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Abstract

Australia harbors the most diverse lizard assemblages on Earth, yet the biodiversity of
its vast arid zone remains incompletely characterized. Recent sampling of remote regions has
revealed new species with unique phenotypes and unclear evolutionary affinities. Here, we
describe a new species of scincid lizard that appears to be widely distributed across the Great
Victoria Desert and adjacent regions. The new species was previously overlooked among
specimens of the wide-ranging desert taxon Ctenotus schomburgkii but is distinguished from
it by coloration and scalation characters. Phylogenetic analyses based on mitochondrial and
genome-wide nuclear loci confirmed that the new species is highly divergent from C.
schomburgkii, with which it appears to be sympatric across much of its range. In addition to
the new species, our survey of genetic variation within C. schomburgkii as currently
recognized revealed three additional lineages that approach one another in southern and
northwestern Australia, and which may also represent distinct species. These results suggest
that our knowledge of the extraordinary biodiversity of arid Australia remains incomplete,
with implications for the conservation and management of this unique fauna. The targeted
collection of voucher specimens in undersampled regions, coupled with population genetic
screening of lineage diversity, will be crucial for characterizing species boundaries and
understanding the composition of Australia’s vertebrate communities.

Keywords: Cryptic species, population genetics, phylogeography, arid zone, Ctenotus
schomburgkii.
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Introduction

Australia’s arid lands harbor the most diverse lizard assemblages on Earth (Pianka
1969, 1972; Roll et al. 2017; Tejero-Cicuéndez et al. 2022). Nevertheless, new species
continue to be described every year. In some cases, the recent increase in taxonomic diversity
has resulted from phylogeographic and population genetic analyses that revealed multiple
evolutionary lineages within formerly wide-ranging arid zone taxa (Oliver et al. 2009;
Doughty et al. 2012, 2018; Mecke et al. 2013; Rabosky et al. 2017; Kealley et al. 2018;
Eastwood et al. 2020). However, species with distinctive phenotypes and unclear
phylogenetic affinities continue to be encountered through field surveys in remote desert
regions that remain undersampled. A remarkable example is the large elapid snake
Oxyuranus temporalis, the first specimen of which was only collected in 2006 (Doughty et al.
2007). Recently described desert species highlight our inadequate knowledge of the
composition of Australian squamate assemblages, which in turn limits our understanding of
biogeographic patterns and the evolution of regional biotas (Pepper and Keogh 2021; Prates
et al. 2021).

Australia’s tremendous squamate diversity is disproportionately concentrated in just a
few major clades, with nearly half of the species corresponding to scincid lizards (Cogger
2014). Among them is the genus Ctenotus, with 107 recognized species-level taxa (Uetz et al.
2021). Ctenotus is a conspicuous and often dominant component of Australian arid zone
assemblages, with areas known to harbor up to 14 species in fine-scale sympatry (Pianka
1969, 1972, 1986). As such, they have become central to studies of ecological community
structure and assembly (Pianka 1972, 1986; James and Shine 2000; Rabosky et al. 2007,
2011). While Ctenotus has been relatively well-studied from an ecological perspective,
species diversity in these lizards remains incompletely characterized. Ctenotus was first
recognized as a distinct genus by Storr (1964), and knowledge of its diversity was limited
before a series of revisions based on external morphological attributes such as color pattern,
scalation, and limb proportions (Storr 1969, 1970, 1971, 1973, 1975, 1981). Storr’s work is a
successful example of the traditional taxonomic approach in describing a newly sampled
biota, and most of his species remain valid. Nevertheless, recent studies incorporating
molecular data have found that certain nominal taxa contain multiple divergent genetic
lineages, with targeted morphological examinations supporting the recognition of new
species (Rabosky et al. 2017). Similarly, comprehensive comparative analyses of Ctenotus
have identified potentially unrecognized species diversity based on marked genetic
differentiation (Singhal et al. 2017; Prates et al. 2021). Much of this undescribed diversity
occurs in Australia’s arid zone, highlighting persistent knowledge gaps about species
boundaries and distributions in the world’s most diverse lizard fauna.

In this contribution, we dissect the potential for unrecognized diversity within what is
currently regarded as a single species, Ctenotus schomburgkii (Peters 1863). Previous studies
of this wide-ranging taxon reported extensive variation in coloration (Storr et al. 1999) and
spatial genetic structure (Singhal et al. 2018; Prates et al. 2021). To assess whether this
variation reflects unrecognized species diversity, we combine morphological, mitochondrial,
and genome-wide nuclear data. We identify a highly divergent and morphologically
diagnosable phylogenetic lineage whose distribution appears centered on the Great Victoria
Desert. This form was previously assigned to C. schomburgkii due to a superficial
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morphological similarity between both, combined with a poor understanding of phenotypic
variation within C. schomburgkii. We also infer the phylogenetic relationships of the new
species relative to other taxa thought to be closely allied to C. schomburgkii based on
morphological and molecular evidence (Storr et al. 1999; Singhal et al. 2017; Prates et al.
2021). In doing so, we provide a test of whether Storr’s phenetic species groups, erected as
aides to species identification in Ctenotus lizards, also reflect evolutionary relationships.

