

1 **Notes from the taxonomic disaster zone: Evolutionary drivers of intractable species**
2 **boundaries in an Australian lizard clade (Scincidae: *Ctenotus*)**

3

4 Ivan Prates^{1,*}, Mark N. Hutchinson², Sonal Singhal³, Craig Moritz⁴, Daniel L. Rabosky¹

5

6 ¹*Department of Ecology and Evolutionary Biology and Museum of Zoology, University of*
7 *Michigan, Ann Arbor, MI, USA.*

8

9 ²*South Australia Museum, Adelaide, SA, Australia.*

10

11 ³*Department of Biology, California State University — Dominguez Hills, Carson, CA, USA.*

12

13 ⁴*Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National*
14 *University, Canberra, ACT, Australia.*

15

16 * Corresponding author. E-mail: ivanprates@gmail.com

17

18 **Running title (45 characters max):** Drivers of intractable species boundaries.

19 **Keywords (six words max):** Species delimitation, hybridization, introgression, cryptic species,
20 isolation-by-distance, speciation.

21

22 **Abstract (250 words max)**

23 Genomic-scale datasets, sophisticated analytical techniques, and conceptual advances
24 have disproportionately failed to resolve species boundaries in some groups relative to others. To
25 understand the processes that underlie taxonomic intractability, we dissect the speciation history
26 of an Australian lizard clade that arguably represents a “worst-case” scenario for species
27 delimitation within vertebrates: the *Ctenotus inornatus* species group, a clade beset with
28 decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in
29 purportedly diagnostic morphological characters. We sample hundreds of localities to generate a
30 genomic perspective on population divergence, structure, and admixture. The results reveal
31 rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically
32 cryptic or polytypic. Isolation-by-distance patterns uncover spatially continuous differentiation
33 among certain pairs of putative species, yet genetic and geographic distances are decoupled in
34 other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression,
35 and historical demographic modeling identify gene flow between divergent candidate species.
36 Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher
37 between sympatric species than between parapatric populations of the same species. Such
38 idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also
39 varying in fuzziness. Our results suggest that “taxonomic disaster zones” like the *C. inornatus*
40 species group result from spatial variation in the porosity of species boundaries and the resulting
41 patterns of genetic and phenotypic variation. This study raises questions about the origin and
42 persistence of hybridizing species and highlights the unique insights provided by taxa that have
43 long eluded straightforward taxonomic categorization.

44

45 **Introduction**

46 Species delimitation has long relied on the phenotypic attributes of organisms under the
47 premise that character differences reflect evolutionary divergence (de Queiroz, 1998, 2007;
48 Hennig, 1966). Molecular approaches revolutionized taxonomy by revealing that species
49 boundaries inferred from morphological characters can be inconsistent with patterns of
50 evolutionary divergence, sometimes supporting the refinement of morphological diagnoses
51 (Prates, Hutchinson, et al., 2022; Sites & Marshall, 2004; Teixeira et al., 2016). Observations of
52 uncoupled genetic and morphological differentiation have now become ubiquitous, as illustrated
53 by increasing reports of polymorphic and cryptic species (Vacher et al., 2020; Veijalainen et al.,
54 2012; Zamudio et al., 2016). Over the last decades, a suite of methods has been proposed to infer
55 species boundaries based primarily on patterns of genetic variation (Carstens et al., 2013). These
56 methods include genotypic clustering algorithms (Pritchard et al., 2000), metrics of genealogical
57 discordance (Cummings et al., 2008), tests of alternative species schemes under the multispecies
58 coalescent model (Yang & Rannala, 2010), estimates of population gene flow (Smith &
59 Carstens, 2020), and genetic-based estimates of reproductive isolation (Singhal et al., 2018).
60 With the promise of providing process-based and objective inference of species boundaries
61 (Fujita et al., 2012), molecular delimitation approaches have become a standard component of
62 systematic and evolutionary investigations.

63 Many clades regarded as taxonomically challenging have now been scrutinized using
64 large genetic datasets and sophisticated delimitation methods (e.g., Leaché et al., 2018; Pyron et
65 al., 2020; Rivera et al., 2021; Wagner et al., 2013). Typically, multiple analytical approaches are
66 combined in an integrative assessment of whether populations are on separate evolutionary
67 trajectories. However, different approaches can yield incongruent inferences of species

68 boundaries, leading some authors to advocate for consensus species partitions across multiple
69 analytical frameworks (Carstens et al., 2013; Shaik et al., 2021). Still, objectively deriving a
70 single scheme based on conflicting or inconclusive results can be difficult to impossible (e.g.,
71 Firneno et al., 2021; McKay et al., 2013; Tilley et al., 2013; Willis, 2017). Even in the face of the
72 same patterns, different authors often disagree on the number of species involved (Burbrink &
73 Ruane, 2021; de Queiroz, 2020; Hillis et al., 2021; Zachos et al., 2020). Moreover, the units
74 emerging from delimitation algorithms might represent distinct populations rather than species
75 (Sukumaran & Knowles, 2017). Finally, despite the increasing consensus around the definition
76 of species as separately evolving metapopulation lineages (de Queiroz, 1998), translating
77 conceptual definitions of species into empirical delimitation is not trivial (de Queiroz, 2007;
78 Prates, Doughty, et al., 2022). Speciation is an extended and often non-linear process, whereby
79 species may constitute historical and geographic continuums that can be difficult to partition
80 (Bouzid et al., 2022). Therefore, modern datasets and analytical techniques, integrative
81 approaches, and conceptual advances have not always made species delimitation more accurate
82 or objective (Barley et al., 2018; Garnett & Christidis, 2017; Hillis, 2019; Sites & Marshall,
83 2004; Sukumaran & Knowles, 2017).

84 Many existing taxonomies are based on morphological data, and limitations of these data
85 might in part explain inconsistent or unclear species boundaries (Cadena & Zapata, 2021;
86 Winker, 2009). However, such inconsistencies might also originate from patterns of genetic
87 variation that map poorly onto how populations are represented in inferential frameworks. This
88 poor mapping might result from biological processes. For instance, inferences of genetic
89 structure and phylogenetic relationships can overestimate population differentiation in the
90 presence of isolation-by-distance (Barley et al., 2018; Bradburd et al., 2018; Irwin, 2002),

91 particularly if substantial sampling gaps exist (Battey et al., 2020). Moreover, genetic
92 introgression can lead to oversplitting of species. Admixed populations can be mistaken as
93 cryptic species due to unique allele combinations, particularly when admixture is geographically
94 structured (Chan et al., 2020, 2021). Introgressive hybridization and incomplete allele sorting can
95 also lead to heterogeneous divergence among genome regions. This heterogeneity hampers
96 inferences of species boundaries and relationships, as reported for groups ranging from lizards to
97 cichlid fishes and oak trees (Camargo et al., 2012; McVay et al., 2017; Turner et al., 2001). In
98 addition, unclear species boundaries might result from processes that shape patterns of
99 phenotypic variation. For instance, geographically segregated phenotypes (i.e., polytypism)
100 owing to phenotypic plasticity or local adaptation can be interpreted as evidence of population
101 separation, even when gene flow is high (Mayr, 1963; Zamudio et al., 2016). Conversely,
102 morphological crypsis owing to developmental or ecological constraints can conceal genetically
103 divergent species (Struck et al., 2018; Zamudio et al., 2016). These findings suggest that
104 logistical challenges to species delimitation might emerge from particular evolutionary
105 processes. Uncovering these processes might allow us to understand why certain clades have
106 eluded, and perhaps are not amenable to, taxonomic categorization (Willis, 2017).

107 Here, we seek to understand the processes that might underlie “taxonomic disaster zones”
108 — i.e., clades within which phenotypic and genotypic species boundaries are frequently unclear,
109 inconsistent, or conflicting. To this goal, we focus on one of the most challenging Australian
110 vertebrate clades: the *inornatus* group of the lizard genus *Ctenotus* (Scincidae). In this group,
111 identifying species has long been regarded as difficult owing to ambiguous morphological
112 diagnoses based on few or poorly understood characters, which, in turn, renders geographic
113 ranges uncertain (Bush et al., 2007). Species in the *C. inornatus* group are a conspicuous and

114 often dominant component of Australian arid zone lizard assemblages (James & Shine, 2000;
115 Pianka, 1969, 1972, 1986; Rabosky et al., 2007, 2011). The 16 or so species-level taxa
116 commonly recognized in this group have been defined primarily based on dorsal coloration
117 patterns, scalation, and body proportions (Horner & King, 1985; Storr, 1969, 1970, 1971, 1978;
118 Storr et al., 1999). More recently, studies incorporating genetic data have suggested that
119 variation in these traits does not necessarily reflect evolutionary divergence. For instance, a
120 combined analysis of morphological characters, one mitochondrial DNA marker, and one
121 nuclear DNA locus from more than 350 specimens inferred rampant taxon paraphyly, within-
122 species polymorphism, and among-species sharing of characters previously thought to diagnose
123 species (Rabosky et al., 2014). This scenario suggests that several traditionally recognized taxa
124 in the *C. inornatus* species group lack genetic coherence or distinctiveness.

125 In principle, the unexpected lack of genetic support for several taxa in the *C. inornatus*
126 species group might reflect an over-reliance on mitochondrial DNA and limited geographic
127 sampling (Rabosky et al., 2014). Here, we revisit species limits with improved sampling of
128 populations and sequencing of thousands of nuclear loci. Our approach comprises six steps. We
129 start with analyses performed without reference to taxonomic assignments, namely (i) inferring
130 phylogenetic relationships among hundreds of samples, and (ii) characterizing population genetic
131 structure using genotypic clustering. We then (iii) compared the results with a mitochondrial
132 analysis that incorporated additional samples beyond what was used in previous studies. Given
133 evidence for multiple genetic units within particular widespread nominal taxa, we then (iv) tested
134 whether inferred genetic breaks are explained by simple models of isolation-by-distance (Fig. 1).
135 This simple assessment is rarely included in delimitation studies but provides critical information
136 on the extent to which genetic groups interpreted as putative species might emerge from spatial

137 heterogeneity in sampling alone (Battey et al., 2020). Based on evidence of incomplete lineage
138 separation and mitochondrial capture, we (v) test for introgression by determining if patterns of
139 nuclear allele sharing exceed expectations from simple stochastic allele sorting. Finally, we (vi)
140 estimate migration rates between pairs of putative species or geographically defined populations
141 using historical demographic modeling. Based on the results, we discuss the biological
142 underpinnings of fuzzy species boundaries in this and other challenging clades.

143

144 **Material and Methods**

145

146 *Terminology and species criteria*

147 This study uses the terms “taxa” and “taxon” to refer to the nominal entities currently
148 recognized in *Ctenotus* taxonomy. “Traditional” and “traditionally recognized” taxa refer to
149 definitions proposed based on morphological attributes (Horner & King, 1985; Storr, 1969, 1970,
150 1971, 1978). Six traditional taxa were deemed invalid by the combined genetic-morphological
151 analysis of Rabosky et al. (2014). These taxa are indicated between quotes: *C. “borealis”*, *C.*
152 *“brachyonyx”*, *C. “fallens”*, *C. “heleneae”*, *C. “saxatilis”*, and *C. “severus”*.

153 We consider “taxa” as operational classification devices that may or not correspond to
154 “species” in an evolutionary sense. By “species”, we specifically refer to a conceptual category
155 corresponding to separately evolving metapopulation lineages (De Queiroz 1998, 2007).

156 Applying this concept to species delimitation practice is often not trivial. Our approach employs
157 operational taxonomic units (OTUs), which we delimit based on attributes widely proposed as
158 *species criteria* (Mayr 1963; Cracraft 1987; De Queiroz 1998; Mallet 2013, 2020; Singhal et al.,
159 2018). These criteria include: 1) conspecific individuals tend to cluster phylogenetically owing to

160 shared derived genetic variants (i.e., branching patterns reflect species cohesiveness and
161 distinctiveness); 2) conspecifics comprise a cohesive genotypic pool, sharing strongly correlated
162 genome-wide allele frequency patterns; 3) conspecifics span a coherent and mostly continuous
163 geographic area, allowing gene flow between populations; and 4) regional differences in allele
164 frequencies across a species' range follow a continuous isolation-by-distance pattern, without
165 sharp breaks that might arise from geographic or reproductive barriers. We consider the OTUs
166 (or "units") delimited based on these criteria as candidate species.

167 We found multiple OTUs within four taxa: *C. inornatus*, *C. robustus*, *C. spaldingi*, and
168 *C. superciliaris*. We refer to these intra-taxon OTUs using labels that refer to their geographic
169 ranges, such as *inornatus*-N, *inornatus*-S, and *superciliaris*-W. Other taxa corresponded to a
170 single OTU each; we refer to them using their corresponding taxon name: *burbidgei*, *eutaenius*,
171 *lateralis*, *mastigura*, and *rimacola*.

172

173 *Motivating case studies of taxonomic discord in the Ctenotus inornatus species group*

174 Below, we briefly introduce four taxonomic issues to illustrate the confusion surrounding
175 the *C. inornatus* species group and set up the structure of our analyses. Recently, the Australian
176 Society of Herpetologists (ASH, 2022) recommended broad spatial and genomic sampling to
177 properly address these issues.

178

179 *What is Ctenotus robustus?*

180 *Ctenotus robustus* Storr, 1970 and *Ctenotus spaldingi* (Macleay, 1877) are
181 morphologically similar taxa whose definitions and geographic ranges have been transformed by
182 genetic evidence (Rabosky et al., 2014). *Ctenotus robustus* had been thought to encompass a

183 broad arc from the Flinders Ranges (South Australia) to the Pilbara region (Western Australia),
184 while *C. spaldingi* had been restricted to Australia's northeast (Queensland, Northern Territory)
185 (Fig. 2). However, a genetic analysis found nominal populations of *C. robustus* to be nested in a
186 northwestern lineage, while nominal *C. spaldingi* occurs from northern (Cape York) to southern
187 (Victoria) eastern Australia (Rabosky et al., 2014). Consequently, all eastern and southeastern
188 populations of *C. robustus* were assigned to *C. spaldingi*. Adding to confusion, the presumed
189 type locality of *C. robustus* lies outside this taxon's traditional range (Fig. 2). We revisit the
190 genetic limits between *C. robustus* and *C. spaldingi* and reassess recently proposed changes in
191 their geographic distributions.

