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ABSTRACT

Federated learning learns a neural network model by aggregating
the knowledge from a group of distributed clients under the privacy-
preserving constraint. In this work, we show that this paradigm
might inherit the adversarial vulnerability of the centralized neural
network, i.e., it has deteriorated performance on adversarial exam-
ples when the model is deployed. This is even more alarming when
federated learning paradigm is designed to approximate the updat-
ing behavior of a centralized neural network. To solve this problem,
we propose an adversarially robust federated learning framework,
named Fed_BVA, with improved server and client update mecha-
nisms. This is motivated by our observation that the generalization
error in federated learning can be naturally decomposed into the
bias and variance triggered by multiple clients’ predictions. Thus,
we propose to generate the adversarial examples via maximizing
the bias and variance during server update, and learn the adver-
sarially robust model updates with those examples during client
update. As a result, an adversarially robust neural network can be
aggregated from these improved local clients’ model updates. The
experiments are conducted on multiple benchmark data sets using
several prevalent neural network models, and the empirical results
show that our framework is robust against white-box and black-box
adversarial corruptions under both IID and non-IID settings.

CCS CONCEPTS

« Information systems — Federated databases; « Computing
methodologies — Adversarial learning,.
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1 INTRODUCTION

The explosive amount of decentralized user data collected from the
ever-growing usage of smart devices, e.g., smartphones, wearable
devices, home sensors, etc., has led to a surge of interest in the
field of decentralized learning. To protect the privacy-sensitive data
of local clients, federated learning [26, 42] has been proposed. It
only allows a group of clients to train local models using their own
data on each individual device, and then collectively merges the
model updates on a central server using secure aggregation [1].
Due to its high privacy-preserving property, federated learning has
attracted much attention in recent years along with the prevalence
of efficient light-weight deep models [16] and low-cost network
communications [20].

Most existing federated learning approaches [18, 29, 38] focus on
improving the strategies of local model training (e.g., local SGD [34])
and global aggregation (e.g., FedAvg [26]). The intuition behind
them is to approximate the updating behavior of the centralized
model trained on all clients’” data. However, little effort (if any) has
been devoted to systematically analyzing the adversarial robustness
of federated learning paradigm. This becomes even more alarming
when centralized machine learning models have been shown to be
vulnerable to adversarial attacks when those models are deployed
in the testing phase [13, 28]. It is studied [30, 32, 49] that a heuristic
solution is to leverage the adversarial training techniques [25, 39]
for clients’ local training. However, it might suffer from expensive
computation for local clients associated with limited storage and
computational resources.

Our work studies the adversarial robustness of federated learning
paradigm by investigating the generalization error incurred in the
server’s aggregation process from the perspective of bias-variance
decomposition [9, 37]. Specifically, we show that this generalization
error on the central server can be decomposed as the combination
of bias (triggered by the main prediction of these clients) and vari-
ance (triggered by the variations among clients’ predictions). This
motivates us to propose a novel adversarially robust federated learn-
ing framework Fed_BVA. The key idea is to perform the local robust
training on clients by supplying them with bias-variance perturbed
examples generated from a tiny auxiliary training set on the cen-
tral server. It has the following advantages. First, it encourages the
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clients to consistently produce the optimal prediction for perturbed

examples, thereby leading to a better generalization performance.

Second, local adversarial training on the perturbed examples learns

a robust local model, and thus an adversarially robust global model

could be aggregated from clients’ local updates. The experiments

are conducted on neural networks with cross-entropy loss, however,
other loss functions are also applicable as long as their gradients

w.r.t. bias and variance are tractable to be computed.

It is worth noting that our problem setting fundamentally differs
from the existing Byzantine-robust federated learning [3, 8, 24, 29].
To be more specific, those works proposed to improve the robust-
ness of federated learning against Byzantine failures induced by
corrupted clients’ updates during model training, by performing
client-level robust training or designing server-level aggregation
variants with hyper-parameter tuning. In contrast, we focus on the
adversarial robustness of federated learning against adversarial ex-
amples, when the model is deployed in the testing phase. Generally,
the problem studied in this paper assumes that the learning process
is clean (no malicious behaviors or Byzantine faults are observed in
clients). But we also empirically show in Subsection 6.4.2 that when
this assumption is violated, our Fed_BVA can be robust against both
adversarial perturbation and Byzantine failures by incorporating
Byzantine-robust aggregation variants [3, 6, 44].

Compared with previous work, our major contributions include:
e We provide the exact solution of bias-variance analysis w.r.t. the

generalization error for neural networks in the federated learning

setting. As a comparison, performing the adversarial training on
conventional federated learning methods can only focus on the
bias of the central model but ignore the variance.

o We demonstrate that the conventional federated learning frame-
work is vulnerable to strong attacks with increasing communi-
cation rounds even if the adversarial training using the locally
generated adversarial examples is performed on each client.

e Without violating the clients’ privacy, we show that providing
a tiny amount of bias-variance perturbed data from the central
server to the clients through asymmetrical communication could
dramatically improve the robustness of the training model under
various adversarial settings.

The rest of this paper is organized as follows. The related work
is reviewed in Section 2. In Section 3, the preliminary is provided.
Then, in Section 4, a generic framework for adversarially robust fed-
erated learning is proposed, followed by the instantiated algorithm
Fed_BVA with bias-variance attacks in Section 5. The experiments
are presented in Section 6. We conclude this paper in Section 7.

2 RELATED WORK

2.1 Federated Learning

Federated learning [5, 20, 22, 26] aggregates the knowledge from a
large number of local devices (e.g., smartphone [14]) with limited
storage and computational resources. This aggregated knowledge
can thus be leveraged to train the modern machine learning mod-
els (e.g., deep neural networks) [10, 18, 38]. However, federated
learning algorithms over neural networks are approximating the
update dynamics of centralized neural networks, thus resulting in
inheriting the adversarial vulnerability of centralized neural net-
works [11, 13, 35, 40, 45-48]. More specifically, the deployed neural
network models in federated learning might incorrectly classify

Zhou et al.

the adversarial examples generated by the existing evasion attacks
(e.g., FGSM [13], PGD [25]).