Material and Methods

Sampling of genetic data

We inferred phylogenetic relationships among samples of C. schomburgkii and
closely related taxa based on both mitochondrial and genome-wide nuclear loci. We
incorporated sequences from the following taxa thought to be closely related to C.
schomburgkii based on morphological attributes: C. schomburgkii (116 specimens), C.
allotropis (two), C. brooksi (12), C. euclae (seven), C. mesotes (two), C. strauchii (22), C.
taeniatus (seven), and C. tantillus (one). These taxa correspond to the morphologically
defined C. schomburgkii species group (Storr et al. 1999). We also included taxa that might
be related to this group based on molecular analyses (Singhal et al. 2017, 2018; Prates et al.
2021), namely C. rosarium (one specimen), C. calurus (nine), and C. zebrilla (five). For all
these taxa, we examined the voucher specimens corresponding to our genetic samples to
control for identification errors, except for three unavailable vouchers of C. allotropis and C.
rosarium.

Our molecular sampling also included representatives of other major molecular
Ctenotus clades (Prates et al. 2021), as follows: C. atlas (two), C. australis (two), C. catenifer
(one), C. ehmanni (one), C. essingtonii (two), C. halysis (three), C. inornatus (two), C.
labillardieri (two), C. leae (18), C. leonhardii (two), C. nasutus (two), C. nigrilineatus (two),
C. pantherinus (two), C. rufescens (one), C. striaticeps (one), C. taeniolatus (two), and C.
youngsonii (one). To root the resulting phylogenies, we used representatives from the genus
Lerista, namely L. bipes (two) and L. ips (two). In total, 234 specimens were sampled for
genetic data. Table S1 presents detailed sample information for previously and newly
generated sequences, including museum vouchers, locality information, and GenBank and
Sequence Read Archive accessions.

To infer phylogenetic relationships based on the mitochondrial genome, we PCR-
amplified, sequenced, edited, and aligned an 1143 base pair-long fragment of the cytochrome
B gene following standard protocols for Australian scincid lizards (Rabosky et al. 2009).

To infer phylogenetic relationships based on the nuclear genome, we incorporated
double-digest restriction site-associated data (ldRAD) (Peterson et al. 2012) generated by
broad-scale evolutionary investigations of Australian sphenomorphine skinks (Singhal et al.
2017, 2018; Prates et al. 2021) and available in the Sequence Read Archive (BioProjects
PRINA755251 and PRINA382545). To generate this ddRAD dataset, genomic DNA was
digested with the restriction enzymes EcoRI and Mspl, tagged with individual barcodes,
PCR-amplified, multiplexed, and sequenced on an Illumina platform. We used the ipyrad v.
0.9.71 pipeline (Eaton and Overcast 2020) to de-multiplex and assign reads to individuals
based on sequence barcodes (allowing no nucleotide mismatches from individual barcodes),
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perform de novo read assembly (minimum clustering similarity threshold = 0.90), align reads
into loci, and call single nucleotide polymorphisms (SNPs) while enforcing a minimum Phred
quality score (= 33), minimum sequence coverage (= 6x), minimum read length (= 35 bp),
and maximum proportion of heterozygous sites per locus (= 0.5), while ensuring that variable
sites had no more than two alleles within an individual (i.e., a diploid genome). The final
dataset was composed of 3,321 loci, each present in at least 30% of the sampled individuals.

Phylogenetic analyses

We inferred evolutionary relationships based on both the mitochondrial and nuclear
(ddRAD) datasets. We first inferred phylogenetic lineages using an individual-based
approach under Maximum Likelihood for the mitochondrial and nuclear datasets separately.
To this goal, we implemented RAXML-HPC v. 8.2.12 (Stamatakis 2014) through the
CIPRES Science Gateway (Miller et al. 2010) using the GTRCAT model of nucleotide
evolution and estimating node support based on 1,000 bootstrap replicates. We also compared
the nuclear RaxML results to a species-tree inferred under a multispecies coalescent
framework using SVD Quartets (Chifman and Kubatko 2014) as implemented in the
command line version of PAUP v. 4 (Swofford 2002). In this analysis, we sampled all
possible quartets and estimated node support based on 1,000 bootstrap replicates.

