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ABSTRACT

The Boltzmann Transport equation (BTE) was solved
numerically in cylindrical coordinates and in time domain to
simulate a Frequency Domain Thermo-Reflectance (FDTR)
experiment. First, a parallel phonon BTE solver that accounts for
all phonon modes, frequencies, and polarizations was developed
and tested. The solver employs the finite-volume method (FVM)
for discretization of physical space, and the finite-angle method
(FAM) for discretization of angular space. The solution was
advanced in time using explicit time marching. The simulations
were carried out in time domain and band-based parallelization
of the BTE solver was implemented. The phase lag between the
temperature averaged over the probed region of the transducer
and the modulated laser pump signal was extracted for a pump
laser modulation frequency ranging from 20-200 MHz. It was
found that with the relaxation time scales used in the present
study, the computed phase lag is underpredicted when compared
to experimental data, especially at smaller modulation
frequencies. The challenges in solving the BTE for such
applications are highlighted.

NOMENCLATURE

A area [m’]

c specific heat capacity per unit volume [J m3 K]

D density of states per unit volume [m™]

f number density function

o equilibrium number density function

G,, spectral directionally integrated intensity [Wm™ rad's]
G, contact conductance [W m? K]

h Dirac constant = 1.0546 x 10-* [m%kg.s!]

I,, spectral directional phonon intensity [Wm?sr-'rad™'s]
I,,, equilibrium phonon intensity [Wm™sr'rad"'s]
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Boltzmann constant = 1.381 x 1023 [m?kg.s2K"!]
thermal conductivity of transducer [W m™' K]
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unit surface normal vector
total number of spectral intervals (or bands)
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band
number of solid angles (or directions)

sy

phonon polarization index
heat flux vector [Wm™]

heat transfer rate [W]

radial coordinate or radius [m]
position vector [m]

unit direction vector

time [s]

absolute temperature [K]
volume of cell [m?]

axial coordinate or thickness [m]
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07 density of transducer [kg m™]

0 polar angle [radians]

v phonon group velocity vector [m s']

T spectral relaxation time scale [s]

w angular frequency [rad s']

, modulation frequency of pump laser [Hz]
Q solid angle (sr)

v azimuthal angle [rad]

INTRODUCTION

Frequency Domain Thermo-Reflectance (FDTR) is a commonly
used noncontact optical pump probe technique based on thermo-
reflectance for the study of heat transport at small time and
length scales, i.e., at scales comparable to or smaller than the

1 Copyright © 2022 by ASME


mailto:mazumder.2@osu.edu

mean free paths of the energy-carrying phonons. In FDTR, the
sample, which is covered by a thin metallic layer called the
transducer, is heated using a modulated continuous wave pump
laser beam resulting in surface temperature (reflectivity)
oscillations, which are then monitored using a probe laser. The
lag in phase between the pump and probe laser signals is
recorded. Extraction of the thermal conductivity of the substrate
from the measured phase lag data requires use of a thermal
transport model.

The most common model used for this purpose is based on
the solution of the Fourier heat conduction equation in frequency
domain. This was brought to the limelight by Cahill [1] and has
been used by the vast majority of researchers since then [2,3].
The presence of a transducer makes it a multiple layer problem
which is treated using the Feldman algorithm [4]. Interfaces
between layers are treated as artificial layers whose thermal
properties are adjusted to reproduce measured interface
conductance values. Unfortunately, these closed-form analytical
models are unable to make a distinction between changes made
to the pump laser spot size (diameter) versus the probe laser spot
size [5]. The problem may be overcome by resorting to
numerical solution of the Fourier heat conduction equation [5].

The thermal conductivity extracted from FDTR experiments
using such a Fourier law-based model has been found to change
when the modulation frequency of the pump laser is changed [1-
3,6]. The Fourier law assumes that all phonons travel with
infinite velocity resulting in very small mean free paths. The
dependence of thermal conductivity on the modulation
frequency is attributed to the fact that when the laser modulation
frequency is high, the thermal penetration depth, which is
inversely proportional to the square root of the modulation
frequency, is small, and can often be smaller than the mean free
path of some of the energy-carrying phonons. As a result, some
phonons hardly scatter. This results in so-called ballistic-
diffusive transport or quasi-ballistic transport. In this regime of
transport, the effective thermal conductivity has been found to
be smaller than the bulk value—a phenomenon known as
thermal conductivity suppression [6-8].

