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ABSTRACT

The multidimensional phonon Boltzmann Transport Equation (BTE) was solved numerically in cylindrical
coordinates and in time domain to simulate a Frequency Domain Thermo-Reflectance (FDTR) experimen-
tal setup. The phase lag between the pump and probe laser signals were computed for a pump laser
modulation frequency ranging from 20 to 200 MHz. Results were obtained both with and without the
inclusion of optical phonons, as well as with two different relaxation time-scale expressions (Holland
versus Broido) for scattering, obtained from the literature for silicon. It was found that inclusion of op-
tical phonons significantly improved the agreement between the measured and the computed phase lag.
Subsequently, the thermal conductivity was extracted by fitting the Fourier heat conduction equation
results—also solved numerically in time domain—to the measured and computed (using BTE) phase lag
values. While both relaxation time-scales exhibited thermal conductivity suppression, a clear superior-
ity of one time-scale expression over the other could not be established. With the Broido time-scale, the
thermal conductivity extracted from BTE calculations overpredicted the value extracted from experiments
regardless of whether optical phonons were included in the calculations. In contrast, with the Holland
time-scale, the extracted thermal conductivity value overpredicted the value extracted from experiments
when optical phonons were included, but underpredicted the value when optical phonons were excluded.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The solution of the Fourier heat conduction equation in fre-
quency domain is the most common and earliest model used for

A commonly used noncontact optical pump probe technique for
the study of thermal transport at small time and length scales,
based on thermo-reflectance, is the Frequency Domain Thermo-
Reflectance (FDTR) technique. By “small,” it is meant scales compa-
rable to or smaller than the mean free paths of the energy-carrying
phonons in a semiconductor material. In an FDTR experiment, the
sample is covered by a thin metallic layer called the transducer.
It is heated using a modulated continuous wave pump laser beam
resulting in surface temperature (reflectivity) oscillations. These os-
cillations are then monitored using a probe laser. The lag in phase
between the pump and probe laser signals is recorded, and a ther-
mal transport model is needed to establish the causal connection
between the two signals and extract the thermal conductivity of
the substrate from the measured phase lag.
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this purpose. Brought to the limelight by Cahill [1], this approach
has been used by many researchers since then [2,3]. Multiple lay-
ers, resulting from the use of a transducer, is treated using the
Feldman algorithm [4]. Unfortunately, these closed-form analyti-
cal models are unable to distinguish between changes made to
the pump laser spot size (diameter) versus the probe laser spot
size [5], since only the effective radius appears in the solution. The
problem may be overcome by resorting to numerical solution of
the Fourier heat conduction equation [5].

The thermal conductivity extracted from FDTR experiments us-
ing the Fourier heat conduction equation has been found to change
when the modulation frequency of the pump laser is changed [1-
3,6]. The Fourier law assumes that all phonons travel with infinite
velocity and engage in infinite many scattering events regardless of
the distance traversed. The dependence of thermal conductivity on
the modulation frequency is attributed to the fact that when the
laser modulation frequency is high, the thermal penetration depth,
which is inversely proportional to the square root of the modula-
tion frequency, is small, and can often be smaller than the mean
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Nomenclature

A area [m?]

c specific heat capacity per unit volume [J m—3 K]

D density of states per unit volume [m—3]

f number density function

fo equilibrium number density function

Gw.p spectral directionally integrated intensity
[Wm~2 rad—1 s]

Ge contact conductance [W m~2 K]

h Dirac constant = 1.0546 6 x 1073 [m2kg.s~!]

lw,p spectral directional phonon intensity

[Wm~2sr~!rad~1 s]

Iow.p equilibrium phonon intensity [Wm~2sr~'rad~1 s]
kg Boltzmann constant = 1.381 x 10723 [mZkg.s—2K~!]
kr thermal conductivity of transducer [W m~1 K-1]
i unit surface normal vector

total number of spectral intervals (or bands)

=
T

=

au

number of solid angles (or directions)
phonon polarization index

heat flux vector [Wm~2]

heat transfer rate [W]

radial coordinate or radius [m]
position vector [m]

unit direction vector

time [s]

absolute temperature [K]
internal energy [] m—3]

volume of cell [m3]

axial coordinate or thickness [m]

N<E TR T OoaT =
Qu
S

Greek

o1 density of transducer [kg m—3]

6 polar angle [radians]

Vo, p phonon group velocity vector [m s—1]
Twp spectral relaxation time scale [s]

w angular frequency [rad s~1]

wr modulation frequency of pump laser [Hz]
Q solid angle (sr)

v azimuthal angle [rad]

free path of some of the energy-carrying phonons. As a result,
some phonons hardly scatter. This results in so-called ballistic-
diffusive transport or quasi-ballistic transport. In this regime of
transport, the effective thermal conductivity has been found to be
smaller than the bulk value—a phenomenon known as thermal con-
ductivity suppression [6-8].