Morphological analyses

Our molecular phylogenetic analyses revealed that certain specimens from Australia’s
arid zone previously assigned to C. schomburgkii comprise a different and highly divergent
lineage (see Results). To assess whether this lineage is morphologically distinct from the
nominal C. schomburgkii, we performed an initial assessment of morphological variation in
C. schomburgkii and similar taxa based on museum vouchers with corresponding sequences
in our genetic datasets (n = 172; listed in Table S1). To inform our comparisons, we relied on
the range of scalation and meristic variation reported for C. schomburgkii (Storr 1969, 1970,
1971, 1973, 1975; Storr et al. 1999). Morphological characters were scored following
previous studies of Ctenotus (Storr 1971; Couper et al. 2002), except for the terminology of
the scalation around the eye, as we considered the more anterior of Storr’s (e.g., 1971)
presubocular scales as a lower preocular (Greer and Cogger 1985; Couper et al. 2002;
Hutchinson et al. 2006). As a result, our scoring of presubocular scales is one lower than in
Storr’s descriptions.

These initial examinations of the specimens sequenced revealed consistent differences
in coloration pattern between a highly divergent lineage and the remaining samples assigned
to C. schomburgkii (see Results). To search for additional yet unsequenced specimens of this
newly identified and phenotypically distinctive lineage, we then screened the coloration
pattern of specimens assigned to C. schomburgkii deposited at the South Australia Museum
(SAMA), Western Australian Museum (WAM), Museum and Art Gallery of the Northern
Territory (MAGNT), University of Michigan Museum of Zoology (UMMZ), and Cornell
University Museum of Vertebrates (CUMYV), totaling around 1700 vouchers. This screening
revealed a total of 30 specimens of the candidate new species.

Throughout this manuscript, geographic distributions were annotated with the relevant
IBRA 7 bioregions and subregions (1995; Australian Government 2021).
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Results

Phylogenetic structure within C. schomburgkii

Samples assigned to C. schomburgkii formed four major subclades in both the
mitochondrial (Fig. 1a) and nuclear (Fig. 1b) RAXML analyses: one occurring in the interior
central and eastern arid zone, potentially including the type locality of C. schomburgkii
(Buchsfelde, South Australia); another in the southwestern arid zone and along the southern
coast; a third centered mostly in the Pilbara region in Australia’s northwest; and a fourth in
the central deserts (Central Ranges bioregion) surrounding the limits between the states of
South Australia (SA), Western Australia (WA), and Northern Territory (NT). This fourth
subclade was found as sister to all the other samples of C. schomburgkii in the nuclear tree,
the split between the two being one of the deepest divergences in the entire clade (Fig. 1b).
The mitochondrial data for this distinctive nuclear lineage showed an even more distant
relationship to C. schomburgkii, being closer to C. calurus (Fig. 1a).

Our examination of museum specimens confirmed that the highly divergent lineage
from the Central Ranges bioregion is morphologically distinct from typical C. schomburgkii
based on coloration and scalation patterns (see below). Based on the sampling localities of
the genotyped specimens, as well as other specimens that show the same suit of distinctive
characters, it is clear that this lineage occurs in broad sympatry with C. schomburgkii in the
Great Victoria Desert and Central Ranges bioregions (Australian Government, 2021). The
genetic and morphological distinction of this lineage and C. schomburgkii despite ample
opportunities for gene flow supports that the former corresponds to a yet unnamed species,
which we formally describe below.

Figure 1. Evolutionary relationships between samples assigned to Ctenotus schomburgkii
based on the cytochrome B mitochondrial marker (a) and the nuclear ddRAD data (b). For
clarity, a maximum of two samples per locality per taxon is shown on trees, and other taxa in
the C. schomburgkii species group are shown as a single terminal. Nodal bootstrap support
values > 95 are indicated with an asterisk, and support values within major subclades are
omitted. Maps indicate the geographic distributions of mitochondrial (¢) and nuclear (d)
subclades.
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Evolutionary relationships of C. schomburgkii and related taxa

Nuclear phylogenetic analyses under both the concatenated (RaxML; Fig. 2) and

7

multispecies coalescent (SVD Quartets; Fig. S1) approaches yielded the exact same topology,
except for a single relationship (see below). These analyses found the new species and most
taxa regarded as closely related to C. schomburgkii based on morphological similarity, and
thus assigned to the C. schomburgkii species group (Storr et al. 1999), to be nested in the
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same highly supported clade. This was the case of C. schomburgkii, C. brooksi, C. euclae, C.
taeniatus, and C. strauchii. However, the morphologically defined C. schomburgkii species
group was not monophyletic. The major Ctenotus clade that included most taxa in the C.
schomburgkii group also included C. calurus and C. zebrilla, both formerly associated with
the C. colletti species group based on dorsal coloration pattern (Storr et al. 1999). This clade
also included a similarly small-bodied taxon, C. rosarium, not previously regarded as related
to the C. schomburgkii group (Couper et al. 2002).

