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Subseasonal Great Plains Rainfall via Remote Extratropical
Teleconnections: Regional Application of Theory-Guided
Causal Networks
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Marine and Atmospheric Science, University of Miami, Miami, FL, USA

Abstract Long-range U.S. summer rainfall prediction skill is low. Monsoon variability, especially over
the West North Pacific Monsoon (WNPM) and/or East Asian Monsoon (EAM) region, can influence U.S.
Great Plains hydroclimate variability via a forced Rossby wave response. Here, we explored subseasonal
monsoon variability as a source of predictability for Great Plains rainfall. The boreal summer intraseasonal
oscillation (BSISO) is related to Great Plains convection and Great Plains low-level jet (LLJ) anomalies as well
as a cross-Pacific wave train. Using a causal effect network, we found that the time between BSISO-related
geopotential height anomalies and Great Plains rainfall anomalies is about 2 weeks; therefore, BSISO
convection may be a valuable forecast of opportunity for subseasonal prediction of Great Plains convection
anomalies. More specifically, causal link patterns/maps revealed that the above-normal weekly EAM rainfall,
rather than WNPM rainfall or general geopotential height activity over the East Asia, was causally linked to
Great Plains LLJ strengthening and active Great Plains convection the following week.

Plain Language Summary Forecasting U.S. summer rainfall out past ~7-10 days, considered the
subseasonal timescale, is a challenge. However, there are times when subseasonal forecast skill is relatively
higher due to propagating atmospheric waves from remote climate events. The West North Pacific Monsoon
(WNPM) and East Asian Monsoon (EAM) can provide a remote influence via their related heating triggering
atmospheric waves. Using an algorithm that effectively identifies and quantifies cause-and-effect relationships,
we constructed a network that connects EAM rainfall and Great Plains rainfall via these atmospheric waves. We
found that above-normal EAM rainfall, rather than WNPM rainfall or general atmospheric wave activity over
the East Asia, was causally linked to active Great Plains convection the following week. Therefore, monsoon
variability, especially over the EAM region, might be a valuable source of subseasonal predictability for U.S.
summer rainfall.

1. Introduction

Understanding summertime continental U.S. (CONUS) hydroclimate predictability on the subseasonal-to-seasonal
(S25) timescale has been challenging, and relationships between tropical remote forcing and mid-latitude circula-
tion are difficult to assess due to the overall weak signals of the summer season (Trenberth et al., 1998; S. Zhou
etal., 2012). Many studies suggest that Asian summer monsoon (ASM) variability on the seasonal-to-interannual
timescale, especially over the West North Pacific (WNPM) and/or East Asian Monsoon (EAM) region, can
influence CONUS hydroclimate via a quasi-stationary Rossby wave response (Di Capua et al., 2020b; Kornhuber
et al., 2019; Lopez et al., 2019; Malloy & Kirtman, 2022; Yang et al., 2020; Zhu & Li, 2016, 2018). The Great
Plains low-level jet (LLJ) is the prominent transporter of moisture into that region, and large-scale LLJ anomalies
are typically associated with rainfall events (Algarra et al., 2019; Arritt et al., 1997; Cook et al., 2008; Higgins
et al., 1997; Malloy & Kirtman, 2020; Nayak & Villarini, 2017; Weaver & Nigam, 2008; Weaver et al., 2009).
The upper-level pattern associated with the monsoon-forced Rossby wave response can often align (construc-
tively interfere) with the Great Plains LLJ to amplify Great Plains rainfall signals (Agrawal et al., 2021).

The ASM also exhibits subseasonal variability, typically called the boreal summer intraseasonal oscillation
(BSISO), and it is the dominating mode of tropical convection over ASM region and western Pacific (S. S. Lee &
Wang, 2016; Yasunari, 1979, 1980). Krishnamurthy et al. (2021) and Moon et al. (2013) identified the monsoon
intraseasonal oscillation as a source of subseasonal predictability over CONUS in the summer in observations
and/or climate forecast models. Few studies have explored the dynamical pathway between BSISO-related
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anomalies and Great Plains rainfall anomalies, such as understanding the timescale of Rossby wave initiation and
propagation to influence North American features, such as the Great Plains LLJ.

