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ABSTRACT: We investigate the predictability of the sign of daily southeastern U.S. (SEUS) precipitation anomalies as-
sociated with simultaneous predictors of large-scale climate variability using machine learning models. Models using index-
based climate predictors and gridded fields of large-scale circulation as predictors are utilized. Logistic regression (LR) and
fully connected neural networks using indices of climate phenomena as predictors produce neither accurate nor reliable
predictions, indicating that the indices themselves are not good predictors. Using gridded fields as predictors, an LR and
convolutional neural network (CNN) are more accurate than the index-based models. However, only the CNN can pro-
duce reliable predictions that can be used to identify forecasts of opportunity. Using explainable machine learning we iden-
tify which variables and grid points of the input fields are most relevant for confident and correct predictions in the CNN.
Our results show that the local circulation is most important as represented by maximum relevance of 850-hPa geopotential
heights and zonal winds to making skillful, high-probability predictions. Corresponding composite anomalies identify con-
nections with El Niflo—Southern Oscillation during winter and the Atlantic multidecadal oscillation and North Atlantic

subtropical high during summer.
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1. Introduction

Predicting when, where, and how much precipitation will fall
is critical for decision-making and responding to the impacts of
extreme rainfall across a wide range of sectors and time scales
(Balmaseda et al. 2020). The predictability of subseasonal-to-
seasonal (S2S) precipitation stems from many different sour-
ces, varies by season, and is changing with anthropogenic
climate change (Balmaseda et al. 2020). S2S prediction of total
precipitation, particularly in the extratropics and during the
warm season by state-of-the-art coupled Earth system models
(ESMs) is overall very poor, because the current generation of
ESMs have large biases that profoundly limit the ability to
simulate and predict the circulation patterns that lead to much
of the spatial-temporal variability of precipitation (Balmaseda
et al. 2020).

The skill of predicting even total weekly and monthly
precipitation anomalies over North America remains poor
(e.g., Pegion et al. 2019; Becker et al. 2020). To add to the
challenge, actionable predictions require the ability to predict
precipitation and its extremes at higher temporal resolution
and at regional scales. Prolonged dry spells or the rains from
a single event can have devastating impacts.

In particular, S2S precipitation variability in the southeast-
ern United States (SEUS) has significant impacts on water re-
sources and agriculture in the region. Figure 1b shows the
daily precipitation anomalies in the SEUS region (Fig. 1a) for
December-February (DJF) and June-August (JJA). Daily
precipitation over a large region such as the SEUS is impacted
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by local factors such as low-level jets, diurnal variability, and
soil moisture, among others. In addition to local sources, a
suite of large-scale climate mechanisms across a range of time
scales have been identified as potential sources of variability
and predictability of North American precipitation, which in-
cludes the SEUS, on S2S time scales (Table 1). This paper
explores the contribution of these large-scale sources of pre-
dictability to SEUS precipitation.

The combined impact of large-scale SST anomalies (SSTA)
in the Pacific and Atlantic Oceans on monthly and annual
precipitation anomalies in North America is well documented
(e.g., Schubert et al. 2009). Specifically, warm Pacific SSTAs
and cold Atlantic SSTAs are associated with greater than nor-
mal precipitation while cold Pacific and warm Atlantic SSTAs
are associated with less than normal precipitation. The Pacific
SST anomalies primarily impact North American precipita-
tion during winter through changes in circulation patterns asso-
ciated with El Nifio-Southern Oscillation (ENSO) (Ropelewski
and Halpert 1986). In the SEUS, these circulation changes lead
to an increased number of winter storms in the land areas bor-
dering the Gulf of Mexico and Atlantic Oceans during El Nifio
winters and a decreased number of storms in the regions bor-
dering the Gulf of Mexico during La Nifia winters (Schubert
et al. 2009). On subseasonal time scales, the Madden—Julian os-
cillation (MJO) impacts cold season precipitation frequency
and intensity over North America through the extension and
contraction of the midlatitude jets (Stan et al. 2017; Becker et al.
2011; Zhou et al. 2011). Large-scale circulation anomalies asso-
ciated with preferred patterns of winter midlatitude variability
on S2S time scales known as weather regimes in the Pacific—
North America region have also been shown to impact mois-
ture flux, atmospheric rivers, and precipitation over North
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FI1G. 1. (a) Map of the southeastern U.S. region, and (b) average precipitation anomalies (mm)
over land areas in this region for each day in DJF and JJA. Green indicates positive anomalies,
and brown indicates negative anomalies. During DJF there are 1096 positive anomalies and
2573 negative anomalies. During JJA there are 1482 positive anomalies and 2290 negative anomalies.

America (Amini and Straus 2019; Robertson et al. 2020;
Cassou 2008). Recently, Stan and Krishnamurthy (2019) iden-
tified large-scale periodic midlatitude variability that impacts
North American precipitation, including a 120-day midlatitude
seasonal oscillation (MLSO).

The impact of large-scale climate variability on summer pre-
cipitation in the SEUS is much less explored and understood.
Variability of Atlantic SST anomalies is thought to affect sum-
mer SEUS precipitation through the Atlantic multidecadal os-
cillation (AMO) and its impact on the variability of the North
Atlantic subtropical high (NASH) (Li et al. 2019, 2012). See
also Zhang et al. (2022) for a discussion of how the NASH im-
pacts decadal SEUS rainfall. When the AMO is anomalously
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cold, the NASH is stronger and shifted westward, with large
meridional extension that impacts most of North America (Hu
et al. 2011). During the warm phase of the AMO, the NASH
is contracted and shifts northeast of its climatological position
(Hu et al. 2011). When the NASH is shifted northwest of its
climatological position, the SEUS is anomalously dry during
summer, while a southwest shift of the NASH is associated
with anomalously wet summers in the SEUS (Li et al. 2012).
The strength and sign of the MLSO is also identified as im-
pacting summer SEUS precipitation, although the physical
mechanisms are not well understood (Manthos et al. 2022).
The impact of summer weather regimes over the Pacific-North
America region has also not received much attention.
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TABLE 1. Table of index predictors.

Predictor Values Time scale Variables Source
AMO Continuous index Monthly SST NOAA/ESRL/PSL
PDO Continuous index Monthly SST NOAA/ESRL/PSL
Nifio-3.4 Continuous index Monthly SST NOAA/ESRL/PSL
NAO Continuous index Monthly 7500 NOAA/ESRL/PSL
MJO phase Integer 0-7 Daily U200, U850, and OLR CAWCR
MJO amplitude Continuous Index Daily U200, U850, and OLR CAWCR
NASH phase Integer 0-3 Daily 7850 and U850 Calculated from ERA-Interim
NASH amplitude Continuous index Daily 7850 Calculated from ERA-Interim
PNA weather regimes Integer 0-5 Daily 7500 and U250 Calculated from ERA-Interim
MLSO Continuous index Daily 7500 Calculated from ERA-Interim

Previous studies have investigated the large-scale climate fac-
tors described above individually or with at most two in combi-
nation; also, the emphasis has primarily been on the winter
season or annual precipitation, which is dominated by the
winter season (e.g., Arcodia et al. 2020; Manthos et al. 2022).
Because of the covariability of large-scale climate factors, it is
challenging to disentangle how their combinations contribute to
precipitation predictability and which ones are most important.

