error is not equal to zero unless the global minimizer * of g is in
By, in which case sparse regularization is not necessary.
We illustrate Theorem Bl by a simple example in R2. To this end, we consider
a non-convex function defined by
@”": - (131)”2 -1, z % (0: 1)1
o)== { 2 (3.4)
—0.9, z=(0,1).

Clearly, as shown in Fig. [[la) ¢ has a unique, non-sparse global minimizer z* =
(1,1) and the minimum value g(z*) = —1. In this example, we choose M = I.
The value g(zp) = 0, where g := (0,0). According to Theorem [3.I] we choose
A = g(zp) — g(z*) = 1. The regularized non-convex function f defined by (I.3]
with g in the form (34) and A = 1 is shown in Fig. [[{(b). Note that zp = (0,0)
is the sparse global minimizer of f and the minimum value f(xp) = 0. Also, the
error between the regularized global minimizer and the original global minimizer
is given by f(zp) — g(z*) = 1 = A. These figures illustrate how the regularization
term A|| - ||o terraces the graph of g.

In the case that we wish to reduce the error of the regularized global minimum
value, we may choose not to demand the most sparsity (under the transform M).
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Fig. 1. (a) Graph of function g; (b) Graph of the regularized function f with A = 1.

For this reason, we consider a choice of the parameter A with which the function f
defined by Eq. (L)) has a global minimizer having sparsity (under the transform M)
of a prescribed level. We present a parameter choice strategy in the next theorem.
For this purpose, we find it convenient to define another sequence of sets. For all
L e Zay1, we let

ry:= |J By (3.5)

JELs 41

It can be readily verified that for each £ € Zg, 1, the set I'; is the preimage set of
; under the transform M. Moreover, by (ZY), we have that

Iy=R™ (3.6)

Theorem 3.2. Let z* € R™ be a global minimizer of g, ' € T'y be a minimizer of
g on Iy for some £ € Ng, and z; € T; be a minimizer of g on I';, for all j € Z,.
Suppose that

r * ]' r .
g9(z') —g(z7) < ETj[g(Ij) —g(z')], forall j€Zy. (3.7)
If the parameter X\ is chosen to satisfy the conditions
r * ]' r -
g(z’) —g(z7) <A< rj[g(%‘) —g(z')], forallj€Zy, (3:8)

then x’ is a global minimizer of f on R™, Mx' has sparsity of level ¢’ with ¢’ < ¢
and the global minimum value of f on R™ is given by f(z') = g(z') + \'.

Proof. We shall verify that
f(z') < f(z), forallz e R™. (3.9)
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Since z’ € T'y is a minimizer of g on I'y, we use the definition (B3]) of T'y to consider
cases when 1’ € Bj for all j € Zgy;.

We consider the first case when ' € By, that is, Mz’ € Ag. In this case, we
shall show ([B9) with Mz" = 0 by verifying it for all z € By, for all j € Zgy1. To
this end, we consider two subcases according to the index j € Zg41: (1) j < £ and
(2) 4 > £. In subcase (1), we consider = € Bj, j € Zg11. By the definition of the
sets Bj, we have that Mz € A;, which implies

IMz|o=3j, ifzeB;, foralljeZy,.

Since z’ is a minimizer of g on I'y and ||[Mz'||p = 0, we have for all = € B;, j € Zp11,
that
fa') = g(z’) < g(z) < g(z) + Aj = f(2).

In subcase (2), we consider = € Bj, j =€+ 1,£+2,...,d, where we also have that
Mz € Aj and thus, || Mz|o = j. By employing the first inequality of (3.8]) and the
fact that z* is a global minimizer of g, for all z € B;, j =+ 1,£+2,...,d, we
obtain that

f(@)=g(z') < g(z®)+ A < g(z) + A < g(z) + A\j = f(z).

This proves the first case of (3.9).

We next consider the second case when z’ € By, for k € Ny and show (33) with
|Mz'||o = k by verifying (39) for all z € Bj, for j € Zg41. To this end, we consider
three subcases according to the index j € Zgyqi: (1) 5 < £, (2) 5 =£, (3) 5 > L.
In subcase (1) for which j < ¢, we consider = € Bj, j € Z;. Clearly, we have that
|[Mz||p = 7. Thus, by using the second inequality of (8.8 and the hypothesis that
z; € I'j is a minimizer of g on I';, we observe that

9(z") + M < g(z;) + Aj < 9(z) + Aj = f(x)-
This together with the fact k < £ implies that
fl2')=g(z")+ Mk < g(z') + M < f(z), forallz € B;, forallj€ Zs.