In many of these studies, climate models were used to quantify the monsoon responses, usually by prescribed
heating, and were compared to observations (Lopez et al., 2019; Malloy & Kirtman, 2022; Yang et al., 2020). In
this case, causality is implied (amongst natural variability or chaos). For example, the EAM heating causes the
elongated anomalous ridge over the North Pacific, anomalous trough over western North America, and anom-
alous ridge over eastern North America from the set of experiments in Malloy and Kirtman (2022). However,
there are also ways to quantify causal links via data-driven methods that is, using observations alone. Causal
discovery methods, such as causal effect networks (CENS), are becoming popular as a way to map physical links
in the climate system within an inputted timeseries of data (Kretschmer et al., 2016; Runge, 2018, 2020; Runge
et al., 2014, 2019). Using CENs, Di Capua et al. (2020a) found that there was a link between the North Atlantic
Oscillation (NAO), circumglobal teleconnection (CGT), and ASM variability, as well as between the BSISO and
ASM variability. Di Capua et al. (2020b) suggested that the WNPM may force the North Pacific circulation which
subsequently influences temperature and rainfall anomalies over North America.

The CENs methodology is an application of the Peter and Clark Momentary Conditional Independence (PC-MCI)
algorithm (Runge et al., 2019, 2014; Spirtes et al., 2000), used to effectively determine causal links while remov-
ing the effects from autocorrelation, indirect (spurious) links, or common drivers. It maintains a high detection
power over other techniques, such as Granger causality model (Runge, 2018, 2020; Runge et al., 2019). There
are many assumptions in using CENSs, including that causality can only be determined among the given drivers.
Adding or removing drivers can change the conditional (in)dependence and hence change the linkages. There-
fore, knowledge of the physical system beforehand, including relevant variables and timescales, is essential for
interpreting the output of the algorithm.

The objective of this study is to: (a) identify potential remote drivers of U.S. rainfall variability, and (b) apply a
theory-guided CEN approach to analyze the causality and pathway between these remote drivers and Great Plains
LLJ and rainfall anomalies on the subseasonal timescale. This extends upon the methodology from Di Capua
et al. (2020a) and Di Capua et al. (2020b) by applying it to understand more regional-scale monsoon forcing
mechanisms. We also successfully isolate the impacts from interrelated drivers in the CEN with causal maps,
shedding light on a source of U.S. Great Plains hydroclimate predictability.

2. Data and Methods
2.1. Observational Data Sets

This study focuses on the extended summer season (May through September), though April was considered
for the lead-lag correlation analysis and CEN. Pressure-level meridional wind, zonal wind, geopotential height
were taken from the European Center for Medium-Range Weather Forecasts fifth-generation reanalysis (ERAS).
ERAS atmospheric data is provided hourly on a 0.25° latitude/longitude grid (Hersbach et al., 2020), and it is
recalculated to daily averages. U.S. precipitation data were taken from the Climate Prediction Center (CPC)
Global Unified Gauge-based Analysis, provided on a 0.5° latitude/longitude grid over land (Chen et al., 2008;
Xie et al., 2007). Outgoing Longwave Radiation (OLR) data, used as a proxy for convection, were taken from the
interpolated daily OLR version 1.2 from National Oceanic and Atmospheric Administration Climate Data Record,
accessed from https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00875.

Because this study is focused on intraseasonal variability, for every variable, we removed the centered 120-day
moving mean at every grid point (Arcodia et al., 2020) in addition to detrending and removing the annual cycle.
Then we took the centered 10-day running mean of the variables to focus on large-scale, low-frequency features.
This filtering step is done to focus on variability between synoptic and seasonal timescales. For the CEN analysis,
we used the filtered data and resampled the data as weekly averages; using weekly data is a practical approach for
subseasonal predictability analysis in order to filter short-term temporal fluctuations and simplify the visualized
CEN (Di Capua et al., 2020a; Di Capua et al., 2020b; Krishnamurthy et al., 2021).

2.2. Potential Drivers

The Great Plains precipitation index is defined by averaged precipitation anomalies within the 35°-50°N,
85°-105°W domain, and the Great Plains LLJ index is defined by the averaged V850 anomalies within the
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Table 1
Potential Drivers to Great Plains Rainfall

Name Identifier Index calculation
Great Plains precipitation GP rainfall Precipitation*[35°-50°N, 85°-105°W]
Great Plains low-level jet GPLLJ V850%[25°-35°N, 90°-102°W]
Pacific-North America High-Low dipole PNA-HL (Z200*[35°-60°N, 135°-

165°W] — Z200*[35°-60°N, 100°-130°W])
North Pacific Low NPac-L Z200%*[35°-60°N, 160°E—170°W]
East Asian Monsoon Low EAM-L Z200*[25°-50°N, 90°-130°E]
East Asian Monsoon precipitation EAM rainfall Precipitation*[20°-30°N, 100°-125°E]
West North Pacific Monsoon precipitation WNPM rainfall Precipitation*[0°~20°N, 90°-~120°E]

Note. The Great Plains precipitation index (italicized) included here as predictand. Index is calculated by taking the domain-averaged anomalies of the variable.