Machine learning (ML) methods, including neural networks
(NN), provide a tool to explore these large-scale climate factors
as potential sources of predictability. Until recently, NNs have
been “black boxes” in which it was difficult to understand what
relationships the network learned, rendering them difficult to
use for scientific understanding. Recent advances in explainable
machine learning (XML) techniques make it possible to under-
stand what the NN learned about the relationships between the
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predictors and predictand. As a result of this capability, we can
utilize these methods for physical understanding of sources of
predictability (e.g., Toms et al. 2021a, 2020, 2021b; Barnes et al.
2020; McGovern et al. 2019; Mayer and Barnes 2021). In this
paper, we use machine learning and XML to identify and un-
derstand sources of predictability for daily SEUS rainfall dur-
ing winter and summer separately. Specifically, we ask how
well we can detect the sign of daily SEUS precipitation anom-
alies if we know the simultaneous state of the large-scale cli-
mate, and what are the most important large-scale climate
sources of predictability.

2. Method

We attempt to predict the sign of the area-aggregated daily
precipitation anomaly over land in the SEUS (Fig. 1) based
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FIG. 2. Schematic of (left) LR and (right) FC-NN architectures.
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FIG. 3. Schematic of CNN architecture. The input layer (yellow) consists of coarse-grained fields of SST, OLR, U200, U850, Z200, and
7850 with dimensions of 37 longitude points by 92 latitude points by the 6 fields. Each convolutional layer is followed by a max-pooling
layer (blue squares). Numbers above each convolutional or max-pooling layer indicate the dimensions of the data after the convolution or
max-pooling is applied. Numbers below each layer indicate the dimensions of the convolutional or max-pooling filter f, the padding used
p, and the stride length of the filter s. An FC-NN containing 128 nodes (blue circles) follows the convolutional and max-pooling layers.
The output layer consists of two nodes indicating the probability of yes/no for the two categories of positive (green circle) and negative

(brown circle) precipitation anomalies.

on the simultaneous state of the large-scale atmospheric circu-
lation, SSTs, and tropical outgoing longwave radiation (OLR).
The hypothesis is that knowing the large-scale state of the at-
mosphere and ocean can provide a significant amount of infor-
mation about whether anomalous daily rainfall occurs over a
large region such as the SEUS. As an initial baseline, we use
logistic regression (LR) with indices representing well-known
mechanisms of large-scale climate variability as predictors
(section 2b). This tests the hypothesis that knowing the state
of a particular large-scale climate mechanism can lead to use-
ful prediction of SEUS daily precipitation. Second, we use a
fully connected neural network (FC-NN) with the same pre-
dictors to determine if a more complex model can better iden-
tify the combinations between predictors and make better
predictions (section 2c). It is likely that the indices do not cap-
ture all of the relevant large-scale variability for predicting
precipitation. Therefore, we explore the use of gridded fields
of anomalies as predictors with an LR and convolutional neu-
ral network (CNN) to see if allowing the models to learn from
the data which variables and grid points are most relevant is
more skillful and provides better insights into sources of pre-
dictability than a priori defining the predictors (also called fea-
ture engineering) (section 2d).

a. Data

ERAS-Land (Muifioz-Sabater et al. 2021) is used to define the
target daily precipitation anomalies for the period of 1979-2019.
Anomalies are determined by calculating and removing the
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climatology at each grid point. The climatology is calculated
as the average value for each day of the calendar year over
all years smoothed with a 31-day triangular window, follow-
ing Pegion et al. (2019). The average precipitation is area
aggregated over land points in the SEUS region (24°-36°N;
91°-77°W) and weighted by the cosine of latitude. We also
tested ERA-Interim (Dee et al. 2011) precipitation and find
consistent results.

Monthly climate indices are used over the same period.
The indices used are the AMO, Pacific decadal oscillation
(PDO), Nifio-3.4 to represent ENSO, and the North Atlantic
Oscillation (NAO). A summary of the indices is provided
in Table 1. They are obtained from the Physical Sciences
Laboratory (PSL) of the NOAA Earth System Research
Laboratories (ESRL) and are interpolated to daily values. To
represent the MJO, daily amplitude and phase of the real-time
multivariate MJO index from the Center for Australian
Weather and Climate Research (CAWCR) (Wheeler and
Hendon 2004) is used. Daily large-scale circulation in the
Pacific-North America region (20°-80°N; 150°-300°E) is
identified using weather regimes following Amini and Straus
(2019): five distinct regime patterns are identified separately in
winter (DJF) and summer (JJA) by applying a k-means cluster
analysis to Z500 and 250-hPa zonal wind (U250) from ERA-
Interim (see appendix A). Each day is assigned an integer (0-4)
to represent the identified regime.

The amplitude and phase of the western ridge of the
NASH is identified following Li et al. (2015) using Z850 and
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U850. The amplitude is the maximum Z850 value in the
NASH region (0°-60°N; 120°W-0°). The location of the west-
ern edge is determined as the point of intersection between
the 1560 gpm isoline and the ridgeline. The ridgeline is de-
fined as the location in the NASH region where the easterly
component of the 850-hPa wind reverses to be westerly. An
integer value from 0 to 3 is assigned to each day indicating in
which quadrant the western NASH edge is located relative to
its summer climatological location of 86°W, 27°N (Li et al.
2015). The NASH is only used as a predictor during summer
(JJA). The MLSO is also used as an index-based predictor
(Stan and Krishnamurthy 2019). It is the 120-day oscillatory
pattern determined using multichannel singular spectrum
analysis on daily Z500 from 30° to 75°N and calculated using
ERA-Interim. We acknowledge that biases in reanalysis data-
sets used in this study may impact the representation of cli-
mate indices and teleconnections (e.g., Belmonte Rivas and
Stoffelen 2019).

ERA-Interim fields of anomalous global SST, zonal winds at
200 (U200) and 850 (U850) hPa, geopotential height at
500 (Z500) and 850 (Z850) hPa, and tropical (30°S-30°N) OLR
are used as predictors for the field-based models (section 2d). The
same fields are used for composites (sections 3d and 3e). The fields
are coarse grained to a 5° X 5° grid to emphasize large-scale cli-
mate variability as predictors, minimize the likelihood of fitting
the models to noise, and for computational efficiency. The grid
points in the SEUS region are excluded as predictors.

b. Logistic regression

LR is used to represent the linear relationship between pre-
dictors and a binary or categorical outcome. It is the simplest
model for our problem of detecting the sign of SEUS precipi-
tation anomaly and can be generalized as a neural network
with no hidden layers (Fig. 2). The coefficients or weights as-
sociated with each predictor are determined by minimizing
the cross entropy loss function, which measures the difference
between a predicted category and the true category [Eq. (B4)].
The coefficients of each predictor can be easily interpreted to
identify their relative contribution to the model prediction.
Logistic regression also serves as a baseline with which to
compare more complex ML models. A detailed explanation
of logistic regression and our implementation is available in
appendix B.

c¢. Fully connected neural network

A NN can learn linear and nonlinear relationships between
the predictors and target. We use a fully connected NN de-
fined by interconnected layers. The input layer consists of the
indices as predictors and the hidden layers of the NN consist
of nodes that relate combinations of inputs to the output using
weights (Fig. 2). The number of hidden layers, number of
nodes, and weights associated with each node are model
parameters that are determined via training and validation
(see appendix C). The model is trained by minimizing the
cross-entropy loss function [Eq. (B4)]. The FC-NN predicts
whether SEUS precipitation is above or below normal (i.e.,
positive or negative anomaly). The output layer of the FC-NN
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FIG. 4. Histogram of test accuracy of 100 (left) logistic regression
models and (right) fully connected neural network models for
(a),(b) winter and (c),(d) summer.

consists of a probability of yes/no for each category. The iden-
tified category is then output based on which has the higher
probability. Mayer and Barnes (2021) refer to the probability
as a “forecast confidence” with a higher probability indicating
a more confident prediction. They demonstrate for their NN
and target of the sign of Z500 based on tropical OLR that more
confident predictions are associated with more accurate predic-
tions and thus identify forecasts of opportunity. Whether this is
true for our problem will be explored in section 3. Further de-
tails of our FC-NN implementation are provided in appendix C.