192

193 *Is Ctenotus borealis just an atypical C. robustus?*

194 *Ctenotus "borealis"* Horner and King, 1985 is a taxon from Australia's Top End that is
195 morphologically similar to *C. robustus* but shows subtle coloration differences (Fig. 2). This
196 taxon was recently synonymized to *C. robustus* based on lack of differentiation in two loci
197 (Rabosky et al., 2014), but this recommendation remains controversial (ASH, 2022). We employ
198 genome-wide data to assess whether these two names correspond to distinct lineages.

199

200 *Ctenotus superciliaris and C. "saxatilis": Same or different?*

201 *Ctenotus "saxatilis"* Storr, 1970 is a widespread taxon (Fig. 2) characterized by strongly
202 marked dorsolateral stripes and spots. However, mitochondrial data suggest that this phenotype
203 is shared by multiple divergent lineages in northern Australia (Fig. 3 in Rabosky et al., 2014).
204 One of these lineages is distinguished by its supraciliary scale configuration and was thus
205 described as a new taxon, *Ctenotus superciliaris* Rabosky, Hutchinson, Donnellan, Talaba and

206 Lovette, 2014. However, Storr et al. (1999) claimed that this same character diagnoses *C.*
207 “*saxatilis*”, albeit not mentioning it in this taxon’s formal description (Storr, 1970). Rabosky et
208 al. (2014) examined the holotype of *C. “saxatilis”* and found it to have the scalation pattern
209 typical of *Ctenotus inornatus* (Gray, 1845) rather than that of *C. superciliaris*, thus
210 synonymizing *C. “saxatilis”*. Increasing confusion, the name *C. “saxatilis”* remains widely used
211 (ASH, 2022; Uetz et al., 2022). We employ genome-wide data to test if *C. superciliaris* and *C.*
212 “*saxatilis*” are genetically coherent and distinctive from *C. inornatus*.

213

214 *Arid zone members of the C. inornatus complex: One species or five?*

215 Four additional taxa were synonymized with *C. inornatus* (Rabosky et al., 2014):
216 *Ctenotus “brachyonyx”* Storr, 1971, a striped taxon from the southeastern deserts; *Ctenotus*
217 “*fallens*” Storr, 1973, with dorsal stripes and lateral spotting, from the western coast; *Ctenotus*
218 “*helenae*” Storr, 1969, a weakly patterned taxon from the central deserts; and *Ctenotus “severus”*
219 Storr, 1969, with lateral elements but no vertebral or paravertebral stripes, from the western
220 deserts (Fig. 2). Individuals with the traits presumed to diagnose each of these taxa did not
221 cluster in a mitochondrial tree, suggesting that the group’s taxonomy might be confounded by
222 evolutionary lability in coloration (e.g., Fig. 7 in Rabosky et al., 2014). However, these names
223 remain broadly recognized (ASH, 2022; Uetz et al., 2022). We investigate whether each of them
224 comprises a coherent and divergent genetic pool.

225

226 *Genetic sampling*

227 Our nuclear dataset included 13 ingroup taxa under the traditional morphological
228 taxonomy (Storr et al., 1999), corresponding to seven taxa following Rabosky et al. (2014). The

229 original identification of specimens in our molecular dataset (as made by field collectors and
230 museum staff, including ourselves) largely applied that traditional scheme, as follows (numbers
231 in parentheses indicate the number of samples originally assigned to each taxon): *C. "borealis"*
232 (four specimens), *C. "brachyonyx"* (five), *C. eutaenius* (three), *C. "fallens"* (three), *C. "helenae"*
233 (52), *C. inornatus* (28), *C. lateralis* (15), *C. mastigura* (one), *C. rimacola* (two), *C. robustus*
234 (55), *C. "saxatilis"* (31), *C. "severus"* (three), and *C. spaldingi* (16). As outgroups, we included
235 representatives of other *Ctenotus* species groups and the closely related genus *Lerista*: *C. atlas*
236 (two), *C. australis* (four), *C. essingtonii* (two), *C. leonhardii* (two), *C. nigrilineatus* (two), *C.*
237 *pantherinus* (two), *C. schomburgkii* (two), *C. taeniatus* (two), *L. bipes* (two), and *L. ips* (two)
238 (Table S1 provides nuclear DNA sample information).

239 Our analyses incorporated a double-digest restriction site-associated (ddRAD) dataset
240 generated by comprehensive analyses of sphenomorphine skinks (Prates, Singhal, et al., 2022;
241 Singhal et al., 2017) and available in the Sequence Read Archive (BioProjects PRJNA755251
242 and PRJNA382545). Briefly, DNA was digested with the restriction enzymes EcoRI and MspI,
243 tagged with individual barcodes, size-selected (150–250 bp), PCR-amplified, multiplexed, and
244 sequenced on an Illumina platform. We used *ipyrad* v. 0.9.84 (Eaton & Overcast, 2020) to
245 demultiplex reads (allowing no mismatches from individual barcodes), perform *de novo*
246 assembly (minimum clustering similarity = 0.90), align loci, and call single nucleotide
247 polymorphisms (SNPs). We enforced a minimum Phred quality score (= 33), sequence coverage
248 (= 6x), and read length (= 35 bp); and a maximum proportion of heterozygous sites per locus (=
249 0.5) and number of alleles per nucleotide site within an individual (= 2, i.e., a diploid genome).
250 After these steps, we generated a final dataset for phylogenetic inference by retaining loci
251 present in at least 30% of the sampled individuals. The final phylogenetic dataset included

252 524,324 base pairs from 3,694 ddRAD loci. Moreover, to reduce missing data in population
253 genetic analyses, we generated three datasets corresponding to each of three major inferred
254 clades (“species complexes”; see Results), retaining loci present in at least 50% of the sampled
255 individuals. The final population genetic datasets included 6,287 (*spaldingi* complex), 7,447
256 (*superciliaris* complex), and 3,534 (*inornatus* complex) unlinked SNPs.

257 This nuclear phylogenetic dataset included a total of 242 specimens. To further expand
258 our sampling, we also incorporated a mitochondrial dataset comprising 485 samples (see Table
259 S2 for sample information; see Fig. S1 and Fig. S2 for the geographic localities of samples
260 partitioned by delimited OTU and proposed taxon respectively). Of those, 348 samples were
261 sequenced by previous efforts (Rabosky et al., 2011, 2014). Besides broader geographic
262 sampling for each taxon, this dataset included *Ctenotus burbridgei* Storr 1975, for which nuclear
263 data were not available. We amplified, sequenced, edited, and aligned a 1,143 base pair fragment
264 of the cytochrome B gene following standard protocols (Rabosky et al., 2009). Newly generated
265 mitochondrial sequences were uploaded to GenBank (accessions numbers OQ091785–
266 OQ091921; Table S2).

267

268 *Inferring phylogenetic relationships*

269 We inferred evolutionary relationships based on the nuclear and mitochondrial datasets
270 separately. Phylogenetic inference incorporated both variant and invariant sites under maximum
271 likelihood using RAxML-HPC v. 8.2.12 (Stamatakis, 2014) and employing the GTRCAT model
272 of nucleotide evolution. For this analysis, loci were concatenated, and polymorphic sites were
273 coded as ambiguities. We also inferred a nuclear SNP-based tree under the multispecies
274 coalescent framework using SVD Quartets (Chifman & Kubatko, 2014) as implemented in the

275 command line version of PAUP v. 4 (Swofford, 2002). This analysis incorporated one SNP from
276 each locus for a total of 3,692 SNPs and sampled all possible quartets. In both phylogenetic
277 analyses, we estimated node support based on 1,000 bootstraps.

278

279 *Inferring genetic structure*

280 We estimated patterns of nuclear admixture and allele sharing using sNMF, a genotypic
281 clustering method that does not assume Hardy-Weinberg equilibrium to identify clusters (Frichot
282 et al., 2014). To avoid the spurious grouping of densely sampled localities (Lawson et al., 2018;
283 Puechmaille, 2016), we limited the maximum number of samples per collecting site to five. In
284 these analyses, we dropped four highly divergent lineages; although we consider these lineages
285 as OTUs (see Results), they are represented by < 4 samples, and small sample sizes can lead to
286 spurious grouping of samples in genotypic clustering analyses (Puechmaille, 2016; Lawson et
287 al., 2018). We removed SNPs with a minimum allele frequency < 0.05 (within each of the three
288 complexes) to improve the inference of population structure (Linck & Battey, 2019) and
289 minimize spurious SNPs from sequencing errors (Ahrens et al., 2018) using VCFtools v. 0.1.16
290 (Danecek et al., 2011). After extracting a single SNP per locus, individuals that had data for less
291 than 50% of the final SNPs were excluded. Outgroups were not included in these analyses. We
292 ran sNMF using the *LEA* R package (Frichot & François, 2015). Preliminary analyses supported
293 that the number of inferred clusters is robust to the regularization parameter in sNMF; this
294 parameter was set to 500 in the final analyses. The tolerance parameter was set to the default
295 value (0.00001). To infer the best-fitting number of genotypic clusters (K), we compared K = 1–
296 10 with 20 replicates for each K. The K value that yielded the lowest cross-entropy value across
297 replicates was considered to be the best-fit K.

298 We then confirmed whether samples inferred in the same genotypic cluster also group in
299 genotypic space. For that purpose, we performed a Principal Component Analysis on the
300 unlinked SNP data using the *LEA* R package and inspected biplots of principal components.

301

302 *Testing the robustness of results to isolation-by-distance*

303 Phylogenetic and population genetic structure are widely employed as indicative of
304 species divergence and boundaries. However, genetic breaks can emerge over the range of a
305 continuously distributed species due to isolation-by-distance (IBD), despite high gene flow
306 connecting adjacent locations (Irwin, 2002; Wright, 1943). Thus, we investigated whether IBD
307 alone can account for the population structure emerging from our genetic analyses.

308 Methods are available that can account for IBD while performing genotypic clustering
309 (Bradburd et al., 2018), but these approaches were not computationally tractable for our large
310 dataset. Thus, we assessed IBD patterns based on pairwise F_{ST} (Weir & Cockerham, 1984; Weir
311 & Hill, 2002), applying the following reasoning. Isolation-by-distance is the relationship
312 described by genetic (here, F_{ST}) versus geographic distances (Irwin, 2002; Wright, 1943) (Fig.
313 1a). Under simplifying assumptions (e.g., equilibrium demography, landscape homogeneity), we
314 expect the IBD relationship between populations of the same species to follow a simple linear
315 relationship (Fig. 1b), whose slope is a function of population density and effective gene
316 dispersal (Rousset, 1997). In this case, geographic separation alone can explain genetic
317 differentiation, reflecting the continuous decay of population connectivity over a species' range.
318 By contrast, when a single analysis includes populations from distinct species, we may expect
319 the IBD relationship within and between populations to be discontinuous (i.e., to be described by
320 multiple curves) (Fig. 1c). In some cases, populations could be highly differentiated with

321 minimal effects of geographic separation on levels of genetic differentiation (Fig. 1d). This
322 situation points to mechanisms that restrict gene flow in parapatry, such as reproductive
323 isolation, and, as such, supports delimitation of species. To determine which patterns best match
324 our taxa, we estimated pairwise individual F_{ST} based on the SNP data using the *BEDASSLE* R
325 package (Bradburd et al., 2013). To calculate a matrix of geographic distances, we used the R
326 package *fossil* (Vavrek, 2011).

327

328 *Modeling demographic history*

329 To characterize gene flow among populations, we performed historical demographic
330 inference using G-PhoCS v. 1.3 (Gronau et al., 2011), implementing an isolation-with-migration
331 model (Nielsen & Wakeley, 2001; Pinho & Hey, 2010). We estimated gene flow between three
332 classes of population pairs (see Fig. S3 for their geographic locations):

333 1) Pairs of populations corresponding to the OTUs resulting from the phylogenetic and
334 genotypic clustering analyses. This set often included pairs of populations that are sympatric and
335 divergent, thus providing estimates of gene flow across candidate species.

336 2) Pairs including populations corresponding to morphology-defined taxa that were
337 recently synonymized based on multi-locus data (Rabosky et al., 2014). This set aims to assess
338 the degree of separation of populations assigned to *C. "borealis"*, *C. "brachyonyx"*, *C. "fallens"*,
339 and *C. "severus"* relative to closely related samples from adjacent geographic regions but
340 assigned to another taxon. We defined four such adjacent populations: Pilbara, central deserts,
341 western shrublands, and northern Australia.

342 3) Pairs corresponding to a single population randomly split into two. This set aims to
343 provide a reference of panmixia by artificially separating samples from the same lineage and
344 geographic region.

345 G-PhoCS imposes prior distributions (given by shape, α , and rate, β) on three classes of
346 population genetic parameters: θ ($= 4N\mu$, where N corresponds to the effective population size
347 and μ to the per-generation mutation rate); the splitting time parameter τ ($= T\mu$, where T
348 corresponds to the tree height in number of generations); and m ($= M/\mu$, where M corresponds to
349 the proportion of individuals in one population that originated from another population in each
350 generation (note that these migration parameter definitions follow the developers of G-PhoCS;
351 see supplementary material in Gronau et al., 2011). For θ and τ , we used gamma (shape = 1, rate
352 = 100) prior densities. For m , we used a migration band in each direction under a gamma (shape
353 = 0.001, rate = 0.00001) prior. Prior distributions were chosen to encompass a wide range of
354 biologically plausible population histories (i.e., effective population sizes ranging from tens of
355 thousands to millions, migration levels ranging from zero to high enough to constrain population
356 divergence; an R script used to help define prior distributions is provided in GitHub). We then
357 simulated posterior parameter distributions using Markov chain Monte Carlo (MCMC). We ran
358 two MCMC simulations per pair, each consisting of 300,000 steps, sampling every 100 steps,
359 and discarding the first 25% of the steps as burn-in. Chain stationarity and convergence were
360 confirmed by plotting parameter traces in R. Fine-tuning parameters controlling MCMC
361 acceptance rates were defined automatically. Owing to computational times, G-PhoCS analyses
362 used a maximum of 12 samples per population and of 4,500 loci (which included both invariant
363 and variant sites).