In subcase (2) for which j = £, we consider = € By. Since 1’ is a minimizer of g on
I'y, which contains B, as a subset, and k < £, we find that

flz)y=g(z")+ Ak < g(z) + Ak < g(z) + M = f(z), forall z € B,.

In subcase (3) for which j > ¢, we consider = € Bj, for j = ¢+ 1,£+2,...,d. By
using the first inequality of (38) and again the fact that z* is a global minimizer
of g, we derive for all z € By, forall j =£+1,£4+2,...,d that

f(@') = 9(«') + Ak < g(%) + Ak +1) < g(z) +Aj = f(2).
That is, (39) holds true for the second case.
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Summarizing the above verification, we conclude that (3] holds true for all
cases and thus, z’ is a global minimizer of the function f on the space R™. |

A comment on the parameter choice (B.8) in Theorem is in order. To be
able to choose such a parameter, it requires that condition (3.7]) is satisfied. This
hypothesis is indeed needed to ensure that the choice (B8] of the parameter A is
feasible. The hypothesis (B.7)) is equivalent to the following conditions that

9(z;) + (£ — j)g(=7)
—j+1
The right-hand side of the inequality (3I0) is a weighted average of g(z;) and

g(z*). By the definition of =/, x; and z*, it is clear that

g(z') < , forall j€Z,. (3.10)

g(z*) < g(2') < g(z;), forall j € Z,.

This shows that the hypothesis (B.7]) of Theorem [3:2 is reasonable. Condition (3.8))
also reveals that the error of the regularized global minimum value f(z') approx-
imating the original global minimum value g(z*) is bounded by the value of the
regularization parameter so chosen. That is,

0< f(z') —g(z*) < A

We next illustrate the result of Theorem 3.2 by presenting a corollary of Theo-
rem[3.2/for the special case when £ = 1. The corollary gives a choice of the parameter
A which guarantees that a global minimizer of f has sparsity of level 1 under the
transform M. That is, the corresponding function f has a global minimizer having
at most one nonzero component under the transform M.

Corollary 3.3. Let z* € R? be a global minimizer of g on the space R™, ' € T'y
be a minimizer of g on T'y and g € By be a minimizer of g on By. If the parameter
A is chosen to satisfy the condition

g9(z') — g(z") < X < g(zo) — ("), (3.11)

then =’ is a global minimizer of f on the space R™.

Proof. This result is obtained by specializing Theorem[3.2] to the special case when
£=1. |

Clearly, as we have discussed earlier, for the choice ([B.I1]) of the parameter A to
be feasible, we need to require that

o) < 3la(") + glzo)] (312

That is, g(z') is less than or equal to the average of g(z*) and g(zp). The function
g defined by (34) on R? clearly satisfies condition (3.12).
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The next theorem connects a global minimizer of g with a global (or local)
minimizer of f. To this end, we recall the definition of a local minimizer of a non-
convex function. A vector z* € R? is called a local minimizer of f, if there exists a

4 > 0 such that
f(z¥) < f(x), forall z € B(z*,4§).
Theorem 3.4. Let z* € R™ be a global minimizer of g.

(i) If Mz* =0, then =* is a global minimizer of f on R™.
(ii) If for some £ € Ng, =* € By and if for a minimizer x; € Bj of g on Bj for all
j € Zg, the parameter X is chosen to satisfy

1

0<A< —
— 17

lg(z;) — g(z™)], for all j € L, (3.13)

[

then * is a global minimizer of f on R™.
(iii) If z* € By, then z* is a local minimizer of f.
(iv) If z* € Bgq, and for some j € Zqy1 and for some T € Bj,
g9(z") + A(d - 7) > g(2), (3.14)

then * is a local minimizer of f but not a global minimizer of f on R™, and
global minimizers (if exist) of f on R™ have sparsity of level at least d — 1.

Proof. Since z* € R% is a global minimizer of g, we have that
g(z*) < g(x), for all z € R™. (3.15)
For both Items (i) and (ii), we shall show that
f(z*) < f(z), forall z e R™. (3.16)
(i) If Mz* = 0, by the definition of | - ||o, we have that ||[Mz*||p = 0 and thus,
f(z*) = g(z%) + [|Mz"[jo = g(=¥).
Consequently, according to condition (3:I5), we obtain that
f(z*) =g(z*) < g(z) < g(z) + M = f(z), forze By, forallleZy,.

