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ABSTRACT
Federated learning learns a neural network model by aggregating

the knowledge from a group of distributed clients under the privacy-

preserving constraint. In this work, we show that this paradigm

might inherit the adversarial vulnerability of the centralized neural

network, i.e., it has deteriorated performance on adversarial exam-

ples when the model is deployed. This is even more alarming when

federated learning paradigm is designed to approximate the updat-

ing behavior of a centralized neural network. To solve this problem,

we propose an adversarially robust federated learning framework,

named Fed_BVA, with improved server and client update mecha-

nisms. This is motivated by our observation that the generalization

error in federated learning can be naturally decomposed into the

bias and variance triggered by multiple clients’ predictions. Thus,

we propose to generate the adversarial examples via maximizing

the bias and variance during server update, and learn the adver-

sarially robust model updates with those examples during client

update. As a result, an adversarially robust neural network can be

aggregated from these improved local clients’ model updates. The

experiments are conducted on multiple benchmark data sets using

several prevalent neural network models, and the empirical results

show that our framework is robust against white-box and black-box

adversarial corruptions under both IID and non-IID settings.

CCS CONCEPTS
• Information systems→ Federated databases; • Computing
methodologies→ Adversarial learning.
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1 INTRODUCTION
The explosive amount of decentralized user data collected from the

ever-growing usage of smart devices, e.g., smartphones, wearable

devices, home sensors, etc., has led to a surge of interest in the

field of decentralized learning. To protect the privacy-sensitive data

of local clients, federated learning [26, 42] has been proposed. It

only allows a group of clients to train local models using their own

data on each individual device, and then collectively merges the

model updates on a central server using secure aggregation [1].

Due to its high privacy-preserving property, federated learning has

attracted much attention in recent years along with the prevalence

of efficient light-weight deep models [16] and low-cost network

communications [20].

Most existing federated learning approaches [18, 29, 38] focus on

improving the strategies of local model training (e.g., local SGD [34])

and global aggregation (e.g., FedAvg [26]). The intuition behind

them is to approximate the updating behavior of the centralized

model trained on all clients’ data. However, little effort (if any) has

been devoted to systematically analyzing the adversarial robustness

of federated learning paradigm. This becomes even more alarming

when centralized machine learning models have been shown to be

vulnerable to adversarial attacks when those models are deployed

in the testing phase [13, 28]. It is studied [30, 32, 49] that a heuristic

solution is to leverage the adversarial training techniques [25, 39]

for clients’ local training. However, it might suffer from expensive

computation for local clients associated with limited storage and

computational resources.

Our work studies the adversarial robustness of federated learning

paradigm by investigating the generalization error incurred in the

server’s aggregation process from the perspective of bias-variance

decomposition [9, 37]. Specifically, we show that this generalization

error on the central server can be decomposed as the combination

of bias (triggered by the main prediction of these clients) and vari-
ance (triggered by the variations among clients’ predictions). This

motivates us to propose a novel adversarially robust federated learn-

ing framework Fed_BVA. The key idea is to perform the local robust

training on clients by supplying them with bias-variance perturbed

examples generated from a tiny auxiliary training set on the cen-

tral server. It has the following advantages. First, it encourages the

https://doi.org/10.1145/3511808.3557232
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clients to consistently produce the optimal prediction for perturbed

examples, thereby leading to a better generalization performance.

Second, local adversarial training on the perturbed examples learns

a robust local model, and thus an adversarially robust global model

could be aggregated from clients’ local updates. The experiments

are conducted on neural networks with cross-entropy loss, however,

other loss functions are also applicable as long as their gradients

w.r.t. bias and variance are tractable to be computed.

It is worth noting that our problem setting fundamentally differs

from the existing Byzantine-robust federated learning [3, 8, 24, 29].

To be more specific, those works proposed to improve the robust-

ness of federated learning against Byzantine failures induced by

corrupted clients’ updates during model training, by performing

client-level robust training or designing server-level aggregation

variants with hyper-parameter tuning. In contrast, we focus on the

adversarial robustness of federated learning against adversarial ex-

amples, when the model is deployed in the testing phase. Generally,

the problem studied in this paper assumes that the learning process

is clean (no malicious behaviors or Byzantine faults are observed in

clients). But we also empirically show in Subsection 6.4.2 that when

this assumption is violated, our Fed_BVA can be robust against both

adversarial perturbation and Byzantine failures by incorporating

Byzantine-robust aggregation variants [3, 6, 44].

Compared with previous work, our major contributions include:

• We provide the exact solution of bias-variance analysis w.r.t. the

generalization error for neural networks in the federated learning

setting. As a comparison, performing the adversarial training on

conventional federated learning methods can only focus on the

bias of the central model but ignore the variance.

• We demonstrate that the conventional federated learning frame-

work is vulnerable to strong attacks with increasing communi-

cation rounds even if the adversarial training using the locally

generated adversarial examples is performed on each client.

• Without violating the clients’ privacy, we show that providing

a tiny amount of bias-variance perturbed data from the central

server to the clients through asymmetrical communication could

dramatically improve the robustness of the training model under

various adversarial settings.

The rest of this paper is organized as follows. The related work

is reviewed in Section 2. In Section 3, the preliminary is provided.

Then, in Section 4, a generic framework for adversarially robust fed-

erated learning is proposed, followed by the instantiated algorithm

Fed_BVA with bias-variance attacks in Section 5. The experiments

are presented in Section 6. We conclude this paper in Section 7.

2 RELATED WORK
2.1 Federated Learning
Federated learning [5, 20, 22, 26] aggregates the knowledge from a

large number of local devices (e.g., smartphone [14]) with limited

storage and computational resources. This aggregated knowledge

can thus be leveraged to train the modern machine learning mod-

els (e.g., deep neural networks) [10, 18, 38]. However, federated

learning algorithms over neural networks are approximating the

update dynamics of centralized neural networks, thus resulting in

inheriting the adversarial vulnerability of centralized neural net-

works [11, 13, 35, 40, 45–48]. More specifically, the deployed neural

network models in federated learning might incorrectly classify

the adversarial examples generated by the existing evasion attacks

(e.g., FGSM [13], PGD [25]).

There are two lines of related works for improving the robustness

of federated learning. One is to develop robust model aggregation

schemes [3, 6, 8, 24, 29, 44] against Byzantine failures induced by cor-

rupted client’s updates during model training. Those works focus

on performing client-level robust training or designing server-level

aggregation variants with hyper-parameter tuning. The other one is

to improve the model robustness against the adversarial attacks af-

ter model deployment [32, 49]. This idea fundamentally differs from

the Byzantine-robust approaches in the following. (1) Different from

Byzantine-robust model training, it is assumed that no malicious

behaviors or Byzantine faults are observed in clients in training. (2)

It improves the model robustness by refining the decision boundary

around the adversarial examples, whereas Byzantine-robust models

focus on mitigating the impact of potential clients’ faults. In this

paper, we will mainly focus on the second scenario by analyzing the

adversarial robustness of federated learning from the perspective

of bias-variance analysis. Compared to previous works [32, 49], the

bias-variance analysis on local clients allows capturing the global

model dynamics for improving the adversarial robustness of the

aggregated global model in the federated learning setting.