364 To convert mutation rate-scaled estimates of population genetic parameters into absolute
365 estimates, we assumed 7.6×10^{-9} substitutions per site per year in lizards (Gottscho et al., 2017)
366 and a generation time of two years based on an age at maturity of 22 months in *C. "helenae"*
367 (James, 1991a, 1991b). Based on posterior parameter estimates, we calculated the effective
368 number of gene migrations received by a population per generation, $2NM$, also known as the
369 population migration rate. Theory predicts that, when $2NM$ is greater than 1, divergence between
370 constituent subpopulations will be constrained (Nielsen & Slatkin, 2013; Pinho & Hey, 2010;
371 Wright, 1931). Given caveats pertaining to $2NM$ estimates (Whitlock & McCauley, 1999), we
372 interpret the results carefully within the broader scenario of introgression emerging from the
373 phylogenetic, genotypic clustering, IBD, and ABBA-BABA analyses.

374

375 *Estimating excess allele sharing from introgression*

376 Finally, to further test nuclear introgression among candidate species, we estimated two
377 ABBA-BABA-class statistics (Green et al., 2010): Patterson's D (Patterson et al., 2012) and f-
378 branch (Malinsky et al., 2018). These approaches employ a four-population tree with structure
379 $((P2, P1), P3), O$, where O is an outgroup. Typically, many ancestral (A) and derived (B)
380 alleles show a BBAA structure (with allele ordering following the tree given above). However,
381 incomplete lineage sorting leads to ABBA and BABA patterns, which should occur in equal
382 frequencies. Introgression between P3 and P1 or P2 leads to an excess of ABBA or BABA
383 patterns, which is captured by D and related statistics. One limitation of this approach is that
384 multiple closely related populations can appear introgressed owing to a single introgression event
385 involving a common ancestor. To minimize this issue, the f-branch metric accounts for
386 correlated allele frequencies among populations. This approach allows identifying gene flow

387 events involving the internal branches of a tree, which correspond to the ancestors of sampled
388 populations (Malinsky et al., 2018). We estimated D and f-branch metrics based on the unlinked
389 SNP data (i.e., one SNP per locus) in Dsuite (Malinsky et al., 2021), using the Benjamini-
390 Hochberg correction to control for false-discovery rates (Benjamini & Hochberg, 1995) and
391 estimating significance using a block-jackknifing approach (Durand et al., 2011; Green et al.,
392 2010). We considered all combinations of candidate species given constraints from the estimated
393 coalescent-based phylogenetic tree and used *C. essingtonii* as an outgroup.

394

395 **Results**

396

397 *Overall phylogenetic patterns*

398 Phylogenetic trees of the *C. inornatus* species group based on nuclear DNA under
399 maximum likelihood on the concatenated loci (Fig. 3) or using a coalescent-based approach on
400 unlinked SNPs (Fig. S4) identified three major clades, which we informally refer to as the
401 *inornatus*, *robustus*, and *superciliaris* complexes (Fig. 3). We comment on patterns of genetic
402 structure and admixture within each of these complexes separately.

403

404 *Lineage delimitation in the robustus complex*

405 The *robustus* complex contains six deeply divergent and well-supported lineages that we
406 consider operational taxonomic units (OTUs) (Fig. 3). Three of these lineages were well-sampled
407 and included in genotypic clustering analyses; each corresponded to a cluster (Fig. 4). One such
408 cluster spans a large latitudinal range in eastern Australia (northern Queensland to Victoria); we
409 refer to it as the OTU *spaldingi*-S (dark orange in Fig. 4). Another OTU, *spaldingi*-NE (light

410 orange in Fig. 4), occurs in northern and northeastern Australia (Northern Territory,
411 Queensland). A third OTU, *robustus*-NW (maroon in Fig. 4), occurs along northern and
412 northwestern Australia reaching the Pilbara region. PCA analyses on the unlinked SNP data
413 confirmed that samples inferred in the same cluster grouped together in genotypic space.
414 Moreover, each inferred cluster occupied a distinct portion of genotypic space (Fig. S5).

415 To avoid spurious grouping of sparsely sampled but highly divergent lineages, we
416 removed three highly divergent lineages from our clustering analysis. However, our phylogenetic
417 analyses of both mtDNA and nuclear SNPs support these lineages as distinct OTUs (Fig. 4 and
418 5). Among them is a lineage composed of northern Australian specimens morphologically
419 assigned to *Ctenotus rimacola* Horner and Fisher, 1998. Another such lineage is the sister of
420 *robustus*-NW, which we refer to as *robustus*-TE. This OTU is sympatric with *robustus*-NW in
421 the Top End region and thus likely represents a separate species. OTUs *robustus*-NW and
422 *robustus*-TE composed coherent but non-sister mitochondrial lineages (Fig. 5; Fig. S6). Another
423 highly divergent lineage occurs in the Cape York Peninsula; we refer to it as *spaldingi*-CY.
424 Mitochondrial results further support that this OTU is highly divergent. We note that the relative
425 position of *spaldingi*-CY was the only difference between the concatenated and coalescent-based
426 nuclear trees; this OTU was inferred as sister to *spaldingi*-S under concatenation, but as sister to
427 *spaldingi*-NE under a coalescence-based framework (Fig. S4).

428 To assess whether evidence of distinct genetic pools across regions might simply reflect
429 isolation-by-distance (IBD), we estimated genetic distances across space within and between the
430 delimited OTUs. The results further support that OTUs in the *robustus* complex correspond to
431 separate species. For instance, the relationship between genetic and geographic distances (i.e.,
432 the IBD pattern) within and between *robustus*-NW and *robustus*-TE, which are sympatric in

433 northern Australia, was largely discontinuous (Fig. 6). This pattern of genetic differentiation
434 decoupled from levels of geographic separation points to mechanisms limiting gene flow across
435 distinct species (Fig. 1). A similar pattern was observed between *spaldingi*-CY, *spaldingi*-NE,
436 and *spaldingi*-S, which, based on currently sampling, appear parapatric in northeastern Australia
437 (Fig. 6). These results further support that these OTUs correspond to separate species in an
438 evolutionary sense, even though we conservatively treat them as intra-taxon units (Fig. 3).

439 Consistent with the IBD patterns, historical demographic modeling suggests low gene
440 flow across candidate species in the *robustus* complex (Fig. 7). Population migration rates
441 (2NM) approached zero in both directions between all OTUs in this complex (median value
442 range = 0.01–0.07), including sympatric pairs. This was the case, for instance, of the pairs
443 comprising *robustus*-NW, *robustus*-TE, and *spaldingi*-NE, all of which co-occur in the Top End
444 (Table S3).

445

446 *Support for traditional taxa in the robustus complex*

447 We also assessed whether traditionally recognized taxa are consistent with the genetic
448 patterns. Fig. 4 (left) shows the morphology-based assignment of individuals to taxa relative to
449 the inferred tree. The results support that the traditional (i.e., morphology-based) taxa are broadly
450 paraphyletic. For instance, specimens assigned to *C. robustus* (white circles in Fig. 4) were found
451 nested in two non-sister lineages, corresponding to *robustus*-NW and *spaldingi*-S. Both of these
452 OTUs occur far from the presumed type locality of *C. robustus* (Fig. 2), previously associated
453 with the northern lineage (Rabosky et al., 2014). Similarly, samples morphologically assigned to
454 *C. spaldingi* (black circles in Fig. 4) formed two non-sister lineages, corresponding to *spaldingi*-
455 CY and *spaldingi*-N. Likewise, samples identified as *C. “borealis”* (dark gray in Fig. 4) were

456 nested among geographically adjacent samples identified as *C. robustus*, both corresponding to
457 *robustus*-NW. Historical demographic analyses inferred high gene flow between populations
458 assigned to *C. borealis* and *C. robustus* (Fig. 7), with relatively high 2NM between them in
459 both directions (0.46 and 0.82).

460 Pending analyses of morphological variation and additional geographic sampling to
461 formally describe new taxa based on the inferred OTUs, we provisionally assign the OTUs to
462 existing taxon names (Fig. 3). In doing so, we aim to provide labels that reflect evolutionary
463 relationships while minimizing change relative to the most recent assessment (Rabosky et al.,
464 2014). We refer the populations corresponding to *spaldingi*-CY, *spaldingi*-S, and *spaldingi*-N to
465 the taxon *C. spaldingi*. OTUs *robustus*-NW and *robustus*-TE are referred to *C. robustus*. This
466 definition of *C. robustus* excludes populations from eastern and southern Australia traditionally
467 assigned to this name (Fig. 2) but found to correspond to the *C. spaldingi* lineage (Fig. 4),
468 corroborating the findings of Rabosky et al. (2014).

469

470 *Lineage delimitation in the superciliaris complex*

471 The *superciliaris* complex contains three well-supported lineages that we treat as OTUs
472 (Fig. 3); each corresponds to a genotypic cluster (Fig. 8). One such OTU spans Australia's
473 northwestern coast into the northern interior (Western Australia, Northern Territory); we refer to
474 it as *superciliaris*-W (green in Fig. 8). This OTU is sister to *superciliaris*-E, which occurs from
475 the Top End into the central deserts (Northern Territory) (cyan in Fig. 8). The third OTU occurs
476 in the Kimberley, a western Australian region scarcely represented in previous analyses (dark
477 blue in Fig. 8). This OTU appears to correspond to the taxon *Ctenotus mastigura* Storr 1975. Our
478 mitochondrial analysis inferred this putative *C. mastigura* to be the sister of *C. burbridgei* (Fig. 5;

479 Fig. S6), a taxon also from the Kimberley not represented in the nuclear dataset, in agreement
480 with their presumed close relationships based on morphology (Storr, 1975).

481 Similar to the *robustus* complex, IBD analyses suggest that delimited OTUs in the
482 *superciliaris* complex correspond to separate species. The relationship between genetic and
483 geographic distances within and between OTUs was largely discontinuous, with genetic
484 differentiation largely independent from geographic separation (Fig. 6). IBD patterns also
485 suggest that *superciliaris*-E might correspond to two separate units, one restricted to the Top End
486 and another further south (see Fig. S7). Consistent with this scenario, the mitochondrial analysis
487 inferred samples corresponding to each of these two regions as nested in divergent lineages (Fig.
488 5; Fig. S6). Population migration rate estimates (2NM) suggest relatively low gene flow among
489 OTUs in the *superciliaris* complex (0.08–0.21), consistent with multiple separate species.

490

491 *Support for traditional taxa in the superciliaris complex*

492 As in the *robustus* complex, we find paraphyly of traditionally recognized taxa in the
493 *superciliaris* complex (Fig. 8). The original morphological identification of specimens mostly
494 corresponded to *C. inornatus* and *C. “saxatilis”*. These two taxa were inferred as broadly
495 paraphyletic, with samples scattered throughout the *superciliaris* complex and also the *inornatus*
496 complex (Fig. 9). Previous morphological examinations established that the name-bearing types
497 of *C. inornatus* and *C. “saxatilis”* are *inornatus* complex specimens (Rabosky et al., 2014).
498 Pending morphological assessments to support the description of new taxa from the OTUs, we
499 refer the populations corresponding to *superciliaris*-W and *superciliaris*-E to the taxon *C.*
500 *superciliaris*.

501

502 *Lineage delimitation in the inornatus complex*

503 The *inornatus* complex contains four well-supported lineages, here treated as OTUs (Fig.
504 3). Three of them were well-sampled and included in the genotypic clustering analyses; each
505 corresponded to a cluster (Fig. 9). One such OTU occurs in Australia's northeast (Queensland),
506 corresponding to the taxon *Ctenotus lateralis* Storr, 1978 (red in Fig. 9). This lineage is sister to
507 a highly divergent lineage from eastern Queensland that appears to *Ctenotus eutaenius* Storr,
508 1981. A third lineage occurs in the Top End and Kimberley regions (Western Australia, Northern
509 Territory); we refer to it as *inornatus*-N (pink in Fig. 9). This OTU is sister to a lineage spanning
510 most of Australia's arid zone, which we refer to as *inornatus*-S (purple in Fig. 9).

511 Contrasting with patterns in the *robustus* and *superciliaris* complexes, IBD relationships
512 within and between groups were highly overlapping and nearly continuous across certain OTUs
513 in the *inornatus* complex (Fig. 6). Geographic separation alone appears to account for most of
514 the genetic differentiation between *inornatus*-N and *inornatus*-S, consistent with a gradient of
515 population connectivity over the range of a single species (Fig. 1). In agreement with this
516 finding, we estimated substantial gene flow between *inornatus*-N and *inornatus*-S, with the
517 highest population migration rates (2NM) relative to all other OTU pairs (median values in each
518 direction = 0.51 and 0.58). Gene flow between *inornatus*-N and *inornatus*-S was higher than that
519 between other parapatric OTUs in the *inornatus* complex, such as the pairs *C. eutaenius* and *C.*
520 *lateralis* or *inornatus*-S and *C. lateralis* (Fig. 7). These results support that *inornatus*-N and
521 *inornatus*-S correspond to the same evolutionary species, albeit one with detectable population
522 structure.

523

524 *Support for traditional taxa in the inornatus complex*

525 As in the *robustus* and *superciliaris* complexes, traditionally recognized taxa in the
526 *inornatus* complex showed widespread paraphyly. This complex includes many samples
527 morphologically assigned to *C. "saxatilis"* and *C. inornatus*, two taxa scattered throughout this
528 (Fig. 9) and the other (Fig. 4, 8) complexes. We also inferred polyphyly among several taxa
529 corresponding to regional coloration phenotypes. Namely, *C. "helenae"* was interspersed among
530 samples of *C. inornatus*, *C. "fallens"*, and *C. "severus"*. Among them, *C. "fallens"* and *C.*
531 *"severus"* grouped in their own lineages, yet nested among *C. "helenae"* and *C. "saxatilis"*. In
532 turn, *C. "brachyonyx"* formed a paraphyletic assemblage with *C. "saxatilis"*. We note that
533 genotypic clustering grouped *C. "brachyonyx"*, *C. "helenae"*, *C. inornatus*, *C. "saxatilis"*, and *C.*
534 *"severus"* into a single cluster, corresponding to OTU *inornatus*-S (Fig. 9). This finding suggests
535 extensive allele sharing across the arid zone despite regional coloration variation, broadly
536 agreeing with findings based on few loci (Rabosky et al., 2014).