This confirms that (3:16) holds true.
(ii) Since for some £ € Ny, =* € By and satisfies condition (313, and since
z; € B; is a minimizer of g on B; for all j € Z;, we have that

flz*) = g(z*) + M < g(z;) + Aj < g(z) +Aj = f(z), forall z e By, jecZs.
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Moreover, we have that
flz*)=g(z")+ M < g(z)+Aj=f(z), forallzeB;, j=0{+1,...,d.

Hence, (3:16) is satisfied.
(iii) Since z* € By is a global minimizer of g on R™, we have for all z € B, that

f(z") = g(z") + Ad < g(z) + Md = f(z).
That is,
f(z*) < f(z), forall z € Bg. (3.17)

According to Proposition .5 By is an open set. Thus, * is an interior point of
By. This ensures that there exists a 6 > 0 such that B(z*,J) is contained in Bg.
Therefore, from inequality (BI7]) we conclude that f(z*) < f(z) for all z € B(z*, ),
and thus, r* is a local minimizer of f on R™.

(iv) By (iii), we have known that in this case, z* € By is a local minimizer of
f. We next show that z* is not a global minimizer of f on R™. By (B14l), we have
that for some j € Zgy1 and for some = € Bj,

g(z*) + Ad > g(z) + Aj.
This together with the fact £* € By ensures that
f(z%) = g(z") + Ad > g(%) + Aj = f(Z).

This implies that =* is not a global minimizer of f.

Finally, we prove that there is a global minimizer of f on R™ having sparsity
of level at least d — 1. From (BI7), we know that z* is a minimizer of f on Bj.
Note that by (B.0), there holds R™\ By = I'y_1. Hence, the fact established earlier
that =* is not a global minimizer of f implies that global minimizers (if exist) of f
must occur at a point in I'y_1. By the definition of I'y_; such a global minimizer
has sparsity of level at least d — 1. |

In the next theorem, we prove necessary conditions of a global minimizer of f.

Theorem 3.5. Let z* € R™ be a global minimizer of f on R™.

(i) If =* € By for some £ € Zgy1, then =* is a minimizer of g on T'y.
(ii) If z* € R™ is not a global minimizer of g on R™, then z* € T'q_;.

Proof. (i) Since z* € By for some ¢ € Zz1; and it is a global minimizer of f on
R™, we have that

gz*) + M= f(z*) < f(z) =g(z) + Aj, forallz e B;, jeZea.
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It follows that
g(z*) + Al —7) < g(z), forallze Bj, j€ Lepa-
Using this inequality and noting that A(¢ — 7) > 0, for all j € Zs,1, we have that
g(z*) < g(*) + Al —j) < g(z), forallz e Bj, j€ Lot

The above inequality together with the definition (3.3) of the set I'; ensures that
x* € By is a minimizer of g on T'.

(ii) We prove this assertion by contradiction. Assume to the contrary that =* ¢
I'y_1. Since z* € R™,

R™ = I'y_1UB; and T4_1NBg= @.,

we must have that z* € B;. By Statement (i) of this theorem with £ = d, we
conclude that =* is a minimizer of g on I'y. Noting that I'; = R™, we confirm that
x* is a global minimizer of g on R™. This contradicts the hypothesis that z* is not
a global minimizer of ¢ on R™. This contradiction ensures that z* € T'y_;. |

In Theorem [B5lii), we provide sufficient conditions which guarantee that a
global minimizer of f is sparse under the transform M.
The next result follows immediately from Theorem [BH|(ii).

Corollary 3.6. If ¥ € R™ is a global minimizer of f on R™, then, either =* €
T'y_1 or z* is a global minimizer of g on R™.