Various enhancements to Fourier law-based models have
been proposed in an effort to the capture the ballistic effects and
predict the thermal conductivity suppression for different
modulation frequencies. One class of these models [9] makes use
of the hyperbolic heat conduction equation which accounts for a
finite velocity for the phonons by introducing relaxation time as
a parameter. However, all phonons are assumed to have the same
velocity irrespective of their type and frequency. Two parameter
models [10] have been used to treat the diffuse and ballistic
phonons differently by introducing an additional term in the
Fourier heat conduction equation that involves the characteristic
ballistic heat transport length as an additional parameter. Higher-
order correction terms from the BTE have been added to the
Fourier law models for the treatment of ballistic phonons. Ramu
and Bowers [11] proposed a two-band model in which a cut-off
frequency is used to classify the phonons into ballistic and
diffusive phonons. The ballistic phonons are then treated by
adding a higher order correction term to the Fourier law that is
derived from the phonon BTE. In a similar ballistic-diffusive
model proposed by Chen [12], and later expanded to complex
three-dimensional geometry by Mittal and Mazumder [13], the
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phonon intensity is split into a diffusive component and a
ballistic component. More recently, a model that introduces a
hydrodynamic term in the Fourier heat conduction equation—
analogous to the advective term in the Navier-Stokes equation—
has been proposed to capture ballistic effects [14].

The aforementioned approximate models have been used to
avoid solving the full-fledged phonon BTE, as it is very
challenging and time consuming to solve [15]. Peraud and
Hadjiconstantinou [16] performed Monte Carlo simulations of
phonon transport by using an energy-based deviational
formulation. Regner et al. [17] solved the 1D BTE in frequency
domain to extract the thermal conductivity accumulation and
suppression  functions. However, the influence of
multidimensional thermal transport can only be captured by
solving the multidimensional BTE. Ding et al. [18] used Monte
Carlo study to simulate a single laser pulse of a TDTR
experiment to demonstrate in-plane and cross-plane thermal
conductivity suppression. Ali et al. [19] solved the full
multidimensional phonon BTE for TDTR experiments in a 2D
planar setup and the model demonstrated thermal conductivity
suppression and its dependence on the modulation frequency of
the pump laser without the use of any additional parameters.

The current work attempts to solve the BTE in a 2D
axisymmetric domain (as opposed to 2D planar [19]). This is the
first work of its kind where the solution in time domain is
advanced to a point where the solution becomes quasi-periodic,
enabling reliable extraction of the phase lag. This is in contrast
with previous studies [16,18] that only simulated a single laser
pulse. The present BTE solver uses the cylindrical coordinate
system and accounts for all phonon modes, frequencies and
polarization. It represents the first step toward extracting the
thermal conductivity from FDTR experiments.

THEORY AND MATHEMATICAL MODEL

The Phonon Boltzmann Transport Equation (BTE)

The BTE can be used to model phonon transport in semi-
conductors as phonons follow Bose-Einstein statistics and
interact with each other via scattering events. The phonon BTE,
under the single time scale approximation can be written as [9,
15]

L +veVf = So=S , (1)
ot T
where f is the distribution function of an ensemble of phonons,

f, is the equilibrium number density function, z is the scattering
time scale and v is the phonon group velocity. The distribution
function, f°, for each polarization p, is a function of seven
independent variables, i.e., f = f(¢,r,S,0, p), where the unit
direction vector, § , may be expressed in terms of the azimuthal
angle, v , and polar angle, &, as [20]

§ =sin@cosyi+sinOsiny j+cos oK. (2)
If the Cartesian coordinate system is used to describe space, for
example, one may write the functional dependence of f as

f=f@x,v,2,0,y,w,p). In other words, for a three-
dimensional (3D) geometry, f is a function of 8 independent

variables. Since polarizations are discrete, it is customary to
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think of f as being a function of 7 independent variables, with
the implicit understanding that it is different for different
polarizations. The group velocity is also dependent on direction:
v=2(S,w, p). The equilibrium Bose-Einstein distribution, on
the other hand, is direction independent: f; = f,(®,T), as is the
relaxation time-scale: 7 =r(w,T,p). Following the seminal

work of Majumdar [21], a phonon intensity may be defined in
terms of the distribution function:

hof D(w,p)/4x

Io)p :I(t,r,ﬁ,a),p): YV,
’ ’ , (3)
hof, D(o, p)/ 47

Io,(u,p :10(1,1',60,19) =

D(u,p
where D(w, p) is the density of states, and 7, , is the spectral

directional phonon intensity, while /,, is the equilibrium

spectral phonon intensity. Substitution of Eq. (3) into Eq. (1)
yields [21]

ala) I (0] _Iw
7’!’ +v, VI, = % . 4)
,p

For any given frequency and polarization, the intensity, /, ,, is a

function of time, 3 space variables (in 3D), and 2 directional
variables, making Eq. (4) a six-dimensional equation.
Furthermore, it needs to be solved for all frequency and
polarizations in order to determine the heat flux, as is discussed
in the sub-section to follow.

Solution of the BTE [Eq. (4)] necessitates boundary
conditions for the intensity. Two types of boundary conditions
are generally used: (1) thermalizing, and (2) reflective. At a
thermalizing boundary, phonons are emitted from it based on the
equilibrium energy distribution and any phonon that strikes it
immediately gets absorbed. The boundary condition is

mathematically written as /, , =/, , ,, where r, is the position

vector of the boundary or wall, and §, is the outgoing direction
for the intensity. In an axisymmetric domain, the treatment of the

axis of symmetry requires special numerical treatment, and this
is discussed in a later section.

Heat Flux and Energy Conservation (First Law)

Once the BTE [Eq. (4)] has been solved, the heat flux may be
calculated from the phonon intensity using the relationship
[15,20]

xxxxxx

q(t,r) = Z J.p J.Iw,p(t,r,ﬁ,a),p) SdQdw
Ormin, p 4
' ) Q)

'max, p

= z I q,,(tr)do

r Dnin,p

where the integrals are over all solid angles Q and the frequency
range of each polarization; o and @_. are the maximum

max, p min, p
and minimum frequencies, respectively, corresponding to a
given polarization, p. In Eq. (5), q,,, denotes the spectral heat

flux while q denotes the total heat flux. Substitution of Egs. (4)

and (5) into the energy conservation equation (First Law),
followed by some manipulation, yields [15]:
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D
P oy, P

P 1 | [V,,|h0D(@, p) oG ©
_g mm-[.p |DW| T, [exr;[ha)/ k,T1-1 -G, p]_# do
where
G,,=[1,,dQ. (7)

ix

Equation (6) is a nonlinear equation that may be solved to obtain
the so-called pseudo-temperature [15,22] at any location within
the computational domain. In the section to follow, numerical
techniques for solution of the BTE are discussed.

NUMERICAL SOLUTION

The present work uses the finite angle method [15,20] for solving
the BTE [Eq. (4)]. It is discussed next, along with treatment of
the axis of symmetry and the transducer, which is a metallic film
that covers the substrate.

Finite Angle Method (FAM)

z

X Ay,

5

Figure 1: Polar coordinate system used for angular discretization
in the FAM.

The FAM is a variant of the discrete ordinates method [20]. In
the FAM, the entire solid angle space is first split into a set of
nonoverlapping smaller solid angles. These smaller solid angles
may be based equal subdivisions in 8 and y , as shown in Fig.

1. The BTE [Eq. (4)] is first integrated over a volume [finite
volume method in space on a structured mesh with cell index
(,k)], followed by finite solid angles to yield [15,20]:

Fon| + |Ni:1 (S, )4
o | T el et iR Iy gk
., (®)
= ;(Io,m,p,k _Ii,m,p,j,k)Vin Vi= 1’2""’Ndir

rw,p,j,k

where V, , is the volume of the k-th cell, A4, ;, is the area of the

f~th face of the (j,k)-th cell, and

6,+A0,/2 v, +Ay,/2
Q= [do= | sin@dfdy
AQ,

0,=00,12 y;-Ay; /2 (9)

Ay,
=2sinb, sin(%jm//i
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and

S, =cosy,sin (%j [AO. —cos(20,)sin(AG,)] i

+siny, sin(%}[mﬂ —cos(20l.)sin(A9i)]j . (10)
+ [ATWJ sin(26,)sin(A 6, )k

The subscript i for the intensity now denotes an intensity along a
line of sight passing through the center of the solid angle, i.e., in
the direction §, (see Fig. 1). Finally, the face intensity in Eq. (8)
is expressed in terms of cell-center intensities using the first-
order upwind scheme [15]:

] _ Ii,w,p,j,k
Lo.p. (k) T I

i,0,p,N(f)

if §en, >0 "
if 80, <0’ an
where N(f) denotes the neighboring cell next to face f, as
shown in Fig. 2.