There are two lines of related works for improving the robustness
of federated learning. One is to develop robust model aggregation
schemes [3, 6, 8, 24, 29, 44] against Byzantine failures induced by cor-
rupted client’s updates during model training. Those works focus
on performing client-level robust training or designing server-level
aggregation variants with hyper-parameter tuning. The other one is
to improve the model robustness against the adversarial attacks af-
ter model deployment [32, 49]. This idea fundamentally differs from
the Byzantine-robust approaches in the following. (1) Different from
Byzantine-robust model training, it is assumed that no malicious
behaviors or Byzantine faults are observed in clients in training. (2)
It improves the model robustness by refining the decision boundary
around the adversarial examples, whereas Byzantine-robust models
focus on mitigating the impact of potential clients’ faults. In this
paper, we will mainly focus on the second scenario by analyzing the
adversarial robustness of federated learning from the perspective
of bias-variance analysis. Compared to previous works [32, 49], the
bias-variance analysis on local clients allows capturing the global
model dynamics for improving the adversarial robustness of the
aggregated global model in the federated learning setting.

2.2 Bias-Variance Decomposition

Bias-variance decomposition [12, 19] was originally introduced
to analyze the generalization error of a learning algorithm. Then,
a generalized bias-variance decomposition [9, 37] was studied in
the classification setting which enabled flexible loss functions (e.g.,
squared loss, zero-one loss). Specifically, it is shown that under
mild conditions, the generalization error of a learning algorithm
can be decomposed into bias, variance and irreducible noise. In
this case, bias measures how the trained models over different
training data sets deviate from the optimal model, and variance
measures the differences among those trained models. Moreover, it
is previously observed [12] that the bias decreases and the variance
increases monotonically with respect to the model complexity. It
thus suggests that a better trade-off of bias and variance could lead
to improving the generalization performance of a learning algo-
rithm. Nevertheless, in recent years, it is empirically shown [33]
that increasing the model complexity of deep neural networks
tends to produce better generalization performance, which is in
contradiction to previous bias-variance analysis. Following this
idea, bias-variance trade-off was experimentally revisited on mod-
ern neural network models [2, 43]. It is found that for deep neural
networks, the variance is more likely to increase first and then de-
crease with respect to the model complexity. We would like to point
out that compared to standard supervised learning, federated learn-
ing can be better characterized by the bias-variance decomposition.
That is because the trained models in local clients can be naturally
applied to define the bias and variance in the generalization error of
a learning algorithm. To the best of our knowledge, this is the first
work studying the federated learning problem from the perspective
of bias-variance analysis.

3 PRELIMINARIES

In this section, we formally present the problem definition and the
bias-variance trade-off in the classification setting.



Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning

3.1 Federated learning

In federated learning [26, 42], there is a central server and K dif-
ferent clients, each with access to a private training set Dy =
{(x{< , t;‘ )}:lz"1 Here, xlk , tlk , and ny. are the features, label, and num-
ber of training examples in the k™ client where k = 1, - , K. Each
data Dy is exclusively owned by client k and will not be shared
with the central server or other clients.

The goal of standard federated learning is to learn the prediction
function by aggregating the knowledge of user data from a set of
local clients without leaking user privacy. A typical framework [26,
42] of federated learning can be summarized as follows: (1) Client
Update: Each client updates local parameters wy by minimizing the
empirical loss over its own training set; (2) Forward Communication:
Each client uploads its parameter update to the central server; (3)
Server Update: It synchronously aggregates the received parameters;
(4) Backward Communication: The global parameters are sent back
to the clients.

3.2 Problem Definition and Motivation

It can be seen that the neural network in federated learning actually
approximates the updating behavior of a centralized model. For
example, the update behavior of FedAvg [26] is closely equivalent
to the stochastic gradient descent (SGD) on the centralized data
when each client only takes one step of gradient descent. That ex-
plains why it might potentially inherit the adversarial vulnerability
of centralized neural network models [13, 35]. Therefore, in this
paper, we study the adversarial robustness of neural networks in
the federated learning setting. Formally, given a set of private train-
ing data { Dy }I]f: , on K different clients, a learning algorithm f(-)
and loss function L(+, ), adversarially robust federated learning
aims to output a trained model on the central server that is robust
against adversarial perturbations on the test set Dyes;-

It is previously [30, 32, 49] revealed that one can simply apply the
adversarial training techniques [25] to clients’ local training. Nev-
ertheless, it is unclear how the local adversarial training on clients
affects the adversarial robustness of the aggregated global model on
the central server. To answer this question, we study the intrinsic
relationship between the set of local clients’ models and the aggre-
gated server’s model from the perspective of bias-variance trade-off.
It is found that the generalization error of the server’s model is
induced by both bias and variance of local clients’ models. There-
fore, instead of separately focusing on the adversarial robustness of
individual clients [32, 49], we propose to analyze the adversarially
robust federated learning in a unified framework. The crucial idea
is to generate some global adversarial examples shared with clients,
by leveraging a tiny auxiliary training set Dg = {(x;, th. )};.l;l with
ns (ng < 2115:1 ni) examples on the central server. This will not
break the privacy constraints, as the local data in every client is
not shared. In real scenarios, the auxiliary data can be some repre-
sentative or synthetic template examples. For example, during the
COVID-19 pandemic, hospitals (local clients) would like to consider
a few publicly accessible template data with typical symptoms’ for
model training of the diagnostic system. Notice that federated semi-
supervised learning [17] also considered a similar problem setting
with labeled examples on the server and unlabeled examples on the

! https://www.cdc.gov/coronavirus/2019- ncov/symptoms- testing/symptoms.html
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clients. Instead, in our paper, we propose to improve the adversarial
robustness of federated learned systems over local clients by taking
those publicly accessible data Ds into consideration.

We would like to point out that our problem definition has the
following properties. (1) Asymmetrical communication: The asym-
metrical communication between each client and server cloud is
allowed: the server provides both global model parameters and
limited shared data to the clients; while each client uploads its local
model parameters back to the server. This implies that compared
to standard federated learning, the communication cost might in-
crease due to those shared data, but it enables the improvement of
adversarial robustness in federated learning (see Subsection 6.5.1
for more empirical analysis)?. (2) Data distribution: All training ex-
amples on the clients and the server are assumed to follow the same
data distribution. However, the experiments show that our pro-
posed algorithm also achieves outstanding performance under the
non-IID setting (see Subsection 6.2), which could be commonly seen
among personalized clients in real scenarios. (3) Shared learning al-
gorithm: All the clients are assumed to use the identical model f(-),
including architectures as well as hyper-parameters (e.g., learning
rate, local epochs, local batch size, etc.).

