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ABSTRACT 
The Boltzmann Transport equation (BTE) was solved 
numerically in cylindrical coordinates and in time domain to 
simulate a Frequency Domain Thermo-Reflectance (FDTR) 
experiment. First, a parallel phonon BTE solver that accounts for 
all phonon modes, frequencies, and polarizations was developed 
and tested. The solver employs the finite-volume method (FVM) 
for discretization of physical space, and the finite-angle method 
(FAM) for discretization of angular space. The solution was 
advanced in time using explicit time marching. The simulations 
were carried out in time domain and band-based parallelization 
of the BTE solver was implemented. The phase lag between the 
temperature averaged over the probed region of the transducer 
and the modulated laser pump signal was extracted for a pump 
laser modulation frequency ranging from 20-200 MHz. It was 
found that with the relaxation time scales used in the present 
study, the computed phase lag is underpredicted when compared 
to experimental data, especially at smaller modulation 
frequencies. The challenges in solving the BTE for such 
applications are highlighted. 
 
NOMENCLATURE 
A  area [m2] 
c  specific heat capacity per unit volume [J m-3 K-1] 
D  density of states per unit volume [m-3] 

f  number density function 

0f  equilibrium number density function 

, pGω  spectral directionally integrated intensity [Wm-2 rad-1s] 

CG  contact conductance [W m-2 K-1] 
  Dirac constant = 1.0546 x 10-34 [m2kg.s-1] 

, pIω  spectral directional phonon intensity [Wm-2sr-1rad-1s] 

0, , pI ω  equilibrium phonon intensity [Wm-2sr-1rad-1s] 

Bk  Boltzmann constant = 1.381 x 10-23 [m2kg.s-2K-1] 

Tk  thermal conductivity of transducer [W m-1 K-1] 
n̂  unit surface normal vector 

bandN  total number of spectral intervals (or bands) 

dirN  number of solid angles (or directions) 
p  phonon polarization index 
q  heat flux vector [Wm-2] 

Q  heat transfer rate [W] 
r  radial coordinate or radius [m] 
r  position vector [m] 
ŝ  unit direction vector 
t   time [s] 
T  absolute temperature [K] 
V  volume of cell [m3] 
z  axial coordinate or thickness [m] 
 
Greek 

Tρ  density of transducer [kg m-3] 
θ  polar angle [radians] 

, pωυ  phonon group velocity vector [m s-1] 

, pωτ  spectral relaxation time scale [s] 
ω  angular frequency [rad s-1] 

Lω  modulation frequency of pump laser [Hz] 
Ω  solid angle (sr) 
ψ  azimuthal angle [rad] 
  
INTRODUCTION 
Frequency Domain Thermo-Reflectance (FDTR) is a commonly 
used noncontact optical pump probe technique based on thermo-
reflectance for the study of heat transport at small time and 
length scales, i.e., at scales comparable to or smaller than the 
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mean free paths of the energy-carrying phonons. In FDTR, the 
sample, which is covered by a thin metallic layer called the 
transducer, is heated using a modulated continuous wave pump 
laser beam resulting in surface temperature (reflectivity) 
oscillations, which are then monitored using a probe laser. The 
lag in phase between the pump and probe laser signals is 
recorded. Extraction of the thermal conductivity of the substrate 
from the measured phase lag data requires use of a thermal 
transport model.  

The most common model used for this purpose is based on 
the solution of the Fourier heat conduction equation in frequency 
domain. This was brought to the limelight by Cahill [1] and has 
been used by the vast majority of researchers since then [2,3]. 
The presence of a transducer makes it a multiple layer problem 
which is treated using the Feldman algorithm [4]. Interfaces 
between layers are treated as artificial layers whose thermal 
properties are adjusted to reproduce measured interface 
conductance values. Unfortunately, these closed-form analytical 
models are unable to make a distinction between changes made 
to the pump laser spot size (diameter) versus the probe laser spot 
size [5]. The problem may be overcome by resorting to 
numerical solution of the Fourier heat conduction equation [5].  