Various enhancements to Fourier law-based models have been
proposed in an effort to capture the ballistic effects and predict
the thermal conductivity suppression for different modulation fre-
quencies. One class of these models [9] makes use of the hyper-
bolic heat conduction equation which accounts for finite velocity
of the phonons by introducing a relaxation time as a parameter
[10]. However, all phonons are assumed to have the same veloc-
ity irrespective of their type and frequency. Two parameter mod-
els [11] have been used to treat the diffuse and ballistic phonons
differently by introducing an additional term in the Fourier heat
conduction equation that involves the characteristic ballistic heat
transport length as an additional parameter. Ramu and Bowers
[12] proposed a two-band model in which a cut-off frequency was
used to classify the phonons into ballistic and diffusive phonons.
The ballistic phonons were then treated by adding a higher or-
der correction term to the Fourier law that was derived from
the phonon BTE. In a similar ballistic-diffusive model proposed
by Chen [13], and later expanded to complex three-dimensional
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geometry by Mittal and Mazumder [14,15], the phonon intensity
was split into a diffusive component and a ballistic component.
More recently, a model that introduces a hydrodynamic term in
the Fourier heat conduction equation—analogous to the advective
term in the Navier-Stokes equation—has been proposed to capture
ballistic effects [16]. Other studies have attempted to reconcile the
poor agreement (lack of fit) of Fourier heat conduction equation-
based predictions to measured phase lag by using anisotropic ther-
mal conductivity (different thermal conductivity value in through-
and in-plane directions) [17,18].

The development of the aforementioned approximate models
has been partly prompted by the fact that the full-fledged phonon
BTE is very challenging and time consuming to solve [19], although
promising new algorithmic developments have been made on this
front recently [20,21]. Peraud and Hadjiconstantinou [22] per-
formed Monte Carlo simulations of phonon transport in a multi-
dimensional optical pump-probe setup by using an energy-based
deviational formulation. Only a single laser pulse was considered.
This code was later used by Ding et al. [23] to simulate a sin-
gle laser pulse of a TDTR experiment to demonstrate in-plane
and through-plane thermal conductivity suppression. Regner et al.
[24] solved the one-dimensional (1D) BTE in frequency domain
to extract the thermal conductivity accumulation and suppres-
sion functions. However, the influence of multidimensional ther-
mal transport can only be captured by solving the multidimen-
sional BTE. Ali et al. [25] solved the full phonon BTE for TDTR
experiments in a 2D planar setup and the model demonstrated
thermal conductivity suppression and its dependence on the mod-
ulation frequency of the pump laser without the use of any ad-
ditional tuning parameters. In a recent preliminary study, Saurav
and Mazumder [26] demonstrated solution of the BTE in a 2D ax-
isymmetric domain (as opposed to 2D planar [25]) for simulation
of an FDTR experiment. The solution was advanced in time to a
quasi-periodic state, enabling reliable extraction of the phase lag.
This is in contrast with previous studies [22,23] that only simu-
lated a single laser pulse. Although preliminary, this demonstration
laid the foundation for the present study wherein the BTE solver
was further enhanced to include optical phonons, and the ther-
mal conductivity was subsequently extracted. To the best of the
authors’ knowledge, this study represents the first of its kind in
which thermal conductivity has been extracted from multidimen-
sional BTE simulation of an FDTR experimental setup.

2. Theory
2.1. The phonon Boltzmann Transport Equation (BTE)

The BTE is appropriate for modeling phonon transport in semi-
conductors, as phonons follow Bose-Einstein statistics and interact
with each other via scattering events. The phonon BTE, under the
single relaxation time approximation can be written as [9,19]
af fo—f

SEHU. V=L (1)

where f is the distribution function of an ensemble of phonons, fj
is the equilibrium number density function,t is the scattering time
scale and vis the phonon group velocity. In general, f = f(t, r, K),
where r denotes the position vector and K denotes the wave-
vector. Here, it is assumed that the wave-vector space is isotropic.
Hence, it can be expressed conveniently [9] using a unit direction
vector, §, and a frequency, w. Thus, the distribution function, f, for
each polarization p, is a function of seven independent variables,
ie, f=f(trS8§ w, p), where the unit direction vector, §, may be
expressed in terms of the azimuthal angle, 1, and polar angle, 6,
as [27]