3.3 Bias-Variance Trade-off

In this paper, we investigate the adversarially robust federated learn-
ing by studying the generalization error incurred in its aggregation
process. We discover that the key to analyzing this error is from the
perspective of the bias-variance trade-off. Following [9], we define
the optimal prediction, main prediction as well as the bias, variance,
and noise for any real-valued loss function L(-, -) as follows:

Definition 3.1. (Optimal Prediction and Main Prediction [9])
Given a loss function L(+, -) and a learning algorithm f(-), optimal
prediction y. and main prediction y, for input x are defined as:

ys(x) = arg min By [L(y.D)]  ym(x) =arg n;i,n Ep[L(fp(x).y")]

where the label® ¢ and data set D are viewed as the random variables
to denote the class label and training set, and fy) denotes the model
trained on D.

Definition 3.2. (Bias, Variance and Noise) Given a loss function

L(-,-) and a learning algorithm f(-), the bias, variance and noise
can be defined as follows.
B(x) = L(ym.ys), V(x) = Ep[L(fp (x),ym)], N(x) = E¢[L(ys, )]
Furthermore, there exists A, Ao € R such that the expected predic-
tion loss Eq ; [L(fp (x),t)] for an example x can be decomposed
into bias, variance and noise as follows:

Ept[L(fp(x),1)] = B(x) + AV (x) + AoN(x) (1)

In short, bias is the loss incurred by the main prediction w.r.t.
the optimal prediction, and variance is the average loss incurred
by all individual predictions w.r.t. the main prediction. Noise is
conventionally assumed to be irreducible and independent of f(-).
Our definitions of optimal prediction, main prediction, bias, vari-
ance and noise slightly differ from previous ones [9, 37]. For ex-
ample, conventional optimal prediction was defined as y.(x) =
2We would like to leave the trade-off of communication cost and adversarial robustness as our future
work. For example, asymmetrical communication can be device-dependent in real scenarios, by
acquiring the transmitted data based on devices’ storage and computational capacities.

3 general, £ is a non-deterministic function [9, 37] of x when the irreducible noise is considered.
Namely, if x is sampled repeatedly, different values of # will be observed.
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arg miny E; [L(t,y)], and it is equivalent to our definition when loss
function is symmetric over its arguments, i.e., L(y1,y2) = L(y2, y1)-

4 THE PROPOSED FRAMEWORK

In this section, we present the adversarially robust federated learn-
ing framework. It follows the same paradigm of traditional federated
learning (see Subsection 3.1) but with substantial modifications on
the server update and client update as follows.

4.1 Server Update with Data Poisoning

The server has two crucial components. The first one is model
aggregation, which synchronously compresses and aggregates the
received local model parameters. Another component is designed
to produce adversarially perturbed examples which are induced by
a poisoning attack algorithm for the usage of adversarial training.

4.1.1 Model Aggregation. The overall goal of federated learning is
to learn a prediction function by using knowledge from all clients
such that it could generalize well over the test data set. When the
central server receives the parameter updates from local clients,
it aggregates the locally updated parameters to obtain a shared
global model. It is notable that most existing federated learning
approaches [26, 27, 38] focus on developing advanced model ag-
gregation schemes. One of the popular aggregation methods is
FedAvg [26], which aims to average the element-wise parameters
of local models, i.e., wg = Aggregate(wy,- -+, wg) = 2115:1 %’(wk
where wy, is the model parameters in the k™ clientand n = ZIk(:l n.
In this paper, we focus on improving the adversarial robustness of
federated learning by encouraging the local model parameters to be
updated with adversarial examples (see next subsection). Then the
adversarial robustness of local models can be naturally propagated
into the server’s global model after model aggregation. Therefore,
our framework is flexible to be incorporated with existing model
aggregation methods, e.g., FedAvg [26], FedMA [38], AFL [27], etc.

4.1.2  Adversarial Examples. It is shown [13] that the adversarial
robustness of deep neural networks can be improved by updating
the model parameters over adversarial examples. That is because
the generalization error of neural networks on adversarial examples
can be minimized during model training. However, it will encounter
a few issues if we apply adversarial training on federated learning
directly. Specifically, one intuitive solution for generating adver-
sarial examples is to separately maximize the generalization error
in each local client (see Subsection 4.3 for more discussion). Its
drawbacks are two folds: First, it will significantly increase the
computational burden and memory usage on local clients. Second,
the locally generated adversarial examples make the augmented
data distributions of local clients much more biased [41], which
challenges the standard server-level aggregation mechanisms [27].
Instead, we study the adversarial robustness of federated learning
from the perspective of bias-variance decomposition. The following
theorem shows that in the classification setting, the generalization
error of a learning algorithm can be decomposed into bias, variance,
and irreducible noise. Note that this decomposition holds for any
real-valued loss function in the binary setting [9] with a bias &
variance trade-off coefficient that has a closed-form expression.

THEOREM 4.1. In binary case, the decomposition in Eq. (1) is valid
for any real-valued loss function that satisfy VyL(y,y) = 0 and
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L(ym:y*)

V2 Ly, y2) # 0 with A = 1 ifym = y« or A = ~Tlyeim)

otherwise.

The proof of Theorem 4.1 is similar to [9], we omit it here for
space. Note that noise is irreducible and we usually drop this term
in real applications [9, 12, 37, 43]. Commonly used loss functions for
this decomposition are square loss, zero-one loss, and cross-entropy
loss with one-hot labels. For the multi-class setting, the closed-form
solution of coefficient A for cross-entropy loss is given as follows.

1 s Ym = Ys

L(ym,y-« .
A= -flmb =y ory =y (givenym £ ) (2)

0 y YF Ym F Ys

Remark. Intuitively, when y,; = y., no bias is induced and the
generalization error mainly comes from variance; when bias exists
Ym # Ux, a negative variance will help to reduce error when the
prediction is identical to the main prediction or optimal prediction;
otherwise, the variance is set to zero. In this paper, neural networks
that use cross-entropy loss and mean squared loss with softmax
prediction outputs are studied. Thus, we inherit their definition of
bias & variance directly, but treat the trade-off coefficient A as a
hyper-parameter to tune because no closed-form expression of A is
available in a general multi-class learning scenario.