4. Sparse Regularization in the Spacial Domain

This section is devoted to presentation of special results for regularization problem
min{f(z,y) : (z,y) € R x R"}, (4.1)

where f is defined by (4). In this model, we seek sparsity for the variable z only.
A typical example of optimization problem (AT]) is approximately sparse regu-
larization. In such cases, the function f may take the following form

f(z,y) == ¢(y) + pllz — Dy|3 + Alzllo, (z,y) € R* x RY, (4.2)
f(z,y) == ¢(y) + pllz — Dy|l1 + Al|zllo, (z,y) € R* x RY, (4.3)

where ¢ is a convex function and D is d x d' matrix. Form (42 relates to regular-
ization by the envelope of the £y norm and form (43]) relates to regularization by
the capped £; norm [I1]. For specific examples of f, see [33] for inverting incom-
plete Fourier transform, [34, [35] for image/signal processing, [37] for medical image
reconstruction and machine learning [16] [17] 21, [29).
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Employing the partition A;, j € Zgy1, of R? and the definition of || - ||o, we have
an alternative representation of function f:

flz,y) =g(z,y) + A, forallz e Ay, £ €Zgy1 andforall y R? . (4.4)

Clearly, adding the function Al|z||p to g(x,y) results in lifting the graph of g(x,y)
according to the sparsity partition of R? with respect to the variable z. In other
words, the £y norm terraces the graph of function g(z, y). Specifically, the only value
that stays unchanged is g(0,y) and every other value of g(z,y) is lifted according
to which set A; the point = belongs to. For example, for = € Ay, g(z,y) is lifted to
g(z,y) + A In general, for x € A;, g(x,y) is lifted to g(z,y) + Aj, for j € Zg41. On
the highest level of the terraces is g(x, y) + Ad, for all x € A4, where all components
of = are nonzero. Hence, by changing the value of the parameter A, the landscape
of the graph of the corresponding function f is changed. Accordingly the sparsity
of the global minimizer of f is changed.

We first consider a choice of the parameter A with which the function f defined
by (4) has the most sparse minimizer in variable z. To this end, we assume that
the function g(r,y) has a global minimizer (z*,y*) € R? x R,

Theorem 4.1. Let (z*,y*) € R x RY be a global minimizer of g and yo € RY is
a minimizer of g(0,-) on RY . If the parameter X\ is chosen to satisfy

A= g(0,90) — g(z*,y"), (4.5)

then the pair (0,y0) € R? x RY isa global minimizer of f on R? x RY and (0, y0)
is the minimum value of f on R x R Moreover, if the inequality (LX) becomes
strict, then the pair (0,70) € R? x RY s the unique global minimizer of f on
R? x RY.

Proof. We consider an arbitrary = € R%\{0} and use the sparsity partition of R9.
There exists j € Ng such that = € A;. We employ Eq. (44) to get

f(z,y) = g(z,9) + Xj > g(z,y) + A, forally eR”.
Combining this inequality with condition (@H), we obtain that
f(z,y) = g(z,y) + A > g(z",y") + A > g(0,%0),
for all z € R\{0} and all y € R? . (4.6)
Moreover, by the definition of f, we have that
f(0,90) = 9(0,0) + Al[0lo = 9(0, o)- (4.7)

Combining inequality (€8] and Eq. (47) yields that f(z,y) = f(0,yp) for all = €
R%\ {0} and for all y € R . Furthermore, we have that f(0,y) =¢g(0,y) = g(0,y0) =
f(0,yp) for all y R, Therefore, the pair (0,0) € RY x R? is a global minimizer
of f. The uniqueness of the global minimizer of f is guaranteed if a strict inequality
for A is imposed. |
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We next consider a choice of the parameter A with which the function f(z,y)
defined by (L4]) has a global minimizer with sparsity of a general level for the
variable x.

Theorem 4.2. Let (z*,y*) € R9 x R be a global minimizer of g, for some £ € Ng,
(', y') € 2 x RY be a minimizer of g on Qy x RY and (zj,y5) € 5 x R be a
minimizer of g on §}; x Rd’, for all j € Zy. Suppose that

oa'9) —9(a"v) < g==lo(es ) — 9], forall j€ e (48)
If the parameter X\ is chosen to satisfy the conditions
o4 = 9" ) <A ooy )~ o) Sor all j€ L (49)
then (z',y') is a global minimizer of f on R? x RY .

Proof. It suffices to verify that
f&',y) < f(z,y), forall (z,y) e R xRY. (4.10)

Since (z',y’) € Q x R? is a minimizer of g on {2y x Rd’, we use the definition of
2 to consider cases when =’ € A; for j € Zpy;.

Step 1: We consider the case when =/ € Ay, that is, z’ = 0. We now show (@10
with =’ = 0 by verifying it for all z € A;, for j € Zg1, and for all y € R, The
case for 7 = 0 is trivial and we consider other cases. Since (z’,y’) € 2 x R? is a
¢

minimizer of g on {2y x R? and |z'llo = 0, we have for all z € A;, j =1,2,...
and for all y R that

17

f@y) =gz, y') < g(z,y) < gz, y) + Aj = f(z,y).