At the same time, C. mesotes and C. tantillus, formerly assigned to the C.
schomburgkii group based on their morphological similarity to C. schomburgkii (Storr et al.
1999; Horner 2009), branched within another major clade of Ctenotus. This second clade
mostly included taxa assigned to the C. colletti group, namely C. nasutus, C. nigrilineatus, C.
rufescens, and C. striaticeps (Fig. 2; Fig. S1). These emerging patterns indicate that the
morphological attributes used to distinguish the C. schomburgkii and C. colletti species
groups are not always accurate indicators of phylogenetic relationships.

These two major clades, which we refer to as the C. schomburgkii and C. colletti
clades of Ctenotus, were found as successive branches in the concatenated RaxML tree rather
than as sister clades (Fig. 2). Specifically, the C. schomburgkii clade was sister to a large
clade that included all the other Ctenotus except for the C. labillardieri and C. pantherinus
clades. In turn, the C. colletti clade was the next branching clade, sister to a clade composed
of the remaining Ctenotus (i.e., the C. atlas, C. australis, C. essingtonii, C. inornatus, C.
leonhardii, and C. taeniolatus clades). By contrast, the SVD Quartets species-tree (Fig. S1)
found the C. schomburgkii and C. colletti clades to be sisters, albeit with low bootstrap
support (= 64).

Within the C. schomburgkii clade, C. taeniatus and C. euclae formed a clade sister to
C. brooksi, supporting previous findings of monophyly of the C. brooksi complex and a sister
relationship between this clade and C. calurus (Hutchinson et al. 2006).

Figure 2. Evolutionary relationships of taxa assigned to the Ctenotus schomburgkii
morphological species group based on 468,161 base pairs across 3,321 restriction-site
associated DNA loci. Purple triangles on tips indicate taxa traditionally assigned to the C.
schomburgkii group based on morphology; orange circles indicate taxa previously assigned to
the C. colletti group. For clarity, a maximum of 15 samples per taxon is shown. Nodal
bootstrap support values > 95 are indicated with an asterisk, and within-taxon support values
are omitted.
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Holotype: WAM R166437 (Fig. 3a; GenBank accession KJ506010; Sequence Read Archive
accession SRX2727531), 5.3 km SSE Pungkulpirri Waterhole, WA, 24° 42’ 26 S, 128° 45’
37" E, on 22 September 2006, by S. C. Donnellan, P. Doughty, and M. Hutchinson.

Paratypes: SAMA R18215, 40 km SSW of Wyola Lake, SA, 29°30° 00” S, 130° 08” 00” E;
R36119, 1 km down Giles Rd, Yulara Townsite, NT, 25° 14’ 00” S, 131° 12’ 00” E;
R46128-29, 27 km NE of Pipalyatjara, SA, 26° 02° 58" S, 129° 24’ 39” E; R48782, 6.6 km
WNW of Mt Lindsay (Wataru), SA, 27° 03° 39” S, 129° 49’ 45 E; R51751, Anne Beadell
Highway, 11.2 km E Vokes Hill Corner, SA, 28° 33”42 S, 130° 47’ 40” E; SAMA R62233
(Fig. 3b), from the Anne Beadell Highway, 300 m E of the WA-SA border, SA, 28° 30’ 28”
S, 129°00° 17 E; R62176 (GenBank accession KJ505036), 3 km SE Mt Ant, WA, 24° 46’
577 S, 128° 46’ 44” E; R62312—13, Anne Beadell Highway, 26.3 km E of the WA-SA
border, SA, 28° 30’ 24” S, 129° 15° 43” E. NTM R14234, Amata Rd (site 5), Uluru National
Park, NT, 25° 20’ 00” S, 130° 47 00” E; R17505—10, Uluru National Park, NT, 25° 15’ 00”
S, 131° 00’ 00” E; R32339, Petermann Ranges, NT, 25° 01 00” S, 129° 23” 00” E; R36149,
SE of Reedy Rockhole, Kings Canyon, NT, 24° 15° 00” S, 131° 34° 00” E. WAM R51077,
22 km NE White Cliffs HS, 28° 20” 00” S, 123° 06’ 00” E; R53490, Red Hill, 92 km E of
Laverton, 28° 18* 00” S, 123° 11° 00” E; R85273, 85297, 4 km ESE of Big Shot Bore, 28°
24> 007 S, 123° 04 00” E; R147767, 7-8 km WNW Point Salvation, 28° 12 00” S, 123° 35°
00” E; R155723, 7-8 km WNW Point Salvation, 28° 14* 00” S, 123°36’ 00” E; R163450,
Neale Junction, 28° 18* 09” S, 126° 17° 57 E; R164231 (GenBank accession OM966792),
Mina Mina, Clutterbuck Hills, Gibson Desert, 24° 31° 017 S, 126° 12” 46” E; R164237
(GenBank accession OM966793), Mina Mina, Clutterbuck Hills, Gibson Desert, 24° 31° 06”
S, 126° 13° 12” E; R175023 (Fig. 4a), Beyondie Lakes, Little Sandy Desert, 24° 43° 44” S,
120° 17’ 46” E.