The thermal conductivity extracted from FDTR experiments 
using such a Fourier law-based model has been found to change 
when the modulation frequency of the pump laser is changed [1-
3,6]. The Fourier law assumes that all phonons travel with 
infinite velocity resulting in very small mean free paths. The 
dependence of thermal conductivity on the modulation 
frequency is attributed to the fact that when the laser modulation 
frequency is high, the thermal penetration depth, which is 
inversely proportional to the square root of the modulation 
frequency, is small, and can often be smaller than the mean free 
path of some of the energy-carrying phonons. As a result, some 
phonons hardly scatter. This results in so-called ballistic-
diffusive transport or quasi-ballistic transport. In this regime of 
transport, the effective thermal conductivity has been found to 
be smaller than the bulk value—a phenomenon known as 
thermal conductivity suppression [6-8]. 

Various enhancements to Fourier law-based models have 
been proposed in an effort to the capture the ballistic effects and 
predict the thermal conductivity suppression for different 
modulation frequencies. One class of these models [9] makes use 
of the hyperbolic heat conduction equation which accounts for a 
finite velocity for the phonons by introducing relaxation time as 
a parameter. However, all phonons are assumed to have the same 
velocity irrespective of their type and frequency. Two parameter 
models [10] have been used to treat the diffuse and ballistic 
phonons differently by introducing an additional term in the 
Fourier heat conduction equation that involves the characteristic 
ballistic heat transport length as an additional parameter. Higher-
order correction terms from the BTE have been added to the 
Fourier law models for the treatment of ballistic phonons. Ramu 
and Bowers [11] proposed a two-band model in which a cut-off 
frequency is used to classify the phonons into ballistic and 
diffusive phonons. The ballistic phonons are then treated by 
adding a higher order correction term to the Fourier law that is 
derived from the phonon BTE. In a similar ballistic-diffusive 
model proposed by Chen [12], and later expanded to complex 
three-dimensional geometry by Mittal and Mazumder [13], the 

phonon intensity is split into a diffusive component and a 
ballistic component. More recently, a model that introduces a 
hydrodynamic term in the Fourier heat conduction equation—
analogous to the advective term in the Navier-Stokes equation—
has been proposed to capture ballistic effects [14]. 

The aforementioned approximate models have been used to 
avoid solving the full-fledged phonon BTE, as it is very 
challenging and time consuming to solve [15]. Peraud and 
Hadjiconstantinou [16] performed Monte Carlo simulations of 
phonon transport by using an energy-based deviational 
formulation. Regner et al. [17] solved the 1D BTE in frequency 
domain to extract the thermal conductivity accumulation and 
suppression functions. However, the influence of 
multidimensional thermal transport can only be captured by 
solving the multidimensional BTE. Ding et al. [18] used Monte 
Carlo study to simulate a single laser pulse of a TDTR 
experiment to demonstrate in-plane and cross-plane thermal 
conductivity suppression. Ali et al. [19] solved the full 
multidimensional phonon BTE for TDTR experiments in a 2D 
planar setup and the model demonstrated thermal conductivity 
suppression and its dependence on the modulation frequency of 
the pump laser without the use of any additional parameters.  

The current work attempts to solve the BTE in a 2D 
axisymmetric domain (as opposed to 2D planar [19]). This is the 
first work of its kind where the solution in time domain is 
advanced to a point where the solution becomes quasi-periodic, 
enabling reliable extraction of the phase lag. This is in contrast 
with previous studies [16,18] that only simulated a single laser 
pulse.  The present BTE solver uses the cylindrical coordinate 
system and accounts for all phonon modes, frequencies and 
polarization. It represents the first step toward extracting the 
thermal conductivity from FDTR experiments. 
 
