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a b s t r a c t 

The multidimensional phonon Boltzmann Transport Equation (BTE) was solved numerically in cylindrical 

coordinates and in time domain to simulate a Frequency Domain Thermo-Reflectance (FDTR) experimen- 

tal setup. The phase lag between the pump and probe laser signals were computed for a pump laser 

modulation frequency ranging from 20 to 200 MHz. Results were obtained both with and without the 

inclusion of optical phonons, as well as with two different relaxation time-scale expressions (Holland 

versus Broido) for scattering, obtained from the literature for silicon. It was found that inclusion of op- 

tical phonons significantly improved the agreement between the measured and the computed phase lag. 

Subsequently, the thermal conductivity was extracted by fitting the Fourier heat conduction equation 

results—also solved numerically in time domain—to the measured and computed (using BTE) phase lag 

values. While both relaxation time-scales exhibited thermal conductivity suppression, a clear superior- 

ity of one time-scale expression over the other could not be established. With the Broido time-scale, the 

thermal conductivity extracted from BTE calculations overpredicted the value extracted from experiments 

regardless of whether optical phonons were included in the calculations. In contrast, with the Holland 

time-scale, the extracted thermal conductivity value overpredicted the value extracted from experiments 

when optical phonons were included, but underpredicted the value when optical phonons were excluded. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

A commonly used noncontact optical pump probe technique for 

he study of thermal transport at small time and length scales, 

ased on thermo-reflectance, is the Frequency Domain Thermo- 

eflectance (FDTR) technique. By “small,” it is meant scales compa- 

able to or smaller than the mean free paths of the energy-carrying 

honons in a semiconductor material. In an FDTR experiment, the 

ample is covered by a thin metallic layer called the transducer . 

t is heated using a modulated continuous wave pump laser beam 

esulting in surface temperature (reflectivity) oscillations. These os- 

illations are then monitored using a probe laser. The lag in phase 

etween the pump and probe laser signals is recorded, and a ther- 

al transport model is needed to establish the causal connection 

etween the two signals and extract the thermal conductivity of 

he substrate from the measured phase lag. 
∗ Corresponding author. 

E-mail address: mazumder.2@osu.edu (S. Mazumder) . 
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The solution of the Fourier heat conduction equation in fre- 

uency domain is the most common and earliest model used for 

his purpose. Brought to the limelight by Cahill [1] , this approach 

as been used by many researchers since then [ 2 , 3 ]. Multiple lay-

rs, resulting from the use of a transducer, is treated using the 

eldman algorithm [4] . Unfortunately, these closed-form analyti- 

al models are unable to distinguish between changes made to 

he pump laser spot size (diameter) versus the probe laser spot 

ize [5] , since only the effective radius appears in the solution. The 

roblem may be overcome by resorting to numerical solution of 

he Fourier heat conduction equation [5] . 

The thermal conductivity extracted from FDTR experiments us- 

ng the Fourier heat conduction equation has been found to change 

hen the modulation frequency of the pump laser is changed [ 1–

 , 6 ]. The Fourier law assumes that all phonons travel with infinite 

elocity and engage in infinite many scattering events regardless of 

he distance traversed. The dependence of thermal conductivity on 

he modulation frequency is attributed to the fact that when the 

aser modulation frequency is high, the thermal penetration depth, 

hich is inversely proportional to the square root of the modula- 

ion frequency, is small, and can often be smaller than the mean 

https://doi.org/10.1016/j.ijheatmasstransfer.2023.123871
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2023.123871&domain=pdf
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Nomenclature 

A area [m 
2 ] 

c specific heat capacity per unit volume [J m 
−3 K −1 ] 

D density of states per unit volume [m 
−3 ] 

f number density function 

f 0 equilibrium number density function 

G ω,p spectral directionally integrated intensity 

[Wm 
−2 rad −1 s] 

G C contact conductance [W m 
−2 K −1 ] 

h̄ Dirac constant = 1.0546 6 × 10 −34 [m 
2 kg.s −1 ] 

I ω,p spectral directional phonon intensity 

[Wm 
−2 sr −1 rad −1 s] 

I 0 ,ω,p equilibrium phonon intensity [Wm 
−2 sr −1 rad −1 s] 

k B Boltzmann constant = 1.381 × 10 −23 [m 
2 kg.s −2 K −1 ] 

k T thermal conductivity of transducer [W m 
−1 K −1 ] 

ˆ n unit surface normal vector 

N band total number of spectral intervals (or bands) 

N dir number of solid angles (or directions) 

p phonon polarization index 

q heat flux vector [Wm 
−2 ] 

˙ Q heat transfer rate [W] 

r radial coordinate or radius [m] 

r position vector [m] 

ˆ s unit direction vector 

t time [s] 

T absolute temperature [K] 

u internal energy [J m 
−3 ] 

V volume of cell [m 
3 ] 

z axial coordinate or thickness [m] 

Greek 

ρT density of transducer [kg m 
−3 ] 

θ polar angle [radians] 

υω,p phonon group velocity vector [m s −1 ] 

τω,p spectral relaxation time scale [s] 

ω angular frequency [rad s −1 ] 

ω L modulation frequency of pump laser [Hz] 

� solid angle (sr) 

ψ azimuthal angle [rad] 

ree path of some of the energy-carrying phonons. As a result, 

ome phonons hardly scatter. This results in so-called ballistic- 

iffusive transport or quasi-ballistic transport. In this regime of 

ransport, the effective thermal conductivity has been found to be 

maller than the bulk value—a phenomenon known as thermal con- 

uctivity suppression [6–8] . 