Figure 3. a) Holotype of Ctenotus kutjupa sp. nov., WAM R166437. Picture by Paul
Doughty. b) Head scales of paratype SAMA R62233, showing the diagnostic scalation
combination of the prefrontals (prf) and nasals (nas) in medial contact and the presence of a
presubocular scale (pso).
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Etymology: The word kutjupa, meaning “the other one” or “another one” in its noun form,
makes reference to the discovery of the new species among collections of C. schomburgkii.
We use this word, shared by several Western Desert languages (e.g., Maralinga Tjarutja,
Yankunytjatjara, Pitjantjatjara, Ngaanyatjarra), to acknowledge that this lizard belongs to the
country where these languages are spoken. The specific epithet is a noun in apposition to the
genus.
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Diagnosis: A small species of Ctenotus, characterized by the unique combination of sharp-
edged and spinose subdigital lamellae, a presubocular scale between the lower preocular and
the subocular supralabial, and prefrontal and nasal head shields usually in medial contact
(Fig. 3b). The color pattern typically includes seven narrow dark dorsal stripes, including a
vertebral stripe that becomes more prominent on the (unbroken) tail and runs almost the full
length of the tail in most individuals (Fig. 3a). The new species is further characterized by the
combination of a dark upper lateral zone with a single series of large pale spots with an
ascending series of black and whitish blotches that curve dorsally behind the eye (Fig. 4a—b,

e).

Description: Adult snout-vent length (mm) 35.5-45.0, (X = 39.7, n = 24). Smallest individual
28.0 mm. Tail length (%SVL) 143-192 (X = 160.1, n = 16). Hind limb length (% SVL) 42.1—
50.0 (x =45.3). Head length (%SVL) 20.0-24.7 (x = 22.8, n = 30). Head length/head width
(%) 143-183 (x = 158.9, n = 30). Nasals in point to broad medial contact (Fig. 3b) (2 of 30
narrowly separated). Prefrontals usually in point to broad medial contact (4 of 30 narrowly
separated). Supraoculars four, first three in contact with frontal, second and third subequal.
Supraciliaries 7-8 (mode 7), the count depending on whether two or three small supraciliaries
separate the initial three from the terminal two. Posterior loreal tapering only slightly
anteriorly and less than twice as long as high. Seven supralabials. One rectangular
presubocular lies between the lower preocular and the fifth (subocular) supralabial,
contacting the fourth supralabial. Ear lobules usually two, obtusely pointed, the lower larger
than the upper, or a single large blunt lobule occupies the place of the two. Midbody scale
rows 24-28 (X =26.2, mode 26, n = 30). Toes compressed; 22-26 (X = 23.6, n = 29) lamellae
under fourth toe, each forming a laterally compressed, sharp-edged keel with a small apical
spine. Plantar scales obtusely pointed, sometimes with two to four scales similar in shape to
the subdigital lamellae running on to the plantar surface from the base of the fourth toe.

Dorsal background color sandy orange in life, most individuals with seven black to
dark gray longitudinal dorsal stripes (Fig. 3a, 4a—b). The vertebral stripe, and a laterodorsal
and a dorsolateral stripe on each side, are formed by dark pigment in the overlapping corners
of adjacent scale rows. A paravertebral stripe on each side is formed by a black line running
down the middle of the first scale row (Fig. 4e). In a few individuals the paravertebral and
laterodorsal dark lines are more irregular and may coalesce or braid together. The black
dorsolateral stripe forms the dorsal margin of a white dorsolateral stripe that runs down the
middle of the third scale row. The white dorsolateral line is bordered below by a blackish
upper lateral zone that covers the fourth and fifth scale rows and bears a single series of large
pale orange blotches. A mid-lateral white stripe bordered below by black forms the lower
boundary of the dark upper lateral zone, which runs from the groin to the ear. Anteriorly to
the ear, the white stripe continues to the posterior supralabial or breaks up. The scales of the
temporal region have a distinctive crescentic mark that highlights the posteroventral margin
of the eye (postsuboculars and adjacent portions of the temporal scale), usually bounded by
an ascending series of dark postocular blotches (on the penultimate supralabial, primary
temporal and base of the upper secondary temporal), in turn bordered posteriorly by the pale
centers of the terminal supralabial, lower secondary temporal and upper secondary temporal.
A weak dark zone runs from the preocular scales to the nasal. Vertebral stripe continues
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along the tail almost its full length, and often becomes wider on the tail before narrowing
again distally. Lateral markings merge on the tail into a light-edged dark lateral stripe that
also runs most of the length of the tail. Limbs with a blackish reticulum over a sand-orange
background. Underside pure white.

Species comparisons: Taxa morphologically similar to the new species are all members of
the C. schomburgkii species group, established and expanded by Storr (Storr 1969, 1971,
1981). Species in this group are small Ctenotus with keeled and spinose subdigital lamellae, a
dorsal pattern including longitudinal lines, and a lateral pattern including spots or bars.