Figure 2: Schematic representation of geometric quantities used
for finite volume discretization of the BTE.

As a final note, the cylindrical coordinates, the volume appearing

in Eq. (8) can be determined using V, ; = I J.27rrdr dz , where r,
2 T

and r, are inner and outer radii, respectively, while z, and z, are

bottom and top z-coordinates, respectively. For any horizontal

face, the area is given by 4, , =7(r’—r’), while for any

vertical face, the area is given by 4, , =27r,z;.

Treatment of the Transducer

The transducer is metallic. In this study, heat conduction in the
transducer is treated using the Fourier law. Furthermore, since
the transducer is very thin, it is assumed that there is no
temperature variation within the transducer in the z direction
(Fig. 3). The only variation is in the r direction. With this
premise, the computational domain may be discretized using a
structured mesh in the -z plane, as shown in Fig. 4.
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Figure 3: Two-dimensional axisymmetric representation of an
FDTR setup.
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Figure 4: Structured mesh in the -z plane used to discretize
the substrate and the transducer.

The governing equation for heat transfer in the transducer may
be derived from an energy balance, and is written as

o, _k & ( ar, J+<q,"—q;'>

PrCr (12)

o ror or

where p,, ¢, , k;,and z, are the density, specific heat capacity,

Zr

thermal conductivity, and thickness of the transducer,
respectively. The temperature of the transducer is given by 7.

The heat fluxes at the top and bottom surfaces of the transducer
are denoted by ¢, and ¢, , respectively. The heat flux on the top

surface is the energy supplied by the pump laser, and is a known
quantity, written as

q/=q,(Nl+sinw,1] (13)
where ¢, (r) is the radially varying (such as Gaussian) laser flux,
and @, is the modulation frequency of the pump laser. The heat

flux on the bottom surface of the transducer is not a known
quantity. However, it can be related to the substrate through the
relationship

q;’:GC(TT_T;op) (14)
where T, is the temperature on the top of the substrate surface,
and G, is the contact conductance between the transducer and

the substrate. Although T, is not directly known, it can be

op

derived from the solution (of temperature) in the substrate, which
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in turn, requires solution of the BTE. Thus, coupling the
transducer to the substrate requires a self-consistent iterative
procedure. This procedure is described in the section to follow.

As a final step, applying the finite-volume procedure [23]
for discretization of Eq. (12) along with explicit (forward Euler)
time disctretization, we obtain

2r.Ar,
Prlrzr jAt - [Tm _TT.I.;{ ]: 2q, 1, Ar; =2q; 1, Ar;
_ kTZT(2rj +Arl) TT()]jH _ kTZT(zrj —Arj) T;l«% (15)
Ar,+Ar,, ’ Ar,+Ar, /

_{szT@rj +Ar) . kpz, (2r, —Arj):lTnld

1.j
Ar; +Ar;, Ar; +Ar;

where the superscript “old” represents values at the previous
time-step. Equation (15) represents a tridiagonal set of linear
equations that can be solved readily.

Solution Algorithm

To summarize, determination of (pseudo-)temperature and heat
flux in an FDTR setup requires an iterative procedure that entails
the following steps:

1. The temperature of the entire solution (computational) domain
is first guessed. This includes nonisothermal boundaries, such
as the transducer top.

2.The BTE [Eq. (4)] is solved to determine the spectral intensity,
I,,- This intensity is then post-processed to compute the

incident phonon intensity, G, , using Eq. (7). Likewise, Eq.

w,p
(5) may be used to compute the heat flux at locations of
interest, e.g., at boundary surfaces.

3. The computed value of G, , is then substituted into Eq. (6)

and the resulting equation is solved using a nonlinear equation
solver to determine the pseudo-temperature at any given
location in space and instant of time.

4. The intensities obtained from the solution of the BTE can also
be used to determine the heat flux at the top surface of the
substrate using Eq. (5).

5. The heat flux at the top surface of the substrate is equal to the

heat flux at the bottom surface of the transducer, g, ;. Once

this is known, Eq. (15) can be solved. Solution of Eq. (15)
yields the transducer temperature.