d. Convolutional neural network

We hypothesize that predicting the sign of SEUS precipita-
tion anomalies using a priori defined indices as predictors is
not likely to be skillful or reliable because these predictors do
not capture the full range of large-scale variability that may
impact SEUS precipitation. Therefore, we also explore the
use of relevant gridded fields as predictors. The idea is that
the data may be able to tell us more specifically what features
are most important for SEUS precipitation and provide new
insights into understanding and detecting the associated mech-
anisms. For example, Mayer and Barnes (2021) use a fully con-
nected NN to predict the sign of North Atlantic 500-hPa
geopotential height on subseasonal time scales using vector-
ized fields of tropical OLR. While using a single gridded input
field works well in their case of predicting 500-hPa height,
many mechanisms are hypothesized to contribute to SEUS
precipitation predictability (see section 1), requiring a large
number of input fields. With so many predictors relative to the
sample size, the problem becomes intractable since weights
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FIG. 5. Reliability diagrams for positive precipitation anomalies using the index models for
(left) LR and (right) FC-NN during (a),(b) DJF and (c),(d) JJA. The x axis indicates the pre-
dicted frequency, and the y axis indicates the observed frequency. Test data are shown in green;
training and validation data are shown in blue. Insets show the number of forecasts in each
frequency bin for test data. Because there are two mutually exclusive categories, reliability is
shown for the positive precipitation anomaly category. Negative precipitation reliability is

1 — positive precipitation reliability.

must be learned for every predictor connected to every node.
A common approach in machine learning to address this is to
use a CNN, which reduces the number of connections and
weights to be learned in training the model by taking advan-
tage of the spatial coherence of the data to learn low-level pre-
dictors (Krizhevsky et al. 2012). CNNs are often used in image
detection as a feature selector, then a fully connected NN is
used for the final layer (e.g., Krizhevsky et al. 2012; Zeiler and
Fergus 2013). In our implementation, the gridded fields associ-
ated with each of the hypothesized predictor fields are used as
input to the CNN, thus each grid point of each field constitutes
a predictor. Our CNN consists of three convolutional layers,
each of which are followed by max-pooling layers (Fig. 3). The
third convolutional layer is followed by one fully connected
layer and finally the output layer, which is the same as the
FC-NN output layer (Fig. 3). Further details of our CNN
implementation are provided in appendix D. The CNN is
compared with an LR model that follows the same architecture
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as described in section 3b and appendix C using vectorized val-
ues of the same fields input to the CNN.

e. Training, validation, and testing

To train and test the models, the data are split into training,
validation, and testing sets. The training data are used by the
model to learn the weights associated with each predictor and
node that can identify the known outcome. Validation data are
used to tune the parameters of the models such as number of
layers and nodes, regularization, and learning rate in order to
identify a model configuration that is both skillful and is not
overfit to the training data. The years 1979-2016 are used for
training and validation, with 90% (Npyr = 3087; Njja = 3146)
used for training and 10% (Npyr = 383; Njja = 350) for valida-
tion. Testing data are held out until a model configuration is de-
cided on and fully trained to ensure that the model generalizes
to data it has not yet seen. The years 2017-19 are used for test-
ing (Npyr = 240; Nyja = 276).
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f- Layerwise relevance propagation

Following Barnes et al. (2020), Toms et al. (2021a, 2020,
2021b), and Mayer and Barnes (2021), we use layerwise rele-
vance propagation (LRP) (Montavon et al. 2019; Bach et al.
2015) to understand what the NNs have learned about the re-
lationships between the predictors and SEUS precipitation.
Once a NN is trained, an input can be given to it to make a
prediction. Using LRP, that prediction is then passed back
through the trained network following specific rules to deter-
mine the relevance of each of the input predictors to the final
prediction. The result is a “heat map” for each prediction that
indicates a unitless relevance of each predictor to the output.
Mayer and Barnes (2021) apply LRP to their NN to identify
the OLR patterns most important for making successful and
confident predictions of the sign of North Atlantic Z500.
Toms et al. (2020) use LRP to produce heat maps of El Nifio
and La Nifia patterns correctly identified by an FC-NN using
SST anomalies as predictors. Toms et al. (2021b) use LRP to
show how an FC-NN can accurately identify the known MJO
spatial patterns when learning to detect the phase of the MJO
based on clouds and circulation fields. Recent work has dem-
onstrated that certain variations of LRP can potentially be mis-
leading for geoscience applications (Mamalakis et al. 2022).
Therefore, we test two variations of LRP. The LRP-af3 rule
used by Mayer and Barnes (2021) can determine a relevance
for inputs that contribute both positively («) and negatively (B8)
to the model prediction. We also test the LRP, rule, which was
shown to be the most accurate rule using a benchmark climate
dataset in Mamalakis et al. (2022). We find little difference be-
tween the two rules for our particular problem and model. We
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apply LRP to our FC-NN and CNN to identify sources of pre-
dictability for SEUS precipitation using the LRP-af3 rule with
a = 1 and B = 0 to select only inputs that contribute positively
to the predicted outcome of the model. Details of LRP and its
implementation are provided in appendix E.

g. Software and code implementation

The models used in this paper are written using Keras and
Tensorflow. LRP is applied using the innvestigate package
(Alber et al. 2019). Data preprocessing uses xarray (Hoyer
and Hamman 2017; Hoyer et al. 2021), numpy (Harris et al.
2020), scipy (Virtanen et al. 2020), and scikit-learn (Pedregosa
et al. 2011). Plotting is done using matplotlilb (Hunter 2007)
and proplot (Davis 2021). Reliability is calculated using xskill-
score (https:/xskillscore.readthedocs.io/en/stable/). The codes
used in this paper are publicly available in GitHub (https://
github.com/kpegion/ml-precip).

3. Results
a. Skill and reliability of index-based models

Despite the same architecture, the stochastic nature of the
initialization and minimization procedure produces models
with different weights, thus 100 models are trained and tested
using the indices noted in Table 1. The histogram of the accu-
racy for the LR and FC-NN models is shown in Fig. 4. The ac-
curacies demonstrate that the FC-NN and LR have similar
skill. In both cases, the average skill is about 50%, indicating
that the models are no better than random chance in identify-
ing the sign of SEUS precipitation anomalies using these indi-
ces as predictors. Even if overall skill is poor, perhaps there
are forecasts of opportunity that can be identified based on
the probabilities provided by the models, that is, perhaps the
forecasts with higher probabilities have a higher correct iden-
tification of the outcome (e.g., Mayer and Barnes 2021). This
is quantified using reliability diagrams (Fig. 5) (Murphy and
Winkler 1977). Reliability tells us how well the predicted
probabilities of an event occurring corresponds to their ob-
served frequencies. Neither the LR nor FC-NN can reliably
identify the sign of SEUS precipitation. These results are un-
derscored by the fact that there is little consistency from fore-
cast to forecast or across the models in the weights of the LR
predictors or the predictors identified as most important using
LRP with the FC-NN (not shown). This tells us that these pre-
dictors are not sufficient to accurately or reliably identify the
sign of daily SEUS precipitation anomalies. It also tells us
that a complex model that can learn nonlinear relationships
does not produce better predictions than the logistic regression
model when using the a priori defined, index-based predictors.