The new taxon is superficially most similar to C. schomburgkii (Fig. 4c—d), with
which it has been confused. However, C. kutjupa is distinguished from C. schomburgkii by
having seven well-defined dark dorsal stripes (versus five in C. schomburgkii) where both co-
occur. This is due to the presence (in C. kutjupa) of two median paravertebral stripes that run
down the midline of each of the paravertebral scale rows (Fig. 4¢). Ctenotus kutjupa is further
distinguished from C. schomburgkii by having prefrontals and nasals usually in strong medial
contact (versus rarely so for either pair in C. schomburgkii); lack of a strong continuation of
the white midlateral stripe along the upper labials (versus continuation present in C.
schomburgkii), instead showing a crescentic whitish marking that curves up behind the eye;
and by having a dark vertebral stripe that becomes more prominent on the tail and continues
for almost all of its length in most individuals (versus a vertebral stripe that fades out on the
tail and terminates at about the halfway point in C. schomburgkii). While C. kutjupa appears
to attain a smaller maximum body size than C. schomburgkii, meristic and morphometric
measurements overlap broadly between the two species. For instance, body size (SVL) ranges
35.5-45.0 mm in C. kutjupa versus 25-52 mm in C. schomburgkii.

The presence of a post-ocular pale crescent marking in C. kutjupa resembles members
of the C. brooksi complex (Hutchinson et al. 2006), but C. kutjupa differs from them by the
presence of a presubocular scale between the lower preocular and the subocular supralabial
and the seven-striped dorsal pattern (versus five dark stripes in strongly marked C. faeniatus
and C. euclae).

Storr (1971) suggested that the C. brooksi complex and C. schomburgkii differed in
having a series of lamella-like keeled and spiny scales that extended onto the plantar surface
from the base of the fourth toe. Our examinations suggest that this character is unreliable,
with some C. brooksi complex specimens lacking it and some C. schomburgkii having it. The
enlarged scales are also present in some C. kutjupa, but most lack them.

Figure 4. Coloration in life. a) Paratype of Ctenotus kutjupa sp. nov. (WAM R175023) from
around Beyondie Lakes, Western Australia (WA). Picture by Ryan Ellis. b) Ctenotus kutjupa
from the Tjirrkarli Aboriginal Lands, Gibson Desert, WA. Picture by John Harris. ¢) Ctenotus
schomburgkii from Goongarrie National Park, WA. Picture by Daniel L. Rabosky. d)
Ctenotus schomburgkii from Gluepot, South Australia. Picture by Kym Nicolson. )
Schematic representation of dorsal color pattern in C. kutjupa and C. schomburgkii in
localities where they co-occur (see text). Note the continuous dark line down the middle of
the scale row 1 in C. kutjupa (arrows).
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Distribution: Central Australia, from about 120° E, in the vicinity of Beyondie Lakes and the
Carnarvon Range, WA, east to about 132° E along a line from Watarrka (King’s Canyon),
NT, south through Uluru to Wyola Lake and Vokes Hill, SA. These sites are centered on the
Great Victoria Desert and Central Ranges bioregions and include the southern portions of the
Little Sandy Desert and Gibson Desert bioregions. The habitat at most of the localities that
have yielded specimens is well-vegetated sand dunes. (Fig. 5).

Figure 5. Ctenotus kutjupa sp. nov. distribution and habitat. a) Localities where C. kutjupa is
presently known to occur. Distribution of deserts and xeric shrublands (i.e., the arid zone’s
driest portion) as per Olson et al. (2001). b) Habitat east of the Pungkulpirri Waterhole,
Western Australia (WA), collection site of holotype WAM R166437. Picture by Helen
Vonow. c) Habitat in the vicinity of the Beyondie Lakes, WA, collection site of C. kutjupa
paratype WAM R175023. Picture by Ryan Ellis.
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Discussion

A new species of arid zone lizard

Through analyses of morphological, mitochondrial, and genome-wide nuclear data,
we identified and described Ctenotus kutjupa, a wide-ranging species of Australian arid zone
lizard. Ctenotus kutjupa was previously confused with C. schomburgkii, but our
morphological examinations informed by the genetic patterns confirmed that these two taxa
differ consistently in coloration and scalation. Further supporting their distinctiveness and
independence, C. kutjupa and C. schomburgkii co-occur over a large area encompassing the
Great Victoria Desert, Central Ranges, Little Sandy Desert, and Gibson Desert bioregions. In
three cases, specimens of both taxa have identical associated locality information, namely in
two sites northwest of Laverton, WA (Big Shot Bore, Point Salvation) and one on the Ann
Beadell Highway at the border between the states of Western Australia and South Australia.
More broadly, at most other localities where C. kutjupa was found, C. schomburgkii was
collected within only 5-10 km. While widely sympatric, the two taxa seem to have somewhat
different habitat associations. Ctenotus kutjupa appears locally uncommon and associated
with well-vegetated dunes and soft sand. In turn, C. schomburgkii is an abundant generalist
that occupies a wide range of desert habitats (Pianka 1969; Robinson et al. 2003; Rabosky et
al. 2011).