2.2 Bias-Variance Decomposition
Bias-variance decomposition [12, 19] was originally introduced

to analyze the generalization error of a learning algorithm. Then,

a generalized bias-variance decomposition [9, 37] was studied in

the classification setting which enabled flexible loss functions (e.g.,

squared loss, zero-one loss). Specifically, it is shown that under

mild conditions, the generalization error of a learning algorithm

can be decomposed into bias, variance and irreducible noise. In

this case, bias measures how the trained models over different

training data sets deviate from the optimal model, and variance

measures the differences among those trained models. Moreover, it

is previously observed [12] that the bias decreases and the variance

increases monotonically with respect to the model complexity. It

thus suggests that a better trade-off of bias and variance could lead

to improving the generalization performance of a learning algo-

rithm. Nevertheless, in recent years, it is empirically shown [33]

that increasing the model complexity of deep neural networks

tends to produce better generalization performance, which is in

contradiction to previous bias-variance analysis. Following this

idea, bias-variance trade-off was experimentally revisited on mod-

ern neural network models [2, 43]. It is found that for deep neural

networks, the variance is more likely to increase first and then de-

crease with respect to the model complexity. We would like to point

out that compared to standard supervised learning, federated learn-

ing can be better characterized by the bias-variance decomposition.

That is because the trained models in local clients can be naturally

applied to define the bias and variance in the generalization error of

a learning algorithm. To the best of our knowledge, this is the first

work studying the federated learning problem from the perspective

of bias-variance analysis.

3 PRELIMINARIES
In this section, we formally present the problem definition and the

bias-variance trade-off in the classification setting.
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3.1 Federated learning
In federated learning [26, 42], there is a central server and 𝐾 dif-

ferent clients, each with access to a private training set D𝑘 =

{(𝑥𝑘
𝑖
, 𝑡𝑘
𝑖
)}𝑛𝑘
𝑖=1

. Here, 𝑥𝑘
𝑖
, 𝑡𝑘
𝑖
, and 𝑛𝑘 are the features, label, and num-

ber of training examples in the 𝑘th client where 𝑘 = 1, · · · , 𝐾 . Each
data D𝑘 is exclusively owned by client 𝑘 and will not be shared

with the central server or other clients.

The goal of standard federated learning is to learn the prediction

function by aggregating the knowledge of user data from a set of

local clients without leaking user privacy. A typical framework [26,

42] of federated learning can be summarized as follows: (1) Client
Update: Each client updates local parameters𝑤𝑘 by minimizing the

empirical loss over its own training set; (2) Forward Communication:
Each client uploads its parameter update to the central server; (3)

Server Update: It synchronously aggregates the received parameters;

(4) Backward Communication: The global parameters are sent back

to the clients.

3.2 Problem Definition and Motivation
It can be seen that the neural network in federated learning actually

approximates the updating behavior of a centralized model. For

example, the update behavior of FedAvg [26] is closely equivalent

to the stochastic gradient descent (SGD) on the centralized data

when each client only takes one step of gradient descent. That ex-

plains why it might potentially inherit the adversarial vulnerability

of centralized neural network models [13, 35]. Therefore, in this

paper, we study the adversarial robustness of neural networks in

the federated learning setting. Formally, given a set of private train-

ing data {D𝑘 }𝐾𝑘=1 on 𝐾 different clients, a learning algorithm 𝑓 (·)
and loss function 𝐿(·, ·), adversarially robust federated learning
aims to output a trained model on the central server that is robust

against adversarial perturbations on the test set D𝑡𝑒𝑠𝑡 .
It is previously [30, 32, 49] revealed that one can simply apply the

adversarial training techniques [25] to clients’ local training. Nev-

ertheless, it is unclear how the local adversarial training on clients

affects the adversarial robustness of the aggregated global model on

the central server. To answer this question, we study the intrinsic

relationship between the set of local clients’ models and the aggre-

gated server’s model from the perspective of bias-variance trade-off.

It is found that the generalization error of the server’s model is

induced by both bias and variance of local clients’ models. There-

fore, instead of separately focusing on the adversarial robustness of

individual clients [32, 49], we propose to analyze the adversarially

robust federated learning in a unified framework. The crucial idea

is to generate some global adversarial examples shared with clients,

by leveraging a tiny auxiliary training set D𝑠 = {(𝑥𝑠𝑗 , 𝑡
𝑠
𝑗
)}𝑛𝑠
𝑗=1

with

𝑛𝑠 (𝑛𝑠 ≪
∑𝐾
𝑘=1

𝑛𝑘 ) examples on the central server. This will not

break the privacy constraints, as the local data in every client is

not shared. In real scenarios, the auxiliary data can be some repre-

sentative or synthetic template examples. For example, during the

COVID-19 pandemic, hospitals (local clients) would like to consider

a few publicly accessible template data with typical symptoms
1
for

model training of the diagnostic system. Notice that federated semi-

supervised learning [17] also considered a similar problem setting

with labeled examples on the server and unlabeled examples on the

1
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

clients. Instead, in our paper, we propose to improve the adversarial

robustness of federated learned systems over local clients by taking

those publicly accessible data D𝑠 into consideration.

We would like to point out that our problem definition has the

following properties. (1) Asymmetrical communication: The asym-

metrical communication between each client and server cloud is

allowed: the server provides both global model parameters and

limited shared data to the clients; while each client uploads its local

model parameters back to the server. This implies that compared

to standard federated learning, the communication cost might in-

crease due to those shared data, but it enables the improvement of

adversarial robustness in federated learning (see Subsection 6.5.1

for more empirical analysis)
2
. (2) Data distribution: All training ex-

amples on the clients and the server are assumed to follow the same

data distribution. However, the experiments show that our pro-

posed algorithm also achieves outstanding performance under the

non-IID setting (see Subsection 6.2), which could be commonly seen

among personalized clients in real scenarios. (3) Shared learning al-
gorithm: All the clients are assumed to use the identical model 𝑓 (·),
including architectures as well as hyper-parameters (e.g., learning

rate, local epochs, local batch size, etc.).

3.3 Bias-Variance Trade-off
In this paper, we investigate the adversarially robust federated learn-

ing by studying the generalization error incurred in its aggregation

process. We discover that the key to analyzing this error is from the

perspective of the bias-variance trade-off. Following [9], we define

the optimal prediction, main prediction as well as the bias, variance,

and noise for any real-valued loss function 𝐿(·, ·) as follows:

Definition 3.1. (Optimal Prediction and Main Prediction [9])

Given a loss function 𝐿(·, ·) and a learning algorithm 𝑓 (·), optimal

prediction 𝑦∗ and main prediction 𝑦𝑚 for input 𝑥 are defined as:

𝑦∗ (𝑥) = argmin

𝑦
E𝑡 [𝐿(𝑦, 𝑡)] 𝑦𝑚 (𝑥) = argmin

𝑦′
ED [𝐿(𝑓D (𝑥), 𝑦′)]

where the label
3 𝑡 and data setD are viewed as the random variables

to denote the class label and training set, and 𝑓D denotes the model

trained on D.

Definition 3.2. (Bias, Variance and Noise) Given a loss function
𝐿(·, ·) and a learning algorithm 𝑓 (·), the bias, variance and noise

can be defined as follows.