537 To further assess the coherence and distinction of those recently disputed taxa, we
538 estimated population migration rates between them and samples from adjacent geographic
539 regions. We considered four such regions: western shrublands, Pilbara, central deserts (all
540 corresponding to *inornatus*-S), and a northern population (corresponding to *inornatus*-N).
541 Samples from these regions appear to correspond to the same species (see above), providing a
542 reference of intraspecific gene flow levels. This exercise revealed relatively high gene flow
543 between *C. "severus"* and samples from the adjacent western shrublands and Pilbara (Fig. 7); in
544 both cases, estimates were asymmetrical, with higher numbers of migrant genes out of *C.*
545 *"severus"* (0.34–1.23) than into it (0–0.03). These estimates were comparable to those among
546 localities presumed to correspond to the same species, such as the pair including the western

547 shrublands and Pilbara samples (0.23 and 0.93) or that including the northern and Pilbara
548 samples (0.15 and 0.22) (Fig. 7; Table S3).

549 By contrast, numbers of gene migrations were relatively lower between other taxa and
550 their adjacent populations. This was the case of *C. "brachyonyx"* relative to both the central
551 deserts and western shrublands. Gene flow was also asymmetrical in this case, higher into *C.*
552 "*brachyonyx*" (0.15–0.21) than out of it (0–0.01). Similarly, we inferred higher gene migrations
553 into *C. "fallens"* (0.10–0.16) than out of it with both the Pilbara and western shrublands samples
554 (0.08–0.11).

555 Random partitions of single populations yielded 2NM higher than 1 (1.57–2.89) (Table
556 S3), consistent with theoretical expectations of populations whose divergence is constrained by
557 high gene flow (Nielsen & Slatkin, 2013; Pinho & Hey, 2010; Wright, 1931).

558

559 *Evidence of introgression across distantly related lineages*

560 Our phylogenetic and genetic clustering results revealed evidence of admixture between
561 species from distinct complexes. For instance, we found highly similar or shared mitochondrial
562 haplotypes between distantly related nuclear OTUs (Fig. 5; Fig. S6), which might indicate allele
563 capture across species boundaries. An extreme case was that of a mitochondrial lineage grouping
564 samples from four nuclear OTUs representing two complexes: *inornatus*-N, *inornatus*-S,
565 *superciliaris*-E, and *superciliaris*-W (uppermost lineage in Fig. 5). Notably, these four OTUs co-
566 occur in northern Australia.

567 Gene flow estimates based on the nuclear loci further supported that certain distantly
568 related OTUs are mutually introgressed (Fig. 7). For instance, we inferred some gene flow
569 between *inornatus*-N (*inornatus* complex) and putative *C. mastigura* (*superciliaris* complex)

570 (0.13 and 0.16 in each direction) (Table S3). These analyses also inferred some gene flow
571 between *inornatus*-N and *superciliaris*-W (0.09 and 0.13), as well as between *inornatus*-S and
572 *superciliaris*-W (0.06 and 0.11).

573 In agreement with these results, ABBA-BABA allele patterns support substantial nuclear
574 introgression between OTUs from distinct complexes (Fig. 10). The proportion of loci inferred to
575 have experienced introgression across delimited species were often high, up to 15–25%. This
576 was the case for *inornatus*-N and each of *superciliaris*-E, *superciliaris*-W, and *C. mastigura*.
577 Estimates of Patterson's D, a metric related to f-branch, were broadly consistent with these
578 results (Fig. S8). ABBA-BABA patterns also suggest that admixture events might have involved
579 the ancestors of living species, as revealed by f-branch estimates corresponding to internal
580 branches of the tree (Fig. 10). This was the case of the branch connecting *inornatus*-N and
581 *inornatus*-S, found to have introgressed with each of the three *superciliaris* complex OTUs.
582 Likewise, the presumed ancestor of *superciliaris*-E and *superciliaris*-W was inferred to have
583 introgressed with both *inornatus*-S and *C. lateralis*. These introgressed OTUs often showed high
584 levels of cytonuclear discordance (Fig. 5; Fig. S6).

585

586 **Discussion**

587 This study inferred population structure and history based on broad geographic and
588 genetic sampling of lizards long considered to be challenging taxonomically. Beyond attempting
589 to delimit species, we sought to identify the evolutionary processes that might underlie
590 ambiguous genotypic and phenotypic species boundaries. Our results revealed a perfect storm of
591 rampant taxon paraphyly, both morphologically cryptic and polytypic lineages, and a wide range
592 of gene flow levels between candidate species. In addition, we found evidence of mitochondrial

593 capture and heterogeneous patterns of nuclear introgression across divergent OTUs. Mutually
594 introgressed OTUs have partially overlapping ranges, particularly in northern Australia. These
595 findings suggest that taxonomic uncertainty may result from spatial variation in the porosity of
596 species boundaries and the resulting geographic patterns of genetic and phenotypic variation.
597 Below, we discuss the implications of our findings to inferences of speciation and the
598 systematics of challenging clades.

599

600 *Consequences of widespread admixture for inference of species boundaries*

601 This study demonstrates that extensive sampling might be necessary to uncover instances
602 of geographically widespread genetic admixture (Oliver et al., 2020; Singhal et al., 2018), which
603 might otherwise lead to overestimation of population separation. In particular, IBD analyses
604 support genetic intergradation across localities corresponding to *inornatus*-N and *inornatus*-S
605 (Fig. 6). This pattern suggests that these two OTUs comprise a genetic and geographic
606 continuum, consistent with substantial gene flow between them (Fig. 7). Still, these two OTUs
607 formed coherent and distinctive lineages and genotypic clusters (Fig. 9), thereby conforming to
608 species criteria that have been widely applied (Cracraft, 1987; de Queiroz, 1998; Mallet, 2013,
609 2020). This scenario supports that certain approaches can infer population separation, often
610 interpreted as evidence of multiple species, in the presence of spatially extensive gene flow, in
611 line with theoretical and empirical investigations (Barley et al., 2018; Battey et al., 2020;
612 Bradburd et al., 2018; Irwin, 2002). Such continuous genetic differentiation frequently coincides
613 with clinal phenotypic differentiation, further contributing to blurred species limits (e.g.,
614 Ahossou et al., 2020; Chambers & Hillis, 2020; Dickens et al., 2021; Pereira & Wake, 2009). In
615 the case of *inornatus*-N and *inornatus*-S, denser sampling along putative contact zones could

616 lead to increased resolution of genotypic transitions and admixture. More broadly, our findings
617 illustrate how characterizing the geographic extent of such transitions is crucial to avoid
618 imposing discrete taxonomic structures on continuous patterns of variation (Braby et al., 2012;
619 Chambers & Hillis, 2020; Mayr, 1963; Prates, Doughty, et al., 2022; Wilson & Brown, 1953).

620

621 *Phenotypic conservatism conceals evolutionary separation*

622 This study supports the idea that poor taxonomic resolution can also result from species
623 formation with little to no morphological change (Bickford et al., 2007; Camp & Wooten, 2016;
624 Fišer et al., 2018). Unlike the *inornatus* complex, IBD does not explain the differentiation of
625 OTUs in the *robustus* and *superciliaris* complexes. In these cases, genetic distances are primarily
626 decoupled from geographic distances (Fig. 6), matching expectations of evolutionary separation
627 (Fig. 1d). Accordingly, we inferred low gene flow between OTUs in both complexes (Fig. 7).
628 This scenario suggests that multiple morphologically cryptic species occur within single nominal
629 taxa, as observed here within each of *C. robustus*, *C. spaldingi*, and *C. superciliaris*. One of
630 these candidate species, *robustus*-TE, is sympatric with its sister, *robustus*-NW, passing what is
631 typically considered the strongest test for evolutionary separation: the maintenance of distinct
632 gene pools in sympatry (Mayr, 1963). Speciation without morphological change can result from
633 stabilizing selection, developmental constraints, or neutral divergence between populations in
634 similar, potentially constant environments (Zamudio et al., 2016). Moreover, diverging traits
635 across species can be cryptic to humans, as is the case of chemical signals or ecophysiological
636 tolerances (Zozaya et al., 2019; Cadena & Zapata, 2021). Future morphological examinations
637 informed by the genetic patterns might help identify characters that better reflect evolutionary
638 divergence (e.g., Prates, Hutchinson, et al., 2022; Teixeira et al., 2016).

639

640 *Genetic introgression contributes to fuzzy species boundaries*

641 Beyond IBD and cryptic divergence, we find that several unclear species boundaries in
642 this lizard clade may result from genetic introgression. Our finding of conflicting genealogies
643 between mitochondrial and nuclear DNA might originate from stochastic allele sorting among
644 lineages (Singhal and Moritz 2012; Firneno et al. 2020). However, it seems unlikely that
645 coherent nuclear units would retain unsorted mitochondrial alleles given the shorter coalescent
646 times of mitochondrial relative to nuclear DNA (Palumbi et al. 2001). Alternatively, mitonuclear
647 discordances can arise from mitochondrial capture through hybridization, as reported in many
648 organisms (e.g., Currat et al., 2008; Good et al., 2008; Irwin et al., 2009). This process might
649 explain the mitochondrial DNA paraphyly of several coherent nuclear DNA-based OTUs, such
650 as *inornatus*-N, *inornatus*-S, *superciliaris*-E, and *superciliaris*-W. This propensity of
651 mitochondrial genomes to introgress across species boundaries can limit their utility in species
652 delimitation (Funk & Omland, 2003). To corroborate mitochondrial evidence of evolutionary
653 separation (or lack thereof), investigators will continue to benefit from integrative analyses of
654 morphological characters, behavioral traits, and multi-locus datasets (Cadena & Zapata, 2021;
655 Padial et al., 2010; Schlick-Steiner et al., 2010).

656 In agreement with the mitochondrial patterns, analyses of nuclear loci support that excess
657 allele sharing among species in the *C. inornatus* species group results from introgression.
658 Remarkably, introgression levels appear largely decoupled from phylogenetic relatedness.
659 ABBA-BABA analyses found that some of the highest levels of allele sharing occur among
660 OTUs from distinct complexes (Fig. 10). Likewise, historical demographic modeling inferred
661 higher gene flow between distantly related sympatric OTUs than between certain closely related

662 OTUs (Fig. 7). This decoupling between introgression levels and relatedness differs from
663 patterns reported in other clades (Barley et al., 2022; Hamlin et al., 2020; Peñalba et al., 2019;
664 Roux et al., 2016; Singhal & Bi, 2017; Winger, 2017). The proportions of loci inferred as
665 admixed in the *C. inornatus* group are similar to those of organisms thought to hybridize
666 extensively, such as the African cichlids and true toads (Malinsky et al., 2018; Rivera et al.,
667 2021; but see Dagilis et al., 2022). As in *Ctenotus* lizards, species delimitation in these groups is
668 challenging. Hybridization has long been attributed to blurred genotypic and phenotypic
669 boundaries in plants (Lotsy, 1925; McVay et al., 2017; Novaković et al., 2022; Robinson et al.,
670 2001; Shaw & Small, 2004), but our study contributes to a growing body of evidence that
671 hybridization is also a source of taxonomic uncertainty in animal clades (Gill, 2014; Pyron et al.,
672 2020).

673 Introgressive hybridization increases the variance in genealogical topologies and
674 coalescent times across genome regions, confounding molecular species delimitation. On one
675 hand, gene tree paraphyly owing to horizontal transfer can lead to spurious lumping of divergent
676 lineages (Gill, 2014). On the other hand, emergent allele combinations in admixed populations
677 can lead to spurious inference of separate lineages and genotypic clusters (Chan et al., 2020,
678 2021). Additionally, spatial phenotypic mosaics resulting from secondary contact can be
679 interpreted as polytypism within a single species (O'Connell et al., 2021). In the *C. inornatus*
680 species group, introgression might have contributed to phenotypic parallelisms that obscure
681 species boundaries. Specimens corresponding to *inornatus*-S and *superciliaris*-E (S) appear to
682 share the well-marked “*saxatilis*” coloration pattern in the central deserts; *inornatus*-N and
683 *superciliaris*-E (N) share the subdued “*inornatus*” pattern in the Top End; and *superciliaris*-W
684 shares both of these phenotypes with *inornatus* complex lineages along the northwestern coast

685 (Rabosky et al., 2014). Trait sharing among species might result from introgression in the genes
686 that underlie such traits (Smith & Kronforst, 2013; Svardal et al., 2020). However, this pattern
687 can also result from retained ancestral polymorphisms or parallel or convergent evolution (Mims
688 et al., 2010; Muir & Schlötterer, 2005; Zamudio et al., 2016; but see Edelman et al., 2019).
689 While the mechanisms underlying phenotypic parallelisms in *Ctenotus* are unknown, our results
690 confirm that certain characters broadly used to define scincid lizard taxa, such as coloration, do
691 not always reflect evolutionary divergence (e.g., Prates, Doughty, et al., 2022; Rabosky et al.,
692 2014; Rivera et al., 2020).

693 Lastly, our findings raise questions about the maintenance of species limits in this group.
694 For instance, migration rates between some combinations of sympatric species appear to be
695 higher than those inferred between parapatric species (Fig. 7). This is the case, for instance, of
696 the sympatric pair *inornatus*-N and putative *C. mastigura*, whose gene flow estimates, albeit low,
697 were higher than those between the closely related and parapatric *C. mastigura*, *supercilialis*-E
698 (N), and *supercilialis*-E (S). How do species remain cohesive in the face of opportunities for
699 hybridization? One possibility is that introgression from another species is restricted to a small
700 subset of a species' range or only part of their divergence history. Alternatively, specific barrier
701 loci might remain differentiated despite broad admixture across the genome (Baird, 1995;
702 Barton, 1983; Harrison & Larson, 2014). Another emerging question is why mitochondrial and
703 nuclear introgression in the *C. inornatus* group appear concentrated in northern Australia.
704 Studies of animals and plants have found introgressive hybridization in regions of high climatic
705 dynamism in the Quaternary (Dufresnes et al., 2020; Folk et al., 2018; Shu et al., 2022),
706 including the northern Australian monsoonal-arid zone interface and wet tropics (e.g., Catullo &
707 Keogh, 2014; Hoskin et al., 2011; Laver et al., 2018; Singhal & Moritz, 2012). Climate-driven

708 habitat changes may lead to introgression by promoting species range shifts and secondary
709 contact (Currat et al., 2008; Cutter & Gray, 2016; Folk et al., 2018; Garroway et al., 2010; Prates
710 et al., 2018). However, other groups from the monsoonal tropics show deep phylogeographic
711 structure, consistent with a history of range stability (e.g., Bowman et al., 2010; Moritz et al.,
712 2016; Potter et al., 2018; Rosauer et al., 2018), while some analyses have inferred dynamism also
713 in the arid zone (e.g., Byrne et al., 2008; Pepper & Keogh, 2021; Prideaux et al., 2007). We still
714 have a limited understanding of the historical processes that have structured the genomes of
715 *Ctenotus* lizards. Nevertheless, clades with elusive species boundaries, like the *C. inornatus*
716 species group, emerge as promising candidates for investigating the environmental drivers and
717 evolutionary consequences of introgressive hybridization.