§ = sin6 cos ¥i+ sin @ sin ¥j+ cos Ok. (2)
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If the Cartesian coordinate system is used to describe space, for
example, one may write the functional dependence of f as f =
f(t,x,y,2z,0, ¥, w, p). In other words, for a three-dimensional (3D)
geometry, fis a function of 8 independent variables. Since polar-
izations are discrete, it is customary to think of f as being a func-
tion of 7 independent variables, with the implicit understanding
that it is different for different polarizations. The group velocity is
also dependent on direction: v = v (8§, w, p). The equilibrium Bose-
Einstein distribution, on the other hand, is direction independent:
fo = fo(w, T), as is the relaxation time-scale: T = 7(w, T, p). Fol-
lowing the seminal work of Majumdar [28], a phonon intensity
may be defined in terms of the distribution function:

lnp =118 0, p)=|vyp|hofD(w, p)/4n (3)
lo.w,p =1Io(t, T, @, p) = |V, p|hew foD(w, p) /47
where D(w, p) is the density of states, and I, is the spectral di-

rectional phonon intensity, while I, , is the equilibrium spectral
phonon intensity. Substitution of Eq. (3) into Eq. (1) yields [28]

0l p lo.wp— Il
X .VI — Owp .P . 4
9t + Vw,p ,p 7_[0”7 (4)

For any given frequency and polarization, the intensity, Iy p, is a
function of time, 3 space variables (in 3D), and 2 directional vari-
ables, making Eq. (4) a six-dimensional equation. Furthermore, it
needs to be solved for all frequency and polarizations in order to
determine the heat flux, as is discussed in the sub-section to fol-
low.

Solution of the BTE [Eq. (4)] necessitates boundary conditions
for the intensity. Two types of boundary conditions are gener-
ally used: (1) thermalizing, and (2) reflective. At a thermalizing
boundary, phonons are emitted from it based on the equilibrium
energy distribution and any phonon that strikes it immediately
gets absorbed. The boundary condition is mathematically written
as Iy p(t, Ty, 8o, 0, p) = Io.0,p(t, Tw, @, p), where 1y is the position
vector of the boundary or wall, and §, is the outgoing direction for
the intensity.

2.2. Heat flux and energy conservation (first law)

Once the BTE [Eq. (4)] has been solved, the heat flux may be
calculated from the phonon intensity using the relationship [19]

at, =Y f flw,p(t,r,g,w,p)gdszdw=z / Qo (£, 1)de
4 Wmin,p 47 @min,p
(5)

where the integrals are over all solid angles €2 and the frequency
range of each polarization; wmax,p and Opin,p are the maximum
and minimum frequencies, respectively, corresponding to a given
polarization, p. In Eq. (5), qe,p denotes the spectral heat flux while
q denotes the total heat flux. Substitution of Eqs. (4) and (5) into
the energy conservation equation (First Law), followed by some
manipulation, yields [19]:

Wmax,p
i) hwD(w,p) _
dt(z f exp[hw/kgT]—1 dw) -
D @min,p (6)
“mP T 1 ( eplheD@.p) 3Gup
-2 [ [tmp(exp‘[hw/kBT]—] —Gw.p) - ]dw
P Wminp
where
o= [ o502 (7)
4

Eq. (6) is a nonlinear equation that may be solved to obtain the
so-called pseudo-temperature [19,29], T, at any location within the
computational domain and any instant of time. In the section to
follow, numerical techniques for solution of the BTE are discussed.
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Fig. 1. Polar coordinate system used for angular discretization in the FAM.

3. Numerical procedure

The present work uses the finite angle method (FAM) [19,27]
for solving the BTE [Eq. (4)]. It is briefly discussed next, along with
treatment of the transducer, which is a metallic film that covers
the substrate.

3.1. The finite angle method (FAM)

The FAM is a variant of the Discrete Ordinates Method [27].
In the FAM, the entire solid angle space is first split into a set
of nonoverlapping smaller solid angles. These smaller solid angles
may be based on equal subdivisions in 6 and 1, as shown in Fig. 1.
The BTE [Eq. (4)] is first integrated over a volume [finite volume
method in space on a structured mesh with cell index (j,k)], fol-
lowed by finite solid angles to yield [19,27]:

N
dl; ~ i
5(:.1) Vi S2i + [V, pl Zli’“’*p'f(j’k) (Si . nf)Af(j'k)
(k) f=1
1 .
- (Ioa)p(]k) _ i,w,p,(jyk))v(jvk) Qi Vi= 1, 2, ceey Ndir (8)
Tw.p.(jk)

where Ny;, is the total number of discrete directions or finite solid
angles, V(; is the volume of the (jk)-th cell, Az, is the area of
the f-th face of the (j,k)-th cell, and

Oi+A0; 29+ A /2
Q= /Q: sing df dy
AQ 0= A0 /12— Ari/2
= Zsineisin(Azwi)Alﬁi (9)

and

S; = cos V;sin ( Az‘” f) [AG; — cos(26;) sin(A) i

+ sin y; sin ( Azllff ) [AB; — cos(26;) sin(AG,-)]j

(10)

+<A2‘/"'> sin(26;) sin(A6,)k
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Fig. 2. Schematic representation of geometric quantities used for finite volume dis-
cretization of the BTE.