Various enhancements to Fourier law-based models have been 

roposed in an effort to capture the ballistic effects and predict 

he thermal conductivity suppression for different modulation fre- 

uencies. One class of these models [9] makes use of the hyper- 

olic heat conduction equation which accounts for finite velocity 

f the phonons by introducing a relaxation time as a parameter 

10] . However, all phonons are assumed to have the same veloc- 

ty irrespective of their type and frequency. Two parameter mod- 

ls [11] have been used to treat the diffuse and ballistic phonons 

ifferently by introducing an additional term in the Fourier heat 

onduction equation that involves the characteristic ballistic heat 

ransport length as an additional parameter. Ramu and Bowers 

12] proposed a two-band model in which a cut-off frequency was 

sed to classify the phonons into ballistic and diffusive phonons. 

he ballistic phonons were then treated by adding a higher or- 

er correction term to the Fourier law that was derived from 

he phonon BTE. In a similar ballistic-diffusive model proposed 

y Chen [13] , and later expanded to complex three-dimensional 
2 
eometry by Mittal and Mazumder [ 14 , 15 ], the phonon intensity 

as split into a diffusive component and a ballistic component. 

ore recently, a model that introduces a hydrodynamic term in 

he Fourier heat conduction equation—analogous to the advective 

erm in the Navier-Stokes equation—has been proposed to capture 

allistic effects [16] . Other studies have attempted to reconcile the 

oor agreement (lack of fit) of Fourier heat conduction equation- 

ased predictions to measured phase lag by using anisotropic ther- 

al conductivity (different thermal conductivity value in through- 

nd in-plane directions) [ 17 , 18 ]. 

The development of the aforementioned approximate models 

as been partly prompted by the fact that the full-fledged phonon 

TE is very challenging and time consuming to solve [19] , although 

romising new algorithmic developments have been made on this 

ront recently [ 20 , 21 ]. Peraud and Hadjiconstantinou [22] per- 

ormed Monte Carlo simulations of phonon transport in a multi- 

imensional optical pump-probe setup by using an energy-based 

eviational formulation. Only a single laser pulse was considered. 

his code was later used by Ding et al. [23] to simulate a sin-

le laser pulse of a TDTR experiment to demonstrate in-plane 

nd through-plane thermal conductivity suppression. Regner et al. 

24] solved the one-dimensional (1D) BTE in frequency domain 

o extract the thermal conductivity accumulation and suppres- 

ion functions. However, the influence of multidimensional ther- 

al transport can only be captured by solving the multidimen- 

ional BTE. Ali et al. [25] solved the full phonon BTE for TDTR 

xperiments in a 2D planar setup and the model demonstrated 

hermal conductivity suppression and its dependence on the mod- 

lation frequency of the pump laser without the use of any ad- 

itional tuning parameters. In a recent preliminary study, Saurav 

nd Mazumder [26] demonstrated solution of the BTE in a 2D ax- 

symmetric domain (as opposed to 2D planar [25] ) for simulation 

f an FDTR experiment. The solution was advanced in time to a 

uasi-periodic state, enabling reliable extraction of the phase lag. 

his is in contrast with previous studies [ 22 , 23 ] that only simu-

ated a single laser pulse. Although preliminary, this demonstration 

aid the foundation for the present study wherein the BTE solver 

as further enhanced to include optical phonons, and the ther- 

al conductivity was subsequently extracted. To the best of the 

uthors’ knowledge, this study represents the first of its kind in 

hich thermal conductivity has been extracted from multidimen- 

ional BTE simulation of an FDTR experimental setup. 

. Theory 

.1. The phonon Boltzmann Transport Equation (BTE) 

The BTE is appropriate for modeling phonon transport in semi- 

onductors, as phonons follow Bose-Einstein statistics and interact 

ith each other via scattering events. The phonon BTE, under the 

ingle relaxation time approximation can be written as [ 9 , 19 ] 

∂ f 

∂t 
+ υ �∇ f = 

f 0 − f 

τ
, (1) 

here f is the distribution function of an ensemble of phonons, f 0 
s the equilibrium number density function, τ is the scattering time 

cale and υis the phonon group velocity. In general, f = f (t, r , K ) ,

here r denotes the position vector and K denotes the wave- 

ector. Here, it is assumed that the wave-vector space is isotropic. 

ence, it can be expressed conveniently [9] using a unit direction 

ector, ˆ s , and a frequency, ω. Thus, the distribution function, f , for 

ach polarization p , is a function of seven independent variables, 

.e., f = f (t, r , ̂  s , ω, p) , where the unit direction vector, ˆ s , may be

xpressed in terms of the azimuthal angle, ψ , and polar angle, θ , 
s [27] 

  = sin θ cos ψ ̂
 i + sin θ sin ψ ̂

 j + cos θ ˆ k . (2) 