𝐵(𝑥) = 𝐿(𝑦𝑚, 𝑦∗), 𝑉 (𝑥) = ED [𝐿(𝑓D (𝑥), 𝑦𝑚)], 𝑁 (𝑥) = E𝑡 [𝐿(𝑦∗, 𝑡)]
Furthermore, there exists 𝜆, 𝜆0 ∈ R such that the expected predic-

tion loss ED,𝑡 [𝐿(𝑓D (𝑥), 𝑡)] for an example 𝑥 can be decomposed

into bias, variance and noise as follows:

ED,𝑡 [𝐿(𝑓D (𝑥), 𝑡)] = 𝐵(𝑥) + 𝜆𝑉 (𝑥) + 𝜆0𝑁 (𝑥) (1)

In short, bias is the loss incurred by the main prediction w.r.t.

the optimal prediction, and variance is the average loss incurred

by all individual predictions w.r.t. the main prediction. Noise is

conventionally assumed to be irreducible and independent of 𝑓 (·).
Our definitions of optimal prediction, main prediction, bias, vari-

ance and noise slightly differ from previous ones [9, 37]. For ex-

ample, conventional optimal prediction was defined as 𝑦∗ (𝑥) =
2
We would like to leave the trade-off of communication cost and adversarial robustness as our future

work. For example, asymmetrical communication can be device-dependent in real scenarios, by

acquiring the transmitted data based on devices’ storage and computational capacities.

3
In general, 𝑡 is a non-deterministic function [9, 37] of 𝑥 when the irreducible noise is considered.

Namely, if 𝑥 is sampled repeatedly, different values of 𝑡 will be observed.

https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
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argmin𝑦 E𝑡 [𝐿(𝑡, 𝑦)], and it is equivalent to our definition when loss
function is symmetric over its arguments, i.e., 𝐿(𝑦1, 𝑦2) = 𝐿(𝑦2, 𝑦1).

4 THE PROPOSED FRAMEWORK
In this section, we present the adversarially robust federated learn-

ing framework. It follows the same paradigm of traditional federated

learning (see Subsection 3.1) but with substantial modifications on

the server update and client update as follows.

4.1 Server Update with Data Poisoning
The server has two crucial components. The first one is model

aggregation, which synchronously compresses and aggregates the

received local model parameters. Another component is designed

to produce adversarially perturbed examples which are induced by

a poisoning attack algorithm for the usage of adversarial training.

4.1.1 Model Aggregation. The overall goal of federated learning is

to learn a prediction function by using knowledge from all clients

such that it could generalize well over the test data set. When the

central server receives the parameter updates from local clients,

it aggregates the locally updated parameters to obtain a shared

global model. It is notable that most existing federated learning

approaches [26, 27, 38] focus on developing advanced model ag-

gregation schemes. One of the popular aggregation methods is

FedAvg [26], which aims to average the element-wise parameters

of local models, i.e., 𝑤𝐺 = Aggregate(𝑤1, · · · ,𝑤𝐾 ) =
∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑤𝑘

where𝑤𝑘 is the model parameters in the 𝑘th client and 𝑛 =
∑𝐾
𝑘=1

𝑛𝑘 .

In this paper, we focus on improving the adversarial robustness of

federated learning by encouraging the local model parameters to be

updated with adversarial examples (see next subsection). Then the

adversarial robustness of local models can be naturally propagated

into the server’s global model after model aggregation. Therefore,

our framework is flexible to be incorporated with existing model

aggregation methods, e.g., FedAvg [26], FedMA [38], AFL [27], etc.

4.1.2 Adversarial Examples. It is shown [13] that the adversarial

robustness of deep neural networks can be improved by updating

the model parameters over adversarial examples. That is because

the generalization error of neural networks on adversarial examples

can be minimized during model training. However, it will encounter

a few issues if we apply adversarial training on federated learning

directly. Specifically, one intuitive solution for generating adver-

sarial examples is to separately maximize the generalization error

in each local client (see Subsection 4.3 for more discussion). Its

drawbacks are two folds: First, it will significantly increase the

computational burden and memory usage on local clients. Second,

the locally generated adversarial examples make the augmented

data distributions of local clients much more biased [41], which

challenges the standard server-level aggregation mechanisms [27].

Instead, we study the adversarial robustness of federated learning

from the perspective of bias-variance decomposition. The following

theorem shows that in the classification setting, the generalization

error of a learning algorithm can be decomposed into bias, variance,

and irreducible noise. Note that this decomposition holds for any

real-valued loss function in the binary setting [9] with a bias &

variance trade-off coefficient that has a closed-form expression.

Theorem 4.1. In binary case, the decomposition in Eq. (1) is valid
for any real-valued loss function that satisfy ∀𝑦𝐿(𝑦,𝑦) = 0 and

∀𝑦1≠𝑦2𝐿(𝑦1, 𝑦2) ≠ 0 with 𝜆 = 1 if 𝑦𝑚 = 𝑦∗ or 𝜆 = −𝐿 (𝑦𝑚,𝑦∗ )
𝐿 (𝑦∗,𝑦𝑚 )

otherwise.

The proof of Theorem 4.1 is similar to [9], we omit it here for

space. Note that noise is irreducible and we usually drop this term

in real applications [9, 12, 37, 43]. Commonly used loss functions for

this decomposition are square loss, zero-one loss, and cross-entropy

loss with one-hot labels. For the multi-class setting, the closed-form

solution of coefficient 𝜆 for cross-entropy loss is given as follows.

𝜆 =


1 , 𝑦𝑚 = 𝑦∗
−𝐿 (𝑦𝑚,𝑦∗ )
𝐿 (𝑦∗,𝑦𝑚 ) , 𝑦 = 𝑦𝑚 or 𝑦 = 𝑦∗ (given 𝑦𝑚 ≠ 𝑦∗)

0 , 𝑦 ≠ 𝑦𝑚 ≠ 𝑦∗

(2)

Remark. Intuitively, when 𝑦𝑚 = 𝑦∗, no bias is induced and the

generalization error mainly comes from variance; when bias exists

𝑦𝑚 ≠ 𝑦∗, a negative variance will help to reduce error when the

prediction is identical to the main prediction or optimal prediction;

otherwise, the variance is set to zero. In this paper, neural networks

that use cross-entropy loss and mean squared loss with softmax

prediction outputs are studied. Thus, we inherit their definition of

bias & variance directly, but treat the trade-off coefficient 𝜆 as a

hyper-parameter to tune because no closed-form expression of 𝜆 is

available in a general multi-class learning scenario.

Following [9, 37], we assume a noise-free scenario where the

class label 𝑡 is a deterministic function of 𝑥 (i.e., if 𝑥 is sampled

repeatedly, the same values of its class 𝑡 will be observed). The bias

and variance can be empirically estimated over the clients’ models.

This motivates us to generate the adversarial examples by attacking

the bias and variance induced by clients’ models as:

max

𝑥∈Ω (𝑥 )
𝐵(𝑥 ;𝑤1, · · · ,𝑤𝐾 ) + 𝜆𝑉 (𝑥 ;𝑤1, · · · ,𝑤𝐾 ) ∀(𝑥, 𝑡) ∈ D𝑠 (3)

where 𝐵(𝑥 ;𝑤1, · · · ,𝑤𝐾 ) and𝑉 (𝑥 ;𝑤1, · · · ,𝑤𝐾 ) could be empirically

estimated from a finite number of clients’ parameters𝑤1, · · · ,𝑤𝐾
trained on local training sets {D1, · · · ,D𝐾 }. Here 𝜆 is a hyper-

parameter to measure the trade-off of bias and variance, and Ω(𝑥)
is the perturbation constraint. 𝑥 is the perturbed examples w.r.t.

the clean example 𝑥 associated with class label 𝑡 . Specifically, the

perturbation constraint 𝑥 ∈ Ω(𝑥) forces the adversarial example

𝑥 to be visually indistinguishable w.r.t. 𝑥 . In our paper, we use 𝑙∞-
bounded adversaries [13], i.e., Ω(𝑥) := {𝑥

��| |𝑥 − 𝑥 | |∞ ≤ 𝜖} for a
perturbation magnitude 𝜖 .