THEORY AND MATHEMATICAL MODEL 
The Phonon Boltzmann Transport Equation (BTE) 
The BTE can be used to model phonon transport in semi-
conductors as phonons follow Bose-Einstein statistics and 
interact with each other via scattering events. The phonon BTE, 
under the single time scale approximation can be written as [9, 
15] 

0f ff f
t τ

−∂
+ ∇ =

∂
υ  , (1) 

where f is the distribution function of an ensemble of phonons, 

0f  is the equilibrium number density function,τ is the scattering 
time scale and υ is the phonon group velocity. The distribution 
function, f , for each polarization p, is a function of seven 
independent variables, i.e., ˆ( , , , , )f f t pω= r s , where the unit 
direction vector, ŝ , may be expressed in terms of the azimuthal 
angle, ψ , and polar angle, θ , as [20] 

ˆ ˆ ˆˆ sin cos sin sin cosθ ψ θ ψ θ=s i + j + k . (2) 
If the Cartesian coordinate system is used to describe space, for 
example, one may write the functional dependence of f as 

( , , , , , , , )f f t x y z pθ ψ ω= . In other words, for a three-
dimensional (3D) geometry, f is a function of 8 independent 
variables. Since polarizations are discrete, it is customary to 
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think of f  as being a function of 7 independent variables, with 
the implicit understanding that it is different for different 
polarizations. The group velocity is also dependent on direction: 

ˆ( , , )pω=υ υ s . The equilibrium Bose-Einstein distribution, on 
the other hand, is direction independent: 0 0 ( , )f f Tω= , as is the 
relaxation time-scale: ( , , )T pτ τ ω= . Following the seminal 
work of Majumdar [21], a phonon intensity may be defined in 
terms of the distribution function: 

, ,

0, , 0 , 0

ˆ( , , , , ) ( , ) / 4

( , , , ) ( , ) / 4

p p

p p

I I t p f D p

I I t p f D p

ω ω

ω ω

ω ω ω π

ω ω ω π

= =

= =

r s υ

r υ





, (3) 

where ( , )D pω  is the density of states, and , pIω  is the spectral 
directional phonon intensity, while 0, , pI ω  is the equilibrium 
spectral phonon intensity. Substitution of Eq. (3) into Eq. (1) 
yields [21] 

, 0, , ,
, ,

,

p p p
p p

p

I I I
I

t
ω ω ω

ω ω
ωτ

∂ −
+ ∇ =

∂
υ  . (4) 

For any given frequency and polarization, the intensity, , pIω , is a 
function of time, 3 space variables (in 3D), and 2 directional 
variables, making Eq. (4) a six-dimensional equation. 
Furthermore, it needs to be solved for all frequency and 
polarizations in order to determine the heat flux, as is discussed 
in the sub-section to follow. 

Solution of the BTE [Eq. (4)] necessitates boundary 
conditions for the intensity. Two types of boundary conditions 
are generally used: (1) thermalizing, and (2) reflective. At a 
thermalizing boundary, phonons are emitted from it based on the 
equilibrium energy distribution and any phonon that strikes it 
immediately gets absorbed. The boundary condition is 
mathematically written as , 0, ,p pI Iω ω= , where wr  is the position 
vector of the boundary or wall, and ˆos  is the outgoing direction 
for the intensity. In an axisymmetric domain, the treatment of the 
axis of symmetry requires special numerical treatment, and this 
is discussed in a later section. 
 
Heat Flux and Energy Conservation (First Law) 
Once the BTE [Eq. (4)] has been solved, the heat flux may be 
calculated from the phonon intensity using the relationship 
[15,20] 
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min,

max,

min,
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=

∑ ∫ ∫

∑ ∫

q r r s s

q r

, (5) 

where the integrals are over all solid angles Ω  and the frequency 
range of each polarization; max, pω  and min, pω are the maximum 
and minimum frequencies, respectively, corresponding to a 
given polarization, p. In Eq. (5), , pωq  denotes the spectral heat 
flux while q  denotes the total heat flux. Substitution of Eqs. (4) 
and (5) into the energy conservation equation (First Law), 
followed by some manipulation, yields [15]:  
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. (6) 

where 

, ,
4

p pG I dω ω
π

= Ω∫ . (7) 

Equation (6) is a nonlinear equation that may be solved to obtain 
the so-called pseudo-temperature [15,22] at any location within 
the computational domain. In the section to follow, numerical 
techniques for solution of the BTE are discussed. 
 