718

719 *Taxonomic recommendations and outstanding issues*

720 Systematic uncertainty persists in our focal lizards, but our results provide clarity on
721 several issues. We found continuous spatial genetic differentiation between *inornatus* complex
722 populations from northern Australia (corresponding to *inornatus*-N) and the central arid zone
723 (*inornatus*-S). Some population genetic structure between these regions appears to align with a
724 physiographic transition from sandy desert to stony uplands and monsoonal woodlands in
725 northern Australia. Still, gene flow across this transition seems high enough to generate a pattern
726 consistent with IBD over the range of a single species. Populations corresponding to *inornatus*-N
727 and *inornatus*-S have been assigned to different taxa (Storr, 1969), which nonetheless cannot be
728 reliably identified based on current perceptions of their morphological variation (Rabosky et al.,
729 2014). Future morphological examinations informed by the genetic patterns might help clarify
730 whether some of the inferred OTUs are truly cryptic. For the time being, we recommend treating

731 the northern and southern populations as a single taxon, with the name *Ctenotus inornatus* (Gray,
732 1845) retaining priority to refer to both.

733 We found that some traditionally recognized taxa have limited coherence or divergence.
734 For instance, specimens assigned to “*C. saxatilis*” appear to correspond to multiple *inornatus* and
735 *supercilialis* complex lineages. Likewise, *C. “borealis”* and *C. “severus”* grouped respectively
736 with *C. robustus* and *C. inornatus*, with which they experience high gene flow. These findings
737 corroborate phylogenetic patterns inferred based on fewer loci (Rabosky et al., 2014). The case
738 of *C. “fallens”* and *C. “brachyonyx”* is less clear. Populations corresponding to these taxa were
739 genetically clustered within other taxa (*C. “helenae”*, *C. “saxatilis”*), yet separated from other
740 samples by long branches. Relatively fewer alleles migrate between *C. “fallens”* or *C.*
741 “*brachyonyx*” and geographically adjacent populations, but these numbers appear to reflect lower
742 effective population sizes rather than lower proportions of migrants. For instance, their N
743 estimates were up to 20 times lower than those of other populations (Table S3). Such low N
744 contributed to low 2NM for *C. “fallens”* and *C. “brachyonyx”* despite high estimates of M, that
745 is, high proportions of individuals originating from other populations (Table S3). This scenario
746 suggests that 2NM, a composite metric designed to express absolute numbers of gene migrations
747 (Pinho & Hey, 2010), might conceal high relative gene flow when population sizes are small.
748 Overall, our findings suggest that several traditionally recognized taxa correspond to regional
749 forms within wide-ranging polytypic species, but broader sampling may be needed to resolve
750 specific cases.

751 Our analyses also revealed OTUs that might correspond to undescribed species. OTUs
752 *robustus-NW* and *robustus-TE*, both corresponding to the taxon *C. robustus*, are sympatric but
753 appear genetically isolated. Similarly, gene flow approached zero between *spaldingi-CY* and

754 *spaldingi*-NE, both referred to *C. spaldingi*. Finally, *superciliaris*-E (N), *superciliaris*-E (S), and
755 *superciliaris*-W, all within *C. superciliaris*, appear divergent despite their potential geographic
756 overlap. Further sampling in putative contact zones may be necessary to establish the degree of
757 separation between these populations. From a nomenclatural perspective, it is also important to
758 determine whether these OTUs correspond to valid yet poorly characterized taxa. For instance,
759 *spaldingi*-CY or *spaldingi*-S might correspond to the eastern taxa *C. capricorni* Storr, 1981 or *C.*
760 *nullum* Ingram and Czechura, 1990. Alternatively, they might represent names currently under
761 synonymy, such as *C. harringtonensis* (Wells and Wellington, 1985), *C. josephinae* (Wells and
762 Wellington, 1984), or *Ctenotus dorsale* (Boulenger, 1887). Lack of genetic data unambiguously
763 corresponding to these taxa prevents testing whether they are present in our sample. Given the
764 lack of DNA sequences for most name-bearing type specimens, assigning names to lineages
765 typically relies on morphological comparisons. It remains to be seen whether the emerging
766 genetic patterns will help identify morphological features that confidently assign unsequenced
767 specimens to lineages.

768 This investigation supports that resolving species boundaries in the *C. inornatus* species
769 group and other “taxonomic disaster zones” will require developing a broad understanding of
770 population history, spatial genetic variation, patterns of genomic introgression, and their effects
771 on phenotypic variation. This comprehensive understanding may, in turn, require renewed field-
772 based collecting and specimen vouchering in undersampled geographic regions. These
773 requirements illustrate the formidable challenges and opportunities brought by the increasing
774 conceptual and operational unification of taxonomic practice and speciation biology.

775

776 **Acknowledgements**

777 We thank Paul Doughty and Gregory Schneider for providing access to specimens under
778 their care and discussions on lizard faunas. For providing samples, we thank Graeme Gillespie
779 and the NT-DRLM survey team and Cecilia Myers and the Dunkeld Pastoral Company team.
780 Huateng Huang, Iris Holmes, Maggie R. Grundler, and Raquel Marchán-Rivadeneira assisted
781 with the generation of molecular data. Danielle G. Rivera provided advice on analyses. Glenn
782 Shea, Kristen Wacker, Leonard Jones, Matheus Januario, Natasha Stepanova, Paul Doughty,
783 Rayna C. Bell, Teresa Pegan, and Tristan Schramer provided helpful comments on manuscript
784 drafts or earlier stages of this investigation. Jules Farquhar provided lizard pictures. This work
785 was funded by the National Science Foundation (DEB 1754398 to DLR; DEB 1519732 to SS), a
786 fellowship from the David and Lucile Packard Foundation (to DLR), and the Australian
787 Research Council (to CCM).

788

789 **References**

790 Ahossou, O. D., Daïnou, K., Janssens, S. B., Triest, L., & Hardy, O. J. (2020). Species
791 delimitation and phylogeography of African tree populations of the genus *Parkia*
792 (Fabaceae). *Tree Genetics & Genomes*, 16(5), 68.

793 Ahrens, C. W., Rymer, P. D., Stow, A., Bragg, J., Dillon, S., Umbers, K. D. L., & Dudaniec, R.
794 Y. (2018). The search for loci under selection: trends, biases and progress. *Molecular
795 Ecology*, 27(6), 1342–1356.

796 ASH. (2022). *Australian Society of Herpetologists official list of Australian species*. Australian
797 Society of Herpetologists Official List of Australian Species.
798 <http://www.australiansomocietyofherpetologists.org/ash-official-list-of-australian-species>

799 Baird, S. J. E. (1995). A simulation study of multilocus clines. *Evolution*, 49(6), 1038–1045.

800 Barley, A. J., Brown, J. M., & Thomson, R. C. (2018). Impact of model violations on the

801 inference of species boundaries under the multispecies coalescent. *Systematic Biology*,
802 67(2), 269–284.

803 Barley, A. J., Nieto-Montes de Oca, A., Manríquez-Morán, N. L., & Thomson, R. C. (2022). The
804 evolutionary network of whiptail lizards reveals predictable outcomes of hybridization.
805 *Science*, 377(6607), 773–777.

806 Barton, N. H. (1983). Multilocus clines. *Evolution*, 37(3), 454–471.

807 Battey, C. J., Ralph, P. L., & Kern, A. D. (2020). Space is the Place: Effects of Continuous
808 Spatial Structure on Analysis of Population Genetic Data. *Genetics*, 215(1), 193–214.

809 Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and
810 powerful approach to multiple testing. *Journal of the Royal Statistical Society*, 57(1), 289–
811 300.

812 Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., &
813 Das, I. (2007). Cryptic species as a window on diversity and conservation. *Trends in
814 Ecology & Evolution*, 22(3), 148–155.

815 Boulenger, G. A. (1887). Catalogue of the lizards in the British Museum (Natural History). III.
816 Lacertidae, Gerrhosauridae, Scincidae, Anelytropsidae, Dibamidae, Chamaeleontidae.
817 Trustees of the British Museum, London.

818 Bouzid, N. M., Archie, J. W., Anderson, R. A., Grummer, J. A., & Leaché, A. D. (2022).
819 Evidence for ephemeral ring species formation during the diversification history of western
820 fence lizards (*Sceloporus occidentalis*). *Molecular Ecology*, 31(2), 620–631.

821 Bowman, D. M. J. S., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., Ford,
822 F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBride, J., Nelson, G., & Ladiges, P. Y.
823 (2010). Biogeography of the Australian monsoon tropics. *Journal of Biogeography*, 37(2),

824 201–216.

825 Braby, M. F., Eastwood, R., & Murray, N. (2012). The subspecies concept in butterflies: has its
826 application in taxonomy and conservation biology outlived its usefulness? *Biological
827 Journal of the Linnean Society*, 106(4), 699–716.

828 Bradburd, G. S., Coop, G. M., & Ralph, P. L. (2018). Inferring continuous and discrete
829 population genetic structure across space. *Genetics*, 210(1), 33–52.

830 Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the effects of geographic
831 and ecological isolation on genetic differentiation. *Evolution*, 67(11), 3258–3273.

832 Burbrink, F. T., & Ruane, S. (2021). Contemporary philosophy and methods for studying
833 speciation and delimiting species. *Ichthyology & Herpetology*, 109(3), 874–894.

834 Bush, B., Maryan, B., & Browne-Cooper, R. (2007). *Reptiles and frogs in the bush:
835 Southwestern Australia*. UWA Publishing.

836 Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S.,
837 Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., & Wyrwoll,
838 K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the
839 Australian arid zone biota. *Molecular Ecology*, 17(20), 4398–4417.

840 Cadena, C. D., & Zapata, F. (2021). The genomic revolution and species delimitation in birds
841 (and other organisms): Why phenotypes should not be overlooked. *Ornithology*, 138(2), 1–
842 18.

843 Camargo, A., Morando, M., Avila, L. J., & Sites, J. W., Jr. (2012). Species delimitation with
844 ABC and other coalescent-based methods: a test of accuracy with simulations and an
845 empirical example with lizards of the *Liolaemus darwini* complex (Squamata:
846 Liolaemidae). *Evolution*, 66(9), 2834–2849.

847 Camp, C. D., & Wooten, J. A. (2016). Hidden in plain sight: Cryptic diversity in the
848 Plethodontidae. *Copeia*, 104(1), 111–117.

849 Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species
850 delimitation. *Molecular Ecology*, 22(17), 4369–4383.

851 Catullo, R. A., & Keogh, S. J. (2014). Aridification drove repeated episodes of diversification
852 between Australian biomes: evidence from a multi-locus phylogeny of Australian toadlets
853 (Uperoleia: Myobatrachidae). *Molecular Phylogenetics and Evolution*, 79, 106–117.

854 Chambers, E. A., & Hillis, D. M. (2020). The multispecies coalescent over-splits species in the
855 case of geographically widespread taxa. *Systematic Biology*, 69(1), 184–193.

856 Chan, K. O., Hutter, C. R., Wood, P. L., Jr, Grismer, L. L., Das, I., & Brown, R. M. (2020). Gene
857 flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex.
858 *Molecular Ecology*, 29(20), 3970–3987.

859 Chan, K. O., Hutter, C. R., Wood, P. L., Su, Y.-C., & Brown, R. M. (2021). Gene flow increases
860 phylogenetic structure and inflates cryptic species estimations: A case study on widespread
861 philippine puddle frogs (*Occidozyga laevis*). *Systematic Biology*, 71(1), 40–57.

862 Chifman, J., & Kubatko, L. (2014). Quartet inference from SNP data under the coalescent model.
863 *Bioinformatics*, 30(23), 3317–3324.

864 Couper, P. J., Amey, A. P., & Kutt, A. S. (2002). A new species of *Ctenotus* (Scincidae) from
865 central Queensland. *Memoirs of the Queensland Museum*, 48(1), 85–92.

866 Cracraft, J. (1987). Species concepts and the ontology of evolution. *Biology and Philosophy*,
867 2(3), 329–346.

868 Cummings, M. P., Neel, M. C., & Shaw, K. L. (2008). A genealogical approach to quantifying
869 lineage divergence. *Evolution*, 62(9), 2411–2422.

870 Currat, M., Ruedi, M., Petit, R. J., & Excoffier, L. (2008). The hidden side of invasions: massive
871 introgression by local genes. *Evolution*, 62(8), 1908–1920.

872 Cutter, A. D., & Gray, J. C. (2016). Ephemeral ecological speciation and the latitudinal
873 biodiversity gradient. *Evolution*, 70(10), 2171–2185.

874 Dagilis, A. J., Peede, D., Coughlan, J. M., Jofre, G. I., D'Agostino, E. R. R., Mavengere, H.,
875 Tate, A. D., & Matute, D. R. (2022). A need for standardized reporting of introgression:
876 Insights from studies across eukaryotes. *Evolution Letters*, 6(5), 344–357.

877 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R.
878 E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes
879 Project Analysis Group. (2011). The variant call format and VCFtools. *Bioinformatics*,
880 27(15), 2156–2158.

881 de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of
882 speciation. In D. J. Howard & S. H. Berlocher (Eds.), *Endless Forms: Species and*
883 *Speciation* (pp. 57–75). Oxford University Press.

884 de Queiroz, K. (2007). Species concepts and species delimitation. *Systematic Biology*, 56(6),
885 879–886.