Following [9, 37], we assume a noise-free scenario where the
class label ¢ is a deterministic function of x (i.e., if x is sampled
repeatedly, the same values of its class ¢ will be observed). The bias
and variance can be empirically estimated over the clients’ models.
This motivates us to generate the adversarial examples by attacking
the bias and variance induced by clients’ models as:

max B(x;wiy, -, wg) + AV (& wy, - ,wk) Y(x,t) € Ds (3)
x€Q(x)

where B(%; wy, - -+, wg) and V(%; wy, - - - , wg) could be empirically
estimated from a finite number of clients’ parameters wy, - - - , wg
trained on local training sets {Ds, -+, D }. Here A is a hyper-
parameter to measure the trade-off of bias and variance, and Q(x)
is the perturbation constraint. X is the perturbed examples w.r.t.
the clean example x associated with class label ¢. Specifically, the
perturbation constraint X € Q(x) forces the adversarial example
X to be visually indistinguishable w.r.t. x. In our paper, we use loo-
bounded adversaries [13], i.e., Q(x) = {X|||X — x|l < €} for a
perturbation magnitude €.

Note that Ds (on the server) is the candidate subset of all avail-
able training examples that would lead to their perturbed counter-
parts. This is a more feasible setting as compared to generating
adversarial examples on clients’ devices because the server usu-
ally has powerful computational capacity in real scenarios that
allows the usage of flexible poisoning attack algorithms. In this
case, both poisoned examples and server model parameters would
be sent back to each client (Backward Communication), while only
clients’ local parameters would be uploaded to the server (Forward
Communication), i.e., the asymmetrical communication.

4.2 Robust Client Update

The robust training of one client’s prediction model (i.e., wy) can
be formulated as the following minimization problem.

13 ng
min| > L(fp, (efswe).t) + Y Lifp, (we).6) | (@)
i=1 Jj=1
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where fcj € Q(xj) is the perturbed example that is asymmetrically
transmitted from the server.

Intuitively, the bias measures the systematic loss of a learning
algorithm, and the variance measures the prediction consistency
of the learner over different training sets. Therefore, our robust
federated learning framework has the following advantages: (i) it en-
courages the clients to consistently produce the optimal prediction
for perturbed examples, thereby leading to a better generalization
performance; (ii) local adversarial training on perturbed examples
allows to learn a robust local model, and thus a robust global model
could be aggregated from clients.

4.3 Discussion

Theoretically, we could have another alternative robust federated
learning strategy where the perturbed training examples of each
client k is generated on local devices from Dy instead of transmitted
from the server. It is similar to [25, 36] where it iteratively synthe-
sizes the adversarial counterparts of clean examples and updates
the model parameters over perturbed training examples. Thus, each
local robust model is trained individually. Nevertheless, poisoning
attacks on the device will largely increase the computational cost
and memory usage. Meanwhile, it only considers the client-specific
loss and is still vulnerable against adversarial examples with in-
creasing communication rounds. Both phenomena are observed in
our experiments (see Fig. 2(b) and Fig. 2(c)).

5 INSTANTIATED ALGORITHM

In this section, we present the instantiated algorithm Fed_BVA.

5.1 Bias-Variance Attack

We first consider the maximization problem in Eq. (3) using bias-
variance based adversarial attacks. It finds the adversarial example X
(from the original example x) that produces large bias and variance
values w.r.t. clients’ local models. To this end, we propose two
gradient-based algorithms to generate adversarial examples.

Bias-variance based Fast Gradient Sign Method (BV-FGSM):
Following FGSM [13], it linearizes the maximization problem in Eq.
(3) with one-step attack as follows.

XBv-FGsM = X + € - sign (Vx (B(x; wi, -+, wi) + AV (x; W, » -+, wi)))
(5)

where sign(-) denotes the sign function.
Bias-variance based Projected Gradient Descent (BV-PGD):
PGD [25] can be considered as a multi-step variant of FGSM and
might generate powerful adversarial examples. This motivated us

to derive a BV-based PGD attack:
I+1

INES

BV-PGD
:Pron(x) ()2] + esign (Vf(l (B(fcl; wy, L, WK) + AV(J?I; wy, e, WK))))

(6)
where #! is the adversarial example at the [ step with the initial-
ization 20 = x and Projg () (+) projects each step onto Q(x).

The proposed framework could b generalized to any gradient-
based adversarial attack algorithms where the gradients of bias B(-)
and variance V(-) w.r.t. x are tractable when estimated from finite
training sets. Compared with the existing attack methods [4, 13], our
loss function the adversary aims to optimize is a linear combination
of bias and variance, whereas existing work mainly focused on
attacking the overall classification error involving bias only.

lth
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Algorithm 1 Fed_BVA

1: Input: K (number of clients, with local data sets { Dy }le); f
(learning model); L (loss function); E (number of local epochs);
F (fraction of clients selected on each round); B (batch size of
local client); 7 (learning rate); Ds (shared data set on server); €
(perturbation magnitude).

2: Initialization: Initialize wg and 135 =Dy

3: for eachroundr =1,2,--- do

4 m=max(F-K,1)

5: Sy < randomly sampled m clients

6:  for each client k € S, in parallel do

7 Initialize k! client’s model with wé‘l

8: B « split Dy, U D; into batches of size B

9: for each local epochi=1,2,--- ,E do

10: for local batch (x,t) € B do

1 wf e wf =Vl (f, (s wp).t)

12: end for

13: end for

14: Calculate fp, (x; w,:), VS, (x; w]:) for Vx € D

15:  end for

16:  for (x,t) € Dg do

17: Estimate the gradients V,B(x) and V,V (x)
18: Update X € Dy using Eq. (5) or (6)

19:  end for

20w, — Aggregate(w; |k € Sy)

21: end for

22: return wg

The following theorem states that bias B(-) and variance V (-) as
well as their gradients over input x could be estimated using the
clients’ models.