Note that D𝑠 (on the server) is the candidate subset of all avail-

able training examples that would lead to their perturbed counter-

parts. This is a more feasible setting as compared to generating

adversarial examples on clients’ devices because the server usu-

ally has powerful computational capacity in real scenarios that

allows the usage of flexible poisoning attack algorithms. In this

case, both poisoned examples and server model parameters would

be sent back to each client (Backward Communication), while only
clients’ local parameters would be uploaded to the server (Forward
Communication), i.e., the asymmetrical communication.

4.2 Robust Client Update
The robust training of one client’s prediction model (i.e.,𝑤𝑘 ) can

be formulated as the following minimization problem.

min

𝑤𝑘

©­«
𝑛𝑘∑︁
𝑖=1

𝐿(𝑓D𝑘 (𝑥
𝑘
𝑖 ;𝑤𝑘 ), 𝑡

𝑘
𝑖 ) +

𝑛𝑠∑︁
𝑗=1

𝐿(𝑓D𝑘 (𝑥
𝑠
𝑗 ;𝑤𝑘 ), 𝑡

𝑠
𝑗 )

ª®¬ (4)
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where 𝑥𝑠
𝑗
∈ Ω(𝑥𝑠

𝑗
) is the perturbed example that is asymmetrically

transmitted from the server.

Intuitively, the bias measures the systematic loss of a learning

algorithm, and the variance measures the prediction consistency

of the learner over different training sets. Therefore, our robust

federated learning framework has the following advantages: (i) it en-

courages the clients to consistently produce the optimal prediction

for perturbed examples, thereby leading to a better generalization

performance; (ii) local adversarial training on perturbed examples

allows to learn a robust local model, and thus a robust global model

could be aggregated from clients.

4.3 Discussion
Theoretically, we could have another alternative robust federated

learning strategy where the perturbed training examples of each

client𝑘 is generated on local devices fromD𝑘 instead of transmitted

from the server. It is similar to [25, 36] where it iteratively synthe-

sizes the adversarial counterparts of clean examples and updates

the model parameters over perturbed training examples. Thus, each

local robust model is trained individually. Nevertheless, poisoning

attacks on the device will largely increase the computational cost

and memory usage. Meanwhile, it only considers the client-specific

loss and is still vulnerable against adversarial examples with in-

creasing communication rounds. Both phenomena are observed in

our experiments (see Fig. 2(b) and Fig. 2(c)).

5 INSTANTIATED ALGORITHM
In this section, we present the instantiated algorithm Fed_BVA.

5.1 Bias-Variance Attack
We first consider the maximization problem in Eq. (3) using bias-

variance based adversarial attacks. It finds the adversarial example 𝑥

(from the original example 𝑥 ) that produces large bias and variance

values w.r.t. clients’ local models. To this end, we propose two

gradient-based algorithms to generate adversarial examples.

Bias-variance based Fast Gradient SignMethod (BV-FGSM):
Following FGSM [13], it linearizes the maximization problem in Eq.

(3) with one-step attack as follows.

𝑥BV−FGSM = 𝑥 + 𝜖 · sign (∇𝑥 (𝐵 (𝑥 ;𝑤1, · · · , 𝑤𝐾 ) + 𝜆𝑉 (𝑥 ;𝑤1, · · · , 𝑤𝐾 ) ) )
(5)

where sign(·) denotes the sign function.

Bias-variance based Projected Gradient Descent (BV-PGD):
PGD [25] can be considered as a multi-step variant of FGSM and

might generate powerful adversarial examples. This motivated us

to derive a BV-based PGD attack:

𝑥𝑙+1
BV−PGD

=ProjΩ (𝑥 )
(
𝑥𝑙 + 𝜖 sign

(
∇
𝑥̂𝑙

(
𝐵 (𝑥𝑙 ;𝑤1, · · · , 𝑤𝐾 ) + 𝜆𝑉 (𝑥𝑙 ;𝑤1, · · · , 𝑤𝐾 )

)))
(6)

where 𝑥𝑙 is the adversarial example at the 𝑙 th step with the initial-

ization 𝑥0 = 𝑥 and ProjΩ (𝑥 ) (·) projects each step onto Ω(𝑥).
The proposed framework could b generalized to any gradient-

based adversarial attack algorithms where the gradients of bias 𝐵(·)
and variance 𝑉 (·) w.r.t. 𝑥 are tractable when estimated from finite

training sets. Comparedwith the existing attackmethods [4, 13], our

loss function the adversary aims to optimize is a linear combination

of bias and variance, whereas existing work mainly focused on

attacking the overall classification error involving bias only.

Algorithm 1 Fed_BVA

1: Input: 𝐾 (number of clients, with local data sets {D𝑘 }𝐾𝑘=1); 𝑓
(learning model); 𝐿 (loss function); 𝐸 (number of local epochs);

𝐹 (fraction of clients selected on each round); 𝐵 (batch size of

local client); 𝜂 (learning rate); D𝑠 (shared data set on server); 𝜖

(perturbation magnitude).

2: Initialization: Initialize𝑤0

𝐺
and

ˆD𝑠 = D𝑠
3: for each round 𝑟 = 1, 2, · · · do
4: 𝑚 = max(𝐹 · 𝐾, 1)
5: 𝑆𝑟 ← randomly sampled𝑚 clients

6: for each client 𝑘 ∈ 𝑆𝑟 in parallel do
7: Initialize 𝑘th client’s model with𝑤𝑟−1

𝐺

8: B ← split D𝑘 ∪ ˆD𝑠 into batches of size 𝐵

9: for each local epoch 𝑖 = 1, 2, · · · , 𝐸 do
10: for local batch (𝑥, 𝑡) ∈ B do
11: 𝑤𝑟

𝑘
← 𝑤𝑟

𝑘
− 𝜂∇𝑤𝐿

(
𝑓D𝑘 (𝑥 ;𝑤𝑟𝑘 ), 𝑡

)
12: end for
13: end for
14: Calculate 𝑓D𝑘 (𝑥 ;𝑤𝑟𝑘 ), ∇𝑥 𝑓D𝑘 (𝑥 ;𝑤

𝑟
𝑘
) for ∀𝑥 ∈ D𝑠

15: end for
16: for (𝑥, 𝑡) ∈ D𝑠 do
17: Estimate the gradients ∇𝑥𝐵(𝑥) and ∇𝑥𝑉 (𝑥)
18: Update 𝑥 ∈ ˆD𝑠 using Eq. (5) or (6)
19: end for
20: 𝑤𝑟

𝐺
← Aggregate(𝑤𝑟

𝑘
|𝑘 ∈ 𝑆𝑟 )

21: end for
22: return 𝑤𝐺

The following theorem states that bias 𝐵(·) and variance𝑉 (·) as
well as their gradients over input 𝑥 could be estimated using the

clients’ models.