Forallz € Aj, j =£0+1,£+2,...,d, and for all y € Rd(, by employing the first
inequality of (£0) and the assumption that (z*,y*) is a global minimizer of g on
R? x Rd,, we obtain that

f@'y) =g(a’,y') < g(z",y") + X < g(z,9) + A < g(z,9) + Aj = f(z,y).
We have shown (4.I0) for the case when z’ = 0.

Step 2: We consider the case when ' € Ay, for k € Ny. For all j € Z;, the second
inequality of (@3) leads to g(z',y') + M < g(z;,y;) + Aj. This together with the
hypothesis that (z;,y;) € Q; x R? is a minimizer of g on Q; x R?, for all j € Z,,
ensures that for all = € A;, j € Zy and for all y € Rd(,

fl@,y) = g(z",y') + Ak < g(z’,y) + M

< g(zj,y5) + Aj < g(z,y) + Aj = f(z,y).
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For all = € Ay, since (/,y) is a minimizer of g on Q; x R? and k < ¢, we find that
for all z € A, and for all y € RY

f@' ) = g(",y") + Ak < g(z,y) + Mk < g(z,y) + A = f(z,y).

Forall z € Aj, for j =¢+1,{+2,...,d, by using the first inequality of (9] and
again the fact that (z*,y*) is a global minimizer of g, we derive that for all z € A;,
for j=€+1,£+2,...,d, and for all y € R,

', y') = g(',¢') + M < g(z",y") + Mk + 1) < g(z,y) + Aj = f(z,v).

We have shown (I0) for the cases =’ € Ay, for k € Nj.
Summarizing the above two steps of verification, we conclude that (LI0) holds
true and thus, (z,7/) is a global minimizer of f on R? x R? . O

Similarly to the comment made after the proof of Theorem B.2] we now remark
on condition (L8). It is straightforward to verify that condition (L) is equivalent
to

g(zj,y5) + (£ —j)g(z*, y*)
—j+1

Inequality (£II)) shows that g(z',3’) should be bounded above by an weighted
average of g(z*,y*) and g(z;,y;). By the definition of (z*,3*), (<, v) and g(z;,y;),

g(z',y') < , for all j € Z. (4.11)

we derive that

g(z*,y") < g(«',y') < g(zj,y5).

This shows that condition (Z8) is reasonable.

We illustrate Theorem by presenting in the next corollary its special case
when £ = 1. The corollary gives a choice of the parameter A which guarantees a
global minimizer of f with sparsity of level 1 for the variable z.

Corollary 4.3. Let (z*,y*) € RExR? be a global minimizer of g, (z',y') € Q1 xRY
be a minimizer of g on Q4 x RY | and (0,90) € Ap x RY be a minimizer of g on
Ay x RY. Suppose that

9(=',y') — g(z",y") < 9(0,30) — g(<’, %) (4.12)
If the parameter X is chosen to satisfy the condition
9(z',y") — g(z*,y*) < A < g(0,90) — g(«',¥/"), (4.13)

then (¢',y') is a global minimizer of f on R% x RY .

Proof. This result is obtained by specializing Theorem[4.2]to the special case where
£ =1 and noticing that Ag = {0}. In this case, we have that o = 0. O
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The next theorem connects a global minimizer of g with a global (or local)
minimizer of f.

Theorem 4.4. Let (z*,y*) € R? x R? be a global minimizer of g on R? x RY .

(i) Ifz* =0, then (z*,y*) is a global minimizer of f on R% x R
(ii) If for some £ € Ng, z* € Ay and

g(I*Jy*) + A(E _J) S g(I':y): fO'f' all (I:y) € AJ X Rd’: .;" € Nf:

(4.14)
then (z*,y*) is a global minimizer of f on R% x RY .
(i) If z* € Ag, and for some j € Zgyq1 and for some =’ € A;,
9(z",y") + Ad —j) > g(=’,y"), (4.15)
then (z*,y*) is a local minimizer of f but not a global minimizer of f.
Proof. For both Items (i) and (ii), we shall show that
f(z*,y*) < f(z,y), forall (z,y) € R x RY. (4.16)
Since (z*,y*) € R? x R is a global minimizer of g, we have that
g(z*,y*) < g(x,y), forall (z,y) € R x R? (4.17)

(i) If z* = 0, by the definition of || - ||o, we have that ||z*|jo = 0 and thus,
f(z*,y*) = g(z*,y*). Using this equation together with condition (£17]), we observe
for all (z,y) € A; x RY, for j € Zg,, that

fl*y") = g(z%,9") < g(z,9) < g(z,y) + Aj = f(z,y).