25°-35°N, 90°-102°W domain. These domains are slightly larger than in previous literature (Malloy &
Kirtman, 2020; Weaver & Nigam, 2008) to account for shifts eastward, which may be more important for
EAM-forced Great Plains LLJ variability that is coupled to the upper levels (Agrawal et al., 2021). In addition,
we defined various other indices to input into the CEN as potential drivers based on the lagged correlation anal-
ysis. All inputs, or potential drivers, to the Great Plains LLJ and Great Plains rainfall are outlined in Table 1 and
can be visualized in the lagged correlation figures in Results section.

2.3. CENs

The CEN is constructed by first applying the PC-MCI algorithm (Runge et al., 2014, 2019; Spirtes et al., 2000).
This is a two-step procedure: (a) the PC step finds the relevant drivers, or “parents”, of each variable via an itera-
tive independence testing, and (b) the MCI step removes spurious or common parents by conditioning the partial
correlations between parents and variables on the parents of the parents.

Start with a set X of n variables that are timeseries of anomalies. The PC algorithm first calculates the correlation
between the ith variable in X and the rest of the variables in X at time lag 7. The significant correlations with the
ith variable form a set of potential parents X? at time lag 7, which is ordered by strength of correlation. Then, it
calculates the partial correlation between the ith variable and each potential parent in X, but with a condition that
the first variable in X? has the strongest correlation with the ith variable, testing if the relationship/correlation is
mediated by a common variable. If a, b, and c are variables in X, the partial correlation between a and b condi-
tioned on c is calculated by performing a linear regression of a on ¢ and b on c, then correlating the residuals.
Variables a and b are conditionally dependent given c, that is, their correlation cannot be explained by the influ-
ence of ¢ (not spurious link) if the resulting partial correlation is significant at threshold a. This may reduce the
set of parents for the next iteration X . The process is repeated for this set of parents but with now two conditions,
leading to a next (possibly reduced) set of parents X?2. When the number of parents is equal to or greater than the
number of conditions needed to calculate partial correlation, the algorithm converges.

The MCI step calculates the partial correlation between each variable and its parents at different time lags condi-
tioned on both the set of parents of @ and b and the parents of the parents of a and b, essentially removing common
driver effects and reducing to a final set of causal parents.

The CEN calculates these causal relationships by performing a standardized multiple regression of each variable
with its parents. The final link is represented as the change in standard deviation (o) of variable at time ¢ if the
parent was raised to 1o at time # — 7. More detail of this algorithm and its comparison to other causality methods
can be found in Runge et al. (2019). The PC-MCI algorithm is freely available (Runge, 2022); Tigramite version
4.2 was used for the analysis in this study.

There are many assumptions to using the CEN, including that causal links are determined relative to the chosen
set of variables. Removing or adding variables may change the CEN, and therefore, it is important for the user
to understand the physical system. Other assumptions include the stationarity of relationships and near-linear
interactions.
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In this study, the CEN visualizes the causal links with a time lag of 1 week. Contemporaneous links are also
visualized with no causality direction inferred. The winter season is masked, which means that timescales of
variables are restricted to MJJAS season, but the parent (and conditional) timeseries may include data outside the
MIJAS season. We set a = 0.05, which is the significance threshold as explained above, and a false discovery rate
is applied to rectify inflated p-values that result from multiple significance testing (Benjamini & Hochberg, 1995;
Benjamini & Yekutieli, 2001). We also set ¢
results are not sensitive to the choice of 7,,, between 2 and 5.

nax = 3 weeks, which is maximum time delay, though we find that the

2.4. Causal Maps

Finally, we experiment with causal maps, which plots the link coefficient from the CEN spatially
(Di Capua et al., 2020b). Two one-dimensional timeseries are chosen that have a theoretical relationship with
a three-dimensional field. The CEN determines the causal link between one of the one-dimensional timeseries
and a timeseries of a grid point from the three-dimensional field, conditioned on the other one-dimensional time-
series. To distinguish between the WNPM- and EAM-forced patterns, as well as the EAM- and EAM-L-forced
patterns, we use the weekly WNPM, EAM, and EAM-L timeseries, and the three-dimensional fields of interest
are weekly 7200, V850, and OLR. Time lags of 1 and 2 weeks are explored, but, because the 2-week lagged
patterns lack statistical significance over CONUS, only the 1-week lagged patterns are presented here.