6. With the heat flux and transducer temperature both being
known, the temperature on the top of the substrate can now be
computed using Eq. (14). This new temperature replaces the
guess in Step 1.

7. Steps 2-6 are repeated until convergence.

8.Once convergence has been reached, the solution is marched
forward in time.

RESULTS AND DISCUSSION

For the purposes of this study, the experimental data reported by
Regner et al. [2] was used for comparison. The substrate in this
experiment is a silicon block that is 525 pm thick, i.e., z;= 525

pum. The radial extent of substrate, r,, which is not known, was

assumed to be also equal to 525 pum for the numerical
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calculations. The transducer is a bilayer transducer with 55 nm
of gold and 5 nm of chromium, resulting in z, = 60 nm. The

thermophysical properties of gold and chromium that were used
for calculations are shown in Table 1. Based on the thicknesses
of the gold and chromium layers, effective values of the
properties of the transducer were estimated and used. These are
also shown in Table 1.

Table 1: Thermophysical properties of the transducer layers.

Transducer
Gold | Chromium | Effective
Density (kg/m?) 19320 7140 18290.8
Specific heat capacity 129 450 155.7
(J/kg/K)
Thermal conductivity 310 93.9 266.6
(W/m/K)

For numerical calculations, a 200 x 200 nonuniform mesh
with a stretching factor not exceeding 1.2 was used, as shown
schematically in Fig. 4. The modulation frequency, which is an
input parameter, was varied between 20 MHz and 200 MHz, with
8 different frequencies. Each sinusoidal cycle of the laser was
split into 2500 time steps. This implies that a time-step size of 2
ps was used. This time step size also obeys the stability criterion
of the explicit method being used here. Furthermore, it is small
enough to resolve the scattering events. The nominal value of the
interfacial (between the substrate and the transducer) contact
conductance, G, was taken to be 200 MW/m?/K, as suggested

by Cahill [1], although for a different material pair. The pump
and probe laser 1/¢? radii are inputs in the model. Here,
=4.1pm and r,,,, =2.8wn were used. A Gaussian laser

rpump probe
flux profile (in ) was used for all calculations. For BTE
calculations, the frequency space was discretized using 40

spectral intervals (bands) with 24 bands between 0 and @, ,,
The

angular space was discretized using 4 azimuthal angles and 20
polar angles, resulting in a total of 80 solid angles or directions.
The scattering (or relaxation) time-scales used in this study are
given by Ward and Broido [24]:

., =AY & T[1-exp(-37T/6,)] (162)
7, = A &'T[1-exp(-3T/6,)] (16b)

where the subscripts N and U stand for Normal and Umklapp
processes, respectively, and the subscript p stands for the
polarization of the phonon, i.e., either longitudinal acoustic (LA)
or transverse acoustic (TA). The constants in Eq. (16) are as

follows: 4,', =7.10x107 s.rad?’K"!, 4, =10.9x107 s.rad?K"',
Al =9.51x107" s rad*K"!, 47, =37.8x107 s’ .rad*K"". The

Mathiessen rule [9] was then used to compute the overall
relaxation time-scale. Optical phonons were not considered in
this study because their contributions to thermal transport in
silicon have been shown to be marginal [25] except at high
temperature. Dispersion relationships for silicon were used from
Pop [26], which were then used to compute the phonon group
velocities for all frequencies and polarizations.

and w

max,LA *

and 16 additional bands between @

max,TA
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To bring to light the difficulty of BTE calculations for the
problem at hand, a rough estimate is helpful. Since 40 bands and
80 angles are used, the calculation essentially boils down to time-
marching 3200 partial differential equations on a mesh with
40,000 cells. For the 200 MHz modulation frequency, the time
period for each cycle is 5x1077 s. Since a time-step size of 2 ps is
used, this means that the solution has to be advanced through
roughly 12,500 time steps (5 cycles with 2500 time steps per
cycle; see next paragraph for reasoning) before quasi-steady
state is reached. Using band-based parallelization over 40
processors (same as the number of bands), the calculations
require approximately 7 hours. However, for the 20 MHz
modulation frequency, since the stability criterion dictates that
the same time step size of 2 ps is to be used (Note: stability
criterion depends on phonon speed and grid size, both of which
are independent of modulation frequency), the calculation
requires approximately 70 hours. An implicit time-marching
scheme was also explored but was found to be computationally
more expensive. Furthermore, it was found that using larger
time-step size (allowable in implicit time-marching methods)
negatively affected the accuracy of the computed phase.