The subscript i for the intensity now denotes an intensity along
a line of sight passing through the center of the solid angle, i.e., in
the direction §; (see Fig. 1). Finally, the face intensity in Eq. (8) is
expressed in terms of cell-center intensities using the first-order
upwind or step scheme [27]:

Ly oo = 4 iopjudf Sty >0
io,p,f(jk) liw pnp)ifSi Ay <0

where N(f) denotes the neighboring cell next to face f, as shown
in Fig. 2.
As a final note, in cylindrical coordinates, the volume appear-
Ze(jik) To(jik
ing in Eq. (8) may be determined using V) = (jj ) (jj )andrdz.
Zp(jk) Ti(jik)
where ry(j k) and rok) are inner and outer radii, respectively, of
the (jk)-th cell, while z;;y and z.;, are bottom and top z-
coordinates, respectively, of the same cell, as shown on Figs. 3 and

4. For any horizontal face, the area is given by Ay = n(rg(j‘k) -

riz(j’k)), while for any vertical face, the area is given by Agj) =
2715 (Ze(jky — Zb(jok))-

(11)

3.2. Treatment of the transducer

The transducer is metallic. In this study, heat conduction in the
transducer is treated using the Fourier law. Furthermore, since the
transducer is very thin, it is assumed that there is no tempera-
ture variation within the transducer in the z direction (Fig. 3). The
only variation is in the r direction. With this premise, the compu-
tational domain may be discretized using a structured mesh in the
r-z plane, as shown in Fig. 4.

The governing equation for heat transfer in the transducer may
be derived from an energy balance, and is written as

Ty  kr 0 <r3TT> n q.-q')
ar zr

P = ar

where pr, cr, kr, and zy are the density, specific heat capacity,
thermal conductivity, and thickness of the transducer, respectively.
The temperature of the transducer is denoted by Ty. The heat
fluxes at the top and bottom surfaces of the transducer are de-
noted by q’; and q",, respectively. The heat flux on the top surface
is the energy supplied by the pump laser, and is a known quantity,
written as

g =q (M1 +sinwt] (13)

(12)
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where q”L(r) is the radially varying (such as Gaussian) laser flux,
and w; is the modulation frequency of the pump laser. The heat
flux on the bottom surface of the transducer is not a known quan-
tity. However, it can be related to the substrate through the rela-
tionship

q'p = Ge(Tr — Tiop) (14)

where Typ is the temperature on the top of the substrate surface,
and G is the contact conductance between the transducer and
the substrate. Although T;op is not directly known, it can be de-
rived from the solution (of temperature) in the substrate, which in
turn, requires solution of the BTE. Thus, coupling the transducer to
the substrate requires a self-consistent procedure. This procedure
is described in the section to follow.

As a final step, applying the finite-volume procedure [30] for
discretization of Eq. (12), along with explicit (forward Euler) time
discretization, we obtain

2riAr; " "
PrCrzr 7]At J [TTJ‘ — T.Fljd] = 2q [‘jrjArj — 2q bijjArj
_| Krzr@ri = AT g | Kr2r @1 = AT g
Arj+ Arjy | Arj+Ary [T
3 kTZT(ZTj + Arj) kTZT(zrj - Arj) Told (15)
AT]' + Arj+1 Arj + Arj—l L

where the superscript “old” represents values at the previous time-
step.

3.3. Solution algorithm

Determination of the (pseudo-)temperature and heat flux in an
FDTR setup using the explicit (or forward Euler) time marching
procedure requires the following steps:

1. The temperature of the entire solution (computational) domain
is first initialized. This includes nonisothermal boundaries, such
as the transducer top.

2. The BTE [Eq. (4)] is marched forward explicitly by one time step
to determine the spectral intensity, I, p. This intensity is then
post-processed to compute the incident phonon intensity, G, p,
using Eq. (7). Likewise, Eq. (5) may be used to compute the heat
flux at locations of interest, e.g., at boundary surfaces.

3. The computed value of G, is then substituted into Eq. (6) and
the resulting equation is solved using a nonlinear equation
solver to determine the pseudo-temperature at any given loca-
tion in space and instant of time.

4. The intensities obtained from the solution of the BTE can also
be used to determine the heat flux at the top surface of the
substrate using Eq. (5).

5. The heat flux at the top surface of the substrate is equal to the
heat flux at the bottom surface of the transducer, q") j- Once
this is known, Eq. (15) can be marched forward in time. Solu-
tion of Eq. (15) yields the transducer temperature.