3. Results
3.1. Link Between BSISO and Great Plains Rainfall

Before constructing the CEN, we first establish the potential influence of subseasonal monsoon variability on
CONUS hydroclimate. Composites of OLR and U200 anomalies for the combined BSISO phases (phases 8 + 1,
2+ 3,4+ 5, and 6 + 7) are depicted in Figure 1, highlighting the northeastward propagation of the regions of
active and inactive convection as well as its influence on jet stream anomalies over the North Pacific. In particu-
lar, phases 2 + 3 are associated with active convection (negative OLR) over the equatorial Indian Ocean and weak
wet anomalies over the EAM region, which corresponds with strengthening or northward displacement of the jet
stream over East Asia at 55°N (Figure 1b). During phases 4 + 5, active convection over East Asia strengthens
slightly and the positive U200 anomalies are extended over the North Pacific (Figure 1c). Composites of phases
6 + 7 and 8 + 1 present opposite patterns to 2 + 3 and 4 + 5, respectively.

The location of above-normal convection in the ASM region, indicated by BSISO phase, is related to the anoma-
lous probability of Great Plains rainfall events, Great Plains LLJ events, and height patterns over the northeastern
Pacific-western North America regions (Figure 2). Above- and below-normal events are defined by upper and
lower tercile thresholds, so anomalous probability is defined by the probability deviation from 33%. There is a
increased (decreased) probability of a below-normal (above-normal) rainfall event ~3 weeks after BSISO phase
3 (Figures 2a and 2b). The anomalous probabilities for the rainfall events coincide with the expected anomalous
probabilities for the Great Plains LLJ and PNA events (calculated by its standard definition here, as described
by CPC; Figures 2b-2f). For example, days with increased probability for the below-normal rainfall event are
generally days with an increased probability for strong Great Plains LLJ event and PNA + pattern. This is also
true for the above-normal Great Plains rainfall events. Overall, there is an inferred propagation of the signal from
the BSISO on these timescales, as seen by the diagonal stripes of increased or decreased anomalous probabil-
ity, though there are times when this signal is reduced or lacks statistical significance for certain events, lags,
and/or phases.

This is further analyzed by investigating the lagged spatial correlation between Great Plains rainfall at 7= 0 and
the OLR, V850, and Z200 anomaly fields at 0, 10, and 20 days before. The correlation between the Great Plains
precipitation index and OLR anomalies at T = 0 demonstrates the active convection, and hence the precipitation,
over the northern Plains (Figure 3a). This corresponds with the strong anomalous southerly flow over the region
(Figure 3d) and anomalous low pressure over western North America (Figure 3g). Over the monsoon region and
North Pacific, there is a negative correlation with OLR anomalies at 30°N between 90°E and 150°E (Figure 3a,
magenta domain) in addition to a positive correlation with EAM-related southerly flow (Figure 3e, black contour
outline). A wave train is correlated with the Great Plains precipitation, including our PNA-HL pattern and NPac-L.
feature (Figure 3g, orange boxes). The PNA-HL pattern has been identified before as an important precursor for
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BSISO life cycle
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Figure 1. Composited anomalies of Outgoing Longwave Radiation (shaded) and U200 (purple contours) anomalies for
boreal summer intraseasonal oscillation (BSISO) combined phases (a) 8 + 1, (b) 2 + 3, (c) 4 + 5, and (d) 6 + 7. U200
anomalies are contoured every 1 m s~! between —5 and 5 m s~.
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Anomalous probability based on BSISO phase

(a) Below-normal Great Plains rainfall (d)
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Figure 2. Anomalous probability of the following events for days after a boreal summer intraseasonal oscillation (BSISO) phase: (a) below-normal Great Plains
rainfall, (b) weak Great Plains LLJ, (c) PNA + pattern, (d) above-normal Great Plains rainfall, (e) strong Great Plains LLJ, and (f) PNA-pattern. White dots denote

statistical significance at the 90% confidence level determined by bootstrapping method with 1,000 iterations.