Theorem 5.1. Assume that 𝐿(·, ·) is the cross-entropy loss func-
tion, then, the empirical estimated main prediction 𝑦𝑚 for an input
example (𝑥, 𝑡) has the following closed-form expression: 𝑦𝑚 (𝑥) =
1

𝐾

∑𝐾
𝑘=1

𝑓D𝑘 (𝑥 ;𝑤𝑘 ). Furthermore, the empirical bias and variance
over an input 𝑥 are estimated as 𝐵𝐶𝐸 (𝑥) = 1

𝐾

∑𝐾
𝑘=1

𝐿(𝑓D𝑘 (𝑥 ;𝑤𝑘 ), 𝑡)
and 𝑉𝐶𝐸 (𝑥) = 𝐻 (𝑦𝑚) and their corresponding gradients over 𝑥 are:

∇𝑥𝐵𝐶𝐸 (𝑥) =
1

𝐾

𝐾∑︁
𝑘=1

∇𝑥𝐿(𝑓D𝑘 (𝑥 ;𝑤𝑘 ), 𝑡)

∇𝑥𝑉𝐶𝐸 (𝑥) = −
1

𝐾

𝐾∑︁
𝑘=1

𝐶∑︁
𝑗=1

(log𝑦 ( 𝑗 )𝑚 + 1) · ∇𝑥 𝑓 ( 𝑗 )D𝑘 (𝑥 ;𝑤𝑘 )

Proof. Following the definition of main prediction, it aims to

optimize argmin𝑦′ − 1

𝑛

∑𝑛
𝑘=1

∑𝐶
𝑗=1

(
𝑓
( 𝑗 )
D𝑘 (𝑥) · log𝑦

′( 𝑗 ) )
with con-

straints

∑𝐶
𝑗=1 𝑦

′( 𝑗 ) = 1 and

∑𝐶
𝑗=1 𝑓

( 𝑗 )
D𝑘 (𝑥) = 1 for all 𝑘 = 1, · · · , 𝑛. It

can then be solved by the Lagrange multiplier. □

In the above theorem, 𝐻 (𝑦𝑚) = −
∑𝐶
𝑗=1 𝑦

( 𝑗 )
𝑚 log𝑦

( 𝑗 )
𝑚 is the en-

tropy of the main prediction 𝑦𝑚 and 𝐶 is the number of classes. In

addition, we also consider the case where 𝐿(·, ·) is the MSE loss

function. Its main prediction 𝑦𝑚 for an input example (𝑥, 𝑡) has a
closed-form expression which is exactly the same as the CE loss,

its empirical bias and unbiased variance can only be estimated in
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the following formulas:

𝐵𝑀𝑆𝐸 (𝑥) =
�����
����� 1𝐾 𝐾∑︁

𝑘=1

𝑓D𝑘 (𝑥 ;𝑤𝑘 ) − 𝑡
�����
�����2
2

𝑉𝑀𝑆𝐸 (𝑥) =
1

𝐾 − 1

𝐾∑︁
𝑘=1

�����
�����𝑓D𝑘 (𝑥 ;𝑤𝑘 ) − 1

𝐾

𝐾∑︁
𝑘=1

𝑓D𝑘 (𝑥 ;𝑤𝑘 )
�����
�����2
2

and their gradients over input 𝑥 are:

∇𝑥𝐵𝑀𝑆𝐸 (𝑥) =
(
1

𝐾

𝐾∑︁
𝑘=1

𝑓D𝑘 (𝑥 ;𝑤𝑘 ) − 𝑡
)
·
(
1

𝐾

𝐾∑︁
𝑘=1

∇𝑥 𝑓D𝑘 (𝑥 ;𝑤𝑘 )
)

∇𝑥𝑉𝑀𝑆𝐸 (𝑥) =
1

𝐾 − 1

𝐾∑︁
𝑘=1

(
𝑓D𝑘 (𝑥 ;𝑤𝑘 ) −

1

𝐾

𝐾∑︁
𝑘=1

𝑓D𝑘 (𝑥 ;𝑤𝑘 )
)
·(

∇𝑥 𝑓D𝑘 (𝑥 ;𝑤𝑘 ) −
1

𝐾

𝐾∑︁
𝑘=1

∇𝑥 𝑓D𝑘 (𝑥 ;𝑤𝑘 )
)

We observe that the empirical estimate of ∇𝑥𝐵𝑀𝑆𝐸 (𝑥) ha higher
computational complexity than ∇𝑥𝐵𝐶𝐸 (𝑥) because it involves the
gradient calculation of prediction vector 𝑓D𝑘 (𝑥 ;𝑤𝑘 ) over the input
tensor 𝑥 . Besides, it is easy to show that the empirical estimate

of ∇𝑥𝑉𝑀𝑆𝐸 (𝑥) is also computationally expensive. A comparison

between using CE and MSE losses is presented in Subsection 6.3.1.

5.2 Fed_BVA
We present a novel robust federated learning algorithm with our

proposed bias-variance attacks, named Fed_BVA. Following the

framework defined in Eq. (3) and Eq. (4), key components of our

algorithm are (1) bias-variance attacks for generating adversarial

examples on the server, and (2) adversarial training using poisoned

server examples together with clean local examples on each client.

Therefore, we optimize these two objectives by producing the ad-

versarial examples
ˆD𝑠 and updating the local model parameters𝑤

iteratively.

The proposed algorithm is summarized in Alg. 1. Given the

server’sD𝑠 and clients’ training data {D𝑘 }𝐾𝑘=1 as input, the output
is a robust global model on the server. In this case, the clean server

data D𝑠 will be shared with all the clients. First, it initializes the

server’s model parameter 𝑤𝐺 and perturbed data
ˆD𝑠 , and then

assigns to the randomly selected clients (Steps 4-5). Next, each

client optimizes its own local model (Steps 6-15) with the received

global parameters𝑤𝐺 as well as its own clean dataD𝑘 , and uploads
the updated parameters as well as the gradients of the local model

on each shared server example back to the server. At last, the server

generates the perturbed data
ˆD𝑠 (Step 16-19) using the proposed

bias-variance attacks with aggregations (model parameters average,

bias gradients average, and variance gradients average) in a similar

manner as FedAvg [26]. These aggregations can be privacy secured

if additive homomorphic encryption [1] is applied.

6 EXPERIMENTS
6.1 Settings
6.1.1 Data Sets. We evaluate our proposed algorithm on four data

sets: MNIST
4
, Fashion-MNIST

5
, CIFAR-10

6
and CIFAR-100

6
. Fol-

lowing [26], we consider two methods to partition the data over

4
http://yann.lecun.com/exdb/mnist

5
https://github.com/zalandoresearch/fashion-mnist

6
https://www.cs.toronto.edu/~kriz/cifar.html

MNIST Fashion-MNIST CIFAR-10 CIFAR-100 (coarse)

# comms. 100 100 100 100

# clients (K) 100 100 20 20

fraction (F) 0.1 0.1 0.2 0.2

# epochs (E) 50 50 5 5

local batch (B) 64 64 128 128

# shared (𝑛𝑠 ) 64 64 30 60

# categories 10 10 10 20

Table 1: Learning setting of Fed_BVA

clients: IID and non-IID. For IID setting, the data is shuffled and

uniformly partitioned into each client. For non-IID setting, data

is divided into 2𝐹 · 𝐾 shards based on sorted labels, then assigns

each client with 2 shards. Thereby, each client will have data with

at most two classes.

6.1.2 Baselines. The baseline models include: (1). Centralized:
the trainingwith one centralizedmodel, which is identical to the fed-

erated learning case that only has one client (𝐾 = 1) with a fraction

(𝐹 = 1). (2). FedAvg: the classical federated averaging model [26].