6. With the heat flux and transducer temperature both being
known, the temperature on the top of the substrate can now
be computed using Eq. (14). This new temperature replaces the
initial condition in Step 1.

7. Steps 2-6 are repeated, i.e., the solution is marched forward in
time.

4. Results and discussion

For the purposes of this study, the experimental data reported
by Regner et al. [2] was used for comparison. The substrate in this
experiment is a silicon block that is 525 um thick, and the radial
(lateral) extent of substrate is not known. Several preliminary cal-
culations were first conducted to estimate the thermal penetration
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Adiabatic
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Fig. 3. Two-dimensional axisymmetric representation of an FDTR experimental setup.
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Fig. 4. Structured mesh in the r-z plane used to discretize the substrate and the
transducer.

depth (which indirectly affects the computational domain size) for
the full range of modulation frequencies, and the grid density nec-
essary to adequately resolve the heat wave. Following this study,
a computational domain with zg= 100 um and rs= 100 um was
deemed adequate. Isothermal boundary conditions (300 K) were
applied to the side and bottom surfaces of the substrate, while an
adiabatic boundary condition was applied to the top surface of the
transducer beyond the laser spot. In a previous study [5], Newton
cooling boundary conditions, with heat transfer coefficients consis-
tent with natural convection, were used for all of these boundary
conditions, and it was found that the results did not change com-
pared to the boundary conditions used here. The transducer is a
bilayer transducer with 55 nm of gold and 5 nm of chromium, re-
sulting in z;r = 60 nm. The thermophysical properties of gold and
chromium that were used for calculations are shown in Table 1.
Based on the thicknesses of the gold and chromium layers, effec-
tive values of the properties of the transducer were estimated and
used. These are also shown in Table 1.

For numerical calculations, a 120 x 120 nonuniform mesh with
a stretching factor not exceeding 1.05 was used, as shown schemat-
ically in Fig. 4. The minimum grid size used in either direction is

Table 1
Thermophysical properties of the various materials used in the calculations.

Silicon Transducer
(bulk)

Gold Chromium  Effective
Density (kg/m?) 2329 19,320 7140 18,290.8
Specific heat capacity (J/kg/K) 702 129 450 155.7
Thermal conductivity (W/m/K) 148 310 93.9 266.6

30 nm. The modulation frequency, which is an input parameter,
was varied between 20 MHz and 200 MHz, with 8 different fre-
quencies. Each sinusoidal cycle of the laser was split into 5000
time-steps, which was deemed appropriate after a time-step in-
dependence study. This implies that a time-step size of 1 ps was
used. This time-step size also obeys the stability criterion of the
explicit method being used here. Furthermore, it is small enough
to resolve the scattering events. The nominal value of the inter-
facial (between the substrate and the transducer) contact con-
ductance, G, was taken to be 200 MW/m?2/K, as suggested by
Cahill [1], although for a different material pair. The pump and
probe laser 1/e? radii are inputs in the model. Here, rpymp = 4.14m
and rprope = 2.84m were used. A Gaussian laser flux profile (in r)
was used for all calculations. The frequency space was discretized,
as shown in Fig. 5, with Nps =14, Njy =24, and Nprg = Njg = 1.
The decision to use 1 band for each optical phonon branch was
prompted by the fact that the frequency range of the optical
phonons in silicon is only about 20% that of the total range (Fig. 5).
Furthermore, previous studies [31,32] suggest that 1 band is suffi-
cient to resolve each optical phonon type. The spectral discretiza-
tion of the frequency space for acoustic phonons is also based on
previous studies [25,33] and a recent study [34] that concludes
that ~60 bands are needed to capture dispersion in most mate-
rials, including compound semiconductors. The angular space was
discretized using 4 azimuthal angles and 20 polar angles, resulting
in a total of 80 finite solid angles or directions.

Scattering of phonons has been treated using a variety of ap-
proaches ranging all the way from scattering time-scales derived
from ab initio calculations with full treatment of the anisotropic
Brillouin zone [35-37] to simplified parameterized single-time re-
laxation time-scale expressions. Here, the latter approach is used
in keeping with the assumption of an isotropic wave-vector space
(see Section 2.1) and also because these parameterized scattering
time-scale expressions have been routinely used in engineering
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Fig. 5. Dispersion relation of silicon from [29]; discretization of the frequency space
is also shown.

calculations [25,29,32,33,38,39]. For the scattering (or relaxation)
time-scales of acoustic phonons, two different models were used
in this study:

Broido and co-workers [40]:

1:,;}7 = AJ@*T[1 — exp(-3T/6p)] (16a)