S. Saurav and S. Mazumder International Journal of Heat and Mass Transfer 204 (2023) 123871 

I

e

 

g

i

t

t

a

E

 

l

m

I
I

w  

r

p

F

f

a

n

d

l

f

a

b

e

g

a  

v

t

2

c

q  

w

r

a

p  

q

t

m

−

w

G

s  

c

f

Fig. 1. Polar coordinate system used for angular discretization in the FAM. 
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f the Cartesian coordinate system is used to describe space, for 

xample, one may write the functional dependence of f as f = 

f (t, x, y, z, θ, ψ, ω, p) . In other words, for a three-dimensional (3D)

eometry, f is a function of 8 independent variables. Since polar- 

zations are discrete, it is customary to think of f as being a func- 

ion of 7 independent variables, with the implicit understanding 

hat it is different for different polarizations. The group velocity is 

lso dependent on direction: υ = υ( ̂ s , ω, p) . The equilibrium Bose- 

instein distribution, on the other hand, is direction independent: 

f 0 = f 0 (ω, T ) , as is the relaxation time-scale: τ = τ (ω, T , p) . Fol-

owing the seminal work of Majumdar [28] , a phonon intensity 

ay be defined in terms of the distribution function: 

 ω,p = I(t, r , ̂  s , ω, p) = | υω,p | ̄h ω fD (ω , p) / 4 π
 0 ,ω,p = I 0 (t, r , ω, p) = | υω,p | ̄h ω f 0 D (ω , p) / 4 π

, (3) 

here D (ω, p) is the density of states, and I ω,p is the spectral di-

ectional phonon intensity, while I 0 ,ω,p is the equilibrium spectral 

honon intensity. Substitution of Eq. (3) into Eq. (1) yields [28] 

∂ I ω,p 

∂t 
+ υω,p �∇I ω,p = 

I 0 ,ω,p − I ω,p 

τω,p 
. (4) 

or any given frequency and polarization, the intensity, I ω,p , is a 

unction of time, 3 space variables (in 3D), and 2 directional vari- 

bles, making Eq. (4) a six-dimensional equation. Furthermore, it 

eeds to be solved for all frequency and polarizations in order to 

etermine the heat flux, as is discussed in the sub-section to fol- 

ow. 

Solution of the BTE [Eq. (4)] necessitates boundary conditions 

or the intensity. Two types of boundary conditions are gener- 

lly used: (1) thermalizing, and (2) reflective. At a thermalizing 

oundary, phonons are emitted from it based on the equilibrium 

nergy distribution and any phonon that strikes it immediately 

ets absorbed. The boundary condition is mathematically written 

s I ω,p (t, r w , ̂  s o , ω, p) = I 0 ,ω,p (t, r w , ω, p) , where r w is the position

ector of the boundary or wall, and ˆ s o is the outgoing direction for 

he intensity. 

.2. Heat flux and energy conservation (first law) 

Once the BTE [Eq. (4)] has been solved, the heat flux may be 

alculated from the phonon intensity using the relationship [19] 

 (t, r ) = 

∑ 

p 

ω max ,p ∫ 
ω min ,p 

∫ 
4 π

I ω,p (t, r , ̂  s , ω, p) ̂ s d�dω = 

∑ 

p 

ω max ,p ∫ 
ω min ,p 

q ω,p (t, r ) dω

(5) 

here the integrals are over all solid angles � and the frequency 

ange of each polarization; ω max ,p and ω min ,p are the maximum 

nd minimum frequencies, respectively, corresponding to a given 

olarization, p . In Eq. (5) , q ω,p denotes the spectral heat flux while

 denotes the total heat flux. Substitution of Eqs. (4) and (5) into 

he energy conservation equation (First Law), followed by some 

anipulation, yields [19] : 

∂ 
∂t 

(∑ 

p 

ω max ,p ∫ 
ω min ,p 

h̄ ω D (ω ,p) 
exp [ ̄h ω/k B T ] −1 

dω 

)
= 

∑ 

p 

ω max ,p ∫ 
ω min ,p 

1 
| υω,p | 

[ 
1 

τω,p 

(
| υω,p | ̄h ω D (ω ,p) 
exp [ ̄h ω/k B T ] −1 

− G ω,p 

)
− ∂G ω,p 

∂t 

] 
dω 

(6) 

here 

 ω,p = 

∫ 
4 π

I ω,p d�. (7) 

Eq. (6) is a nonlinear equation that may be solved to obtain the 

o-called pseudo-temperature [ 19 , 29 ], T , at any location within the

omputational domain and any instant of time. In the section to 

ollow, numerical techniques for solution of the BTE are discussed. 
3

. Numerical procedure 

The present work uses the finite angle method (FAM) [ 19 , 27 ]

or solving the BTE [Eq. (4)] . It is briefly discussed next, along with

reatment of the transducer, which is a metallic film that covers 

he substrate. 