The discovery of specimens of C. kutjupa among collections of C. schomburgkii leads
to no significant change to the current diagnosis of the latter taxon. The only morphological
feature we introduce is the patterning around the facial region, with a strong white labial
stripe and dark posterior orbital margin in C. schomburgkii, compared to the pale postocular
crescent and pale and dark postocular patches of C. kutjupa. The seven dark dorsal lines and
strongly contacting nasals and prefrontals that differentiate C. kutjupa from C. schomburgkii
would have done so even based on the original definition of C. schomburgkii by Storr (Storr
1969, 1970). However, at that time, none of the specimens of C. kutjupa we have identified
had yet been acquired by the WAM, MAGNT, or SAMA collections.
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Standing knowledge gaps on Australia’s arid zone biotas

Besides the new taxon, this study highlights additional issues related to species
boundaries, diversity, and distributions in Ctenotus. Our survey of genetic variation within C.
schomburgkii suggests that, beyond the lineage corresponding to C. kutjupa, the name C.
schomburgkii comprises at least three additional lineages that come into contact in southern
and northwestern Australia. Notably, two of them are potentially sympatric along the eastern
Nullarbor Plain and Great Victoria Desert (subclades 1 and 3 in Fig. 1). Furthermore, two
subclades (subclades 2 and 3) appear to come into contact across the Pilbara region in
Australia’s northwest and may be broadly sympatric or parapatric across the Great Sandy and
Tanami bioregions. These three subclades presently assigned to C. schomburgkii may
correspond to additional species, as the maintenance of divergent lineages in sympatry would
necessitate them to be reproductively isolated.

On the other hand, morphological support for additional species is currently lacking.
Our examinations confirmed that C. schomburgkii shows extensive variation in dorsal
coloration (Storr et al. 1999). However, at least part of this variation represents local
polymorphism, as individuals from the same site can show varying degrees of fusion and
fading of dorsal stripes and spots. This pattern makes it difficult to assess the extent to which
this variation is geographically structured, confounding our ability to identify characters that
may identify each of the three C. schomburgkii molecular clades. Previous assessments
suggested that some regionally distinctive coloration variation occurs in Australia’s
southwest and northwest (Storr 1969, Storr et al. 1999), but we had access to few genetic
samples from these regions. Additional sampling will be needed to determine what
proportion of the observed trait variation is geographic versus polymorphic, particularly in
undersampled and remote desert locations. This improved sampling may reveal additional
unrecognized species in these ubiquitous yet poorly known desert lizards.

Phylogenetic relationships of C. schomburgkii and related taxa

In assessing the phylogenetic relationships of taxa morphologically allied to C.
schomburgkii, we not only confirm the genetic distinction of C. kutjupa but also provide a
test of whether Storr’s phenetic groups, erected as aides to species identification, also capture
evolutionary relationships. Our results did not support as monophyletic each of the two
species groups of Ctenotus that contain our focal taxa, namely the C. schomburgkii and C.
colletti groups. Nevertheless, we found most taxa assigned to each of these groups to be each
other’s closest relatives. These results agree with previous molecular analyses of Ctenotus
(Rabosky et al. 2014a; Singhal et al. 2017; Prates et al. 2021).

Our findings suggest that the coloration characters used to delineate species groups in
Ctenotus are evolutionarily labile and hence imperfect predictors of evolutionary
relationships. Both the C. schomburgkii and C. colletti groups are diagnosed from other
species groups by their small size (mean SVL mostly under 50 mm) and spinose subdigital
lamellae. The two groups are diagnosed from one another solely by a lateral color pattern of
spots or stripes, respectively (Storr et al. 1999). Among those three characters, we found that
only the small size occurs in all taxa within the two molecular clades that (roughly)
correspond to the C. schomburgkii and C. colletti morphological groups. Strongly
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compressed spinose subdigital lamellae, thought to differentiate both groups from other
Ctenotus, are missing in C. rosarium (C. schomburgkii clade) and C. halysis (C. colletti
clade). The spotted versus striped lateral patterns proposed to distinguish the C. schomburgkii
and C. colletti groups emerge as unreliable, with the striped C. calurus and C. zebrilla
branching within the C. schomburgkii clade, and the spotted C. ehmanni, C. mesotes, C.
halysis, and C. tantillus in the C. colletti clade. As a result, morphological corroboration for
the two clades is currently lacking.