NUMERICAL SOLUTION 
The present work uses the finite angle method [15,20] for solving 
the BTE [Eq. (4)]. It is discussed next, along with treatment of 
the axis of symmetry and the transducer, which is a metallic film 
that covers the substrate. 
 
Finite Angle Method (FAM) 

 
Figure 1: Polar coordinate system used for angular discretization 
in the FAM. 
The FAM is a variant of the discrete ordinates method [20]. In 
the FAM, the entire solid angle space is first split into a set of 
nonoverlapping smaller solid angles. These smaller solid angles 
may be based equal subdivisions in θ  and ψ , as shown in Fig. 
1. The BTE [Eq. (4)] is first integrated over a volume [finite 
volume method in space on a structured mesh with cell index 
(j,k)], followed by finite solid angles to yield [15,20]: 

,
, ,

, , , , , ( , ) , ,
1

, , , , , , ,
, , ,
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=

∂
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∂
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, (8) 

where ,j kV is the volume of the k-th cell, , ,f j kA  is the area of the 
f-th face of the (j,k)-th cell, and  

/2 /2

/2 /2

sin

2sin sin
2

i i i i
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and  

ˆcos sin [ cos(2 ) sin( )]
2

ˆsin sin [ cos(2 ) sin( )]
2

ˆsin(2 )sin( )
2

i
i i i i i
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i i i i
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 

S i

+ j

k

. (10) 

The subscript i for the intensity now denotes an intensity along a 
line of sight passing through the center of the solid angle, i.e., in 
the direction ˆis (see Fig. 1). Finally, the face intensity in Eq. (8) 
is expressed in terms of cell-center intensities using the first-
order upwind scheme [15]: 

, , , ,
, , , ( , )

, , , ( )

ˆ ˆif   0
ˆ ˆif   0

i p j k i f
i p f j k

i p N f i f

I
I

I
ω

ω
ω

>=  <

s n
s n




, (11) 

where ( )N f  denotes the neighboring cell next to face f, as 
shown in Fig. 2. 

 
Figure 2: Schematic representation of geometric quantities used 
for finite volume discretization of the BTE. 
 
As a final note, the cylindrical coordinates, the volume appearing 

in Eq. (8) can be determined using , 2
t o

b i

z r

j k
z r

V rdr dzπ= ∫ ∫ , where ir

and or are inner and outer radii, respectively, while bz  and tz are 
bottom and top z-coordinates, respectively. For any horizontal 
face, the area is given by 2 2

, , ( )f j k o iA r rπ= − , while for any 
vertical face, the area is given by , , 2f j k o TA r zπ= . 
 
Treatment of the Transducer 
 
The transducer is metallic. In this study, heat conduction in the 
transducer is treated using the Fourier law. Furthermore, since 
the transducer is very thin, it is assumed that there is no 
temperature variation within the transducer in the z direction 
(Fig. 3). The only variation is in the r direction. With this 
premise, the computational domain may be discretized using a 
structured mesh in the r-z plane, as shown in Fig. 4. 

 
Figure 3: Two-dimensional axisymmetric representation of an 
FDTR setup.  

 
Figure 4: Structured mesh in the r-z plane used to discretize 
the substrate and the transducer. 

The governing equation for heat transfer in the transducer may 
be derived from an energy balance, and is written as 

( )t bT T T
T T

T

q qT k Tc r
t r r r z

ρ
′′ ′′−∂ ∂∂  = + ∂ ∂ ∂ 

 (12) 

where Tρ , Tc , Tk , and Tz are the density, specific heat capacity, 
thermal conductivity, and thickness of the transducer, 
respectively. The temperature of the transducer is given by TT . 
The heat fluxes at the top and bottom surfaces of the transducer 
are denoted by tq′′ and bq′′ , respectively. The heat flux on the top 
surface is the energy supplied by the pump laser, and is a known 
quantity, written as 