.1. The finite angle method (FAM) 

The FAM is a variant of the Discrete Ordinates Method [27] . 

n the FAM, the entire solid angle space is first split into a set 

f nonoverlapping smaller solid angles. These smaller solid angles 

ay be based on equal subdivisions in θ and ψ , as shown in Fig. 1 .

he BTE [Eq. (4)] is first integrated over a volume [finite volume 

ethod in space on a structured mesh with cell index ( j,k )], fol- 

owed by finite solid angles to yield [ 19 , 27 ]: 

∂ I i,ω,p 

∂t 

∣∣∣∣
( j,k ) 

V ( j,k ) �i + | υω,p | 
N f,k ∑ 

f=1 

I i,ω,p, f ( j,k ) 

(
S i · ˆ n f 

)
A f ( j,k ) 

= 

1 

τω,p, ( j,k ) 

(
I o,ω,p, ( j,k ) − I i,ω,p, ( j,k ) 

)
V ( j,k ) �i ∀ i = 1 , 2 , ..., N dir (8) 

here N dir is the total number of discrete directions or finite solid 

ngles, V ( j,k ) is the volume of the ( j,k )-th cell, A f ( j,k ) is the area of

he f -th face of the ( j,k )-th cell, and 

i = 

∫ 

�i 

� = 

θi +
θi / 2 ∫ 
θi −
θi / 2 

ψ i +
ψ i / 2 ∫ 
ψ i −
ψ i / 2 

sin θ dθ dψ 

= 2 sin θi sin 

(

ψ i 

2 

)

ψ i (9) 

nd 

 i = cos ψ i sin 

(

ψ i 

2 

)
[
θi − cos (2 θi ) sin (
θi )] ̂ i 

+ sin ψ i sin 

(

ψ i 

2 

)
[
θi − cos (2 θi ) sin (
θi )] ̂ j 

+ 

(

ψ i 

2 

)
sin (2 θi ) sin (
θi ) ̂  k (10) 
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Fig. 2. Schematic representation of geometric quantities used for finite volume dis- 

cretization of the BTE. 
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c

The subscript i for the intensity now denotes an intensity along 

 line of sight passing through the center of the solid angle, i.e., in

he direction ˆ s i (see Fig. 1 ). Finally, the face intensity in Eq. (8) is

xpressed in terms of cell-center intensities using the first-order 

pwind or step scheme [27] : 

 i,ω,p, f ( j,k ) = 

{
I i,ω,p, j,k if ˆ s i � ˆ n f > 0 
I i,ω,p,N( f ) if ̂ s i � ˆ n f < 0 

, (11) 

here N( f ) denotes the neighboring cell next to face f , as shown 

n Fig. 2 . 

As a final note, in cylindrical coordinates, the volume appear- 

ng in Eq. (8) may be determined using V ( j,k ) = 

z t( j,k ) ∫ 
z b( j,k ) 

r o( j,k ) ∫ 
r i ( j,k ) 

2 π rdr dz, 

here r i ( j,k ) and r o( j,k ) are inner and outer radii, respectively, of 

he ( j,k )-th cell, while z b( j,k ) and z t( j,k ) are bottom and top z -

oordinates, respectively, of the same cell, as shown on Figs. 3 and 

 . For any horizontal face, the area is given by A f ( j,k ) = π(r 2 
o( j,k ) 

−
 
2 
i ( j,k ) 

) , while for any vertical face, the area is given by A f ( j,k ) =
 π r f (z t( j,k ) − z b( j,k ) ) . 

.2. Treatment of the transducer 

The transducer is metallic. In this study, heat conduction in the 

ransducer is treated using the Fourier law. Furthermore, since the 

ransducer is very thin, it is assumed that there is no tempera- 

ure variation within the transducer in the z direction ( Fig. 3 ). The

nly variation is in the r direction. With this premise, the compu- 

ational domain may be discretized using a structured mesh in the 

-z plane, as shown in Fig. 4 . 

The governing equation for heat transfer in the transducer may 

e derived from an energy balance, and is written as 

T c T 
∂T T 
∂t 

= 

k T 
r 

∂ 

∂r 

(
r 
∂T T 
∂r 

)
+ 

( q 
′′ 
t − q 

′′ 
b ) 

z T 
(12) 

here ρT , c T , k T , and z T are the density, specific heat capacity, 

hermal conductivity, and thickness of the transducer, respectively. 

he temperature of the transducer is denoted by T T . The heat 

uxes at the top and bottom surfaces of the transducer are de- 

oted by q 
′′ 
t and q 

′′ 
b , respectively. The heat flux on the top surface 

s the energy supplied by the pump laser, and is a known quantity, 

ritten as 

 

′′ 
t = q 

′′ 
L (r)[1 + sin ω L t] (13) 
4 
here q 
′′ 
L (r) is the radially varying (such as Gaussian) laser flux, 

nd ω L is the modulation frequency of the pump laser. The heat 

ux on the bottom surface of the transducer is not a known quan- 

ity. However, it can be related to the substrate through the rela- 

ionship 

 

′′ 
b = G C (T T − T top ) (14) 

here T top is the temperature on the top of the substrate surface, 

nd G C is the contact conductance between the transducer and 

he substrate. Although T top is not directly known, it can be de- 

ived from the solution (of temperature) in the substrate, which in 

urn, requires solution of the BTE. Thus, coupling the transducer to 

he substrate requires a self-consistent procedure. This procedure 

s described in the section to follow. 

As a final step, applying the finite-volume procedure [30] for 

iscretization of Eq. (12) , along with explicit (forward Euler) time 

iscretization, we obtain 

ρT c T z T 
2 r j 
r j 


t 

[
T T, j − T old T, j 

]
= 2 q 

′′ 
t, j r j 
r j − 2 q 

′′ 
b, j r j 
r j 

−
[
k T z T (2 r j + 
r j ) 


r j + 
r j+1 

]
T old T, j+1 −

[
k T z T (2 r j − 
r j ) 


r j + 
r j−1 

]
T old T, j−1 

−
[
k T z T (2 r j + 
r j ) 


r j + 
r j+1 

+ 

k T z T (2 r j − 
r j ) 


r j + 
r j−1 

]
T old T, j (15) 

here the superscript “old” represents values at the previous time- 

tep. 