A pattern of diverging traits in closely related species, as well as of trait convergence
across distantly related species, can result from the action of selection. Previous studies have
documented evidence for selection-driven phenotypic and phylogenetic overdispersion in
communities of Ctenotus lizards (Rabosky et al. 2007, 2011). These patterns of trait
divergence challenge the view that Ctenotus merely represents a continental-scale non-
adaptive radiation, whereby morphological and ecological attributes are conserved despite
the formation of new species (Gittenberger 1991; Rundell and Price 2009). Our phylogenetic
results suggest that the adaptive significance of variation in dorsal coloration and foot
scalation in Ctenotus may be a productive avenue of future research.

Concluding remarks

Our combined analyses of morphological and genetic variation support the
recognition of C. kutjupa, a new species of wide-ranging Australian arid zone lizard.
Moreover, we find evidence of multiple genetic lineages within the morphologically variable
C. schomburgkii, which may prove to correspond to additional species. However, limited
genetic sampling in key geographic regions, combined with high morphological variability
within each clade, limits our ability to assess their separation and distinction at this time.
Lastly, our results contradict the presumed affinities of several taxa, indicating that certain
morphological characters used to inform the taxonomy of Ctenotus can vary among closely
related species and thus show greater evolutionary lability than generally assumed (see also
Rabosky et al. 2014b).

The results of this investigation indicate that our understanding of species diversity
and evolutionary relationships in the lizard-rich Australian deserts remains incomplete. These
knowledge gaps likely bias inferences of regional biogeography and ecology and might lead
to the development of incomplete or inadequate conservation measures. As illustrated by C.
kutjupa, collecting voucher specimens through field sampling in understudied regions,
coupled with population genetic screening of lineage diversity, will be crucial to properly
characterizing the composition and assembly of Australia’s diverse vertebrate communities.
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Figure Legends

Figure 1. Evolutionary relationships between samples assigned to Ctenotus schomburgkii
based on the cytochrome B mitochondrial marker (a) and the nuclear ddRAD data (b). For
clarity, a maximum of two samples per locality per taxon is shown on trees, and other taxa in
the C. schomburgkii species group are shown as a single terminal. Nodal bootstrap support
values > 95 are indicated with an asterisk, and support values within major subclades are
omitted. Maps indicate the geographic distributions of mitochondrial (c¢) and nuclear (d)
subclades.

Figure 2. Evolutionary relationships of taxa assigned to the Ctenotus schomburgkii
morphological species group based on 468,161 base pairs across 3,321 restriction-site
associated DNA loci. Purple triangles on tips indicate taxa traditionally assigned to the C.
schomburgkii group based on morphology; orange circles indicate taxa previously assigned to
the C. colletti group. For clarity, a maximum of 15 samples per taxon is shown. Nodal
bootstrap support values > 95 are indicated with an asterisk, and within-taxon support values
are omitted.

Figure 3. a) Holotype of Ctenotus kutjupa sp. nov., WAM R166437. Picture by Paul
Doughty. b) Head scales of paratype SAMA R62233, showing the diagnostic scalation
combination of the prefrontals (prf) and nasals (nas) in medial contact and the presence of a
presubocular scale (pso).

Figure 4. Coloration in life. a) Paratype of Ctenotus kutjupa sp. nov. (WAM R175023) from
around Beyondie Lakes, Western Australia (WA). Picture by Ryan Ellis. b) Ctenotus kutjupa
from the Tjirrkarli Aboriginal Lands, Gibson Desert, WA. Picture by John Harris. ¢) Ctenotus
schomburgkii from Goongarrie National Park, WA. Picture by Daniel L. Rabosky. d)
Ctenotus schomburgkii from Gluepot, South Australia. Picture by Kym Nicolson. e)
Schematic representation of dorsal color pattern in C. kutjupa and C. schomburgkii in
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localities where they co-occur (see text). Note the continuous dark line down the middle of
the scale row 1 in C. kutjupa (arrows).

Figure 5. Ctenotus kutjupa sp. nov. distribution and habitat. a) Localities where C. kutjupa is
presently known to occur. Distribution of deserts and xeric shrublands (i.e., the arid zone’s
driest portion) as per Olson et al. (2001). b) Habitat east of the Pungkulpirri Waterhole,
Western Australia (WA), collection site of holotype WAM R166437. Picture by Helen
Vonow. c¢) Habitat in the vicinity of the Beyondie Lakes, WA, collection site of C. kutjupa
paratype WAM R175023. Picture by Ryan Ellis.

Supplementary Figure and Legends

Figure S1. Phylogenetic relationships between taxa in the Ctenotus schomburgkii and C.
colletti species groups, inferred using the SVD Quartets species-tree method (see text for
details). Purple triangles on tips indicate taxa traditionally assigned to the C. schomburgkii
group based on morphology; orange circles indicate taxa previously assigned to the C. colletti

group.
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738  Table S1. Specimen information. Includes GenBank and Sequence Read Archive accession
739  numbers and museum vouchers examined.
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