886 de Queiroz, K. (2020). An updated concept of subspecies resolves a dispute about the taxonomy
887 of incompletely separated lineages. *Herpetological Review*, 51(3), 459–461.

888 Dickens, J. K., Bitton, P.-P., Bravo, G. A., & Silveira, L. F. (2021). Species limits, patterns of
889 secondary contact and a new species in the *Trogon rufus* complex (Aves: Trogonidae).
890 *Zoological Journal of the Linnean Society*, 193(2), 499–540.

891 Dufresnes, C., Nicieza, A. G., Litvinchuk, S. N., Rodrigues, N., Jeffries, D. L., Vences, M.,
892 Perrin, N., & Martínez-Solano, I. (2020). Are glacial refugia hotspots of speciation and

893 cytonuclear discordances? Answers from the genomic phylogeography of Spanish common
894 frogs. *Molecular Ecology*, 29(5), 986–1000.

895 Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture
896 between closely related populations. *Molecular Biology and Evolution*, 28(8), 2239–2252.

897 Eaton, D. A. R., & Overcast, I. (2020). ipyrad: Interactive assembly and analysis of RADseq
898 datasets. *Bioinformatics*, 36(8), 2592–2594.

899 Edelman, N. B., Frandsen, P. B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R. B., García-
900 Accinelli, G., Van Belleghem, S. M., Patterson, N., Neafsey, D. E., Challis, R., Kumar, S.,
901 Moreira, G. R. P., Salazar, C., Chouteau, M., Counterman, B. A., Papa, R., Blaxter, M.,
902 Reed, R. D., ... Mallet, J. (2019). Genomic architecture and introgression shape a butterfly
903 radiation. *Science*, 366(6465), 594–599.

904 Firneno, T. J., Jr, O'Neill, J. R., Itgen, M. W., Kihneman, T. A., Townsend, J. H., & Fujita, M.
905 K. (2021). Delimitation despite discordance: Evaluating the species limits of a confounding
906 species complex in the face of mitonuclear discordance. *Ecology and Evolution*, 11(18),
907 12739–12753.

908 Firneno, T. J., Jr, O'Neill, J. R., Portik, D. M., Emery, A. H., Townsend, J. H., & Fujita, M. K.
909 (2020). Finding complexity in complexes: Assessing the causes of mitonuclear discordance
910 in a problematic species complex of Mesoamerican toads. *Molecular Ecology*, 29(18),
911 3543–3559.

912 Fišer, C., Robinson, C. T., & Malard, F. (2018). Cryptic species as a window into the paradigm
913 shift of the species concept. *Molecular Ecology*, 27(3), 613–635.

914 Folk, R. A., Visger, C. J., Soltis, P. S., Soltis, D. E., & Guralnick, R. P. (2018). Geographic range
915 dynamics drove ancient hybridization in a lineage of angiosperms. *The American*

916 *Naturalist*, 192(2), 171–187.

917 Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association
918 studies. *Methods in Ecology and Evolution*, 6(8), 925–929.

919 Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient
920 estimation of individual ancestry coefficients. *Genetics*, 196(4), 973–983.

921 Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., & Moritz, C. (2012). Coalescent-
922 based species delimitation in an integrative taxonomy. *Trends in Ecology & Evolution*,
923 27(9), 480–488.

924 Fujita, M. K., McGuire, J. A., Donnellan, S. C., & Moritz, C. (2010). Diversification and
925 persistence at the arid-monsoonal interface: australasia-wide biogeography of the Bynoe's
926 gecko (*Heteronotia binoei*; Gekkonidae). *Evolution*, 64(8), 2293–2314.

927 Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and polyphyly: Frequency, causes,
928 and consequences, with insights from animal mitochondrial DNA. *Annual Review of
929 Ecology, Evolution, and Systematics*, 34, 397–423.

930 Garnett, S. T., & Christidis, L. (2017). Taxonomy anarchy hampers conservation. *Nature*,
931 546(7656), 25–27.

932 Garroway, C. J., Bowman, J., Cascaden, T. J., Holloway, G. L., Mahan, C. G., Malcolm, J. R.,
933 Steele, M. A., Turner, G., & Wilson, P. J. (2010). Climate change induced hybridization in
934 flying squirrels. *Global Change Biology*, 16(1), 113–121.

935 Gill, F. B. (2014). Species taxonomy of birds: Which null hypothesis? *The Auk*, 131(2), 150–
936 161.

937 Good, J. M., Hird, S., Reid, N., Demboski, J. R., Steppan, S. J., Martin-Nims, T. R., & Sullivan,
938 J. (2008). Ancient hybridization and mitochondrial capture between two species of

939 chipmunks. *Molecular Ecology*, 17(5), 1313–1327.

940 Gottscho, A. D., Wood, D. A., Vandergast, A. G., Lemos-Espinal, J., Gatesy, J., & Reeder, T. W.

941 (2017). Lineage diversification of fringe-toed lizards (Phrynosomatidae: *Uma notata*

942 complex) in the Colorado Desert: Delimiting species in the presence of gene flow.

943 *Molecular Phylogenetics and Evolution*, 106, 103–117.

944 Gray, J. E. 1845. Catalogue of the specimens of lizards in the collection of the British Museum.

945 Trustees of the British Museum, London.

946 Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li,

947 H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., Malaspinas, A.-S., Jensen, J.

948 D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H. A., ... Pääbo, S.

949 (2010). A draft sequence of the Neandertal genome. *Science*, 328(5979), 710–722.

950 Gronau, I., Hubisz, M. J., Galko, B., Danko, C. G., & Siepel, A. (2011). Bayesian inference of

951 ancient human demography from individual genome sequences. *Nature Genetics*, 43(10),

952 1031–1034.

953 Hamlin, J. A. P., Hibbins, M. S., & Moyle, L. C. (2020). Assessing biological factors affecting

954 postspeciation introgression. *Evolution Letters*, 4(2), 137–154.

955 Harrison, R. G., & Larson, E. L. (2014). Hybridization, introgression, and the nature of species

956 boundaries. *The Journal of Heredity*, 105 Suppl 1, 795–809.

957 Hedrick, P. W. (2013). Adaptive introgression in animals: examples and comparison to new

958 mutation and standing variation as sources of adaptive variation. *Molecular Ecology*,

959 22(18), 4606–4618.

960 Hennig, W. (1966). *Phylogenetic Systematics*. University of Illinois Press.

961 Hillis, D. M. (2019). Species delimitation in herpetology. *Journal of Herpetology*, 53(1), 3–12.

962 Hillis, D. M., Anne Chambers, E., & Devitt, T. J. (2021). Contemporary methods and evidence
963 for species delimitation. *Ichthyology & Herpetology*, 109(3), 895–903.

964 Horner, P., & Fisher, A. (1998). *Ctenotus rimacola* sp. nov. (Scincidae), a new species of lizard
965 with two allopatric subspecies, from the Ord-Victoria region of northwestern Australia.
966 *Records of the Western Australian Museum*, 19, 187–200.

967 Horner, P., & King, M. (1985). A new species of *Ctenotus* (Scincidae, Reptilia) from the
968 Northern Territory. *The Beagle: Records of the Museums and Art Galleries of the Northern*
969 *Territory*, 2, 143–148.

970 Hoskin, C. J., Tonione, M., Higgle, M., Mackenzie, J. B., Williams, S. E., Vanderwal, J., &
971 Moritz, C. (2011). Persistence in peripheral refugia promotes phenotypic divergence and
972 speciation in a rainforest frog. *The American Naturalist*, 178(5), 561–578.

973 Ingram, G. J., & Czechura, G. V. (1990). Four new species of striped skinks from Queensland.
974 *Memoirs of the Queensland Museum*, 29(2), 407-410.

975 Irwin, D. E. (2002). Phylogeographic breaks without geographic barriers to gene flow. *Evolution*,
976 56(12), 2383–2394.

977 Irwin, D. E., Rubtsov, A. S., & Panov, E. N. (2009). Mitochondrial introgression and
978 replacement between yellowhammers (*Emberiza citrinella*) and pine buntings (*Emberiza*
979 *leucocephalos*) (Aves: Passeriformes). *Biological Journal of the Linnean Society. Linnean*
980 *Society of London*, 98(2), 422–438.

981 James, C. D. (1991a). Annual variation in reproductive cycles of scincid lizards (*Ctenotus*) In
982 central Australia. *Copeia*, 1991(3), 744–760.

983 James, C. D. (1991b). Growth rates and ages at maturity of sympatric scincid lizards (*Ctenotus*)
984 In central Australia. *Journal of Herpetology*, 25(3), 284–295.

985 James, C. D., & Shine, R. (2000). Why are there so many coexisting species of lizards in
986 Australian deserts? *Oecologia*, 125(1), 127–141.

987 Laver, R. J., Doughty, P., & Oliver, P. M. (2018). Origins and patterns of endemic diversity in
988 two specialized lizard lineages from the Australian Monsoonal Tropics (*Oedura* spp.).
989 *Journal of Biogeography*, 45(1), 142–153.

990 Lawson, D. J., van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-interpret
991 STRUCTURE and ADMIXTURE bar plots. *Nature Communications*, 9(1), 3258.

992 Leaché, A. D., McElroy, M. T., & Trinh, A. (2018). A genomic evaluation of taxonomic trends
993 through time in coast horned lizards (genus *Phrynosoma*). *Molecular Ecology*, 27(13),
994 2884–2895.

995 Linck, E., & Battey, C. J. (2019). Minor allele frequency thresholds strongly affect population
996 structure inference with genomic data sets. *Molecular Ecology Resources*, 19(3), 639–647.

997 Lotsy, J. P. (1925). Species or linneon. *Genetica*, 7(5), 487–506.

998 Macleay, W. (1877). The lizards of the Chevert Expedition. *Proceedings of the Linnean Society
999 of New South Wales*, 2, 60–69.

1000 Malinsky, M., Matschiner, M., & Svardal, H. (2021). Dsuite-Fast D-statistics and related
1001 admixture evidence from VCF files. *Molecular Ecology Resources*, 21(2), 584–595.

1002 Malinsky, M., Svardal, H., Tyers, A. M., Miska, E. A., Genner, M. J., Turner, G. F., & Durbin,
1003 R. (2018). Whole-genome sequences of Malawi cichlids reveal multiple radiations
1004 interconnected by gene flow. *Nature Ecology & Evolution*, 2(12), 1940–1955.

1005 Mallet, J. (2013). Species, Concepts of. In *Encyclopedia of Biodiversity* (pp. 679–691).
1006 <https://doi.org/10.1016/b978-0-12-384719-5.00131-3>

1007 Mallet, J. (2020). Alternative views of biological species: Reproductively isolated units or

1008 genotypic clusters? *National Science Review*, 7(8), 1401–1407.

1009 Mayr, E. (1963). *Animal Species and Evolution*. Harvard University Press.

1010 McKay, B. D., Mays, H. L., Jr, Wu, Y., Li, H., Yao, C.-T., Nishiumi, I., & Zou, F. (2013). An
1011 empirical comparison of character-based and coalescent-based approaches to species
1012 delimitation in a young avian complex. *Molecular Ecology*, 22(19), 4943–4957.

1013 McVay, J. D., Hipp, A. L., & Manos, P. S. (2017). A genetic legacy of introgression confounds
1014 phylogeny and biogeography in oaks. *Proceedings of the Royal Society B*, 284(1854),
1015 20170300.

1016 Mims, M. C., Darrin Hulsey, C., Fitzpatrick, B. M., & Streelman, J. T. (2010). Geography
1017 disentangles introgression from ancestral polymorphism in Lake Malawi cichlids.
1018 *Molecular Ecology*, 19(5), 940–951.

1019 Moritz, C., Fujita, M. K., Rosauer, D., Agudo, R., Bourke, G., Doughty, P., Palmer, R., Pepper,
1020 M., Potter, S., Pratt, R., Scott, M., Tonione, M., & Donnellan, S. (2016). Multilocus
1021 phylogeography reveals nested endemism in a gecko across the monsoonal tropics of
1022 Australia. *Molecular Ecology*, 25(6), 1354–1366.

1023 Muir, G., & Schlötterer, C. (2005). Evidence for shared ancestral polymorphism rather than
1024 recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (*Quercus*
1025 spp.). *Molecular Ecology*, 14(2), 549–561.

1026 Nielsen, R., & Slatkin, M. (2013). *An introduction to population genetics*. Sinauer Associates,
1027 Inc.

1028 Nielsen, R., & Wakeley, J. (2001). Distinguishing migration from isolation: a Markov chain
1029 Monte Carlo approach. *Genetics*, 158(2), 885–896.

1030 Novaković, J., Janaćković, P., Susanna, A., Lazarević, M., Boršić, I., Milanovici, S., Lakušić, D.,

1031 Zlatković, B., Marin, P. D., & Garcia-Jacas, N. (2022). Molecular Insights into the
1032 *Centaurea calocephala* complex (Compositae) from the Balkans—Does phylogeny match
1033 systematics? *Diversity*, 14(5), 394.

1034 O'Connell, K. A., Prates, I., Scheinberg, L. A., Mulder, K. P., & Bell, R. C. (2021). Speciation
1035 and secondary contact in a fossorial island endemic, the São Tomé caecilian. *Molecular
1036 Ecology*, 30(12), 2859–2871.

1037 Oliver, P. M., Prasetya, A. M., Tedeschi, L. G., Fenker, J., Ellis, R. J., Doughty, P., & Moritz, C.
1038 (2020). Cryptis and convergence: integrative taxonomic revision of the *Gehyra australis*
1039 group (Squamata: Gekkonidae) from northern Australia. *PeerJ*, 8, e7971.

1040 Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of
1041 taxonomy. *Frontiers in Zoology*, 7, 16.

1042 Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T.,
1043 Webster, T., & Reich, D. (2012). Ancient admixture in human history. *Genetics*, 192(3),
1044 1065–1093.

1045 Peñalba, J. V., Joseph, L., & Moritz, C. (2019). Current geography masks dynamic history of
1046 gene flow during speciation in northern Australian birds. *Molecular Ecology*, 28(3), 630–
1047 643.

1048 Pepper, M., & Keogh, J. S. (2021). Life in the “dead heart” of Australia: The geohistory of the
1049 Australian deserts and its impact on genetic diversity of arid zone lizards. *Journal of
1050 Biogeography*, 48(4), 716–746.