This together with (2.2)) ensures that (ZI6]) holds.
(i) Since for some £ € Ny, there holds z* € A; and since condition (£I4) holds,
we have for all (z,y) € A; x RY, for j € Z; that

fEy") = g(" y") + M =g(z", y") + Al = 3) + A < g(z,9) + Aj = f(z,v).
Moreover, by (£I7) we have for (z,y) € Agyj x RY, j € Zg_py41 that
&) =g(z",y") + M < g(z,y) + Al +5) = f(z,y).

Again, according to (ZZ), we find that (£16]) holds.
(iii) Since =* € A4 and (z*,y*) is a global minimizer of g on R? x R?, we have
for all (z,y) € Ag x R? that

f(z™,y") = g(z",y") + M < g(z,y) + Ad = f(z,y).



Sparse regularization with the £g norm 923

That is,
f@*,y") < f(z,y), forall (z,y) € Aq x RY. (4.18)

According to Proposition [Z[iv), we know that A, is an open set. Thus, Az x RY
is an open set. Therefore, inequality (L.I8) ensures that the pair (z*,y*) is a local
minimizer of f.

It remains to show that (z*,y*) is not a global minimizer of f. By condi-
tion (£I5), we have for some j € Zgy1 and for some =’ € A; that g(z*,y*) + Ad >
g(z',y*) + Aj. This together with the fact z* € A; and =’ € A; ensures that

f="y") = g(z",y") + M > g(z',y") + Aj = f(«', ")

This implies that (z*,y*) is not a global minimizer of f. |

In the next theorem, we provide properties of a global minimizer of f.
Theorem 4.5. Let (z*,y*) € R% x RY be a global minimizer of f on R? x RY .

(i) If for some £ € Zgyi1, =¥ € Ag, then (2¥,y") is a minimizer of g on Q; R
(i) If (z*,y*) e R% x R? is not a global minimizer of g, then * € Qq_1.

Proof. (i) Since for some £ € Zg,1, (z*,y*) € A; x R? is a global minimizer of f,
by (AI6]), we have that

9(z",y") + M = f(z",y") < f(z,y) = 9(x,9) + A,
for all (z,y) € Aj x RY, j € Zyyq.
It follows that
g(z*,y") + Ml — j) < g(z,y), forall (z,y) € A; x RY, je Zgyq.
Using this inequality and noting that A(¢ — j) > 0, for j € Z;y1, we have that
g(z™,y") < g(z*,y*) + Al —j) < g(z,y), forall (z,y) € A; x RY, £ € Zyps.

This ensures that (z*,y*) is a minimizer of g on {2y x RY .

(ii) We prove this assertion by contradiction. Assume to the contrary that =* ¢
Qq4_1. Since z* € R%, R? = Q41 U Ag and Qq_1 N Ag = @, we must have that
z* € Ag. By Item (i) of this theorem with £ = d, we conclude that (z*,y*) is a
minimizer of g on Q4 x R%. Noting that Q4 = RY, we confirm that (r*,y*) is a
global minimizer of g on R x R%'| a contradiction. This contradiction ensures that
* e Qg_1. O

Theorem H.5|ii) provides a sufficient condition which guarantees that a global
minimizer of f is sparse. The next corollary follows immediately from Theo-

rem [A.5)ii).



924 Y. Xu

Corollary 4.6. If (z*,y*) € R? x R? is a global minimizer of f, then, either
T* € Qg_1 or (z*,y*) is a global minimizer of g on R? x R

We next present an understanding of the relation between the local minimizers
of minimization problem (1)) for a fixed parameter A > 0 and the constrained
minimization problem without the term involving the £y-norm. We now define pre-
cisely the constrained minimization problem. For a given index set 7, we introduce
a minimization problem on C7 x R4 by

min{g(z,y) : (z,y) € Cr x RT}. (4.19)

We need a technical lemma to compare the support of a given vector with that
of vectors in its close neighborhood.