THEOREM 5.1. Assume that L(-, -) is the cross-entropy loss func-
tion, then, the empirical estimated main prediction yp, for an input
example (x,t) has the following closed-form expression: yp, (x) =
% Zlk(:l foy (x; w). Furthermore, the empirical bias and variance
over an input x are estimated as Bcg(x) = Il( Zlk(:l L(fp, (x; wg), 1)
and Veg(x) = H(ym) and their corresponding gradients over x are:

K
ViBer(x) = 3. Vel (fp, (x: wi )
k=1

K C
1 . .
VaVep(x) = == 3" > (ogyy! +1) - Vafyy (xiw)
k=1 j=1

Proor. Following the definition of main prediction, it aims to

optimize arg min,y —% 1 Z]C=1 (f(j)(x) - log y’(j)) with con-

Dx
straints Z}Czl y'(j) =1and Z}Czl Z()]k) (x)=1forallk=1,---,n.It
can then be solved by the Lagrange multiplier. O

In the above theorem, H(y;,) = — 25:1 y,(,{) log y,(,{) is the en-
tropy of the main prediction y,, and C is the number of classes. In
addition, we also consider the case where L(-,-) is the MSE loss
function. Its main prediction yy, for an input example (x, t) has a
closed-form expression which is exactly the same as the CE loss,
its empirical bias and unbiased variance can only be estimated in
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the following formulas:

K 2
1
Buse(x) = ||z > oy (xiwi) — ¢
k=1 2
1 S 1 K ’
Vase(x) = ; fioy (eiwg) = kZlka (i wi)
- - 2
and their gradients over input x are:
1S 1 &
VxBumsg(x) = X gfﬂk (s we) — ¢t - X kZ; Vi fp, (x3 Wk))

1 & 1 &
VaVuse(x) = — Z (fZ)k (i) — ZfZ)k (x; Wk)) :
k=1 k=1

K
(fo:ok (iwi) = ¢ 2 Vifo, (i wk>)
k=1

We observe that the empirical estimate of VyBpssg(x) ha higher
computational complexity than V,Bcg(x) because it involves the
gradient calculation of prediction vector fp, (x; wy) over the input
tensor x. Besides, it is easy to show that the empirical estimate
of Vi Visg(x) is also computationally expensive. A comparison
between using CE and MSE losses is presented in Subsection 6.3.1.

5.2 Fed_BVA

We present a novel robust federated learning algorithm with our
proposed bias-variance attacks, named Fed_BVA. Following the
framework defined in Eq. (3) and Eq. (4), key components of our
algorithm are (1) bias-variance attacks for generating adversarial
examples on the server, and (2) adversarial training using poisoned
server examples together with clean local examples on each client.
Therefore, we optimize these two objectives by producing the ad-
versarial examples Ds and updating the local model parameters w
iteratively.

The proposed algorithm is summarized in Alg. 1. Given the
server’s D and clients’ training data {Z)k}lk(z1 as input, the output
is a robust global model on the server. In this case, the clean server
data Dg will be shared with all the clients. First, it initializes the
server’s model parameter wg and perturbed data Ds, and then
assigns to the randomly selected clients (Steps 4-5). Next, each
client optimizes its own local model (Steps 6-15) with the received
global parameters wg as well as its own clean data Dy, and uploads
the updated parameters as well as the gradients of the local model
on each shared server example back to the server. At last, the server
generates the perturbed data D (Step 16-19) using the proposed
bias-variance attacks with aggregations (model parameters average,
bias gradients average, and variance gradients average) in a similar
manner as FedAvg [26]. These aggregations can be privacy secured
if additive homomorphic encryption [1] is applied.

6 EXPERIMENTS
6.1 Settings

6.1.1 Data Sets. We evaluate our proposed algorithm on four data
sets: MNIST, Fashion-MNIST?, CIFAR-10° and CIFAR-100°. Fol-
lowing [26], we consider two methods to partition the data over

“http://yannecun.com/exdb/mnist
S https://github.com/zalandoresearch/fashion- mnist

https://www.cs.toronto.edu/~kriz/cifarhtml
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| | MNIST | Fashion-MNIST | CIFAR-10 | CIFAR-100 (coarse)|

# comms. 100 100 100 100
# clients (K) 100 100 20 20
fraction (F) 0.1 0.1 0.2 0.2
# epochs (E) 50 50 5 5

local batch (B)| 64 64 128 128
# shared (ns) 64 64 30 60
# categories 10 10 10 20

Table 1: Learning setting of Fed_BVA

clients: IID and non-IID. For IID setting, the data is shuffled and
uniformly partitioned into each client. For non-IID setting, data
is divided into 2F - K shards based on sorted labels, then assigns
each client with 2 shards. Thereby, each client will have data with
at most two classes.

6.1.2 Baselines. The baseline models include: (1). Centralized:
the training with one centralized model, which is identical to the fed-
erated learning case that only has one client (K = 1) with a fraction
(F = 1). (2). FedAvg: the classical federated averaging model [26].
(3). FedAvg_AT: The simplified version of our proposed method
where the local clients perform adversarial training with the asym-
metrical transmitted perturbed data generated on top of FedAvg’s
aggregation. (4) - (6). Fed_Bias, Fed_Variance, Fed_BVA: Our pro-
posed methods where the asymmetrical transmitted perturbed data
is generated using the gradients of bias-only attack, variance-only
attack, and bias-variance attack, respectively. (7). EAT’: Ensemble
adversarial training [36], where each client performs local adversar-
ial training, and their model updates are aggregated on the server
using FedAvg. (8). EAT+Fed_BVA: A combination of baselines (6)
and (7). Note that the baselines (7) and (8) have high computational
requirements on client devices, and are usually not preferred in real
scenarios. For fair comparisons, all baselines are modified to the
asymmetrical communication setting (FedAvg and EAT have clean
D; received), and all their initializations are set to be the same.

6.1.3 Model Configuration. For Fed_BVA framework, we use a 4-
layer CNN model for MNIST and Fashion-MNIST, and VGG9 ar-
chitecture for CIFAR-10 and CIFAR-100. The training is performed
using the SGD optimizer with a fixed learning rate of 0.01 and mo-
mentum of value 0.9. The trade-off coefficient between bias and vari-
ance is set to A = 0.01 for all experiments. All hyper-parameters of
federated learning are presented in Table 1. We empirically demon-
strate that these hyper-parameter settings are preferable in terms
of both training accuracy and robustness (see the details of Fig. 4
- Fig. 6 in Subsection 6.5). To demonstrate the robustness of our
Fed_BVA framework, we evaluate the deployed server model on
the test set Dyes; against adversarial attacks FGSM [13], PGD [25]
with 10 and 20 steps (i.e., PGD-10, PGD-20). Following [36, 39],
the maximum perturbations allowed are € = 0.3 on MNIST and
Fashion-MNIST, and € = 55 on CIFAR-10 and CIFAR-100 for both
threat and defense models.