(3). FedAvg_AT: The simplified version of our proposed method

where the local clients perform adversarial training with the asym-

metrical transmitted perturbed data generated on top of FedAvg’s
aggregation. (4) - (6). Fed_Bias, Fed_Variance, Fed_BVA: Our pro-
posed methods where the asymmetrical transmitted perturbed data

is generated using the gradients of bias-only attack, variance-only

attack, and bias-variance attack, respectively. (7). EAT7: Ensemble

adversarial training [36], where each client performs local adversar-

ial training, and their model updates are aggregated on the server

using FedAvg. (8). EAT+Fed_BVA: A combination of baselines (6)

and (7). Note that the baselines (7) and (8) have high computational

requirements on client devices, and are usually not preferred in real

scenarios. For fair comparisons, all baselines are modified to the

asymmetrical communication setting (FedAvg and EAT have clean
D𝑠 received), and all their initializations are set to be the same.

6.1.3 Model Configuration. For Fed_BVA framework, we use a 4-

layer CNN model for MNIST and Fashion-MNIST, and VGG9 ar-

chitecture for CIFAR-10 and CIFAR-100. The training is performed

using the SGD optimizer with a fixed learning rate of 0.01 and mo-

mentum of value 0.9. The trade-off coefficient between bias and vari-

ance is set to 𝜆 = 0.01 for all experiments. All hyper-parameters of

federated learning are presented in Table 1. We empirically demon-

strate that these hyper-parameter settings are preferable in terms

of both training accuracy and robustness (see the details of Fig. 4

- Fig. 6 in Subsection 6.5). To demonstrate the robustness of our

Fed_BVA framework, we evaluate the deployed server model on

the test set D𝑡𝑒𝑠𝑡 against adversarial attacks FGSM [13], PGD [25]

with 10 and 20 steps (i.e., PGD-10, PGD-20). Following [36, 39],

the maximum perturbations allowed are 𝜖 = 0.3 on MNIST and

Fashion-MNIST, and 𝜖 = 16

255
on CIFAR-10 and CIFAR-100 for both

threat and defense models.

6.2 Main Results
To analyze the properties of our proposed Fed_BVA framework, we

present two visualization plots on MNIST using a trained CNN

model where the bias and variance are both calculated on the train-

ing examples. In Fig. 1(a), we visualize the extracted gradients using

7
Note that EAT shares the same idea as [49] for robust federated learning.

http://yann.lecun.com/exdb/mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
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(a) Visualization (b) Bias-variance curve

Figure 1: Bias-variance analysis on MNIST with (a) visualizations
of bias, variance, bias+variance, and perturbed images, and (b) Bias-
variance curve w.r.t. the CNN model complexity

Method

IID non-IID

Clean FGSM PGD-20 Clean FGSM PGD-20

Centralized 0.991±0.000 0.689±0.000 0.182±0.000 n/a n/a n/a

FedAvg 0.989±0.001 0.669±0.009 0.267±0.014 0.980±0.002 0.491±0.067 0.158±0.074
FedAvg_AT 0.988±0.000 0.802±0.001 0.512±0.042 0.974±0.005 0.649±0.066 0.363±0.066
Fed_Bias 0.986±0.000 0.812±0.009 0.583±0.036 0.971±0.004 0.679±0.040 0.394±0.103
Fed_Variance 0.985±0.001 0.803±0.007 0.572±0.019 0.973±0.005 0.684±0.004 0.395±0.049
Fed_BVA 0.986±0.001 0.818±0.003 0.613±0.020 0.969±0.002 0.705±0.009 0.469±0.031

EAT 0.981±0.000 0.902±0.001 0.811±0.004 0.972±0.002 0.789±0.016 0.415±0.035
EAT+Fed_BVA 0.980±0.001 0.901±0.006 0.821±0.013 0.965±0.005 0.811±0.020 0.670±0.014

Table 2: Accuracy of MNIST under white-box attacks in IID and non-
IID settings

Method

IID non-IID

Clean FGSM PGD-20 Clean FGSM PGD-20

Centralized 0.882±0.000 0.229±0.000 0.009±0.000 n/a n/a n/a

FedAvg 0.877±0.001 0.300±0.021 0.036±0.016 0.804±0.013 0.193±0.036 0.017±0.003
FedAvg_AT 0.866±0.001 0.490±0.021 0.139±0.011 0.730±0.023 0.445±0.065 0.087±0.042
Fed_Bias 0.862±0.001 0.505±0.015 0.159±0.003 0.709±0.025 0.460±0.038 0.115±0.054
Fed_Variance 0.862±0.002 0.496±0.012 0.157±0.017 0.719±0.036 0.499±0.081 0.120±0.038
Fed_BVA 0.862±0.003 0.528±0.016 0.180±0.027 0.710±0.045 0.495±0.030 0.093±0.028

EAT 0.860±0.005 0.773±0.029 0.103±0.013 0.791±0.012 0.597±0.033 0.027±0.023
EAT+Fed_BVA 0.838±0.009 0.715±0.011 0.226±0.006 0.735±0.020 0.632±0.015 0.106±0.039

Table 3: Accuracy of Fashion-MNIST under white-box attacks in IID
and non-IID settings

Method

CIFAR-10 CIFAR-100

Clean FGSM PGD-20 Clean FGSM PGD-20

Centralized 0.903±0.003 0.288±0.001 0.074±0.005 0.741±0.003 0.166±0.012 0.032±0.003
FedAvg 0.890±0.002 0.225±0.022 0.062±0.008 0.730±0.003 0.161±0.009 0.035±0.006
FedAvg_AT 0.890±0.003 0.280±0.021 0.099±0.014 0.707±0.003 0.162±0.006 0.048±0.003
Fed_Bias 0.890±0.004 0.280±0.018 0.103±0.012 0.702±0.002 0.163±0.005 0.061±0.003
Fed_Variance 0.889±0.001 0.267±0.014 0.092±0.009 0.710±0.007 0.161±0.005 0.045±0.016
Fed_BVA 0.889±0.003 0.286±0.013 0.104±0.012 0.709±0.003 0.163±0.007 0.062±0.005

EAT 0.833±0.003 0.596±0.003 0.561±0.002 0.661±0.001 0.267±0.002 0.188±0.001
EAT+Fed_BVA 0.833±0.003 0.598±0.002 0.564±0.003 0.657±0.002 0.272±0.003 0.211±0.002

Table 4: Accuracy of CIFAR-10 and CIFAR-100 under white-box at-
tacks
adversarial attack from bias, variance, and bias-variance. Notice

that the gradients of bias and variance are similar but with subtle

differences in local pixel areas. However, according to Theorem 5.1,

the gradient calculation of these two are quite different: bias re-

quires the target label as input, but variance only needs the model

output and main prediction. From another perspective, we also

investigate the bias-variance magnitude relationship with varying

model complexity. As shown in Fig. 1(b), with increasing model

complexity (more convolutional filters in CNN), both bias and vari-

ance decrease. This result is different from the double-descent curve

or bell-shape variance curve claimed in [2, 43]. The reasons are

(a) Convergence (b) Performance (c) Efficiency

Figure 2: Model analysis on Fashion-MNIST (PGD-20 attack)
twofold: First, their bias-variance definitions are from the MSE re-

gression decomposition perspective, whereas our decomposition

utilizes the concept of the main prediction, and the generalization

error is decomposed from the classification perspective; Second,

their implementations only evaluate the bias and variance using

training batches on one central model and thus is different from

the definition which requires the variance to be estimated from

multiple sub-models (in our scenario, client models).