1051 Pereira, R. J., & Wake, D. B. (2009). Genetic leakage after adaptive and nonadaptive divergence
1052 in the *Ensatina escholtzii* ring species. *Evolution*, 63(9), 2288–2301.

1053 Pianka, E. R. (1969). Sympatry of desert lizards (*Ctenotus*) in western Australia. *Ecology*, 50(6),

1054 1012–1030.

1055 Pianka, E. R. (1972). Zoogeography and speciation of Australian desert lizards: An ecological
1056 perspective. *Copeia*, 1972(1), 127–145.

1057 Pianka, E. R. (1986). *Ecology and Natural History of Desert Lizards*. Princeton University Press.

1058 Pinho, C., & Hey, J. (2010). Divergence with gene flow: Models and data. *Annual Review of
1059 Ecology, Evolution, and Systematics*, 41, 215–230.

1060 Potter, S., Xue, A. T., Bragg, J. G., Rosauer, D. F., Roycroft, E. J., & Moritz, C. (2018).
1061 Pleistocene climatic changes drive diversification across a tropical savanna. *Molecular
1062 Ecology*, 27(2), 520-532.

1063 Prates, I., Doughty, P., & Rabosky, D. L. (2022). Subspecies at crossroads: The evolutionary
1064 significance of genomic and phenotypic variation in a wide-ranging Australian lizard
1065 (*Ctenotus pantherinus*). *Zoological Journal of the Linnean Society*, zlac076.

1066 Prates, I., Hutchinson, M. N., Huey, J. A., Hillyer, M. J., & Rabosky, D. L. (2022). A new lizard
1067 species (Scincidae: *Ctenotus*) highlights persistent knowledge gaps on the biodiversity of
1068 Australia's central deserts. *Bulletin of the Society of Systematic Biologists*, 1(2), 8720.

1069 Prates, I., Penna, A., Rodrigues, M. T., & Carnaval, A. C. (2018). Local adaptation in mainland
1070 anole lizards: Integrating population history and genome–environment associations.
1071 *Ecology and Evolution*, 8(23), 11932–11944.

1072 Prates, I., Singhal, S., Marchán-Rivadeneira, M. R., Grundler, M. R., Moritz, C., Donnellan, S.
1073 C., & Rabosky, D. L. (2022). Genetic and ecogeographic controls on species cohesion in
1074 Australia's most diverse lizard radiation. *The American Naturalist*, 199(2), E57–E75.

1075 Prideaux, G. J., Long, J. A., Ayliffe, L. K., Hellstrom, J. C., Pillans, B., Boles, W. E.,
1076 Hutchinson, M. N., Roberts, R. G., Cupper, M. L., Arnold, L. J., Devine, P. D., &

1077 Warburton, N. M. (2007). An arid-adapted middle Pleistocene vertebrate fauna from south-
1078 central Australia. *Nature*, 445(7126), 422–425.

1079 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using
1080 multilocus genotype data. *Genetics*, 155(2), 945–959.

1081 Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population
1082 structure when sampling is uneven: subsampling and new estimators alleviate the problem.
1083 *Molecular Ecology Resources*, 16(3), 608–627.

1084 Pyron, R. A., O'Connell, K. A., Lemmon, E. M., Lemmon, A. R., & Beamer, D. A. (2020).
1085 Phylogenomic data reveal reticulation and incongruence among mitochondrial candidate
1086 species in Dusky Salamanders (*Desmognathus*). *Molecular Phylogenetics and Evolution*,
1087 146, 106751.

1088 Rabosky, D. L., Cowan, M. A., Talaba, A. L., & Lovette, I. J. (2011). Species interactions
1089 mediate phylogenetic community structure in a hyperdiverse lizard assemblage from arid
1090 Australia. *The American Naturalist*, 178(5), 579–595.

1091 Rabosky, D. L., Hutchinson, M. N., Donnellan, S. C., Talaba, A. L., & Lovette, I. J. (2014).
1092 Phylogenetic disassembly of species boundaries in a widespread group of Australian skinks
1093 (Scincidae: *Ctenotus*). *Molecular Phylogenetics and Evolution*, 77, 71–82.

1094 Rabosky, D. L., Reid, J., Cowan, M. A., & Foulkes, J. (2007). Overdispersion of body size in
1095 Australian desert lizard communities at local scales only: No evidence for the Narcissus
1096 effect. *Oecologia*, 154(3), 561–570.

1097 Rabosky, D. L., Talaba, A. L., Donnellan, S. C., & Lovette, I. J. (2009). Molecular evidence for
1098 hybridization between two Australian desert skinks, *Ctenotus leonhardii* and *Ctenotus*
1099 *quattuordecimlineatus* (Scincidae: Squamata). *Molecular Phylogenetics and Evolution*,

1100 53(2), 368–377.

1101 Rivera, D., Prates, I., Firneno, T. J., Jr, Rodrigues, M. T., Caldwell, J. P., & Fujita, M. K. (2021).

1102 Phylogenomics, introgression, and demographic history of South American true toads

1103 (*Rhinella*). *Molecular Ecology*, 31(3), 978–992.

1104 Rivera, D., Prates, I., Rodrigues, M. T., & Carnaval, A. C. (2020). Effects of climate and

1105 geography on spatial patterns of genetic structure in tropical skinks. *Molecular*

1106 *Phylogenetics and Evolution*, 143, 106661.

1107 Robinson, J. P., Harris, S. A., & Juniper, B. E. (2001). Taxonomy of the genus *Malus* Mill.

1108 (Rosaceae) with emphasis on the cultivated apple, *Malus domestica* Borkh. *Plant*

1109 *Systematics and Evolution = Entwicklungsgeschichte Und Systematik Der Pflanzen*, 226(1),

1110 35–58.

1111 Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A. M., Bernard, R., Böhm, M.,

1112 Castro-Herrera, F., Chirio, L., Collen, B., Colli, G. R., Dabool, L., Das, I., Doan, T. M.,

1113 Grismer, L. L., Hoogmoed, M., Itescu, Y., Kraus, F., LeBreton, M., ... Meiri, S. (2017).

1114 The global distribution of tetrapods reveals a need for targeted reptile conservation. *Nature*

1115 *Ecology & Evolution*, 1(11), 1677–1682.

1116 Rosauer, D. F., Byrne, M., Blom, M. P. K., Coates, D. J., Donnellan, S., Doughty, P., Keogh, J.

1117 S., Kinloch, J., Laver, R. J., Myers, C., Oliver, P. M., Potter, S., Rabosky, D. L., Afonso

1118 Silva, A. C., Smith, J., & Moritz, C. (2018). Real-world conservation planning for

1119 evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy.

1120 *Conservation Letters*, 11(4), e12438.

1121 Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under

1122 isolation by distance. *Genetics*, 145(4), 1219–1228.

1123 Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding
1124 light on the grey zone of speciation along a continuum of genomic divergence. *PLoS*
1125 *Biology*, 14(12), e2000234.

1126 Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H.
1127 (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. *Annual*
1128 *Review of Entomology*, 55, 421–438.

1129 Shaik, Z., Bergh, N. G., Oxelman, B., & Anthony Verboom, G. (2021). Minimal clustering and
1130 species delimitation based on multi-locus alignments vs SNPs: the case of the *Seriphium*
1131 *plumosum* L. complex (Gnaphalieae: Asteraceae). In *bioRxiv*.
1132 <https://doi.org/10.1101/2021.03.21.436318>

1133 Shaw, J., & Small, R. L. (2004). Addressing the “hardest puzzle in American pomology”:
1134 Phylogeny of *Prunus* sect. *Prunocerasus* (Rosaceae) based on seven noncoding chloroplast
1135 DNA regions. *American Journal of Botany*, 91(6), 985–996.

1136 Shu, X.-X., Hou, Y.-M., Cheng, M.-Y., Shu, G.-C., Lin, X.-Q., Wang, B., Li, C., Song, Z.-B.,
1137 Jiang, J.-P., & Xie, F. (2022). Rapid genetic divergence and mitonuclear discordance in the
1138 Taliang knobby newt (*Liangshantriton taliangensis*, Salamandridae, Caudata) and their
1139 driving forces. *Zoological Research*, 43(1), 129–146.

1140 Singhal, S., & Bi, K. (2017). History cleans up messes: The impact of time in driving divergence
1141 and introgression in a tropical suture zone. *Evolution*, 71(7), 1888–1899.

1142 Singhal, S., Hoskin, C. J., Couper, P., Potter, S., & Moritz, C. (2018). A framework for resolving
1143 cryptic species: A case study from the lizards of the Australian wet tropics. *Systematic*
1144 *Biology*, 67(6), 1061–1075.

1145 Singhal, S., Huang, H., Title, P. O., Donnellan, S. C., Holmes, I., & Rabosky, D. L. (2017).

1146 Genetic diversity is largely unpredictable but scales with museum occurrences in a species-
1147 rich clade of Australian lizards. *Proceedings of the Royal Society B*, 284(1854), 20162588.

1148 Singhal, S., & Moritz, C. (2012). Testing hypotheses for genealogical discordance in a rainforest
1149 lizard. *Molecular Ecology*, 21(20), 5059–5072.

1150 Sites, J. W., & Marshall, J. C. (2004). Operational Criteria for Delimiting Species. *Annual
1151 Review of Ecology, Evolution, and Systematics*, 35, 199–227.

1152 Smith, J., & Kronforst, M. R. (2013). Do *Heliconius* butterfly species exchange mimicry alleles?
1153 *Biology Letters*, 9(4), 20130503.

1154 Smith, M. L., & Carstens, B. C. (2020). Process-based species delimitation leads to identification
1155 of more biologically relevant species. *Evolution*, 74(2), 216–229.

1156 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of
1157 large phylogenies. *Bioinformatics*, 30(9), 1312–1313.

1158 Storr, G. M. (1969). The genus *Ctenotus* (Lacertilia, Scincidae) in the eastern division of
1159 Western Australia. *Journal of the Royal Society of Western Australia*, 51, 97–109.

1160 Storr, G. M. (1970). The genus *Ctenotus* (Lacertilia, Scincidae) in the Northern Territory.
1161 *Journal of the Royal Society of Western Australia*, 52(4), 97–108.

1162 Storr, G. M. (1971). The genus *Ctenotus* (Lacertilia, Scincidae) in South Australia. *Records of
1163 the South Australian Museum*, 16, 2–16.

1164 Storr, G. M. (1973). The genus *Ctenotus* (Lacertilia, Scincidae) in the south-west and Eucla
1165 divisions of Western Australia. *Journal of the Royal Society of Western Australia*, 56, 86–
1166 93.

1167 Storr, G. M. (1975). The genus *Ctenotus* (Lacertilia, Scincidae) in the Kimberley and North-
1168 West Divisions of Western Australia. *Records of the Western Australian Museum*, 3(3),

1169 209–243.

1170 Storr, G. M. (1978). Notes on the *Ctenotus* (Lacertilia, Scincidae) of Queensland. *Records of the*
1171 *Western Australian Museum*, 6(3), 319–332.

1172 Storr, G. M. (1981). Ten new *Ctenotus* (Lacertilia: Scincidae) from Australia. *Records of the*
1173 *Western Australian Museum*, 9(2), 125–146.

1174 Storr, G. M., Smith, L. A., & Johnstone, R. E. (1999). *Lizards of Western Australia I. Skinks*.
1175 Western Australian Museum.

1176 Struck, T. H., Feder, J. L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V. I., Kistenich, S.,
1177 Larsson, K.-H., Liow, L. H., Nowak, M. D., Stedje, B., Bachmann, L., & Dimitrov, D.
1178 (2018). Finding evolutionary processes hidden in cryptic species. *Trends in Ecology &*
1179 *Evolution*, 33(3), 153–163.

1180 Sukumaran, J., & Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species.
1181 *Proceedings of the National Academy of Sciences of the United States of America*, 114(7),
1182 1607–1612.

1183 Svardal, H., Quah, F. X., Malinsky, M., Ngatunga, B. P., Miska, E. A., Salzburger, W., Genner,
1184 M. J., Turner, G. F., & Durbin, R. (2020). Ancestral hybridization facilitated species
1185 diversification in the lake Malawi cichlid fish adaptive radiation. *Molecular Biology and*
1186 *Evolution*, 37(4), 1100–1113.

1187 Swofford, D. L. (2002). *PAUP**. *Phylogenetic Analysis Using Parsimony (*and other methods)*.
1188 Version 4. Sinauer Associates.

1189 Teixeira, M., Jr, Prates, I., Nisa, C., Silva-Martins, N. S. C., Strüssmann, C., & Rodrigues, M. T.
1190 (2016). Molecular data reveal spatial and temporal patterns of diversification and a cryptic
1191 new species of lowland *Stenocercus* Duméril & Bibron, 1837 (Squamata: Tropiduridae).

1192 *Molecular Phylogenetics and Evolution*, 94(A), 410–423.

1193 Tilley, S. G., Bernardo, J., Katz, L. A., López, L., Devon Roll, J., Eriksen, R. L., Kratovil, J.,

1194 Bittner, N. K. J., & Crandall, K. A. (2013). Failed species, innominate forms, and the vain

1195 search for species limits: cryptic diversity in dusky salamanders (*Desmognathus*) of eastern

1196 Tennessee. *Ecology and Evolution*, 3(8), 2547–2567.

1197 Turner, G. F., Seehausen, O., Knight, M. E., Allender, C. J., & Robinson, R. L. (2001). How

1198 many species of cichlid fishes are there in African lakes? *Molecular Ecology*, 10(3), 793–

1199 806.

1200 Uetz, P., Freed, P., Aguilar, R., & Hošek, J. (2022). *The Reptile Database*. The Reptile Database.

1201 <http://www.reptile-database.org>

1202 Vacher, J.-P., Chave, J., Ficetola, F. G., Sommeria-Klein, G., Tao, S., Thébaud, C., Blanc, M.,

1203 Camacho, A., Cassimiro, J., Colston, T. J., Dewynter, M., Ernst, R., Gaucher, P., Gomes, J.

1204 O., Jairam, R., Kok, P. J. R., Lima, J. D., Martinez, Q., Marty, C., ... Fouquet, A. (2020).

1205 Large-scale DNA-based survey of frogs in Amazonia suggests a vast underestimation of

1206 species richness and endemism. *Journal of Biogeography*, 47(8), 1781–1791.