6.2 Main Results

To analyze the properties of our proposed Fed_BVA framework, we
present two visualization plots on MNIST using a trained CNN
model where the bias and variance are both calculated on the train-
ing examples. In Fig. 1(a), we visualize the extracted gradients using

7Note that EAT shares the same idea as [49] for robust federated learning.
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Figure 1: Bias-variance analysis on MNIST with (a) visualizations
of bias, variance, bias+variance, and perturbed images, and (b) Bias-
variance curve w.r.t. the CNN model complexity

Fed_Variance |0.98510.001 0.803.0.007 0.57210.019 [0.97310.005 0.684+0.004 0.39540.049
Fed_BVA

I vethod | D | non-IID |
| | Clean  FGSM  PGD-20 | Clean  FGSM  PGD-20 |
Centralized 0.991.0.000 0.68940.000 0.1820.000 n/a n/a n/a

FedAvg 0.98910.001 0.66910.009 0.267+0.014 |0.980+0.002 0.491+0.067 0.15810.074
FedAvg_AT 0.98840.000 0.80240.001 0.512+0.042 | 0.97440.005 0.649+0.066 0.363+0.066
Fed_Bias 0.98640.000 0-81240.000 0.58320.036 | 0.971x0.004 0.67940.040 0.394+0 103

0.986+0.001 0.818.0.003 0.613+0.020 | 0.969+0.002 0.705:0.009 0.469+0.031

EAT 0.981+0.000 0-902+0.001 0.811:0.004 [0.972:0.002 0.789+0.016 0.41510.035
EAT+Fed_BVA | 0.980.40.001 0.901.0.006 0.821.0013|0.965:0005 0.81140.020 0.67040.014

Table 2: Accuracy of MNIST under white-box attacks in IID and non-
IID settings

I -1T

| Method | 1D | non-IID |
| | Clean FGSM  PGD-20 | Clean FGSM  PGD-20 |
Centralized 0.882.:0.000 0.229+0.000 0.009-0.000 n/a n/a n/a
FedAvg 0.8774+0.001 0.30040.021 0.036+0.016 |0.804.+0.013 0.193.40.036 0.017+0.003
FedAvg_AT | 0.866+0.001 0.490+0.021 0.139:0.011 |0.7300.023 0.445:+0.065 0.087+0.042
Fed_Bias 0.8624+0.001 0.50540.015 0.159+0.003 | 0.70940.025 0.46040.038 0.11540.054

Fed_Variance |0.862:0.002 0.49610012 0.157:0.017 | 0.71940.036 0.499:0.081 0.120:0.03
Fed_BVA 0.86240.003 0.52810.016 0.180:0.027 | 0.71020.045 0.49550.030 0.09310.028

EAT 0.860+0.005 0.773.0.029 0.10310.013 [ 0.79140.012 0.5970.033 0.0270.023
EAT+Fed BVA|0.838.0009 0.715:0.011 0.22640006 | 0.73520.020 0.632+0.015 0.1060.030

Table 3: Accuracy of Fashion-MNIST under white-box attacks in IID
and non-IID settings

\Metho d | CIFAR-10 | CIFAR-100
| | Clean  FGSM  PGD-20 | Clean  FGSM  PGD-20
Centralized  [0.903.0.003 0.288+0.001 0.074+0.005 |0.741.0.003 0.166:0.012 0.03220.003

FedAvg 0.890+0.002 0.22540.022 0.062+0.008 | 0.730+0.003 0.161+0.009 0.03540.006
FedAvg_AT 0.89040.003 0.28040.021 0.099+0.014 | 0.70740.003 0.162.+0.006 0.048+0.003
Fed_Bias 0.89040.004 028040018 0.10320.012 | 0.70220.002 0.16320.005 0.061+0 003
Fed_Variance |0.88940.001 0.267+0.014 0.09240.009 | 0.710+0.007 0.161+0.005 0.04510.016
Fed BVA 0.88940.003 028650013 0.10420.012 | 0.70940.005 0.163+0.007 0.0620 005

EAT 0.833+0.003 0.596+0.003 0.561+0.002 [ 0.661+0.001 0.267+0.002 0.188+0.001
EAT+Fed_BVA|0.833.0.003 0.598.+0.002 0.564.0.003 | 0.657+0.002 0.27210.003 0.21110.002

Table 4: Accuracy of CIFAR-10 and CIFAR-100 under white-box at-
tacks

adversarial attack from bias, variance, and bias-variance. Notice
that the gradients of bias and variance are similar but with subtle
differences in local pixel areas. However, according to Theorem 5.1,
the gradient calculation of these two are quite different: bias re-
quires the target label as input, but variance only needs the model
output and main prediction. From another perspective, we also
investigate the bias-variance magnitude relationship with varying
model complexity. As shown in Fig. 1(b), with increasing model
complexity (more convolutional filters in CNN), both bias and vari-
ance decrease. This result is different from the double-descent curve
or bell-shape variance curve claimed in [2, 43]. The reasons are
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Figure 2: Model analysis on Fashion-MNIST (PGD-20 attack)
twofold: First, their bias-variance definitions are from the MSE re-
gression decomposition perspective, whereas our decomposition
utilizes the concept of the main prediction, and the generalization
error is decomposed from the classification perspective; Second,
their implementations only evaluate the bias and variance using
training batches on one central model and thus is different from
the definition which requires the variance to be estimated from

multiple sub-models (in our scenario, client models).

The convergence plot of all baselines is presented in Fig. 2(a).
We observe that FedAvg has the best convergence, and all robust
training will have a slightly higher loss upon convergence. This
matches the observations in [25] which states that training perfor-
mance may be sacrificed in order to provide robustness for small
capacity networks. For the model performance shown in Fig. 2(b),
we observe that the aggregation of federated learning is vulnerable
to adversarial attacks since both FedAvg and EAT have decreased
performance with an increasing number of server-client communi-
cations. Other baselines that utilized asymmetrical communications
have increasing robustness with more communication rounds al-
though only a small number of perturbed examples (ns; = 64) are
transmitted. We also observe that when communication rounds
reach 40, Fed_BVA starts to outperform EAT while the latter is even
more resource-demanding than Fed_BVA (shown in Fig. 2(c), where
the pie plot size represents the running time). Overall, bias-variance
based adversarial training via asymmetric communication is both
effective and efficient for robust federated learning.