Typ = AYo*T[1 — exp(—3T/6p)] (16b)

where the subscripts N and U stand for Normal and Umklapp pro-
cesses, respectively, and the subscript p stands for the polariza-
tion of the phonon, i.e., either longitudinal acoustic (LA) or trans-
verse acoustic (TA). The constants in Eq. (16) are as follows:A’L"A =
7.10 x 107%.rad2K~!, AY, = 10.9 x 107%s.rad 2K, AY, = 9.51 x
107753 rad~#K-!, and AY, =37.8 x 107¥s%.rad~4K-. It is worth
noting that although this model is parameterized (primarily, to al-
low convenient use), it was derived from first principles [40].
Holland [41]:

77! = Biw?T>?(Normal and Umklapp, LA), (17a)

771 = BrywT*(Normal, TA), (17b)
0 if w<wip

1= ) ) (Umklapp, TA),
Bryw?sinh(fiw/kgT)  if @ > wypn

(17¢)

where the constants in Eq. (17) are as follows: @, = 2.418 x 10"
rad/s, B, =2 x 10724 K-3rad~2 s, Byy = 9.3 x 10" *K—4rad~!, and
Bry = 5.5 x 10" ¥rad—2 s,

Optical phonons were also considered in this study. Although
it is generally believed that optical phonons do not contribute sig-
nificantly to thermal transport in silicon except at high tempera-
ture [32] because of their low group velocities, they do contribute
significantly to storage of energy. Hence, they have the ability to
affect the thermal diffusivity and, thereby, the phase lag. To high-
light this point, for a crystalline material, the internal energy and
the specific heat capacity at constant volume, which is the deriva-
tive of internal energy with respect to temperature, are given by
[19]

7" heD. p)
u= Xp: / exp[hw/kgT] — 1 deo (18a)

@min,p
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Fig. 6. Spectral mean free path of optical phonons, obtained from Henry and Chen
[33], along with least-square curve-fits for the same data. LO = Longitudinal Opti-
cal; TO = Transverse Optical.

@Wmax,p

/ @?D(w, p) exp[hw/ksT]
s—dw
(exp[hw/kgT] — 1)

du 1

C=d7= I(BT2
P

(18b)

Eq. (18b), when used in conjunction with the dispersion relations
shown in Fig. 5 to compute the specific heat capacity of silicon
at 300 K, yields values of 325.4 J/kg/K and 625.4 J/kg/K without
and with optical phonons, respectively. In other words, the abil-
ity to store heat by the material increases almost by a factor of
two when optical phonons are included. This is consistent with the
notion that optical phonons often serve as “reservoirs” of energy
[9,31]. The final point to note in this regard is that the computed
value of the specific heat capacity with optical phonons, namely
625.4 J/kg/K is much closer to the reported bulk value of 702 J/kg/K
at 300 K.

Limited data is available on the relaxation time-scale for optical
phonon scattering in silicon. In this study, the data published by
Henry and Chen [42] were used. Fig. 6 shows the spectral mean
free path data along with least-square curve-fits that were used
to represent that scattered data in the present computations. The
curve-fit expressions are as follows:

Aro = Apow? +Brow + Cpo (19a)

Ao = Aro exp(—Brow) (19b)

where A is the mean free path in meters, while w is the frequency
in rad/s. The constants in Eq. (19) are as follows: A;g = 4.065 x
1073, Bjp = —1.039 x 1072%, C;p = 6.641 x 1077, Arg = 0.1254, and
Bro = 1.51 x 10~ 3. The relaxation time-scale for optical phonon
scattering was computed using T = A/v. The dispersion relation-
ships for silicon, shown in Fig. 5, adopted from Pop [31], were
used to compute the phonon group velocities, v, for all frequencies
and polarizations. As stated earlier, it is assumed that the wave-
vector space is isotropic and, therefore, the dispersion relationship
in only one lattice direction is necessary. Once the relaxation time-
scales of the various phonons were computed, the Mathiessen rule
[9] was used to compute the overall relaxation time-scale for scat-
tering.

To bring to light the difficulty of BTE calculations for the
problem at hand, a rough estimate is helpful. Since 40 bands
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and 80 angles are used, the calculation essentially boils down to
time-marching 3200 partial differential equations on a mesh with
14,400 cells. For the 200 MHz modulation frequency, the time
period for each cycle is 5 ns. Since a time-step size of 1 ps is
used, this means that the solution has to be advanced through
roughly 25,000 time steps (5 cycles with 5000 time steps per cy-
cle; see next paragraph for reasoning) before quasi-periodic state
is reached. Using band-based parallelization over 40 processors
(same as the number of bands), the calculations require approxi-
mately 7.5 h. However, for the 20 MHz modulation frequency, since
the stability criterion of the explicit method dictates that the same
time step size of 1 ps is to be used (Note: stability criterion de-
pends on phonon speed and grid size, both of which are inde-
pendent of modulation frequency), the calculation requires approx-
imately 75 h. To keep computational times tractable, and also not-
ing that the quasi-ballistic nature of phonon transport is primar-
ily manifested at higher modulation frequencies, calculations for
lower frequencies were not undertaken. An implicit time-marching
scheme was also explored but was found to be computationally
more expensive. Furthermore, it was found that using larger time-
step size (which is allowable in implicit time-marching methods
and is considered an advantage of such a method) negatively af-
fected the accuracy of the computed phase.