Lemma 4.7. If z* € R? is given, then there exists g > 0 such that

(i) for all x € B(z*,4dp), there holds S(z*) C S(x);
(ii) for all x € B(z*,dp) NCz with I := S(z*), there holds S(z*) = S(z).

Proof. For a fixed number 0 < p < 1/2, we let 6o := min{ulz}| : j € S(z*)}.
Clearly, dp > 0. Suppose that ¢ € S(z*). For all = € B(z*, dp), we have that

|lzf — x| < ||z —z%||]2 < 6o and |z = |z]| — |z —zi| = 60 > 0.

This implies that i € S(z). Thus, S(z*) C S(z), which proves Item (i).
To show Item (ii), we note that when = € Cz, by the definition of Cz, there holds
S(z) € S(z*). This together with Item (i) yields S(z*) = S(x). O

A pair (z*,y*) € R? x R? is called a local minimizer of the minimization
problem ([@.J]), if there exists a § > 0 such that

f*y") < fz,y), forall z € B(z",4), y € By",9).

Here comes the theorem concerning the relation between local minimizers of mini-

mization problems (1) and ({.I9]).

Theorem 4.8. Suppose that (z*,y*) € R? xR is given. The pair (z*,y*) is a local
minimizer of the minimization problem (L1l) with a fized parameter A > 0 if and
only if (z*,y*) is a local minimizer of the constrained minmization problem (Z19)

with T := S(z*).

Proof. Suppose that the pair (z*,y*) is a local minimizer of the minimization
problem (4.1]) with a fixed parameter A > 0 and we show that the pair is a local
minimizer of the constrained minimization problem (LI9) with 7 = S(z*). We
prove this by contradiction. Since 7 := S(z*), we note that z* € Cz. Assume
to the contrary that the pair (z*,y*) is not a local minimizer of the constrained
minimization problem (@I9) with 7 := S(z*). According to the definition of the
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local minimizer of g, we observe that for any d > 0, there exist x5 € B(z*,4) N Ct
and ys € B(y*,d) such that g(z*,y™) > g(zs,ys). Item (ii) of Lemma [L7] ensures
that there exists dp > 0 such that for all = € B(z*, §p) N Cz with 7 := S(z*), there
holds S(z*) = S(z). Hence, for any 0 < & < dp, there exist =5 € B(z*,§) NCz
and ys € B(y*,d) such that S(z*) = S(zs), which implies ||z*|o = ||zs|/o, and
g(z*,y*) > g(zs,ys). This implies that for the fixed parameter A > 0, there holds

F(z*, %) = g(z*,y") + Al|z*|lo > g(zs,ys5) + Allzs|lo = f(zs,ys)-

This violates the assumption that (z*, ") is a local minimizer of the minimization
problem (&J]) with the parameter A > 0.

Now, suppose that (z*,y") is a local minimizer of the constrained minimization
problem (1) with 7 := S(z*) and we prove that (z*,y*) is a local minimizer of
the minimization problem (1)) with the fixed parameter A > 0. We proceed the
proof by considering two cases = € C1r and = ¢ Cr separately. We first consider the
case when x € C7. The definition of the local minimizer ensures that there exists a

&1 > 0 such that
g(I*Jy*) < g(IJ y)'l for all = € B(I*: 61) HCIJ Yy e B(y*aal)' (420)

By Item (ii) of Lemma[LT] we have that there exists a dgp > 0 such that for all = €
B(z*, 6p)NCz, there holds S(z*) = S(x). This implies that for all = € B(z*, §p) NCz,
there holds ||z*||p = ||z||o- Choose § := min{dp, b1 }. Then, for all z € B(z*,§) NCr
and for all y € B(y*,4), by (£20), there holds

f(@™,y%) = g9(z",y") + Allz*[lo < g(z,y) + Alz"[lo = 9(z,y) + Allzllo = f(z,).
This yields
f(=*y") < f(z,y), forall zeB(z%,0)NCz, yeB(y"9). (4.21)

We next consider the case when = ¢ Cz. By Item (ii) of Proposition B.7 we
conclude that there exists do > 0 such that

llzllo = ||z*|lo +1, for all z € B(z",d2)\Cz- (4.22)
Since g is continuous, for A > 0, there exists d3 > 0 such that
9(z%,y") < g(z,y) + A, forall z € B(z%,83)\Cz, yebB(y"ds). (4.23)