.3. Solution algorithm 

Determination of the (pseudo-)temperature and heat flux in an 

DTR setup using the explicit (or forward Euler) time marching 

rocedure requires the following steps: 

1. The temperature of the entire solution (computational) domain 

is first initialized. This includes nonisothermal boundaries, such 

as the transducer top. 

2. The BTE [Eq. (4)] is marched forward explicitly by one time step 

to determine the spectral intensity, I ω,p . This intensity is then 

post-processed to compute the incident phonon intensity, G ω,p , 

using Eq. (7) . Likewise, Eq. (5) may be used to compute the heat 

flux at locations of interest, e.g., at boundary surfaces. 

3. The computed value of G ω,p is then substituted into Eq. (6) and 

the resulting equation is solved using a nonlinear equation 

solver to determine the pseudo-temperature at any given loca- 

tion in space and instant of time. 

4. The intensities obtained from the solution of the BTE can also 

be used to determine the heat flux at the top surface of the 

substrate using Eq. (5) . 

5. The heat flux at the top surface of the substrate is equal to the 

heat flux at the bottom surface of the transducer, q 
′′ 
b, j . Once 

this is known, Eq. (15) can be marched forward in time. Solu- 

tion of Eq. (15) yields the transducer temperature. 

6. With the heat flux and transducer temperature both being 

known, the temperature on the top of the substrate can now 

be computed using Eq. (14) . This new temperature replaces the 

initial condition in Step 1. 

7. Steps 2–6 are repeated, i.e., the solution is marched forward in 

time. 

. Results and discussion 

For the purposes of this study, the experimental data reported 

y Regner et al. [2] was used for comparison. The substrate in this 

xperiment is a silicon block that is 525 μm thick, and the radial 

lateral) extent of substrate is not known. Several preliminary cal- 

ulations were first conducted to estimate the thermal penetration 
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Fig. 3. Two-dimensional axisymmetric representation of an FDTR experimental setup. 

Fig. 4. Structured mesh in the r-z plane used to discretize the substrate and the 

transducer. 
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Table 1 

Thermophysical properties of the various materials used in the calculations. 

Silicon 

(bulk) 

Transducer 

Gold Chromium Effective 

Density (kg/m 
3 ) 2329 19,320 7140 18,290.8 

Specific heat capacity (J/kg/K) 702 129 450 155.7 

Thermal conductivity (W/m/K) 148 310 93.9 266.6 
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t

epth (which indirectly affects the computational domain size) for 

he full range of modulation frequencies, and the grid density nec- 

ssary to adequately resolve the heat wave. Following this study, 

 computational domain with z S = 100 μm and r S = 100 μm was

eemed adequate. Isothermal boundary conditions (300 K) were 

pplied to the side and bottom surfaces of the substrate, while an 

diabatic boundary condition was applied to the top surface of the 

ransducer beyond the laser spot. In a previous study [5] , Newton 

ooling boundary conditions, with heat transfer coefficients consis- 

ent with natural convection, were used for all of these boundary 

onditions, and it was found that the results did not change com- 

ared to the boundary conditions used here. The transducer is a 

ilayer transducer with 55 nm of gold and 5 nm of chromium, re- 

ulting in z T = 60 nm. The thermophysical properties of gold and 

hromium that were used for calculations are shown in Table 1 . 

ased on the thicknesses of the gold and chromium layers, effec- 

ive values of the properties of the transducer were estimated and 

sed. These are also shown in Table 1 . 

For numerical calculations, a 120 × 120 nonuniform mesh with 

 stretching factor not exceeding 1.05 was used, as shown schemat- 

cally in Fig. 4 . The minimum grid size used in either direction is 
5

0 nm. The modulation frequency, which is an input parameter, 

as varied between 20 MHz and 200 MHz, with 8 different fre- 

uencies. Each sinusoidal cycle of the laser was split into 50 0 0 

ime-steps, which was deemed appropriate after a time-step in- 

ependence study. This implies that a time-step size of 1 ps was 

sed. This time-step size also obeys the stability criterion of the 

xplicit method being used here. Furthermore, it is small enough 

o resolve the scattering events. The nominal value of the inter- 

acial (between the substrate and the transducer) contact con- 

uctance, G C , was taken to be 200 MW/m 
2 /K, as suggested by 

ahill [1] , although for a different material pair. The pump and 

robe laser 1/ e 2 radii are inputs in the model. Here, r pump = 4 . 1 μm

nd r probe = 2 . 8 μm were used. A Gaussian laser flux profile (in r ) 

as used for all calculations. The frequency space was discretized, 

s shown in Fig. 5 , with N TA = 14 , N LA = 24 , and N T O = N LO = 1 .

he decision to use 1 band for each optical phonon branch was 

rompted by the fact that the frequency range of the optical 

honons in silicon is only about 20% that of the total range ( Fig. 5 ).

urthermore, previous studies [ 31 , 32 ] suggest that 1 band is suffi- 

ient to resolve each optical phonon type. The spectral discretiza- 

ion of the frequency space for acoustic phonons is also based on 

revious studies [ 25 , 33 ] and a recent study [34] that concludes 

hat ∼60 bands are needed to capture dispersion in most mate- 

ials, including compound semiconductors. The angular space was 

iscretized using 4 azimuthal angles and 20 polar angles, resulting 

n a total of 80 finite solid angles or directions. 