( )[1 sin ]t L Lq q r tω′′ ′′= +  (13) 
where ( )Lq r′′  is the radially varying (such as Gaussian) laser flux, 
and Lω is the modulation frequency of the pump laser. The heat 
flux on the bottom surface of the transducer is not a known 
quantity. However, it can be related to the substrate through the 
relationship 

( )b C T topq G T T′′ = −  (14) 
where topT is the temperature on the top of the substrate surface, 
and CG is the contact conductance between the transducer and 
the substrate. Although topT is not directly known, it can be 
derived from the solution (of temperature) in the substrate, which 
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in turn, requires solution of the BTE. Thus, coupling the 
transducer to the substrate requires a self-consistent iterative 
procedure. This procedure is described in the section to follow. 

As a final step, applying the finite-volume procedure [23] 
for discretization of Eq. (12) along with explicit (forward Euler) 
time disctretization, we obtain 

, , , ,

, 1 , 1
1 1

,
1 1

2
2 2

(2 ) (2 )

(2 ) (2 )

j j old
T T T T j T j t j j j b j j j

T T j j T T j jold old
T j T j

j j j j

T T j j T T j j old
T j

j j j j

r r
c z T T q r r q r r

t
k z r r k z r r

T T
r r r r

k z r r k z r r
T

r r r r

ρ

+ −
+ −

+ −

∆
′′ ′′ − = ∆ − ∆ ∆

   + ∆ − ∆
− −   

∆ + ∆ ∆ + ∆      
 + ∆ − ∆

− + 
∆ + ∆ ∆ + ∆  

 (15) 

where the superscript “old” represents values at the previous 
time-step. Equation (15) represents a tridiagonal set of linear 
equations that can be solved readily. 

 
Solution Algorithm 
To summarize, determination of (pseudo-)temperature and heat 
flux in an FDTR setup requires an iterative procedure that entails 
the following steps: 
1. The temperature of the entire solution (computational) domain 

is first guessed. This includes nonisothermal boundaries, such 
as the transducer top. 

2. The BTE [Eq. (4)] is solved to determine the spectral intensity, 
, pIω . This intensity is then post-processed to compute the 

incident phonon intensity, , pGω , using Eq. (7). Likewise, Eq. 
(5) may be used to compute the heat flux at locations of 
interest, e.g., at boundary surfaces. 

3. The computed value of , pGω  is then substituted into Eq. (6) 
and the resulting equation is solved using a nonlinear equation 
solver to determine the pseudo-temperature at any given 
location in space and instant of time. 

4. The intensities obtained from the solution of the BTE can also 
be used to determine the heat flux at the top surface of the 
substrate using Eq. (5).  

5. The heat flux at the top surface of the substrate is equal to the 
heat flux at the bottom surface of the transducer, ,b jq′′ . Once 
this is known, Eq. (15) can be solved. Solution of Eq. (15) 
yields the transducer temperature.   

6. With the heat flux and transducer temperature both being 
known, the temperature on the top of the substrate can now be 
computed using Eq. (14). This new temperature replaces the 
guess in Step 1. 

7. Steps 2-6 are repeated until convergence. 
8. Once convergence has been reached, the solution is marched 

forward in time. 
 
RESULTS AND DISCUSSION 
For the purposes of this study, the experimental data reported by 
Regner et al. [2] was used for comparison. The substrate in this 
experiment is a silicon block that is 525 µm thick, i.e., Sz = 525 
µm. The radial extent of substrate,  Sr , which is not known, was 
assumed to be also equal to 525 µm for the numerical 

calculations. The transducer is a bilayer transducer with 55 nm 
of gold and 5 nm of chromium, resulting in Tz  = 60 nm. The 
thermophysical properties of gold and chromium that were used 
for calculations are shown in Table 1. Based on the thicknesses 
of the gold and chromium layers, effective values of the 
properties of the transducer were estimated and used. These are 
also shown in Table 1. 

Table 1: Thermophysical properties of the transducer layers. 