1207 Vavrek, M. J. (2011). Fossil: palaeoecological and palaeogeographical analysis tools.

1208 *Palaeontologia Electronica*, 14(1), 16.

1209 Veijalainen, A., Wahlberg, N., Broad, G. R., Erwin, T. L., Longino, J. T., & Sääksjärvi, I. E.

1210 (2012). Unprecedented ichneumonid parasitoid wasp diversity in tropical forests.

1211 *Proceedings of the Royal Society B*, 279(1748), 4694–4698.

1212 Wagner, C. E., Keller, I., Wittwer, S., Selz, O. M., Mwaiko, S., Greuter, L., Sivasundar, A., &

1213 Seehausen, O. (2013). Genome-wide RAD sequence data provide unprecedented resolution

1214 of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation.

1215 *Molecular Ecology*, 22(3), 787–798.

1216 Wells, R. W., & Wellington, C. R. (1984). A synopsis of the class Reptilia in Australia.

1217 *Australian Journal of Herpetology*, 1(3–4), 73–129.

1218 Wells, R. W., & Wellington, C. R. (1985). A classification of the Amphibia and Reptilia of

1219 Australia. *Australian Journal of Herpetology Supplementary Series*, 1, 1–61.

1220 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population

1221 structure. *Evolution*, 38(6), 1358–1370.

1222 Weir, B. S., & Hill, W. G. (2002). Estimating F-statistics. *Annual Review of Genetics*, 36(1),

1223 721–750.

1224 Whitlock, M. C., & McCauley, D. E. (1999). Indirect measures of gene flow and migration:

1225 $FST \neq 1/(4Nm+1)$. *Heredity*, 82(2), 117–125.

1226 Willis, S. C. (2017). One species or four? Yes!...and, no. Or, arbitrary assignment of lineages to

1227 species obscures the diversification processes of Neotropical fishes. *PLoS One*, 12(2),

1228 e0172349.

1229 Wilson, E. O., & Brown, W. L. (1953). The subspecies concept and its taxonomic application.

1230 *Systematic Zoology*, 2(3), 97–111.

1231 Winger, B. M. (2017). Consequences of divergence and introgression for speciation in Andean

1232 cloud forest birds. *Evolution*, 71(7), 1815–1831.

1233 Winker, K. (2009). Reuniting Phenotype and Genotype in Biodiversity Research. *Bioscience*,

1234 59(8), 657–665.

1235 Wright, S. (1931). Evolution in Mendelian populations. *Genetics*, 16(2), 97–159.

1236 Wright, S. (1943). Isolation by Distance. *Genetics*, 28(2), 114–138.

1237 Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data.

1238 *Proceedings of the National Academy of Sciences of the United States of America*, 107(20),
1239 9264–9269.

1240 Zachos, F. E., Christidis, L., & Garnett, S. T. (2020). Mammalian species and the twofold nature
1241 of taxonomy: a comment on Taylor et al. 2019. *Mammalia*, 84(1), 1–5.

1242 Zamudio, K. R., Bell, R. C., & Mason, N. A. (2016). Phenotypes in phylogeography: Species'
1243 traits, environmental variation, and vertebrate diversification. *Proceedings of the National
1244 Academy of Sciences of the United States of America*, 113(29), 8041–8048.

1245 Zozaya, S. M., Higgle, M., Moritz, C., & Hoskin, C. J. (2019). Are Pheromones Key to
1246 Unlocking Cryptic Lizard Diversity? *The American Naturalist*, 194(2), 168–182.

1247

1248 **Data Accessibility Statement**

1249 Nuclear ddRAD data are available in the Sequence Read Archive (BioProjects
1250 PRJNA755251 and PRJNA382545); see Table S1 for ddRAD sample information. Newly
1251 generated mitochondrial data were uploaded to GenBank (accession numbers OQ091785–
1252 OQ091921); see Table S2 for the accession numbers of mitochondrial sequences, including those
1253 generated by previous studies. Computer scripts used to prepare the data and perform all
1254 analyses are available through GitHub
1255 (https://github.com/ivanprates/Ctenotus_inornatus_group). A copy of the supplementary material
1256 is available through GitHub.

1257

1258 **Author contributions**

1259 IP, MNH, and DLR conceived and designed the study. SS, CM, and DLR acquired
1260 funding. MNH, CM, and DLR provided samples and resources. IP wrote computer scripts,

1261 processed the data, and prepared the visualization of results. IP, MNH, SS, CM, and DLR
1262 interpreted the results. IP and DLR drafted the manuscript with suggestions and edits by MNH,
1263 SS, and CM.

1264

1265 **Orcid**

1266 Ivan Prates: <https://orcid.org/0000-0001-6314-8852>

1267 Mark N. Hutchinson: <https://orcid.org/0000-0003-2910-1983>

1268 Sonal Singhal: <https://orcid.org/0000-0001-5407-5567>

1269 Craig Moritz: <https://orcid.org/0000-0001-5313-7279>

1270 Daniel L. Rabosky: <https://orcid.org/0000-0002-7499-8251>

1271

1272 **Figure Legends**

1273

1274 **Fig. 1.** Expected relationships between genetic and geographic distances in the presence of one
1275 versus two species and implications for species delimitation. For dispersal-limited organisms,
1276 genetic differentiation between sampled localities should increase as a function of geographic
1277 separation, corresponding to Wright's (1943) isolation-by-distance (IBD) model (A). In the
1278 absence of geographic or reproductive barriers, we should observe continuous IBD among
1279 conspecific populations (B). In contrast, in the presence of additional factors restricting gene
1280 flow (e.g., unsuitable habitat), the relationship between genetic and geographic distances may
1281 become discontinuous (C). In this case, two IBD patterns emerge from the same analysis: one for
1282 pairs of populations with unrestricted gene flow (light gray ellipse), and a second, offset
1283 relationship for pairs of populations with restricted gene flow (dark gray ellipse). Note that these

1284 clusters emerge from the data, irrespective of *a priori* assignments to candidate species or taxa.
1285 Finally, population differentiation can become uncoupled from geographic separation when
1286 sampling encompasses fully reproductively isolated units, regardless of the underlying
1287 geography (D). This latter case would provide strong evidence for two separately evolving
1288 species.

1289

1290 **Fig. 2.** Location of geographic regions mentioned in this manuscript (upper left), presumed
1291 ranges of morphologically defined taxa traditionally recognized in the *Ctenotus inornatus*
1292 species group (smaller maps), and pictures of representative taxa (right). Maps of taxa not
1293 included in our analyses but otherwise presumed to belong to this species group (*C. capricorni*
1294 and *C. nullum*) were omitted. Dark polygons on taxon maps are expert-validated ranges derived
1295 for the IUCN Red List Australian squamate assessment as compiled by Roll et al. (2017). Yellow
1296 diamonds indicate the type locality of each taxon based on the original descriptions. Note that the
1297 type localities of *C. robustus* and *C. inornatus* lie outside the broadly accepted ranges of these
1298 taxa. All lizard pictures by Jules Farquhar.

1299

1300 **Fig. 3.** Overview of major inferred clades, operational taxonomic units (OTUs), and proposed
1301 provisional taxon scheme in the *Ctenotus inornatus* species group. Phylogenetic tree based on
1302 524,324 base pairs from 3,694 ddRAD loci (outgroups not shown). Asterisks indicate bootstrap
1303 nodal support > 95. For clarity, only support for the OTUs and deeper relationships are shown.
1304 OTUs shown resulted from our delimitation analyses and are considered candidate species (see
1305 text). Pending detailed analyses of morphological variation and additional geographic sampling

1306 of the OTUs, we outline a provisional taxonomic scheme with the goal of supporting field and
1307 museum workers.

1308

1309 **Fig. 4.** Genotypic clustering results (bars) and phylogenetic support for traditionally recognized
1310 taxa in the *robustus* complex. Nuclear phylogenetic relationships (left) as in Fig. 3 but pruned to
1311 this complex. Individuals shown in gray tip labels were not included in the clustering analysis
1312 due to high missing data or scarce sampling of the corresponding candidate species. Pie charts on
1313 maps indicate the average ancestry proportions corresponding to each cluster at each site.

1314 Clustering results support two clusters corresponding to the taxon *C. spaldingi*: *spaldingi*-S and
1315 *spaldingi*-NE, which might overlap in northeastern localities. Unit *robustus*-NW from northern-
1316 northwestern Australia corresponds to a subset of the taxon *C. robustus*. *Ctenotus rimacola*,
1317 *robustus*-TE, and *spaldingi*-CY are highly divergent from other units and considered candidate
1318 species, yet not included in clustering analyses owing to scarce sampling. Note that, despite a
1319 wide geographic sampling gap between northern and southern populations of *spaldingi*-S, our
1320 analyses did not support them as independent genetic groups.

1321

1322 **Fig. 5.** Phylogenetic relationships in the *Ctenotus inornatus* group based on the *cytochrome B*
1323 mitochondrial marker. The colors of tip symbols correspond to the operational taxonomic units
1324 (OTUs) delimited based on nuclear loci. For clarity, only samples with matching nuclear data are
1325 shown, except for individuals of *C. burbridgei* and the OTU *spaldingi*-CY, which had scarce or
1326 no nuclear data (for a complete mitochondrial tree, see Fig. S6). Asterisks indicate bootstrap
1327 nodal support > 95. For clarity, only support for the OTUs and deeper relationships are shown.
1328 There were notable instances of mitochondrial paraphyly of nuclear OTUs (lineages involved are

1329 indicated with red arrows). In particular, a mitochondrial lineage grouped samples of four
1330 nuclear OTUs from two distinct species complexes: *inornatus*-N, *inornatus*-S, *superciliaris*-E,
1331 and *superciliaris*-W. Note also that *superciliaris*-E was split into two distant mitochondrial
1332 lineages, each matching a divergent nuclear lineage (Fig. 8). Similarly, *robustus*-NW and
1333 *robustus*-TE, sisters in the nuclear tree (Fig. 4), formed distant mitochondrial lineages.

1334

1335 **Fig. 6.** Pairwise F_{ST} between individuals from the same (gray) or different (black) groups, as a
1336 function of the geographic distances between them. Groups are the operational taxonomic units
1337 (OTUs) delimited within currently recognized taxa, whose ranges are shown on maps. Genetic
1338 and geographic distances within and between groups should form a continuous relationship when
1339 these groups correspond to the same species (see Fig. 1). This appears to be the case for OTUs
1340 corresponding to the taxon *Ctenotus inornatus*. By contrast, the relationship between genetic and
1341 geographic distances within and between groups should be discontinuous in the presence of
1342 separate species (Fig. 1). This appears to be the case of OTUs within the taxa *C. spaldingi*, *C.*
1343 *robustus*, and *C. superciliaris*.

1344

1345 **Fig. 7.** Estimates of population migration rates (2NM), the effective number of gene migrations
1346 received by a population per generation. Each violin plot corresponds to a pair of populations,
1347 including (i) the operational taxonomic units (OTUs) inferred in this study, (ii) traditional taxa of
1348 disputed validity, and (iii) populations geographically adjacent to these taxa. In each pair, values
1349 are averages between the two directions of gene flow (see Table S3 for all estimates). To
1350 facilitate comparison, x-axes span the same 2NM range across plots. OTUs in the same complex
1351 showed relatively low (e.g., *spaldingi*-CY and *spaldingi*-S) to high (e.g., *inornatus*-N and

1352 *inornatus*-S) gene flow. We also find low (*C. "fallens"*, *C. "brachyonyx"*) to high (e.g., *C.*
1353 *"borealis"*, *C. "severus"*) absolute numbers of gene migrations among traditional taxa and their
1354 respective geographically adjacent populations. Note that gene flow levels between OTUs from
1355 different complexes (i.e., divergent species; dark blue violins) were often comparable or higher
1356 than intra-complex estimates.

1357

1358 **Fig. 8.** Genotypic clustering results (bars) and phylogenetic support for traditionally recognized
1359 taxa in the *superciliaris* complex. Nuclear phylogenetic relationships (left) as in Fig. 3 but
1360 pruned to this complex. Individuals shown in gray tip labels were not included in the clustering
1361 analysis due to high missing data. Pie charts on maps indicate the average ancestry proportions
1362 corresponding to each cluster at each site. Genotypic clustering identified three groups that may
1363 overlap geographically. Units *superciliaris*-W and *superciliaris*-E correspond to the taxon *C.*
1364 *superciliaris*.

1365

1366 **Fig. 9.** Genotypic clustering results (bars) and phylogenetic support for traditionally recognized
1367 taxa in the *inornatus* complex. Nuclear phylogenetic relationships (left) as shown in Fig. 3 but
1368 pruned to this complex. Individuals shown in gray tip labels were not included in the clustering
1369 analysis due to high missing data or scarce sampling of the corresponding candidate species. Pie
1370 charts on maps indicate the average ancestry proportions corresponding to each cluster at each
1371 site. Genotypic clustering identified two clusters corresponding to the taxon *C. inornatus* (sensu
1372 Rabosky et al. (2014)): *inornatus*-N and *inornatus*-S, which nonetheless establish substantial
1373 gene flow (see text). *Ctenotus eutaenius* is highly divergent from other units but not included in
1374 clustering analyses owing to scarce sampling. Note that unit *inornatus*-S, spanning most of

1375 Australia's central arid zone, grouped specimens traditionally assigned to several distinct taxa
1376 based on coloration patterns.

1377

1378 **Fig. 10.** Excess allele sharing among operational taxonomic units (OTUs) in the *Ctenotus*
1379 *inornatus* species group based on f-branch, an ABBA-BABA-class statistic. Colors indicate the
1380 proportion of an OTU's loci inferred to be introgressed from another OTU. Gray squares indicate
1381 comparisons not possible owing to tree topology constraints. The f-branch metric accounts for
1382 correlated allele frequencies among species to minimize cases where multiple species appear to
1383 be introgressed owing to a single introgression event that involved an ancestor (a limitation of
1384 the broadly used Patterson's D; see Fig. S8 for D results). Such ancestral events are indicated by
1385 the internal branches on the y-axis (blue dotted lines). Note substantial introgression across
1386 OTUs from distinct complexes, particularly *inornatus* and *superciliaris*, but also among non-
1387 sister OTUs within the three complexes.