Scattering of phonons has been treated using a variety of ap- 

roaches ranging all the way from scattering time-scales derived 

rom ab initio calculations with full treatment of the anisotropic 

rillouin zone [35–37] to simplified parameterized single-time re- 

axation time-scale expressions. Here, the latter approach is used 

n keeping with the assumption of an isotropic wave-vector space 

see Section 2.1 ) and also because these parameterized scattering 

ime-scale expressions have been routinely used in engineering 
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Fig. 5. Dispersion relation of silicon from [29] ; discretization of the frequency space 

is also shown. 
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Fig. 6. Spectral mean free path of optical phonons, obtained from Henry and Chen 

[33] , along with least-square curve-fits for the same data. LO = Longitudinal Opti- 

cal; TO = Transverse Optical. 
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alculations [ 25 , 29 , 32 , 33 , 38 , 39 ]. For the scattering (or relaxation)

ime-scales of acoustic phonons, two different models were used 

n this study: 

Broido and co-workers [40] : 

−1 
N,p = A N p ω 

2 T [1 − exp ( −3 T / θD ) ] (16a) 

−1 
U,p = A U p ω 

4 T [1 − exp ( −3 T / θD ) ] (16b) 

here the subscripts N and U stand for Normal and Umklapp pro- 

esses, respectively, and the subscript p stands for the polariza- 

ion of the phonon, i.e ., either longitudinal acoustic (LA) or trans- 

erse acoustic (TA). The constants in Eq. (16) are as follows: A N 
LA 

= 

 . 10 × 10 −20 s.rad −2 K −1 , A N 
TA 

= 10 . 9 × 10 −20 s.rad −2 K −1 , A U 
LA 

= 9 . 51 ×
0 −47 s 3 .rad −4 K −1 , and A U 

TA 
= 37 . 8 × 10 −47 s 3 .rad −4 K −1 . It is worth

oting that although this model is parameterized (primarily, to al- 

ow convenient use), it was derived from first principles [40] . 

Holland [41] : 

−1 = B L ω 
2 T 3 ( Norm al and Umkl app , LA ) , (17a) 

−1 = B T N ωT 4 ( Normal, T A ) , (17b) 

−1 = 

{
0 if ω < ω 1 / 2 

B TU ω 
2 sinh ( � ω/k B T ) if ω ≥ ω 1 / 2 

( Umklapp , TA ) , 

(17c) 

here the constants in Eq. (17) are as follows: ω 1 / 2 = 2 . 418 × 10 13 

ad/s, B L = 2 × 10 −24 K −3 rad −2 s, B T N = 9 . 3 × 10 −13 K −4 rad −1 , and

 T U = 5 . 5 × 10 −18 rad −2 s. 

Optical phonons were also considered in this study. Although 

t is generally believed that optical phonons do not contribute sig- 

ificantly to thermal transport in silicon except at high tempera- 

ure [32] because of their low group velocities, they do contribute 

ignificantly to storage of energy. Hence, they have the ability to 

ffect the thermal diffusivity and, thereby, the phase lag. To high- 

ight this point, for a crystalline material, the internal energy and 

he specific heat capacity at constant volume, which is the deriva- 

ive of internal energy with respect to temperature, are given by 

19] 

 = 

∑ 

p 

ω max ,p ∫ 
ω min ,p 

h̄ ω D (ω , p) 

exp [ ̄h ω/k B T ] − 1 
dω (18a) 
6 
 = 

du 

dT 
= 

h̄ 
2 

k B T 2 

∑ 

p 

ω max ,p ∫ 
ω min ,p 

ω 
2 D (ω, p) exp [ ̄h ω/k B T ] 

( exp [ ̄h ω/k B T ] − 1 ) 
2 

dω (18b) 

q. (18b) , when used in conjunction with the dispersion relations 

hown in Fig. 5 to compute the specific heat capacity of silicon 

t 300 K, yields values of 325.4 J/kg/K and 625.4 J/kg/K without 

nd with optical phonons, respectively. In other words, the abil- 

ty to store heat by the material increases almost by a factor of 

wo when optical phonons are included. This is consistent with the 

otion that optical phonons often serve as “reservoirs” of energy 

 9 , 31 ]. The final point to note in this regard is that the computed

alue of the specific heat capacity with optical phonons, namely 

25.4 J/kg/K is much closer to the reported bulk value of 702 J/kg/K 

t 300 K. 