b. Skill and reliability of grid-based models

Next, we test the skill and reliability of models using
gridded ERA-Interim fields of anomalous global SST, U200,
U850, Z500, Z850, and tropical OLR as predictors rather than
defining them a priori as climate indices. One hundred CNNs
are trained using randomly initialized weights. We also train
and test 100 randomly initialized LR models using vectorized
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gridded fields as input predictors as a baseline comparison for
the CNN. For winter and summer, both the LR and CNN are
more accurate (Fig. 6) than the index-based models, but the
CNN is more reliable (Fig. 7). This means that the CNN prob-
abilities can be used as a reliable measure of forecast confi-
dence for any given forecast. We will use these probabilities
to explore and understand sources of predictability.

c. Sources of predictability for positive anomalies of
SEUS precipitation

To explore the sources of predictability for SEUS precipita-
tion, we use LRP to identify the predictors (i.e., grid points
and fields) most relevant to the prediction of confident
(=80% probability) forecasts of positive and negative precipi-
tation anomalies. Composites are also used to relate unitless
LRP relevance to physical quantities. The relevance and com-
posites for confident, correct forecasts of above-normal SEUS
precipitation are shown in Figs. 8 and 9. Relevance values are
normalized by the relevance of all other predictors (i.e., grid
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points and fields) such that the grid point over all fields with
the highest value in any given forecast is one. The red and
blue contours are positive and negative composite anomalies of
the specified field. Relevance is indicated by the gray shading
and is only shown for positive values meaning that a given vari-
able and grid point contributes positively to the CNN prediction.

The anomalous low 850-hPa geopotential heights over the
Gulf of Mexico and associated 850-hPa zonal wind anomalies
have the strongest relevance during winter (Figs. 9a,c). The
circulation associated with these height anomalies brings
moisture from the Gulf of Mexico into the SEUS and is coin-
cident with El Nifio-related SST and OLR anomalies in the
tropical Pacific (Figs. 8a,b). The SST and OLR anomalies
show no relevance in comparison with the circulation fields
(i.e., there are very few points with gray shading). The winter
relevance and composites show results consistent with well-
known winter teleconnection patterns associated with ENSO
(e.g., Ropelewski and Halpert 1986). This provides further ev-
idence that the CNN can learn and LRP can identify physical
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FIG. 8. Composite anomalies of (left) SST (°C) and (right) OLR (W m™2) (contours) and normalized relevance
(grayscale shading) for confident (=80% probability) and correct forecasts of positive precipitation anomalies over
training, validation, and test data for (a),(b) DJF and (c),(d) JJA. Contour intervals are 0.1°C for sea surface tempera-
ture and 5 W m ™2 for outgoing longwave radiation. Relevance values may be too small to appear on the map.

relationships. Previous studies have identified a correlation be-
tween DJF SST anomalies in the Gulf of Mexico and convective
precipitation in which warm Gulf of Mexico SST anomalies
contribute to severe convection in the SEUS (e.g., Edwards and
Weiss 1996; Molina et al. 2016, 2018; Molina and Allen 2019;
Molina et al. 2020). However, we do not find any SST relevance
in the Gulf of Mexico during the winter season in our analysis.

During the summer, the strongest relevance is associated
with positive 850-hPa height anomalies and corresponding
850-hPa zonal winds. This circulation is consistent with a
southwest shift of the NASH and wet conditions over the
SEUS (Fig. 9c). There is also relevance about 10%-20% of
the maximum relevance associated with SST anomalies in the
NASH region and in the North Atlantic, consistent with the
AMO-NASH hypothesis for SEUS precipitation (Fig. 8c).
Molina et al. (2016) find a relationship between Gulf of Mexico
SST and severe thunderstorm occurrence in the SEUS during
March-May, but no SST relevance for the Gulf of Mexico is
found during summer in our analysis.

d. Sources of predictability for negative anomalies of
SEUS precipitation

Confident, correct forecasts for negative precipitation anoma-
lies in the SEUS are shown in Figs. 10 and 11. The locations and
corresponding composites are similar to the positive precipitation
forecasts but with opposite sign. The 850-hPa zonal winds and
geopotential heights enhance flow of continental air over the
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SEUS during winter (Figs. 11a,b). These conditions occur during
weak La Nina SST anomalies and near zero tropical OLR
anomalies (Figs. 10a,b). The relevant 850-hPa heights and winds
during summer are consistent with a northwestward shift of
the NASH. (Figs. 11c,d). Corresponding summer SST anom-
alies are cold in the central tropical Pacific and strong in the
subtropical and midlatitude Pacific but have weak relevance
in comparison with the circulation fields (Figs. 10c,d).

e. Time scales of predictability

To further understand these composite patterns as sources
of predictability, we investigate their time scales. A time series
associated with each pattern is calculated by projecting the
original anomalies for each variable onto its composite pattern
for confident, successful forecasts of positive and negative pre-
cipitation anomalies (i.e., the patterns shown in Figs. 8-11).
The projections are calculated separately for DJF and JJA. To
quantify the dominant time scales for each of these time series,
power spectra are estimated using the Welch (1967) method
in scipy.signal (Virtanen et al. 2020), which calculates the
power spectra for overlapping segments of data and then
averages the spectra for each segment to produce a smooth
periodogram. Corresponding red noise spectra are also calcu-
lated based on the estimated decorrelation time 7, of the time
series of each composite for each variable (Table 2). There is
no significant power above a red noise spectra for any of the
variables in winter or summer (not shown). This indicates that
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FIG. 9. Composite anomalies of (left) Z850 (m) and (right) U850 (m s~ ') (contours) and normalized rele-
vance (grayscale shading) for confident (=80% probability) and correct forecasts of positive precipitation
anomalies over training, validation, and test data for (a),(b) DJF and (c),(d) JJA. Contour intervals are 100 m

for Z850 and 2 m s~ ! for U850.

the time scales of predictability for these patterns are primarily
associated with their persistence.

4. Conclusions and discussion

We investigate sources of predictability for daily precipita-
tion in the SEUS with machine learning models. Many studies
have provided evidence of large-scale climate phenomena
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that impact SEUS precipitation; this study explores how well
we can predict the sign of daily SEUS precipitation anomalies
if these large-scale climate predictors are known simulta-
neously with the predictand, and which of these predictors are
relatively most important. A logistic regression and fully con-
nected neural network trained using indices representing the
large-scale climate phenomena as predictors are neither skill-
ful nor reliable. This tells us that these climate indices are not
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FIG. 10. Composite anomalies of (left) SST (°C) and (right) OLR (W m™2) (contours) and normalized relevance
(grayscale shading) for confident (=80% probability) and correct forecasts of negative precipitation anomalies over
training, validation, and test data for (a),(b) DJF and (c),(d) JJA. Contour intervals are 0.1 (°C) for sea surface tem-
perature and 5 (W m™~2) for OLR. Relevance values may be too small to appear on the map.

sufficient to predict the sign of daily precipitation anomalies
when their simultaneous value with the predictand is known.
While an FC-NN is capable of representing nonlinear and lin-
ear relationships, the fact that it has similar skill (50% accu-
racy) and lack of reliability as the logistic regression model
indicates that the inability to predict the sign of SEUS precipi-
tation anomalies is because the indices are not good predic-
tors. It is very likely that the key large-scale drivers of SEUS
rainfall do not simply map onto our standard climate modes;
indeed, indices of climate modes do not capture the full di-
versity and complexity of large-scale climate variability.
Based on this, we can conclude that using indices of large-
scale climate phenomena is insufficient to skillfully or reli-
ably predict the sign of daily precipitation anomalies in the
SEUS and that the attribution or explanation of precipita-
tion variability or extremes to these climate mechanisms
does not necessarily equate to predictability of precipitation
in this region.