For each simulation, the solution was advanced far enough in
time such that the solution became quasi-periodic. The tempera-
ture of the transducer, averaged over the probe radius (or spot),
was compared against the sinusoidal pump laser flux pulse, and
the phase lag was computed. This was done in two ways: (1) us-
ing the time lag from peak to peak, and (2) using the time lag from
trough to trough. Fig. 7 shows how the phase lag computed with
these two approaches converge to a unique value as quasi-periodic
state is approached. It also clearly demonstrates that the phase lag
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Fig. 7. Convergence of phase lag using two different approaches as the solution
approaches quasi-periodic state.

converges to a unique value after about 5 pump laser cycles. A few
cases were run for additional cycles but did not affect the com-
puted phase lag.

Fig. 8 shows the temporal evolution of the nondimensional
temperature [= (T —300)/(Tmax — 300)] distribution for a modula-
tion frequency of 20 MHz with the two different relaxation time-

A5 40 5 0 5 10 15

without optical
phonon

without optical
phonon

5 10 15

without optical

t =250 ns

phonon
o o o o o 9 154 o o
- N N o - -2 N N
&)} [6)] 0 4] 4]
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Fig. 8. Temporal evolution of the nondimensional temperature distribution for a modulation frequency of 20 MHz: (a) using the BTE with Broido time-scales, (b) using the
BTE with Holland time-scales, and (c) using the Fourier heat conduction equation with k = 148 W/m/K. For clarity of figures, only a portion of the computational domain is

shown. All dimensions are in pm.



S. Saurav and S. Mazumder

| T T T I 1 T T I T 1 T I T 1 I ]

30k ~ ] Experiment i

i ’\' = Broido (w Optical) |

- % L 4 Broido (w/o Optical) |

i :‘\ R Holland (w Optical) |1

—~ 40 N Y . A Holland (w/o Optical) | |

8 N e ® i

~— - \ N o

o | e Tex __Broido (w Optical) .

s i B _ .

o -50F A N | NES Holland (w Optical)
@ ~ N4

o© i S e~ - \:\ 3 XExperiment 1

o AN ~ I > o

[ Broido (/0 Optical) t\ S~o Sss ]

'60 — / " ~ o =< - = '_

- Holland (w/o Optical) A ~< S P

E [ RN | [ R R N NN ] * i

e 50 100 150 200

Modulation Frequency (MHz)

Fig. 9. Comparison of phase lag computed using the phonon BTE and experimen-
tally measured values [2], both shown with symbols. The lines represent best fits
to the data (symbols) using the Fourier heat conduction equation.

scale models for acoustic phonons and, also, with and without op-
tical phonons. It appears that inclusion of optical phonons slows
down the thermal front. As discussed earlier, optical phonons pri-
marily contribute to storage of energy rather than enhancing trans-
port. This results in reduced thermal diffusivity and slower spread
of the thermal front. Comparison of Fig. 8(a) and (b) reveals that
the use of the two different relaxation time-scale models for the
acoustic phonons do not appear to significantly affect the re-
sults, at least qualitatively. Fig. 8(c), which was generated using
the Fourier heat conduction equation with a thermal conductiv-
ity of 148 W/m/K, i.e., the bulk thermal conductivity of silicon
at 300 K, shows a heat wave that is far more isotropic (semi-
circular) compared to the ones predicted by the BTE. Perhaps, this
is an indication that the actual transport process, which is pre-
sumably better modeled by the BTE, is somewhat anisotropic. This
finding appears to lend credibility to past hypotheses [17,18] of
anisotropic transport, although this is not the focus of the present
study and further investigations are warranted to confirm this
hypothesis.