Limited data is available on the relaxation time-scale for optical 

honon scattering in silicon. In this study, the data published by 

enry and Chen [42] were used. Fig. 6 shows the spectral mean 

ree path data along with least-square curve-fits that were used 

o represent that scattered data in the present computations. The 

urve-fit expressions are as follows: 

LO = A LO ω 
2 + B LO ω + C LO (19a) 

T O = A T O exp (−B T O ω) (19b) 

here � is the mean free path in meters, while ω is the frequency 

n rad/s. The constants in Eq. (19) are as follows: A LO = 4 . 065 ×
0 −35 , B LO = −1 . 039 × 10 −20 , C LO = 6 . 641 × 10 −7 , A T O = 0 . 1254 , and

 T O = 1 . 51 × 10 −13 . The relaxation time-scale for optical phonon 

cattering was computed using τ = �/ υ. The dispersion relation- 
hips for silicon, shown in Fig. 5 , adopted from Pop [31] , were

sed to compute the phonon group velocities, υ, for all frequencies 
nd polarizations. As stated earlier, it is assumed that the wave- 

ector space is isotropic and, therefore, the dispersion relationship 

n only one lattice direction is necessary. Once the relaxation time- 

cales of the various phonons were computed, the Mathiessen rule 

9] was used to compute the overall relaxation time-scale for scat- 

ering. 

To bring to light the difficulty of BTE calculations for the 

roblem at hand, a rough estimate is helpful. Since 40 bands 



S. Saurav and S. Mazumder International Journal of Heat and Mass Transfer 204 (2023) 123871 

a

t

1

p  

u

r  

c

i

(

m

t

t

p

p

i

i

i

l

s

m

s

a

f

t

t

w

t

i  

t

t

s

Fig. 7. Convergence of phase lag using two different approaches as the solution 

approaches quasi-periodic state. 
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nd 80 angles are used, the calculation essentially boils down to 

ime-marching 3200 partial differential equations on a mesh with 

4,400 cells. For the 200 MHz modulation frequency, the time 

eriod for each cycle is 5 ns. Since a time-step size of 1 ps is

sed, this means that the solution has to be advanced through 

oughly 25,0 0 0 time steps (5 cycles with 50 0 0 time steps per cy-

le; see next paragraph for reasoning) before quasi-periodic state 

s reached. Using band-based parallelization over 40 processors 

same as the number of bands), the calculations require approxi- 

ately 7.5 h. However, for the 20 MHz modulation frequency, since 

he stability criterion of the explicit method dictates that the same 

ime step size of 1 ps is to be used (Note: stability criterion de- 

ends on phonon speed and grid size, both of which are inde- 

endent of modulation frequency), the calculation requires approx- 

mately 75 h. To keep computational times tractable, and also not- 

ng that the quasi-ballistic nature of phonon transport is primar- 

ly manifested at higher modulation frequencies, calculations for 

ower frequencies were not undertaken. An implicit time-marching 

cheme was also explored but was found to be computationally 

ore expensive. Furthermore, it was found that using larger time- 

tep size (which is allowable in implicit time-marching methods 

nd is considered an advantage of such a method) negatively af- 

ected the accuracy of the computed phase. 

For each simulation, the solution was advanced far enough in 

ime such that the solution became quasi-periodic. The tempera- 

ure of the transducer, averaged over the probe radius (or spot), 

as compared against the sinusoidal pump laser flux pulse, and 

he phase lag was computed. This was done in two ways: (1) us- 

ng the time lag from peak to peak, and (2) using the time lag from

rough to trough. Fig. 7 shows how the phase lag computed with 

hese two approaches converge to a unique value as quasi-periodic 

tate is approached. It also clearly demonstrates that the phase lag 
ig. 8. Temporal evolution of the nondimensional temperature distribution for a modulat

TE with Holland time-scales, and (c) using the Fourier heat conduction equation with k 

hown. All dimensions are in μm. 

7 
onverges to a unique value after about 5 pump laser cycles. A few 

ases were run for additional cycles but did not affect the com- 

uted phase lag. 

Fig. 8 shows the temporal evolution of the nondimensional 

emperature [ = (T − 300) / (T max − 300) ] distribution for a modula- 

ion frequency of 20 MHz with the two different relaxation time- 
ion frequency of 20 MHz: (a) using the BTE with Broido time-scales, (b) using the 

= 148 W/m/K. For clarity of figures, only a portion of the computational domain is 
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Fig. 9. Comparison of phase lag computed using the phonon BTE and experimen- 

tally measured values [2] , both shown with symbols. The lines represent best fits 

to the data (symbols) using the Fourier heat conduction equation. 
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Table 2 

Thermal conductivity of silicon (in W/m/K) extracted from BTE calculations and 

experimental data. 

Without optical 

phonons 

With optical 

phonons 

Experiment [2] 83 

BTE with Broido time-scale [30] 98 124 

BTE with Holland time-scale [31] 65 106 
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cale models for acoustic phonons and, also, with and without op- 

ical phonons. It appears that inclusion of optical phonons slows 

own the thermal front. As discussed earlier, optical phonons pri- 

arily contribute to storage of energy rather than enhancing trans- 

ort. This results in reduced thermal diffusivity and slower spread 

f the thermal front. Comparison of Fig. 8 (a) and (b) reveals that 

he use of the two different relaxation time-scale models for the 

coustic phonons do not appear to significantly affect the re- 

ults, at least qualitatively. Fig. 8 (c), which was generated using 

he Fourier heat conduction equation with a thermal conductiv- 

ty of 148 W/m/K, i.e., the bulk thermal conductivity of silicon 

t 300 K, shows a heat wave that is far more isotropic (semi- 

ircular) compared to the ones predicted by the BTE. Perhaps, this 

s an indication that the actual transport process, which is pre- 

umably better modeled by the BTE, is somewhat anisotropic. This 

nding appears to lend credibility to past hypotheses [ 17 , 18 ] of

nisotropic transport, although this is not the focus of the present 

tudy and further investigations are warranted to confirm this 

ypothesis. 