The finding that neither the logistic regression nor the fully
connected neural network with index-based predictors can
predict daily precipitation is not an unexpected outcome.
While subseasonal and seasonal climate patterns are known
to influence the statistics of regional precipitation averaged
over weeks or months (e.g., Ropelewski and Halpert 1986,
1987; Higgins et al. 2000), due to the high internal variability
of precipitation, we would be surprised if we could predict
even the sign of a single-day precipitation anomaly given only
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several climate indexes. This specific analysis was undertaken
to provide a baseline for the prediction of daily precipitation
using full atmospheric fields in a CNN, which is found to be
much more successful. It also reminds us that even when pre-
cipitation events are explained or attributed to large-scale
climate mechanisms, that attribution does not necessarily
translate to prediction. Future work will test this method in
the context of higher-predictability fields, such as the fre-
quency of precipitation during a subseasonal period, the
number of dry or wet spells, or subseasonal extreme precipi-
tation. We would also be curious to see how the combina-
tion of several climate indexes in an ML context performs
with the prediction of daily temperature or heat waves.
Global gridded fields as predictors produce more accurate
predictions in both an LR and CNN (70% for winter; 60% for
summer) and the predictions from the CNN in both winter
and summer are reliable. This allows us to use the probability
from the CNN for each forecast category as a forecast confi-
dence to identify forecasts of opportunity, following Mayer
and Barnes (2021). We use the forecast confidence and
layerwise relevance propagation to identify the most rele-
vant predictors for confident (=80%) and correct forecasts.
For both positive and negative precipitation anomalies, the
most relevant predictors are identified as the local zonal wind
and geopotential height anomalies at 850 hPa. The patterns
identified as relevant by LRP are patterns of large-scale
synoptic variability, consistent with Diem (2006) and with the
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FIG. 11. Composite anomalies of (left) Z850 (m) and (right) U850 (m s~ ') (contours) and normalized relevance (gray-
scale shading) for confident (=80% probability) and correct forecasts of negative precipitation anomalies over training,
validation, and test data for (a),(b) DJF and (c),(d) JJA. Contour intervals are 100 m for Z850 and 2 m s~ ! for U850.

persistence time scales of the gridded predictor fields. To cor-
rectly predict even the sign of daily precipitation anomalies in
the SEUS, skillful predictions of the local synoptic circulation
are required. Composites of corresponding SST and OLR
anomalies point to a relationship between the circulation and
well-known large-scale climate phenomena such as ENSO
during winter and the AMO-NASH during summer. How-
ever, just using indices of these phenomena did not lead to
skillful prediction. This is because there is large uncertainty in
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the SEUS circulation anomalies associated with large-scale cli-
mate variability (e.g., Deser et al. 2018).

Our experiments are idealized-the simultaneous values of
these predictors with the predictand would not be known at
forecast time in a true forecasting situation. A more realistic
prediction would be obtained by using either predicted varia-
bles as input to our ML models or observed data at some fore-
cast lead time. We argue that the use of simultaneous predictors
and predictand used in this paper show an upper limit to
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TABLE 2. Table of decorrelation times. A plus sign indicates
time series from positive precipitation anomalies. A minus sign
indicates time series from negative precipitation anomalies.

Variable T, for DJF (days) T, for JJA (days)
SST +437/—187 +228/-292
OLR +6/=5 +4/—4
7500 +7/-5 +7/-6
7850 +7/=5 +7/—6
U200 +4/-5 +6/=5
U850 +4/-3 +4/—4

predicting the sign of precipitation anomalies in the SEUS
based on available training data. Errors in the predictors will
produce even less accurate predictions. Future work will ex-
plore how errors in the predictor fields lead to errors in precip-
itation at various lead times. It is also important to note that
daily precipitation is an extremely difficult prediction to make
and many aspects of it may not be predictable using these pre-
dictors (e.g., mesoscale, local soil moisture, tropical cyclones,
low-level jets, or diurnal variability).
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APPENDIX A

Weather Regimes

Weather regimes (also called circulation regimes) are pre-
ferred and persistent patterns of the atmospheric circulation
(Reinhold and Pierrehumbert 1982; Straus et al. 2007). Their
persistence of approximately 7-15 days makes them potential
predictors on S2S time scales (Robertson et al. 2020; Vigaud
et al. 2018). In this study, they are used as predictors for the
index-based models. They are identified using a k-means
cluster analysis following Amini and Straus (2019). They ap-
plied k-means cluster analysis to the leading 12 principal
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components (80% variance explained) of combined EOFs of
daily winter (DJF) 500-hPa geopotential height and 250-hPa
zonal winds from ERA-Interim in the Pacific-North America
region. They tested a range of values for the number of clus-
ters (k) and determined that £ = 4 or k = 5 produce a robust
and distinct set of clusters. We choose k = 5 to define our
weather regime predictors and also use ERA-Interim. Com-
posite analysis of the clusters shows that they correspond to
well-known large-scale circulation patterns (Fig. Al), includ-
ing the Arctic high, Arctic low, Alaskan ridge, Pacific
wave train, and Pacific trough that occur between about
14% and 25% of the time during the period. We also ex-
tend this definition of weather regimes into the summer
(JJA), which bear some resemblance to the winter regimes,
but are weaker in amplitude (Fig. A2). Similarly, they occur
17%-23% of the time.

APPENDIX B

Logistic Regression Implementation

Logistic regression is used as a baseline, simplest possible
model for our two-class problem of predicting yes or no for
positive precipitation anomalies and yes or no for negative
precipitation anomalies. It can be viewed as a neural net-
work with no hidden nodes. It contains an input layer of
predictors (x) and an output layer that predicts the proba-
bility of a given output class (e.g., positive or negative anom-
alies) based on an input x; as follows:

y = o(z;) = P(Pos, Neglx,) (B1)
where
z; = wat. +b and (B2)
(z) = B (B3)
R R

The predictors x for our problem are the indices in Table 1.
The weights w and biases b associated with each predictor
are determined by minimizing the cross-entropy loss function
over all training samples m:

Tov,b) = =3 3,103,

i=1

(B4)

Minimization of the loss function is determined by numeri-
cally estimating its derivative, dJ(w, b)/dw through backpropa-
gation. For a given training sample, once the output is deter-
mined, the partial derivatives of the loss function due to each
node are determined by going backward through the network.
These partial derivatives are combined to determine the total
errors for a given prediction in a chain-rule like fashion.

The softmax function is applied to the output layer to con-
vert the probabilities to a categorical outcome (i.e., yes/no)
for each of the two categories:

esi

5’; = Zezi. (BS)
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FIG. Al. Winter weather regime composites of 250-hPa zonal winds (m s '; color-filled contours) and 500-hPa
geopotential heights (m; gray contours). Percent occurrence of each regime is indicated in parentheses.

The target values of y; are set to ones and zeros for each
category using one-hot encoding. The median of the precip-
itation anomalies is removed prior to the encoding to en-
sure balanced target classes.

To train our logistic regression model, we use minibatch
gradient descent with a batch size of 25 and 250 epochs. A
learning rate of 107> is used with the Adam optimization
method (Kingma and Ba 2017).

APPENDIX C

Fully Connected Neural Network Implementation

The weights w and biases b of the fully connected neural
network are trained using the same procedure as in the LR
model. However, the FC-NN has hidden layers and nodes
that allow it to learn more complex, relationships between
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the predictors and target. The value of a given node in a
specific layer a(z;) of the FC-NN is determined by mini-
mizing the cross-entropy loss function [Eq. (B4)] and then
applying the nonlinear rectified linear unit (ReLU) activa-
tion function:

a(z;) = max(0, z)). (c1)
This is repeated for each layer and node in the FC-NN until
the output layer where the softmax function is used to iden-
tify the predicted category [Eq. (BS)].