Lag correlation with Great Plains precipitation at T = 0

V850
60°N
T=0
oL
- N - 2 3 5 3 - o
90°E  120°E  150°E  180°  150°W  120°W  90°W  60°W  90°E  120°  1S0°E  180°  150°W
(b) (e) (h)
T 3
60°N ¥
T=-10
30°N
I
. 3 7 : 5 e : : i et
9°E  120°€  150°E  180°  150°W  120°W  90°W  60°W 1206 150°E 180°  150°W 60°W 9°E 1206 150°E

180° 150°wW 120°W 90°W 60°W

T=-20

T (m =y

%
ey

R o -y s I X P N A7, )
& 7t -
90°E 120°E 150°E 180° 150°W 120°wW 20°W 60°W 90°E 120°E 150°E 180° 150°wW 120°W 20°W 60°W 90°E 120°E 150°E 180° 150°wW 120°W 20°W 60°W
-0.4 -0.3 -0.2 -0.1 00 01 02 03 0.4

Figure 3. Lag correlation between Great Plains precipitation index at 7= 0 and (a—c) Outgoing Longwave Radiation (OLR) anomalies at 7 = 0, —10, and —20 days,
(d—f) V850 anomalies at 7= 0, —10, and —20 days, and (g—i) Z200 anomalies at 7= 0, —10, and —20 days. Pink domains indicate the Great Plains precipitation,
East Asian Monsoon (EAM) rainfall, and West North Pacific Monsoon rainfall indices. Green domain indicates the Great Plains LLJ index, and black contour outline
highlight the southerly flow over the relevant BSISO region. Orange domains indicate the EAM-L, NPac-L, and PNA-HL indices. Stippling indicates statistical

significance at the 90% confidence level and a correlation value >0.05 or <—0.05. See Table 1 for more information about indices.
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Causal effect network: BSISO rainfall to NPac-L
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Figure 4. Causal effect network between West North Pacific Monsoon (WNPM) rainfall, East Asian Monsoon (EAM) rainfall, EAM-L, and NPac-L. Color of
individual nodes indicates autocorrelated o change from 1 week to the next. Color of lines or arrows indicate the o change. Arrows indicate the direction of causality,
with strength of ¢ change annotated on arrow, with lag of 1 week. Dashed lines are contemporaneous links, which, by themselves, do not imply causality.

Plains rainfall events (Harding & Snyder, 2015; Mallakpour & Villarini, 2016; Malloy & Kirtman, 2020; Nayak
& Villarini, 2017; Patricola et al., 2015; Rogers & Coleman, 2003).

The correlation between the Great Plains precipitation index and these field anomalies at 7' = —10 (10 days
before) reveals that some of the variability of Great Plains rainfall can be due to this cross-Pacific wave train that
can be forced/modulated by EAM rainfall (Figures 3b, 3e, and 3h). The correlation with negative OLR and posi-
tive V850 anomalies over the EAM region is —0.1 to —0.2, and the wave train pattern is present, including a ~0.2
correlation with the EAM-L and NPac-L features (Figure 3h, left and right orange domains, respectively). There
is also a correlation with positive OLR over the WNPM region 10 days before Great Plains precipitation events,
showing an OLR pattern similar to that of combined phases 8 + 1 of the BSISO (cf. Figure 1a). In general, the
correlations at 7= —20 are somewhat opposite to 7= 0 and T = —10, respectively.

These results suggest that the BSISO influences Great Plains rainfall on subseasonal timescales via a cross-Pacific
Rossby wave train. We are motivated to test these linkages with a causal discovery algorithm and to confirm if
the pathway from EAM rainfall to Great Plains rainfall exists and is considered causal. This method will also
approximate the timeframe on which the BSISO-related rainfall anomalies lead to Great Plains anomalies (e.g.,
within ~2 weeks, cf. Figure 3).