The convergence plot of all baselines is presented in Fig. 2(a).

We observe that FedAvg has the best convergence, and all robust

training will have a slightly higher loss upon convergence. This

matches the observations in [25] which states that training perfor-

mance may be sacrificed in order to provide robustness for small

capacity networks. For the model performance shown in Fig. 2(b),

we observe that the aggregation of federated learning is vulnerable

to adversarial attacks since both FedAvg and EAT have decreased
performance with an increasing number of server-client communi-

cations. Other baselines that utilized asymmetrical communications

have increasing robustness with more communication rounds al-

though only a small number of perturbed examples (𝑛𝑠 = 64) are

transmitted. We also observe that when communication rounds

reach 40, Fed_BVA starts to outperform EAT while the latter is even

more resource-demanding than Fed_BVA (shown in Fig. 2(c), where

the pie plot size represents the running time). Overall, bias-variance

based adversarial training via asymmetric communication is both

effective and efficient for robust federated learning.

For the comprehensive experiments in Table 2 and Table 3, it is

easy to verify that our proposed model outperforms all other base-

lines regardless of the source of the perturbed examples (i.e., locally

generated like EAT+Fed_BVA or asymmetrically transmitted from

the server like Fed_BVA). In this case, BV-FGSM (see Eq. (5)) is used

to generate the adversarial examples
ˆD𝑠 during model training for

robust federated learning. Compared to standard robust federated

learning FedAvg_AT, the performance of Fed_BVA against adversar-
ial attacks still increases 4% − 13% and 2% − 9% on IID and non-IID

settings respectively, although Fed_BVA is theoretically suitable for

the cases that clients have IID samples. In Table 4, we observe a

similar trend where Fed_BVA outperforms FedAvg_AT on CIFAR-10

and CIFAR-100 (with 0.2% − 10% increases) when defending differ-

ent types of adversarial examples. Compared to the strong local

adversarial training baseline EAT, we also observe a maximum 13%

accuracy increase when applying its bias-variance oriented baseline

EAT+Fed_BVA. Overall, the takeaway is that without local adversar-

ial training, using a bias-variance based robust learning framework

could outperform other baselines for defending FGSM and PGD

attacks. When local adversarial training is allowed (e.g., the client

device has powerful computation ability), using bias-variance ro-

bust learning with local adversarial training will mostly have the

best robustness.
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Loss Clean

Fed_BVA

BiasOnly VarianceOnly BVA

CE 0.588(38.13s) 0.763(47.58s) 0.759(63.46s) 0.776(63.67s)
MSE 0.601(39.67𝑠 ) 0.711(65.03𝑠 ) 0.711(162.40𝑠 ) 0.712(179.60𝑠 )

Table 5: Accuracy of training with different loss functions and run-
ning time (second/epoch)

Method

IID non-IID

FGSM PGD-10 PGD-20 FGSM PGD-10 PGD-20

FedAvg 0.588 0.620 0.205 0.147 0.525 0.089

Fed_BVA
(BV-FGSM)

0.776 0.793 0.570 0.670 0.695 0.472

Fed_BVA
(BV-PGD)

0.757 0.840 0.632 0.659 0.784 0.575

Table 6: Comparison of training with BV-PGD and BV-FGSM

Strategy

IID non-IID

FGSM PGD-10 PGD-20 FGSM PGD-10 PGD-20

S1 0.745 0.743 0.450 0.529 0.677 0.433
S2 0.743 0.731 0.436 0.513 0.680 0.432

S3 0.730 0.704 0.400 0.495 0.657 0.380

Table 7: Robust training with different strategies on MNIST

6.3 Ablation Studies
6.3.1 MSE loss v.s. CE loss. Both cross-entropy (CE) and mean

squared error (MSE) loss functions could be used for training a

neural network model. In our paper, the loss function of neural

networks determines the derivation of bias and variance terms

used for producing the adversarial examples. We experimentally

compare the CE and MSE loss functions in our framework. Table 5

reports the adversarial robustness of our federated framework w.r.t.

FGSM attack (𝜖 = 0.3) on MNIST with IID setting. It is observed that

(1) our framework with MSE has a significantly larger running time;

(2) the robustness of our framework with MSE becomes slightly

weaker, which might be induced by the weakness of MSE in training

neural networks under the classification setting.

6.3.2 BV-PGD v.s. BV-FGSM. Our bias-variance attack could be

naturally generalized to any gradient-based adversarial attack algo-

rithms when the gradients of bias 𝐵(·) and variance𝑉 (·) w.r.t. 𝑥 are

tractable to be estimated from clients’ models learned on finite train-

ing sets. Here, we empirically compare the adversarial robustness

of the proposed framework trained with bias-variance guided PGD

(BV-PGD) adversarial examples and bias-variance guided FGSM

(BV-FGSM) adversarial examples. Table 6 provides our results on

w.r.t. FGSM and PGD attacks (𝜖 = 0.3) on MNIST with IID and

non-IID settings. Compared to FedAvg, our framework Fed_BVA

with either BV-FGSM or BV-PGD could largely improve the model

robustness against adversarial noise. Furthermore, BV-PGD could

potentially improve white-box robustness on multi-step attacks,

but it is often more computationally demanding. As a comparison,

BV-FGSM is more robust against single-step attacks.

6.3.3 Alternative Training Strategies for Fed_BVA. Our Fed_BVA
framework maximizes the overall generalization error induced by

bias and variance from different clients for the adversarial examples

generation. Under this setting, the generated adversarial examples

on the server are shared with all the clients for local adversarial

training. In particular, we found that when using the CE loss, the

estimated gradients of bias and variance can be considered as the

CIFAR-10 Source (FGSM attack) Source (PGD-20 attack)

Target R V X M R V X M

FedAvg 0.707 0.688 0.689 0.793 0.611 0.623 0.597 0.787

FedAvg_AT 0.742 0.710 0.720 0.808 0.695 0.670 0.661 0.808

Fed_Bias 0.740 0.703 0.715 0.799 0.690 0.667 0.654 0.799

Fed_Variance 0.738 0.704 0.719 0.810 0.677 0.656 0.648 0.809

Fed_BVA 0.744 0.706 0.722 0.809 0.693 0.669 0.664 0.809

EAT 0.821 0.806 0.815 0.823 0.819 0.808 0.813 0.822

EAT+Fed_BVA 0.828 0.808 0.817 0.828 0.825 0.809 0.812 0.829

Table 8: CIFAR-10 accuracy towards black-box adversarial examples
on transferability between models (R: ResNet18; V: VGG11; X: Xcep-
tion; M: MobileNetV2)
average of clients’ local gradients over input 𝑥 (see Subsection 5.1).

This motivates us to consider several alternative training strategies

by generating client-specific adversarial examples on the server.

• S1: We generate the adversarial examples
ˆD𝑠 to maximize the

bias and variance from all clients’ predictions. In this case, the

generated adversarial examples on the server will be shared

with the local clients. This is the strategy used in our Fed_BVA
algorithm. It guarantees the minimization of generalization error

from the perspective of bias-variance decomposition, thus leading

to an adversarially robust federated learning model.