For the FC-NN minimization, the weights of the nodes
must be initialized to small random nonzero values to start
the gradient descent. The He normal initialization (He et al.
2016) is used to initialize the weights. The same learning rate
and Adam optimization were used to train our FC-NN as
was used for the LR. A range of hidden layers, nodes, and
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FIG. A2. Summer weather regime composites of 250-hPa zonal winds (m s !; color-filled contours) and 500-hPa
geopotential heights (m; gray contours). Percent occurrence of each regime is indicated in parentheses.

regularization were tested. The selected model produced
the most similar accuracy between the train and validation
data and the most reliable predictions in training and valida-
tion. This model is relatively simple with only one hidden layer
containing four nodes and no regularization. More com-
plex models led to overfitting even with regularization.

APPENDIX D

Convolutional Neural Network Implementation

A CNN involves applying convolutional filters to the input
data for each node to take advantage of spatial coherence of
the data to learn the predictors and reduce the number
of weights and biases that must be learned relative to
an FC-NN (Krizhevsky et al. 2017). The convolution C of a
matrix A of size ny, X n,, X n. with a filter F of size f X f X n,
is as follows:
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f-1f-1n—1
Ci]' = (A *F)l] = 20 ZO 20 Ai+p,j+q,r * qur' (Dl)
p=Vgq=0r=

where the asterisk indicates convolution. The convolution can
be applied to the matrix A with multiple filters. Our CNN
architecture uses 16, 32, and 64 filters, respectively. Each
filter is size 3 X 3 with valid padding and a stride of 1.

The value of a node i in a given convolutional layer / of
a CNN is calculated as

ZL=A*F +b,. (D2)
Then the nonlinear ReLu activation function is applied to
Z! [Eq. (BS)].

Following each convolutional layer, a max-pooling layer is
applied with valid padding to select the predictor (e.g., grid

point) that has the maximum activation over each 3 X 3 grid.
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a DJF

True Positive

True Negative

b JUA

True Positive

True Negative

Predicted Positive

Predicted Negative

F1G. D1. Contingency tables for a selected model from the (a) DJF
and (b) JJA CNNs.

Ridge regularization (L2) is applied in the first and second
convolutional layers with a value of A = 20 and A = 10, re-
spectively. Last, after the third convolutional and max-pooling
layer, the outputs are flattened and treated as input for an
FC-NN with 128 nodes. No regularization is applied to the
third convolutional layer or FC-NN layer. The softmax
function [Eq. (B5)] is then applied to identify the yes/no
outcome for the two classes of negative and positive pre-
cipitation anomalies.

The input features to our CNN are the coarse-grained,
global gridded data fields of SST, Z500, Z850, U850, U200,
and tropical OLR (zeroed out poleward of 30°). To main-
tain the periodicity of the predictors in longitude during
convolution, the input predictor fields are padded with a
periodic halo of p = 10 points in the longitude direction.
For our input data, n, = 37, n,, = 72 + 2p, and n. = 6. To
train the CNN, we use a batch size of 25 and 100 epochs
with early stopping after the validation loss increases for
more than 2 epochs in a row. Training generally takes
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between 55 and 65 epochs. A learning rate of 3 X 107°
and Adam optimization method are used. The regulariza-
tion parameters, number of layers and nodes were deter-
mined through training and validation. The selected model
produced the most similar accuracy between the train and
validation data and the most reliable predictions in training
and validation. The contingency table (also called confusion
matrix) for an example CNN model is shown in Fig. D1.

APPENDIX E

Layerwise Relevance Propagation Implementation

LRP is applied to the FC-NN and CNN to identify which
input predictors are most important to the predicted output
of the model for any given prediction. We utilize the in-
nvestigate toolkit (Alber et al. 2019) to apply LRP. For any
given input to the model with output y, LRP goes back
through the model and determines for each node what in-
put was most relevant to the output until the input nodes
are reached. We utilize the LRP-af rule, which can deter-
mine a relevance for inputs that contribute both positively
(a) and negatively (B) to the model output y. We use a = 1
and B = 0 to select only inputs that contribute positively to
the predicted outcome of the model. We also tested the
LRP, rule, which was shown to be the most accurate rule us-
ing a benchmark climate dataset in Mamalakis et al. (2022)
and find little difference between them for our particular
problem and model.

The relevance R of a given input j to an output k for the
LRP-af rule is given by the weighted value of the presoft-
max activation of a positively contributing node divided by
the weighted sum of all previous presoftmax nodes then mul-
tiplied by the total relevance of the previous node [Eq. (E1)].
The denominator ensures that total relevance is a conserved
quantity:

(a‘wAk)+
R =YL~ __R. E1
J ;Zo,j(ajwjk)+ k (E1)

Once we determine the relevance of each predictor for all
forecasts in the training and testing set, we then look for
consistency between the predictors identified as most rele-
vant to identify sources of predictability.

REFERENCES

Alber, M., and Coauthors, 2019: iNNvestigate neural networks!
J. Mach. Learn. Res., 20, 1-8.

Amini, S., and D. M. Straus, 2019: Control of storminess over the
Pacific and North America by circulation regimes. Climate
Dyn., 52, 4749-4770, https://doi.org/10.1007/s00382-018-4409-7.

Arcodia, M. C., B. P. Kirtman, and L. S. P. Siqueira, 2020: How
MJO teleconnections and ENSO interference impacts U.S.
precipitation. J. Climate, 33, 4621-4640, https://doi.org/10.
1175/JCLI-D-19-0448.1.

Bach, S., A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller,
and W. Samek, 2015: On pixel-wise explanations for non-
linear classifier decisions by layer-wise relevance propagation.


https://doi.org/10.1007/s00382-018-4409-7
https://doi.org/10.1175/JCLI-D-19-0448.1
https://doi.org/10.1175/JCLI-D-19-0448.1

OCTOBER 2022

PLOS ONE, 10, 0130140, https://doi.org/10.1371/journal.
pone.0130140.

Balmaseda, M., and Coauthors, 2020: NOAA-DOE Precipitation
Processes and Predictability Workshop. NOAA Tech. Rep.
OAR CPO-9, 48 pp., https://cpo.noaa.gov/Portals/0/Docs/
ESSM/Events/2020/NOAA_DOE_PrecipWorkshopReport_
July2021.pdf?ver=2021-07-14-160100-057.

Barnes, E. A., B. Toms, J. W. Hurrell, I. Ebert-Uphoff, C.
Anderson, and D. Anderson, 2020: Indicator patterns of
forced change learned by an artificial neural network. J.
Adv. Model. Earth Syst., 12, €2020MS002195, https://doi.
org/10.1029/2020MS002195.

Becker, E., B. P. Kirtman, and K. Pegion, 2020: Evolution of the
North American multi-model ensemble. Geophys. Res. Lett.,
47, ¢2020GL087408, https://doi.org/10.1029/2020GL087408.

Becker, E. J., E. H. Berbery, and R. W. Higgins, 2011: Modula-
tion of cold-season U.S. daily precipitation by the Madden—
Julian oscillation. J. Climate, 24, 5157-5166, https://doi.org/10.
1175/2011JCLI4018.1.

Belmonte Rivas, M., and A. Stoffelen, 2019: Characterizing ERA-
interim and ERAS surface wind biases using ASCAT. Ocean
Sci., 15, 831-852, https://doi.org/10.5194/0s-15-831-2019.

Cassou, C., 2008: Intraseasonal interaction between the Madden—
Julian oscillation and the North Atlantic oscillation. Nature,
455, 523-527, https://doi.org/10.1038/nature07286.

Davis, L. L. B., 2021: ProPlot. Zenodo, https://doi.org/10.5281/
zenodo.5602155.

Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis:
Configuration and performance of the data assimilation sys-
tem. Quart. J. Roy. Meteor. Soc., 137, 553-597, https://doi.org/
10.1002/q;.828.