Choose ¢ := min{d; : 7 = 0,1,2,3}. By employing inequality (£23) and then
inequality (L22)), we have for all z € B(z*,9)\Cz, vy € B(y", d), that

f@®y%) = g(=",y") + Alz"lo < g(z,y) + Allz"[lo + A
< g(z,y) + Allzljo = f(z, ).
That is,
fz*,v") < f(z,y), forall z € B(z*,6)\Cr, vy e B(y*,6). (4.24)
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Combining inequalities (L21I) and (£24)) leads to f(z*,v*) < f(z,y), for all z €
B(z*,§), y € B(y*, ), which implies that the pair (z*,y") is a local minimizer of
the minimization problem (LI]) with a fixed parameter A > 0. m|

Theorem is useful in developing efficient numerical algorithms for solv-
ing non-convex minimization problems involved functions f having the form (€2)
or (£3) and analyzing convergence of the algorithms, since in such cases Theo-
rem guarantees that the non-convex minimization problems are reduced to con-
vex minimization problems on certain support sets. We next present two corollaries

that specialize Theorem .8 to functions f having a special form (€Z) or (£3)).

Corollary 4.9. Suppose that (z*,y*) € R% x R? is given. The pair (z*,y*) is a
local minimizer of the minimization problem (A1) with f being defined by (EL2) for
a fized parameter A > 0 if and only if (z*,y*) is a global minimizer of the convex
minimization problem ([EI9) with T := S(z*) and g(x,y) := ¢(y) + pl|lz — Dy||3,
where ¢ is the conver function and D is d x d' matriz appearing in (E2]).

The sufficient condition for a pair (z*,y*) to be a local minimizer of the mini-
mization problem (T]) presented in Corollary LY for a special example of convex
function g was obtained in [34) Proposition 2.3].

Corollary 4.10. Suppose that (z*,y*) € R? x R is given. The pair (z*,y*) is a
local minimizer of the minimization problem (AIl) with f being defined by (A3) for
a fized parameter A > 0 if and only if (z*,y*) is a global minimizer of the convex
minimization problem ([EI9) with T := S(z*) and g(z,y) := ¢(y) + pllz — Dyl)1,
where ¢ is the conver function and D is d x d' matriz appearing in ([@3]).

5. Final Remarks

We briefly discuss possible extension of the results presented in previous sections
involving matrix M and comment on potential uses of the main results of this
paper.

We first elaborate an extension of the results involving matrix M which has
been assumed to satisfy hypothesise (2.8). We now suppose that the matrix M has
an arbitrary rank r with 0 < r < min{d, m}. In this general case, the singular value
decomposition of M can be used to remove hypothesise (2.8)) on M. Clearly, matrix
M has the singular value decomposition

M =UAV*, (5.1)

where U is a d x d unitary matrix, V' is an m x m unitary matrix and A isa d x m
diagonal matrix having the nonzero diagonal entries A; > --- > A, > 0. We can first
extend the results in Secs. Bl and Ml involving matrix M to the case when M = A.
The regularization problem ([L2]) with f having the form (I.I]) for this special case
is to impose the regularization only for the first r components of the variable x and
leave its remaining m — r components not regularized. Results for the general case
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can be obtained by using appropriate changes of variables with the two unitary
matrices U and V from the singular value decomposition (51). We would leave
details of the extension to the interested reader.

We have proved rigorously that if the regularization parameter is chosen appro-
priately, the £y norm regularization will lead to sparse solutions, a result previ-
ously validated empirically. Regularization parameter choice strategies presented
in Secs. 3] and [ are all theoretical since in general it is not realistic to know a
global minimizer of function g. Nevertheless, these results provide insights into the
connection between the choice of the regularization parameter with the locations of
global minimizers of f. They can serve as a guidance for further designing practical
parameter choice strategies. For example, one may estimate a global minimizer of
g via certain means. In such a case, our parameter strategies may lead to practical
uses. This requires further investigation.

Finally, we indicate that Theorem [£.§ and especially Corollaries [£.9 and
are useful in developing efficient algorithms for finding local minimizers of the reg-
ularized non-convex optimization problems. The essence of Corollaries[4.9 and 110
is that they identify a local minimizer of a non-convex optimization problem with
that of a convex optimization problem. Hence, finding a local minimizer of a non-
convex optimization problem can be done by finding a local minimizer of a convex
optimization problem. In general, solving a convex optimization problem is much
easier than solving a non-convex optimization problem.
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