Fig. 9 shows the phase lag computed from the BTE results us-
ing both time-scale models as well as with and without optical
phonons. Experimentally measured values are shown on the same
plot for comparison. When optical phonons are included, both the
Broido and the Holland time-scales appear to match experimen-
tally measured values better, although at low frequencies the phase
lag is underpredicted while at high frequencies, the phase lag is
overpredicted by both models. Also, when optical phonons are in-
cluded, the difference between the two models appear to become
smaller. The role of optical phonons on thermal transport in sil-
icon at steady state has already been studied [32]. It was found
that they contribute about 5-10% to thermal transport at room
temperature at steady state. However, it is worth noting that FDTR
experiments are transient. Hence, how optical phonons alter ther-
mal storage becomes equally important. As pointed out earlier in
this section, optical phonons significantly alter the specific heat ca-
pacity. Consequently, they significantly alter the phase lag. Overall,
the discrepancy between computed and measured phase lag may
be attributed to several assumptions in the current model. First, it
is the assumed that the interface conductance between the trans-
ducer and the silicon sample is fixed and a value of 200 MW/m?2/K
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Table 2
Thermal conductivity of silicon (in W/m/K) extracted from BTE calculations and
experimental data.

Without optical With optical
phonons phonons
Experiment [2] 83
BTE with Broido time-scale [30] 98 124
BTE with Holland time-scale [31] 65 106

was used. As stated earlier, this value is for a different material
pair [1] and was used here for lack of better information. Secondly,
it is assumed that the wave-vector space is isotropic and three-
phonon scattering is adequately represented by the parameter-
ized single-time relaxation time-scale expressions employed in this
study.

As a final step, the Fourier heat equation was solved numer-
ically in time domain following the procedure in [5] using the
exact same settings (grid, time step, boundary conditions etc.)
as that for the BTE code. The thermal conductivity, which ap-
pears as an input to the Fourier heat equation was adjusted un-
til the best fit (based on minimization of the least-square er-
ror) was obtained to each of the datasets shown in Fig. 9. These
best fits are depicted by dotted lines in Fig. 9. For these calcu-
lations, the bulk specific heat capacity value of 702 ]J/kg/K was
used. It is important to note that the thermal conductivity is a
parameter that appears only in the Fourier heat conduction equa-
tion and not in the BTE. Thus, it is not possible to extract the
thermal conductivity directly from BTE calculations. Only an indi-
rect method, in which the solution of the Fourier heat conduc-
tion equation is fitted to the solution of the BTE, can be used
to extract the thermal conductivity from BTE results. Nonetheless,
since the thermal conductivity is a quantity of engineering interest,
such a practice is considered worthwhile, albeit somewhat ques-
tionable. Table 2 reports the thermal conductivity values that were
extracted after fitting the datasets shown in Fig. 9. All values re-
ported in the table exhibit thermal conductivity suppression, i.e.,
a reduction in its value from the bulk value of 148 W/m/K. The
Broido time-scales yield less suppression compared to the Holland
time-scales.

5. Summary and conclusions

It is now widely accepted that the BTE for phonons best encap-
sulates the physics of thermal transport in semiconductor materi-
als at submicron scales. In this study, BTE computations are con-
ducted in a two-dimensional axisymmetric geometry in cylindri-
cal coordinates to simulate an FDTR experimental setup. The thin
metallic transducer film is modeled using the Fourier law and ra-
dial conduction in the transducer is included. The governing equa-
tion in the transducer is coupled to the BTE calculations in the sil-
icon substrate underneath. The BTE computations are performed
with a computational mesh comprised of 14,400 quadrilateral con-
trol volumes. For angular discretization, 80 solid angles (directions)
are used, while for discretization of the frequency space, 40 spec-
tral intervals (or bands) are used. For time advancement, the ex-
plicit (forward Euler) procedure with equal time step size of 1 ps
is used. Each simulation is carried out until quasi-periodic state
is reached. This requires approximately 5 modulation cycles of the
pump laser. The convergence of the phase lag was monitored to
ascertain that the solution has been advanced sufficiently in time.
Computations were performed for 8 different modulation frequen-
cies ranging between 20 MHz and 200 MHz. The longest computa-
tions required approximately 75 h of wall clock time on a parallel
computer system with 40 processors.
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The scattering time-scales published by Ward and Briodo [40],
as well as those by Holland [41], were used to model acoustic
phonon scattering in this study. Furthermore, optical phonons were
also included to isolate their effect on the extracted thermal con-
ductivity. The time-scales for scattering of optical phonons was es-
timated from Henry and Chen [42]. With these time-scales as in-
puts, the BTE was solved and the phase lag between the pump
and probe signals was computed. Results show that the extracted
thermal conductivity increases significantly when optical phonons
are included. The inclusion of optical phonons increases the spe-
cific heat capacity even more dramatically. As a result, although
the thermal conductivity is found to increase, the thermal diffu-
sivity actually decreases and causes the thermal front to propa-
gate slower than if optical phonons are neglected. With the Broido
time-scale, the thermal conductivity was found to be larger than
the value extracted from experimental data whether or not optical
phonon were included. With the Holland time-scale, however, in-
clusion of optical phonons overpredicted the thermal conductivity,
while exclusion underpredicted the same quantity.
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