Deser, C., I. R. Simpson, A. S. Phillips, and K. A. McKinnon,
2018: How well do we know ENSO’s climate impacts over
North America, and how do we evaluate models accordingly?
J. Climate, 31, 4991-5014, https:/doi.org/10.1175/JCLI-D-17-
0783.1.

Diem, J. E., 2006: Synoptic-scale controls of summer precipitation
in the southeastern United States. J. Climate, 19, 613-621,
https://doi.org/10.1175/JCLI3645.1.

Edwards, R., and S. J. Weiss, 1996: Comparisons between Gulf of
Mexico Sea surface temperature anomalies and southern
U.S. severe thunderstorm frequency in the cool season.
Proc. 18th Conf. on Severe Local Storms, San Francisco, CA,
Amer. Meteor. Soc., 2345-2363.

Harris, C. R., and Coauthors, 2020: Array programming with
NumPy. Nature, 585, 357-362, https://doi.org/10.1038/s41586-
020-2649-2.

He, K., X. Zhang, S. Ren, and J. Sun, 2016: Deep residual learn-
ing for image recognition. 2016 IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV,
1IEEE, 770-778, https://doi.org/10.1109/CVPR.2016.90.

Higgins, R. W., A. Leetmaa, Y. Xue, and A. Barnston, 2000:
Dominant factors influencing the seasonal predictability of
U.S. precipitation and surface air temperature. J. Climate, 13,
3994-4017, https://doi.org/10.1175/1520-0442(2000)013<3994:
DFITSP>2.0.CO32.

Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and
datasets in Python. J. Open Res. Software, S, 10, https://doi.
org/10.5334/jors.148.

—, and Coauthors, 2021: Xarray. Zenodo, https:/doi.org/10.
5281/zenodo.5771208.

Hu, Q., S. Feng, and R. J. Oglesby, 2011: Variations in North
American summer precipitation driven by the Atlantic

Brought to you by CLEMSON RESEARCH PARK | Unauthenticated | Downloaded 08/17/23 03:44 PM UTC

PEGION ET AL. 17

multidecadal oscillation. J. Climate, 24, 5555-5570, https://doi.
org/10.1175/2011JCLI4060.1.

Hunter, J. D., 2007: Matplotlib: A 2D graphics environment.
Comput. Sci. Eng., 9, 90-95, https://doi.org/10.1109/MCSE.
2007.55.

Kingma, D. P., and J. Ba, 2017: Adam: A method for stochastic
optimization. arXiv, 1412.6980v9, https://doi.org/10.48550/
arXiv.1412.6980.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: ImageNet
classification with deep convolutional neural networks. Proc.
Advances in Neural Information Processing Systems 25, Lake
Tahoe, NV, NIPS, 1106-1114, https://proceedings.neurips.cc/
paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.
html.

——, ——, and ——, 2017: ImageNet classification with deep con-
volutional neural networks. Commun. ACM, 60, 84-90, https://
doi.org/10.1145/3065386.

Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North
Atlantic subtropical high western ridge and its implication
to southeastern US summer precipitation. Climate Dyn., 39,
1401-1412, https://doi.org/10.1007/s00382-011-1214-y.

——, ——, and J. Jin, 2015: Contribution of the North Atlantic
subtropical high to regional climate model (RCM) skill in
simulating southeastern United States summer precipitation.
Climate Dyn., 45, 477-491, https:/doi.org/10.1007/s00382-014-
2352-9.

Li, W., T. Zou, L. Li, Y. Deng, V. T. Sun, Q. Zhang, J. B. Layton,
and S. Setoguchi, 2019: Impacts of the North Atlantic sub-
tropical high on interannual variation of summertime heat
stress over the conterminous United States. Climate Dyn., 53,
3345-3359, https://doi.org/10.1007/s00382-019-04708-1.

Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes, 2022: Neural
network attribution methods for problems in geoscience: A
novel synthetic benchmark dataset. Environ. Data Sci., 1, €8,
https://doi:10.1017/eds.2022.7.

Manthos, Z. H., K. V. Pegion, P. A. Dirmeyer, and C. Stan, 2022:
The relationship between surface weather over North America
and the mid-latitude seasonal oscillation. Dyn. Atmos. Oceans,
99, 101314, https://doi.org/10.1016/j.dynatmoce.2022.101314.

Mayer, K. J., and E. A. Barnes, 2021: Subseasonal forecasts of op-
portunity identified by an explainable neural network. Geo-
phys. Res. Lett., 48, €¢2020GL092092, https://doi:10.1017/eds.
2022.7.

McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L.
Elmore, C. R. Homeyer, and T. Smith, 2019: Making the
black box more transparent: Understanding the physical im-
plications of machine learning. Bull. Amer. Meteor. Soc., 100,
2175-2199, https://doi.org/10.1175/BAMS-D-18-0195.1.

Molina, M. J., and J. T. Allen, 2019: On the moisture origins of
tornadic thunderstorms. J. Climate, 32, 4321-4346, https://doi.
org/10.1175/JCLI-D-18-0784.1.

——, R. P. Timmer, and J. T. Allen, 2016: Importance of the Gulf
of Mexico as a climate driver for U.S. severe thunderstorm
activity. Geophys. Res. Lett., 43, 12295-12 304, https://doi.org/
10.1002/2016GL071603.

——, J. T. Allen, and V. A. Gensini, 2018: The Gulf of Mexico
and ENSO influence on subseasonal and seasonal CONUS
winter tornado variability. J. Appl. Meteor. Climatol., 57,
2439-2463, https://doi.org/10.1175/JAMC-D-18-0046.1.

——, ——, and A. F. Prein, 2020: Moisture attribution and sensi-
tivity analysis of a winter tornado outbreak. Wea. Forecasting,
35, 12631288, https://doi.org/10.1175/W AF-D-19-0240.1.


https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://cpo.noaa.gov/Portals/0/Docs/ESSM/Events/2020/NOAA_DOE_PrecipWorkshopReport_July2021.pdf?ver&hx003D;2021-07-14-160100-057
https://cpo.noaa.gov/Portals/0/Docs/ESSM/Events/2020/NOAA_DOE_PrecipWorkshopReport_July2021.pdf?ver&hx003D;2021-07-14-160100-057
https://cpo.noaa.gov/Portals/0/Docs/ESSM/Events/2020/NOAA_DOE_PrecipWorkshopReport_July2021.pdf?ver&hx003D;2021-07-14-160100-057
https://doi.org/10.1029/2020MS002195
https://doi.org/10.1029/2020MS002195
https://doi.org/10.1029/2020GL087408
https://doi.org/10.1175/2011JCLI4018.1
https://doi.org/10.1175/2011JCLI4018.1
https://doi.org/10.5194/os-15-831-2019
https://doi.org/10.1038/nature07286
https://doi.org/10.5281/zenodo.5602155
https://doi.org/10.5281/zenodo.5602155
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JCLI-D-17-0783.1
https://doi.org/10.1175/JCLI-D-17-0783.1
https://doi.org/10.1175/JCLI3645.1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1175/1520-0442(2000)013<3994:DFITSP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<3994:DFITSP>2.0.CO;2
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.5281/zenodo.5771208
https://doi.org/10.5281/zenodo.5771208
https://doi.org/10.1175/2011JCLI4060.1
https://doi.org/10.1175/2011JCLI4060.1
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s00382-011-1214-y
https://doi.org/10.1007/s00382-014-2352-9
https://doi.org/10.1007/s00382-014-2352-9
https://doi.org/10.1007/s00382-019-04708-1
https://doi:10.1017/eds.2022.7
https://doi.org/10.1016/j.dynatmoce.2022.101314
https://doi:10.1017/eds.2022.7
https://doi:10.1017/eds.2022.7
https://doi.org/10.1175/BAMS-D-18-0195.1
https://doi.org/10.1175/JCLI-D-18-0784.1
https://doi.org/10.1175/JCLI-D-18-0784.1
https://doi.org/10.1002/2016GL071603
https://doi.org/10.1002/2016GL071603
https://doi.org/10.1175/JAMC-D-18-0046.1
https://doi.org/10.1175/WAF-D-19-0240.1

18 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

Montavon, G., A. Binder, S. Lapuschkin, W. Samek, and K.-R.
Miiller, 2019: Layer-wise relevance propagation: An over-
view. Explainable Al: Interpreting, Explaining and Visualizing
Deep Learning, W. Samek et al., Eds., Lecture Notes in
Computer Science, Vol. 11700, Springer International Pub-
lishing, 193-209, https://doi.org/10.1007/978-3-030-28954-6_10.