Fig. 9 shows the phase lag computed from the BTE results us- 

ng both time-scale models as well as with and without optical 

honons. Experimentally measured values are shown on the same 

lot for comparison. When optical phonons are included, both the 

roido and the Holland time-scales appear to match experimen- 

ally measured values better, although at low frequencies the phase 

ag is underpredicted while at high frequencies, the phase lag is 

verpredicted by both models. Also, when optical phonons are in- 

luded, the difference between the two models appear to become 

maller. The role of optical phonons on thermal transport in sil- 

con at steady state has already been studied [32] . It was found 

hat they contribute about 5–10% to thermal transport at room 

emperature at steady state. However, it is worth noting that FDTR 

xperiments are transient. Hence, how optical phonons alter ther- 

al storage becomes equally important. As pointed out earlier in 

his section, optical phonons significantly alter the specific heat ca- 

acity. Consequently, they significantly alter the phase lag. Overall, 

he discrepancy between computed and measured phase lag may 

e attributed to several assumptions in the current model. First, it 

s the assumed that the interface conductance between the trans- 

ucer and the silicon sample is fixed and a value of 200 MW/m 
2 /K
8

as used. As stated earlier, this value is for a different material 

air [1] and was used here for lack of better information. Secondly, 

t is assumed that the wave-vector space is isotropic and three- 

honon scattering is adequately represented by the parameter- 

zed single-time relaxation time-scale expressions employed in this 

tudy. 

As a final step, the Fourier heat equation was solved numer- 

cally in time domain following the procedure in [5] using the 

xact same settings (grid, time step, boundary conditions etc.) 

s that for the BTE code. The thermal conductivity, which ap- 

ears as an input to the Fourier heat equation was adjusted un- 

il the best fit (based on minimization of the least-square er- 

or) was obtained to each of the datasets shown in Fig. 9 . These

est fits are depicted by dotted lines in Fig. 9 . For these calcu- 

ations, the bulk specific heat capacity value of 702 J/kg/K was 

sed. It is important to note that the thermal conductivity is a 

arameter that appears only in the Fourier heat conduction equa- 

ion and not in the BTE. Thus, it is not possible to extract the 

hermal conductivity directly from BTE calculations. Only an indi- 

ect method, in which the solution of the Fourier heat conduc- 

ion equation is fitted to the solution of the BTE, can be used 

o extract the thermal conductivity from BTE results. Nonetheless, 

ince the thermal conductivity is a quantity of engineering interest, 

uch a practice is considered worthwhile, albeit somewhat ques- 

ionable. Table 2 reports the thermal conductivity values that were 

xtracted after fitting the datasets shown in Fig. 9 . All values re- 

orted in the table exhibit thermal conductivity suppression, i.e., 

 reduction in its value from the bulk value of 148 W/m/K. The 

roido time-scales yield less suppression compared to the Holland 

ime-scales. 

. Summary and conclusions 

It is now widely accepted that the BTE for phonons best encap- 

ulates the physics of thermal transport in semiconductor materi- 

ls at submicron scales. In this study, BTE computations are con- 

ucted in a two-dimensional axisymmetric geometry in cylindri- 

al coordinates to simulate an FDTR experimental setup. The thin 

etallic transducer film is modeled using the Fourier law and ra- 

ial conduction in the transducer is included. The governing equa- 

ion in the transducer is coupled to the BTE calculations in the sil- 

con substrate underneath. The BTE computations are performed 

ith a computational mesh comprised of 14,400 quadrilateral con- 

rol volumes. For angular discretization, 80 solid angles (directions) 

re used, while for discretization of the frequency space, 40 spec- 

ral intervals (or bands) are used. For time advancement, the ex- 

licit (forward Euler) procedure with equal time step size of 1 ps 

s used. Each simulation is carried out until quasi-periodic state 

s reached. This requires approximately 5 modulation cycles of the 

ump laser. The convergence of the phase lag was monitored to 

scertain that the solution has been advanced sufficiently in time. 

omputations were performed for 8 different modulation frequen- 

ies ranging between 20 MHz and 200 MHz. The longest computa- 

ions required approximately 75 h of wall clock time on a parallel 

omputer system with 40 processors. 
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The scattering time-scales published by Ward and Briodo [40] , 

s well as those by Holland [41] , were used to model acoustic 

honon scattering in this study. Furthermore, optical phonons were 

lso included to isolate their effect on the extracted thermal con- 

uctivity. The time-scales for scattering of optical phonons was es- 

imated from Henry and Chen [42] . With these time-scales as in- 

uts, the BTE was solved and the phase lag between the pump 

nd probe signals was computed. Results show that the extracted 

hermal conductivity increases significantly when optical phonons 

re included. The inclusion of optical phonons increases the spe- 

ific heat capacity even more dramatically. As a result, although 

he thermal conductivity is found to increase, the thermal diffu- 

ivity actually decreases and causes the thermal front to propa- 

ate slower than if optical phonons are neglected. With the Broido 

ime-scale, the thermal conductivity was found to be larger than 

he value extracted from experimental data whether or not optical 

honon were included. With the Holland time-scale, however, in- 

lusion of optical phonons overpredicted the thermal conductivity, 

hile exclusion underpredicted the same quantity. 
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