• S2: The bias-variance decomposition with CE loss indicates that

we generate the client-specific adversarial examples as

∇𝑥𝐵𝑘 (𝑥 ;𝑤𝑘 ) = ∇𝑥𝐿(𝑓D𝑘 (𝑥 ;𝑤𝑘 ), 𝑡)

∇𝑥𝑉𝑘 (𝑥 ;𝑤𝑘 ) =
𝐶∑︁
𝑗=1

(log𝑦 ( 𝑗 )𝑚 + 1)∇𝑥 𝑓 ( 𝑗 )D𝑘 (𝑥 ;𝑤𝑘 )

where 𝑥 ∈ D𝑠 and 𝑘 ∈ {1, ..., 𝐾}. If we using FGSM for attacking,

the adversarial example on the 𝑘th client is:

𝑥𝑘
BV−FGSM := 𝑥 + 𝜖 · sign (∇𝑥 (𝐵𝑘 (𝑥 ;𝑤𝑘 ) + 𝜆𝑉𝑘 (𝑥 ;𝑤𝑘 )))

Note that the gradient estimate of client-specific variance also

relies on the main prediction 𝑦𝑚 . But in this case, it allows every

client to have different adversarial examples
ˆD𝑠 . Intuitively, this

training strategy further decomposes the bias and variance into

individual client-specific terms.

• S3: Another training strategy is to use every local client model

to generate the adversarial examples on the server individually

as follows.

∇𝑥𝐵𝑘 (𝑥 ;𝑤𝑘 ) = ∇𝑥𝐿(𝑓D𝑘 (𝑥 ;𝑤𝑘 ), 𝑡) ∀𝑥 ∈ D𝑠 𝑘 ∈ {1, ..., 𝐾}
Similarly, we can have:

𝑥𝑘
BV−FGSM := 𝑥 + 𝜖 · sign (∇𝑥𝐵𝑘 (𝑥 ;𝑤𝑘 ))

It is a special case of S2 with 𝜆 = 0. In this case, every client will

only use its own model parameters to generate the client-specific

adversarial examples on the server.

We conduct the ablation study to compare different training strate-

gies in our Fed_BVA framework. In this case, we use 𝐾 = 10 clients

with fraction 𝐹 = 1 and local epoch 𝐸 = 5. Other hyper-parameters

and model architecture settings are the same as in our previous

experiments. Table 7 provides the performance of adversarial ro-

bustness using our Fed_BVA framework on MNIST with both IID

and non-IID settings. It is observed that Fed_BVA with S1 has the

best robustness in most cases compared to other heuristic training

strategies S2 and S3. This indicates that bias and variance provide

better direction to generate the adversarial examples for robust

training. In contrast, detecting the adversarial examples with indi-

vidual directions in S2 for each client might be sub-optimal.
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(b) PGD-20 & Additive noise

Figure 3: Adversarial and Byzantine robustness on MNIST with (a)
FGSM attack on the test set and sign-flipping attack on local model
updates, and (b) PGD-20 attack on the test set and additive noise
attack on local model updates
6.4 Against Other Attacks
6.4.1 Black-box Attacks. Using black-box attack, we test the trans-

ferability of single-step attack (i.e., FGSM [13]) and multi-step at-

tack (i.e., PGD [21]) on various federated learning baseline models.

For CIFAR-10 data set, we pretrained ResNet18 [15], VGG11 [33],

Xception [7], and MobileNetV2 [31] as the source threat models

for generating the single-step and multi-step adversarial examples.

The black-box transfer attacking results are shown in Table 8. We

observe that without any adversarial training, FedAvg will suffer a

maximum of 28% accuracy lost. For comparison, the robust feder-

ated learning model with global transmitted perturb samples (i.e.,

FedAvg_AT, Fed_Bias, Fed_Variance, Fed_BVA) will have increase
robustness with a maximum of 23% accuracy drop on best baselines.

For the computation-demanding local robust training methods (i.e.,

EAT and EAT+Fed_BVA), the maximum accuracy drop is only 3%,

respectively. Thus, it is straightforward to see that CIFAR-10 is

more vulnerable to multi-step black-box adversarial attacks, but the

local adversarial training methods could improve its robustness.

6.4.2 Byzantine Attacks. The proposed Fed_BVA is flexible to in-

corporate with Byzantine-robust aggregation variants, in order

to improve both the adversarial robustness against the corrupted

test data set and the Byzantine robustness against the corrupted

local model updates. Here we use sign-flipping attack [23] and

additive noise attack [23] to manipulate the local model updates

of 40% clients. Then we adopt the Byzantine-robust aggregation

mechanisms in our Algorithm 1. In this case, we use three popular

mechanisms, i.e., Krum [3], Median [44] and GeoMed [6], to aggre-

gate the local model updates. We report the results in Figure 3. It is

observed that Fed_BVA is robust against adversarial and Byzantine

attacks, when using Krum as our aggregation strategy.

6.5 Parameter Analysis
6.5.1 Number of shared perturbed samples 𝑛𝑠 . From Fig. 4, we see

that the accuracy of FedAvg (i.e.,𝑛𝑠 = 0) has the best accuracy as we

expected. For Fed_BVA with varying size of asymmetrical transmit-

ted perturbed samples (i.e., 𝑛𝑠 = 8, 16, 32, 64), its performance drops

slightly with increasing 𝑛𝑠 (on average drop of 0.05% per plot). As

a comparison, the robustness on the test set increases dramatically

with increasing 𝑛𝑠 (the improvement ranges from 18% to 22% under

FGSM attack and ranges from 15% to 60% under PGD-20 attack).

However, choosing large 𝑛𝑠 would have high model robustness but

also suffer from the high communication cost. In our experiments,

we choose 𝑛𝑠 = 64 for MNIST for the ideal trade-off point.

6.5.2 Momentum. We also care about the choice of options in the

SGD optimizer. Fig. 5(a) shows that the accuracy of clean training

(a) Clean training (b) Under FGSM attack (c) Under PGD-20 attack

Figure 4: Accuracy of Fed_BVA w.r.t. number of shared data 𝑛𝑠

(a) Clean training (b) Under FGSM attack (c) Under PGD-20 attack

Figure 5: Accuracy of Fed_BVA w.r.t. momentum

(a) Clean training (b) Under FGSM attack (c) Under PGD-20 attack

Figure 6: Accuracy of Fed_BVA w.r.t. local epoch
monotonically increases when the momentum is varying from 0.1

to 0.9. Interestingly, we observe from Fig. 5(b) and Fig. 5(c) that

the federated learning model is less vulnerable when momentum is

large no matter whether the adversarial attack is FGSM or PGD-20

on D𝑡𝑒𝑠𝑡 . So we choose the momentum as 0.9 for our experiments.

6.5.3 Local epochs 𝐸. Another important factor of federated learn-

ing is the number of local epochs. In Fig. 6, we see that more local

epochs in each client lead to a more accurate aggregated server

model in prediction. Its robustness against both FGSM and PGD-20

attacks on the test set D𝑡𝑒𝑠𝑡 also has the best performance when

the local epochs are large on the device. Hence, in our experiments,

if the on-device computational cost is not very high (large data

example size, deep models with many layers), we choose 𝐸 = 50.

Otherwise, we will reduce 𝐸 to a smaller number accordingly.

7 CONCLUSION
In this paper, we proposed a novel robust federated learning frame-

work, in which the loss incurred during the server’s aggregation

is dissected into a bias part and a variance part. Our approach

improves the model robustness through adversarial training by

supplying a few bias-variance perturbed samples to the clients

via asymmetrical communications. Extensive experiments have

been conducted where we evaluated its performance from various

aspects on several benchmark data sets.
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