Muiioz-Sabater, J., and Coauthors, 2021: ERAS5-Land: A state-of-
the-art global reanalysis dataset for land applications. Earth
Syst. Sci. Data, 13, 43494383, https://doi.org/10.5194/essd-13-
4349-2021.

Murphy, A. H., and R. L. Winkler, 1977: Reliability of subjective
probability forecasts of precipitation and temperature. J. Roy.
Stat. Soc., 26C, 41-47, https://doi.org/10.2307/2346866.

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning
in Python. J. Mach. Learn. Res., 12, 2825-2830, https://doi.
org/10.48550/arXiv.1201.0490.

Pegion, K., and Coauthors, 2019: The subseasonal experiment
(SubX): A multimodel subseasonal prediction experiment.
Bull. Amer. Meteor. Soc., 100, 2043-2060, https://doi.org/10.
1175/BAMS-D-18-0270.1.

Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of
weather regimes: Quasi-stationary waves and blocking. Mon.
Wea. Rev., 110, 1105-1145, https://doi.org/10.1175/1520-
0493(1982)110<1105:DOWRQS>2.0.CO;2.

Robertson, A. W., N. Vigaud, J. Yuan, and M. K. Tippett, 2020:
Toward identifying subseasonal forecasts of opportunity us-
ing North American weather regimes. Mon. Wea. Rev., 148,
18611875, https:/doi.org/10.1175/MWR-D-19-0285.1.

Ropelewski, C. F., and M. S. Halpert, 1986: North American
precipitation and temperature patterns associated with the
El Nifo/Southern Oscillation (ENSO). Mon. Wea. Rev., 114,
2352-2362, https://doi.org/10.1175/1520-0493(1986)114<2352:
NAPATP>2.0.CO;2.

——, and ——, 1987: Global and regional scale precipitation
patterns associated with the El Nifio/Southern Oscillation.
Mon. Wea. Rev., 115, 1606-1626, https://doi.org/10.1175/
1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to as-
sess and compare the responses of global climate models to
drought-related SST forcing patterns: Overview and results. J.
Climate, 22, 5251-5272, https://doi.org/10.1175/2009JCLI3060.1.

Stan, C., and V. Krishnamurthy, 2019: Intra-seasonal and seasonal
variability of the Northern Hemisphere extra-tropics. Climate
Dyn., 53, 4821-4839, https://doi.org/10.1007/s00382-019-
04827-9.

——, D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney,
and C. Schumacher, 2017: Review of tropical-extratropical

Brought to you by CLEMSON RESEARCH PARK | Unauthenticated | Downloaded 08/17/23 03:44 PM UTC

VOLUME 1

teleconnections on intraseasonal time scales. Rev. Geophys.,
55, 902-937, https://doi.org/10.1002/2016RG000538.

Straus, D. M., S. Corti, and F. Molteni, 2007: Circulation regimes:
Chaotic variability versus SST-forced predictability. J. Climate,
20, 2251-2272, https://doi.org/10.1175/JCLI4070.1.

Toms, B. A, E. A. Barnes, and 1. Ebert-Uphoff, 2020: Physically
interpretable neural networks for the geosciences: Applica-
tions to earth system variability. J. Adv. Model. Earth Syst.,
12, e2019MS002002, https://doi.org/10.1029/2019MS002002.

——, —, and J. W. Hurrell, 2021a: Assessing decadal predict-
ability in an earth-system model using explainable neural
networks. Geophys. Res. Lett., 48, €2021GL093842, https://
doi.org/10.1029/2021GL093842.

—, K. Kashinath, Prabhat, and D. Yang, 2021b: Testing the reli-
ability of interpretable neural networks in geoscience using the
Madden-Julian oscillation. Geosci. Model Dev., 14, 4495-4508,
https://doi.org/10.5194/gmd-14-4495-2021.

Vigaud, N., A. W. Robertson, and M. K. Tippett, 2018: Predict-
ability of recurrent weather regimes over North America
during winter from submonthly reforecasts. Mon. Wea. Rev.,
146, 2559-2577, https://doi.org/10.1175/MWR-D-18-0058.1.

Virtanen, P., and Coauthors, 2020: SciPy 1.0: Fundamental algo-
rithms for scientific computing in Python. Nat. Methods, 17,
261-272, https://doi.org/10.1038/s41592-019-0686-2.

Welch, P., 1967: The use of fast Fourier transform for the estima-
tion of power spectra: A method based on time averaging
over short, modified periodograms. /IEEE Trans. Audio Elec-
troacoust., 15, 70-73, https://doi.org/10.1109/TAU.1967.1161901.

Wheeler, M. C., and H. Hendon, 2004: An all-season real-time
multivariate MJO index: Development of an index for moni-
toring and prediction. Mon. Wea. Rev., 132, 1917-1932, https:/
doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI %3E2.
0.CO32.

Zeiler, M. D., and R. Fergus, 2013: Visualizing and understanding
convolutional networks. arXiv, 1311.2901, https://doi.org/10.
48550/arXiv.1311.2901.

Zhang, W., B. Kirtman, L. Siqueira, B. Xiang, J. Infanti, and N.
Perlin, 2022: Decadal variability of southeast US rainfall in
an eddying global coupled model. Geophys. Res. Lett., 49,
€2021GL096709, https:/doi.org/10.1029/2021 GL096709.

Zhou, S., M. L’'Heureux, S. Weaver, and A. Kumar, 2011: A com-
posite study of the MJO influence on the surface air temper-
ature and precipitation over the continental United States.
Climate Dyn., 38, 1459-1471, https://doi.org/10.1007/s00382-
011-1001-9.


https://doi.org/10.1007/978-3-030-28954-6_10
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.2307/2346866
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1175/BAMS-D-18-0270.1
https://doi.org/10.1175/BAMS-D-18-0270.1
https://doi.org/10.1175/1520-0493(1982)110<1105:DOWRQS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<1105:DOWRQS>2.0.CO;2
https://doi.org/10.1175/MWR-D-19-0285.1
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
https://doi.org/10.1175/2009JCLI3060.1
https://doi.org/10.1007/s00382-019-04827-9
https://doi.org/10.1007/s00382-019-04827-9
https://doi.org/10.1002/2016RG000538
https://doi.org/10.1175/JCLI4070.1
https://doi.org/10.1029/2019MS002002
https://doi.org/10.1029/2021GL093842
https://doi.org/10.1029/2021GL093842
https://doi.org/10.5194/gmd-14-4495-2021
https://doi.org/10.1175/MWR-D-18-0058.1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI%3E2.0.CO;2
https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.1029/2021GL096709
https://doi.org/10.1007/s00382-011-1001-9
https://doi.org/10.1007/s00382-011-1001-9