For the comprehensive experiments in Table 2 and Table 3, it is
easy to verify that our proposed model outperforms all other base-
lines regardless of the source of the perturbed examples (i.e., locally
generated like EAT+Fed_BVA or asymmetrically transmitted from
the server like Fed_BVA). In this case, BV-FGSM (see Eq. (5)) is used
to generate the adversarial examples Dy during model training for
robust federated learning. Compared to standard robust federated
learning FedAvg_AT, the performance of Fed_BVA against adversar-
ial attacks still increases 4% — 13% and 2% — 9% on IID and non-IID
settings respectively, although Fed_BVA is theoretically suitable for
the cases that clients have IID samples. In Table 4, we observe a
similar trend where Fed_BVA outperforms FedAvg_AT on CIFAR-10
and CIFAR-100 (with 0.2% — 10% increases) when defending differ-
ent types of adversarial examples. Compared to the strong local
adversarial training baseline EAT, we also observe a maximum 13%
accuracy increase when applying its bias-variance oriented baseline
EAT+Fed_BVA. Overall, the takeaway is that without local adversar-
ial training, using a bias-variance based robust learning framework
could outperform other baselines for defending FGSM and PGD
attacks. When local adversarial training is allowed (e.g., the client
device has powerful computation ability), using bias-variance ro-
bust learning with local adversarial training will mostly have the
best robustness.
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Fed BVA |
VarianceOnly BVA ‘

‘ Loss ‘ Clean ‘
‘ ‘ ‘ BiasOnly

0.763(47.585)
0.711(65.03s)

0.759 (63.465)
0.711(162.40s)

0.776(63.67s)

‘ CE ‘ 0.588(38.135)
0.712(179.60s)

MSE | 0.601 (39 675)

Table 5: Accuracy of training with different loss functions and run-
ning time (second/epoch)

| Method | 1D | non-IID |
| | FGSM PGD-10 PGD-20 | FGSM PGD-10 PGD-20 |
FedAvg 0.588  0.620 0205 |0.147 0525  0.089

Fed_BVAgvrgsmy | 0776  0.793  0.570 | 0.670 0.695  0.472
Fed BVAgypgp) | 0757 0.840 0.632 | 0.659 0784  0.575

Table 6: Comparison of training with BV-PGD and BV-FGSM

| s \ 1D | non-IID |
rategy
| | FGSM PGD-10 PGD-20 | FGSM PGD-10 PGD-20 |
s1 0745 0743 0450 | 0.529 0677 0433
s2 0.743 0731 0436 | 0513  0.680  0.432
$3 0730 0704 0400 | 0495 0657  0.380

Table 7: Robust training with different strategies on MNIST
6.3 Ablation Studies

6.3.1 MSE loss v.s. CE loss. Both cross-entropy (CE) and mean
squared error (MSE) loss functions could be used for training a
neural network model. In our paper, the loss function of neural
networks determines the derivation of bias and variance terms
used for producing the adversarial examples. We experimentally
compare the CE and MSE loss functions in our framework. Table 5
reports the adversarial robustness of our federated framework w.r.t.
FGSM attack (e = 0.3) on MNIST with IID setting. It is observed that
(1) our framework with MSE has a significantly larger running time;
(2) the robustness of our framework with MSE becomes slightly
weaker, which might be induced by the weakness of MSE in training
neural networks under the classification setting.

6.3.2 BV-PGD v.s. BV-FGSM. Our bias-variance attack could be
naturally generalized to any gradient-based adversarial attack algo-
rithms when the gradients of bias B(+) and variance V(-) w.r.t. x are
tractable to be estimated from clients’ models learned on finite train-
ing sets. Here, we empirically compare the adversarial robustness
of the proposed framework trained with bias-variance guided PGD
(BV-PGD) adversarial examples and bias-variance guided FGSM
(BV-FGSM) adversarial examples. Table 6 provides our results on
w.r.t. FGSM and PGD attacks (¢ = 0.3) on MNIST with IID and
non-IID settings. Compared to FedAvg, our framework Fed_BVA
with either BV-FGSM or BV-PGD could largely improve the model
robustness against adversarial noise. Furthermore, BV-PGD could
potentially improve white-box robustness on multi-step attacks,
but it is often more computationally demanding. As a comparison,
BV-FGSM is more robust against single-step attacks.

6.3.3 Alternative Training Strategies for Fed_BVA. Our Fed_BVA
framework maximizes the overall generalization error induced by
bias and variance from different clients for the adversarial examples
generation. Under this setting, the generated adversarial examples
on the server are shared with all the clients for local adversarial
training. In particular, we found that when using the CE loss, the
estimated gradients of bias and variance can be considered as the

Zhou et al.

‘ CIFAR-10 ‘ Source (FGSM attack) ‘ Source (PGD-20 attack) ‘
| Target | R \ X M | R \ X M |
FedAvg 0.707 0.688 0.689 0.793 | 0.611 0.623 0.597 0.787
FedAvg AT 0.742 0.710 0.720 0.808 | 0.695 0.670 0.661 0.808
Fed_Bias 0.740  0.703 0.715 0.799 | 0.690 0.667 0.654 0.799
Fed_Variance 0.738 0.704 0.719 0.810 | 0.677 0.656 0.648 0.809
Fed_BVA 0.744 0.706 0.722 0.809 | 0.693 0.669 0.664 0.809

EAT+Fed_BVA | 0.828 0.808 0.817 0.828 | 0.825 0.809 0.812 0.829

EAT ‘0821 0.806 0.815 0.823 | 0.819 0.808 0.813 0.822

Table 8: CIFAR-10 accuracy towards black-box adversarial examples
on transferability between models (R: ResNet18; V: VGG11; X: Xcep-
tion; M: MobileNetV2)

average of clients’ local gradients over input x (see Subsection 5.1).
This motivates us to consider several alternative training strategies
by generating client-specific adversarial examples on the server.

e S1: We generate the adversarial examples Ds to maximize the
bias and variance from all clients’ predictions. In this case, the
generated adversarial examples on the server will be shared
with the local clients. This is the strategy used in our Fed_BVA
algorithm. It guarantees the minimization of generalization error
from the perspective of bias-variance decomposition, thus leading
to an adversarially robust federated learning model.

o S2: The bias-variance decomposition with CE loss indicates that
we generate the client-specific adversarial examples as

VB (x; w) = VxL(fp, (x; W), 1)

C
VVi (s we) = ) (logyid + D)V fy)) (x5 0p)
=1
where x € Dg and k € {1,..., K}. If we using FGSM for attacking,

the adversarial example on the k™ client is:

2K raen = X + € - sign (Ve (By (3 wge) + AVi (x5 wg)))

Note that the gradient estimate of client-specific variance also
relies on the main prediction yy,. But in this case, it allows every
client to have different adversarial examples D;. Intuitively, this
training strategy further decomposes the bias and variance into
individual client-specific terms.