 Transducer 
 Gold Chromium Effective 
Density (kg/m3) 19320 7140 18290.8 
Specific heat capacity 
(J/kg/K) 

129 450 155.7 

Thermal conductivity 
(W/m/K) 

310 93.9 266.6 

 
For numerical calculations, a 200 x 200 nonuniform mesh 

with a stretching factor not exceeding 1.2 was used, as shown 
schematically in Fig. 4. The modulation frequency, which is an 
input parameter, was varied between 20 MHz and 200 MHz, with 
8 different frequencies. Each sinusoidal cycle of the laser was 
split into 2500 time steps. This implies that a time-step size of 2 
ps was used. This time step size also obeys the stability criterion 
of the explicit method being used here. Furthermore, it is small 
enough to resolve the scattering events. The nominal value of the 
interfacial (between the substrate and the transducer) contact 
conductance, CG , was taken to be 200 MW/m2/K, as suggested 
by Cahill [1], although for a different material pair. The pump 
and probe laser 1/e2 radii are inputs in the model. Here, 

4.1μpumpr m=  and 2.8μprober m=  were used.  A Gaussian laser 
flux profile (in r) was used for all calculations. For BTE 
calculations, the frequency space was discretized using 40 
spectral intervals (bands) with 24 bands between 0 and max,TAω , 
and 16 additional bands between max,TAω  and max,LAω . The 
angular space was discretized using 4 azimuthal angles and 20 
polar angles, resulting in a total of 80 solid angles or directions. 
The scattering (or relaxation) time-scales used in this study are 
given by Ward and Broido [24]: 

1 2
, [1 exp( 3 )]N

N p p DA T Tτ ω θ− = − −  (16a) 
1 4
, [1 exp( 3 )]U

U p p DA T Tτ ω θ− = − −  (16b) 
where the subscripts N and U stand for Normal and Umklapp 
processes, respectively, and the subscript p stands for the 
polarization of the phonon, i.e., either longitudinal acoustic (LA) 
or transverse acoustic (TA). The constants in Eq. (16) are as 
follows: 207.10 10N

LAA −= × s.rad-2K-1, 2010.9 10N
TAA −= × s.rad-2K-1, 

479.51 10U
LAA −= × s3.rad-4K-1, 4737.8 10U

TAA −= × s3.rad-4K-1. The 
Mathiessen rule [9] was then used to compute the overall 
relaxation time-scale. Optical phonons were not considered in 
this study because their contributions to thermal transport in 
silicon have been shown to be marginal [25] except at high 
temperature. Dispersion relationships for silicon were used from 
Pop [26], which were then used to compute the phonon group 
velocities for all frequencies and polarizations. 
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To bring to light the difficulty of BTE calculations for the 
problem at hand, a rough estimate is helpful. Since 40 bands and 
80 angles are used, the calculation essentially boils down to time-
marching 3200 partial differential equations on a mesh with 
40,000 cells. For the 200 MHz modulation frequency, the time 
period for each cycle is 5x10-7 s. Since a time-step size of 2 ps is 
used, this means that the solution has to be advanced through 
roughly 12,500 time steps (5 cycles with 2500 time steps per 
cycle; see next paragraph for reasoning) before quasi-steady 
state is reached. Using band-based parallelization over 40 
processors (same as the number of bands), the calculations 
require approximately 7 hours. However, for the 20 MHz 
modulation frequency, since the stability criterion dictates that 
the same time step size of 2 ps is to be used (Note: stability 
criterion depends on phonon speed and grid size, both of which 
are independent of modulation frequency), the calculation 
requires approximately 70 hours. An implicit time-marching 
scheme was also explored but was found to be computationally 
more expensive. Furthermore, it was found that using larger 
time-step size (allowable in implicit time-marching methods) 
negatively affected the accuracy of the computed phase. 