3.2. CEN for Great Plains Rainfall

Because of the relatively large number of potential drivers, we simplify the discussion of the causal network by
separating it into three spatial domains: over East Asia and western North Pacific, over the mid-latitude North
Pacific, and over central-eastern North Pacific and North America. In addition, we have input weekly averaged
data into the CEN (unlike analysis of the filtered daily data in previous section). First, we test for a causal
pathway between the WNPM rainfall, EAM rainfall, EAM-L feature, and NPac-L feature (Figure 4). There is
a contemporaneous negative link between weekly averaged WNPM rainfall and EAM rainfall, and a positive
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Figure 5. Same as Figure 4, but for the causal effect network between EAM-L, NPac-L, and PNA-HL.

contemporaneous link between weekly averaged EAM rainfall and the EAM-L feature. A strengthening of the
weekly averaged EAM-L by 1o leads to a 0.38¢ strengthening in the NPac-L feature the following week. The
EAM-L and NPac-L features also have a contemporaneous link. This CEN indicates that the excitation of the
Rossby wave activity over the North Pacific often depends on the presence of the EAM-L feature.

Next, we consider the pathway between the different geopotential height features over the North Pacific (Figure 5).
A strengthening of the NPac-L by 1o leads to a 0.1¢ strengthening in the PNA-HL pattern the following week,
suggesting that the full cross-Pacific Rossby wave train pathway may take up to 2 weeks. The contemporaneous
links between these features demonstrate the eastward propagation of the North Pacific wave pattern. For exam-
ple, the contemporaneous negative link between the EAM-L and PNA-HL is also found in Figure 3i: by the time
the Rossby wave reaches North America, the geopotential heights over EAM region are reversed.

Finally, the pathway between NPac-L and the Great Plains LLJ and Great Plains rainfall are visualized in the
CEN (Figure 6). A strengthening of the PNA-HL by 1o leads to a 0.16¢ increase in the Great Plains rainfall and
0.090 strengthening of the Great Plains LLJ the following week. However, a strengthening of the NPac-L by 1o
leads to a 0.2¢ increase in the Great Plains rainfall and 0.14¢ strengthening of the Great Plains LLJ the following
week, which are greater causal links. Considering the contemporaneous link between PNA-HL and Great Plains
rainfall and the PNA-HL and Great Plains LLJ are strongly positive, it is likely that the PNA-HL influence on
these indices operates on sub-weekly timescales, that is, the weekly averaged data is not resolving the links as
causal. However, this demonstrates that the NPac-L may assist in longer-lead prediction of the Great Plains LLJ
and rainfall.

The CEN captured the intricacies of the relationships between these indices and their influence on the Great
Plains LLJ and Great Plains rainfall. In addition, it demonstrated that the rainfall over the BSISO region is linked
to an EAM-L feature that can generate a wave train response over the North Pacific that influences rainfall
anomalies over the Great Plains. This can occur on a ~2-week timescale, potentially advantageous for under-
standing prediction on the subseasonal timescale.

Because of the contemporaneous relationship between the WNPM rainfall, EAM rainfall, and the EAM-L, it is
difficult to assess the true causality between these features and downstream impacts. This motivates the use of
causal maps to separate the patterns between WNPM and EAM rainfall as well as between EAM rainfall and
EAM-L.

3.3. Causal Maps

By comparing the causal maps for Z200, V850, and OLR (Figures 7-9) with the lag correlation patterns from
Figure 3, it is evident that EAM rainfall variability contributes to Great Plains rainfall variability on weekly
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Figure 6. Same as Figure 4, but for the causal effect network between NPac-L, PNA-HL, Great Plains LLJ, and Great Plains rainfall.

timescales. First, we consider the causal linkages between the WNPM rainfall, EAM rainfall, and EAM-L feature
at T = —1 (one week before) and the Z200 field at 7 = 0. After removing the signal from EAM rainfall, WNPM
rainfall affects the Z200 field mostly in the tropics and subtropics, with a 1o increase in WNPM rainfall causally
linked to ~0.2¢ anomalous ridging across the central-eastern tropical Pacific (Figure 7a). After removing the
signal from the WNPM, EAM rainfall affects the mid-latitude Z200 field, with a 1o increase in EAM rainfall

Causal maps for Z200

(@) WNPM rainfall 7= _; = 7200 7= | EAM ramfall (©) EAM rainfall 1= _; =» Z200 7o | EAM-L NPac-L r= _; =» Z200 r=¢ | EAM-L
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Figure 7. Causal maps showing the causal link value between (a) West North Pacific Monsoon (WNPM) rainfall at 7= —1 (1 week before) and Z200 at every grid
point, with East Asian Monsoon (EAM) rainfall conditioned out, (b) EAM rainfall at 7= —1 and Z200 at every grid point, with WNPM rainfall conditioned out, (c)
EAM rainfall at T = —1 and Z200 at every grid point, with EAM-L conditioned out, (d) EAM-L at T = —1 and Z200 at every grid point, with EAM rainfall conditioned
out, and (e) NPac-L at 7= —1 and Z200 at every grid point, with EAM-L conditioned out. Causal link value is interpreted the same as arrows in Figures 4-6. Only
values with significance at 95% confidence level and a magnitude >0.05 are shown.
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Causal maps for V850
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Figure 8. Same as Figure 7, but for links with V850 at every grid point.