$3: Another training strategy is to use every local client model
to generate the adversarial examples on the server individually
as follows.

VB (x;wi) = Vi L(fp, (x;wg), 1) Vx € Ds ke {l,..,K}
Similarly, we can have:

Je]1§V—1=GSM = x + € - sign (Vi By (x; wg.))

It is a special case of S2 with A = 0. In this case, every client will
only use its own model parameters to generate the client-specific
adversarial examples on the server.

We conduct the ablation study to compare different training strate-
gies in our Fed_BVA framework. In this case, we use K = 10 clients
with fraction F = 1 and local epoch E = 5. Other hyper-parameters
and model architecture settings are the same as in our previous
experiments. Table 7 provides the performance of adversarial ro-
bustness using our Fed_BVA framework on MNIST with both IID
and non-IID settings. It is observed that Fed_BVA with S1 has the
best robustness in most cases compared to other heuristic training
strategies $2 and S3. This indicates that bias and variance provide
better direction to generate the adversarial examples for robust
training. In contrast, detecting the adversarial examples with indi-
vidual directions in §2 for each client might be sub-optimal.



Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning

<

FedAvg v
Fed_BVA

Krum
Fed_BVA+Krum
GeoMed
Fed_BVA+Geolled
Median
Fed_BVA-+Median

FedAvg
Fed BVA

Krum
Fed_BVA+Krum
GeoMed
Fed_BVA+GeoMed

Ap
LY

Median
Fed_BVA+Median

AVODaAD> ¢ O

AVOD4AD>+O

Adversarial robustness

Adversarial robustness

&

[

o ° b
03 o4 o5 o8 07 o5 o5 1o o5 om  om o 0%
Byzantine robustness Byzantine robustness

(a) FGSM & Sign-flipping (b) PGD-20 & Additive noise
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attack on local model updates

6.4 Against Other Attacks

6.4.1 Black-box Attacks. Using black-box attack, we test the trans-
ferability of single-step attack (i.e., FGSM [13]) and multi-step at-
tack (i.e., PGD [21]) on various federated learning baseline models.
For CIFAR-10 data set, we pretrained ResNet18 [15], VGG11 [33],
Xception [7], and MobileNetV2 [31] as the source threat models
for generating the single-step and multi-step adversarial examples.
The black-box transfer attacking results are shown in Table 8. We
observe that without any adversarial training, FedAvg will suffer a
maximum of 28% accuracy lost. For comparison, the robust feder-
ated learning model with global transmitted perturb samples (i.e.,
FedAvg_AT, Fed_Bias, Fed_Variance, Fed_BVA) will have increase
robustness with a maximum of 23% accuracy drop on best baselines.
For the computation-demanding local robust training methods (i.e.,
EAT and EAT+Fed_BVA), the maximum accuracy drop is only 3%,
respectively. Thus, it is straightforward to see that CIFAR-10 is
more vulnerable to multi-step black-box adversarial attacks, but the
local adversarial training methods could improve its robustness.

6.4.2 Byzantine Attacks. The proposed Fed_BVA is flexible to in-
corporate with Byzantine-robust aggregation variants, in order
to improve both the adversarial robustness against the corrupted
test data set and the Byzantine robustness against the corrupted
local model updates. Here we use sign-flipping attack [23] and
additive noise attack [23] to manipulate the local model updates
of 40% clients. Then we adopt the Byzantine-robust aggregation
mechanisms in our Algorithm 1. In this case, we use three popular
mechanisms, i.e., Krum [3], Median [44] and GeoMed [6], to aggre-
gate the local model updates. We report the results in Figure 3. It is
observed that Fed_BVA is robust against adversarial and Byzantine
attacks, when using Krum as our aggregation strategy.

6.5 Parameter Analysis

6.5.1  Number of shared perturbed samples ns. From Fig. 4, we see
that the accuracy of FedAvg (i.e., ng = 0) has the best accuracy as we
expected. For Fed_BVA with varying size of asymmetrical transmit-
ted perturbed samples (i.e., ng = 8, 16, 32, 64), its performance drops
slightly with increasing ng (on average drop of 0.05% per plot). As
a comparison, the robustness on the test set increases dramatically
with increasing ng (the improvement ranges from 18% to 22% under
FGSM attack and ranges from 15% to 60% under PGD-20 attack).
However, choosing large ns; would have high model robustness but
also suffer from the high communication cost. In our experiments,
we choose ng = 64 for MNIST for the ideal trade-off point.

6.5.2  Momentum. We also care about the choice of options in the
SGD optimizer. Fig. 5(a) shows that the accuracy of clean training
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Figure 6: Accuracy of Fed_BVA w.r.t. local epoch

monotonically increases when the momentum is varying from 0.1
to 0.9. Interestingly, we observe from Fig. 5(b) and Fig. 5(c) that
the federated learning model is less vulnerable when momentum is
large no matter whether the adversarial attack is FGSM or PGD-20
on Diess. So we choose the momentum as 0.9 for our experiments.
6.5.3 Local epochs E. Another important factor of federated learn-
ing is the number of local epochs. In Fig. 6, we see that more local
epochs in each client lead to a more accurate aggregated server
model in prediction. Its robustness against both FGSM and PGD-20
attacks on the test set Dyeg; also has the best performance when
the local epochs are large on the device. Hence, in our experiments,
if the on-device computational cost is not very high (large data
example size, deep models with many layers), we choose E = 50.
Otherwise, we will reduce E to a smaller number accordingly.

7 CONCLUSION

In this paper, we proposed a novel robust federated learning frame-
work, in which the loss incurred during the server’s aggregation
is dissected into a bias part and a variance part. Our approach
improves the model robustness through adversarial training by
supplying a few bias-variance perturbed samples to the clients
via asymmetrical communications. Extensive experiments have
been conducted where we evaluated its performance from various
aspects on several benchmark data sets.
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