For each simulation, the solution was advanced far enough 
in time such that the solution became quasi-steady. The 
temperature of the transducer, averaged over the probe radius (or 
spot), was compared against the sinusoidal pump laser flux 
pulse, and the phase lag was computed. This was done in two 
ways: (1) using the time lag from peak to peak, and (2) using the 
time lag from trough to trough. Figure 5 shows how the phase 
lag computed with these two approaches converge to a unique 
value as quasi-steady state is approached. It also clearly 
demonstrates that the phase lag converges to a unique value after 
about 5 pump laser cycles. 

 
Figure 5: Convergence of phase lag using two different 
approaches as the solution approaches quasi-steady state. 
 

Figure 6 shows the temporal evolution of the temperature 
distribution for the lowest and highest frequencies, namely 20 
MHz and 200 MHz. As expected, the penetration depth, which 
is inversely proportional to the square root of the modulation 
frequency, is much smaller for the 200 MHz case. 

 
Figure 6: Temporal evolution of the temperature distribution for 
two different modulation frequencies. For clarity of figures, the 
maximum temperature is truncated at 300.25 K, even though the 
peak temperature at the boundary exceeds that value. 

Figure 7 shows the phase lag calculated using the BTE and its 
comparison to the experimentally measured values. Clearly, the 
phase values are underpredicted by the BTE compared to the 
experiments, indicating that, at least with the time-scales being 
used in the present study (Ward and Broido [24]), the phonons 
have less resistance to transport (less scattering) compared to 
experiments. At this point, the reason for the discrepancy is not 
clear and further investigations will have to be undertaken to 
ascertain the exact cause of the discrepancy. Nonetheless, the 
results shown here represent the first step toward solving the 
multidimensional phonon BTE for an actual FDTR experimental 
setup in which the solution is advanced in time domain to a 
quasi-steady state. 

 
Figure 7: Comparison of phase lag computed using the phonon 
BTE and measured values [2]. 
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SUMMARY AND CONCLUSIONS 
It is now widely accepted that the most appropriate model to 
extract the phonon mean free path spectrum and the size-
dependent thermal conductivity from FDTR experiments is the 
BTE for phonons. The BTE for phonons is a seven-dimensional 
(six-dimensional if a spatially two-dimensional computational 
domain is considered) partial differential equation, making it 
extremely challenging to solve.  

In this study, BTE computations are conducted in a two-
dimensional axisymmetric geometry in cylindrical coordinates 
to simulate an FDTR experimental setup. The thin metallic 
transducer film is modeled using the Fourier law and radial 
conduction in the transducer is included. The governing equation 
in the transducer is coupled to the BTE calculations in the silicon 
substrate underneath using a self-consistent iterative procedure. 
The BTE computations are performed with a computational 
mesh comprised of 40,000 quadrilateral control volumes. For 
angular discretization, 80 solid angles (directions) are used, 
while for discretization of the frequency space, 40 spectral 
intervals (or bands) are used. For time advancement, the forward 
Euler (Explicit) procedure with equal time step size of 2 ps is 
used. Each simulation is carried out until quasi-steady state is 
reached. This requires approximately 5 modulation cycles of the 
pump laser. The convergence of the phase lag was monitored to 
ascertain that the solution has been advanced sufficiently in time. 
Computations were performed for 8 different modulation 
frequencies ranging between 20 MHz and 200 MHz. The longest 
computations required approximately 70 hours of wall clock 
time on a parallel system with 40 processors.  

The scattering time-scales published by Ward and Briodo 
[24] were used in this study. With these time-scales as inputs, the 
phase lag computed using the BTE was found to underpredict 
experimentally measured values, indicating that the resistance 
posed by scattering to the traveling phonons is underpredicted. 
The exact cause for this discrepancy is not clear at this point and 
additional studies will have to be undertaken to pinpoint the 
cause. Nonetheless, the present study represents the first step 
toward solving the multidimensional phonon BTE for an actual 
FDTR experimental setup in which the solution was advanced in 
time domain to a quasi-steady state, as opposed to previous 
studies where only a single laser pulse was simulated and no 
attempt was made to compute the phase lag under quasi-state 
conditions. 
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