For each simulation, the solution was advanced far enough
in time such that the solution became quasi-steady. The
temperature of the transducer, averaged over the probe radius (or
spot), was compared against the sinusoidal pump laser flux
pulse, and the phase lag was computed. This was done in two
ways: (1) using the time lag from peak to peak, and (2) using the
time lag from trough to trough. Figure 5 shows how the phase
lag computed with these two approaches converge to a unique
value as quasi-steady state is approached. It also clearly
demonstrates that the phase lag converges to a unique value after
about 5 pump laser cycles.

ST

S5 el -

Phase lag (rad.)
&
=)
T
\
1

P - — - Peak ||
L, Average
———e— Trough
70 L I - Ll T
1 2 3 4 5

Number of Cycles
Figure 5: Convergence of phase lag using two different
approaches as the solution approaches quasi-steady state.

Figure 6 shows the temporal evolution of the temperature
distribution for the lowest and highest frequencies, namely 20
MHz and 200 MHz. As expected, the penetration depth, which
is inversely proportional to the square root of the modulation
frequency, is much smaller for the 200 MHz case.
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Figure 6: Temporal evolution of the temperature distribution for
two different modulation frequencies. For clarity of figures, the
maximum temperature is truncated at 300.25 K, even though the
peak temperature at the boundary exceeds that value.

Figure 7 shows the phase lag calculated using the BTE and its
comparison to the experimentally measured values. Clearly, the
phase values are underpredicted by the BTE compared to the
experiments, indicating that, at least with the time-scales being
used in the present study (Ward and Broido [24]), the phonons
have less resistance to transport (less scattering) compared to
experiments. At this point, the reason for the discrepancy is not
clear and further investigations will have to be undertaken to
ascertain the exact cause of the discrepancy. Nonetheless, the
results shown here represent the first step toward solving the
multidimensional phonon BTE for an actual FDTR experimental
setup in which the solution is advanced in time domain to a
quasi-steady state.

or T T T T T T T

Experiment |
BTE

Phase lag (rad.)

50 100 150 200
Modulation Frequency (MHz)

Figure 7: Comparison of phase lag computed using the phonon
BTE and measured values [2].
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SUMMARY AND CONCLUSIONS

It is now widely accepted that the most appropriate model to
extract the phonon mean free path spectrum and the size-
dependent thermal conductivity from FDTR experiments is the
BTE for phonons. The BTE for phonons is a seven-dimensional
(six-dimensional if a spatially two-dimensional computational
domain is considered) partial differential equation, making it
extremely challenging to solve.

In this study, BTE computations are conducted in a two-
dimensional axisymmetric geometry in cylindrical coordinates
to simulate an FDTR experimental setup. The thin metallic
transducer film is modeled using the Fourier law and radial
conduction in the transducer is included. The governing equation
in the transducer is coupled to the BTE calculations in the silicon
substrate underneath using a self-consistent iterative procedure.
The BTE computations are performed with a computational
mesh comprised of 40,000 quadrilateral control volumes. For
angular discretization, 80 solid angles (directions) are used,
while for discretization of the frequency space, 40 spectral
intervals (or bands) are used. For time advancement, the forward
Euler (Explicit) procedure with equal time step size of 2 ps is
used. Each simulation is carried out until quasi-steady state is
reached. This requires approximately 5 modulation cycles of the
pump laser. The convergence of the phase lag was monitored to
ascertain that the solution has been advanced sufficiently in time.
Computations were performed for 8 different modulation
frequencies ranging between 20 MHz and 200 MHz. The longest
computations required approximately 70 hours of wall clock
time on a parallel system with 40 processors.

The scattering time-scales published by Ward and Briodo
[24] were used in this study. With these time-scales as inputs, the
phase lag computed using the BTE was found to underpredict
experimentally measured values, indicating that the resistance
posed by scattering to the traveling phonons is underpredicted.
The exact cause for this discrepancy is not clear at this point and
additional studies will have to be undertaken to pinpoint the
cause. Nonetheless, the present study represents the first step
toward solving the multidimensional phonon BTE for an actual
FDTR experimental setup in which the solution was advanced in
time domain to a quasi-steady state, as opposed to previous
studies where only a single laser pulse was simulated and no
attempt was made to compute the phase lag under quasi-state
conditions.
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