causally linked to a ~0.15-0.2¢ anomalous troughing over the WNPM region and North Pacific as well as ~0.15¢
anomalous ridging at higher latitudes in East Asia (Figure 7b). This pattern is similar to the EAM rainfall causal
map with the EAM-L signal removed (Figure 7c), but the removal of the EAM-L feature reduces the magnitude
of the links. Finally, after removing the signal from EAM rainfall, the EAM-L impact on the Z200 field is prom-
inent, with a 1o strengthening of the EAM-L causally linked to ~0.2 anomalous ridging over high-latitude East
Asia and 0.3-0.40 anomalous troughing over the mid-latitude Pacific—including the NPac-L feature—and the
Pacific Northwest (Figure 7d). The map of causal links between the EAM rainfall and the Z200 field help explain
the Z200 patterns at 7 = 0, and perhaps T = —10, from the lag correlations (cf. Figures 3g and 3h) over the EAM
region and North Pacific. The strong wave train over North America is not present in the causal maps from the
WNPM rainfall, EAM rainfall, or EAM-L. This could mean that the wave train is not explained causally by the
WNPM, EAM, or EAM-L, but rather is forced locally, perhaps by feedbacks from Great Plains rainfall. Another
possibility is that the causal maps are just not capturing this Z200 wave signal. Nevertheless, EAM rainfall can
generate the upstream Rossby wave activity that affects this region. Finally, we consider the next stage of the
causal pathway and Rossby wave train. After removing the EAM-L signal (though keeping EAM influence), the
NPac-L feature is causally linked to anomalous troughing over the Pacific Northwest U.S. region and tropical
Pacific (Figure 7e) 1 week later, demonstrating that the NPac-L feature can strengthen the EAM signals over
North America.

Next, we consider causal linkages with the V850 field. WNPM impacts to V850 are most evident in the WNPM
and EAM regions as well as the central tropical Pacific (Figure 8a). After removing either the WNPM or EAM-L
signal, the causal linkages between EAM rainfall and V850 field are relevant to North America, with a 1o increase
in EAM rainfall leading to a ~0.15¢ strengthening of the Great Plains LLJ (Figures 8b and 8c). EAM rainfall
also impacts flow over the high-latitude Bering Sea/Alaska region. The causal linkages between the EAM-L and
V850 field are prevalent over the EAM region and North Pacific. In particular, a 1o strengthening in the EAM-L
is causally linked to a 0.1-0.2¢ strengthening of the low-level EAM flow. Once again, the EAM rainfall causal
links explain more of the lag correlation patterns over North America (cf. Figures 3d and 3e), though the EAM-L
is likely playing a role in amplifying the EAM or its signals. Similar to the Z200 causal maps, the NPac-L feature
strengthens the EAM-related V850 signals over North America (Figure 8e).

The causal maps for the OLR field further demonstrate the influence of EAM rainfall. While WNPM rainfall
impacts to OLR are mostly constrained to the subtropics and tropics (Figure 9a), the EAM rainfall links to OLR
are most evident over the North Pacific and North America (Figure 9b). A 1o increase in EAM rainfall is causally
linked to a 0.1-0.2¢ decrease in OLR (active convection) over the Great Plains. Patterns and link magnitudes
are similar for the EAM rainfall impacts with the EAM-L signal removed (Figure 9c). Interestingly, the EAM-L
is causally linked to OLR over the EAM region and Pacific Northwest (Figure 9d). A 1o strengthening of the
EAM-L may lead to a 0.1-0.2¢ increase in EAM rainfall in addition to 0.1-0.2¢ increase in Pacific Northwest
rainfall. These OLR patterns agree with the Z200 patterns from the EAM-L forcing (cf. Figure 7d), that is, active
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Figure 9. Same as Figure 7, but for links with Outgoing Longwave Radiation (OLR) at every grid point.

convection is expected in these regions with that upper-level geopotential height pattern. The map of causal links
from the EAM rainfall is helpful to explain the OLR patterns over the Great Plains region from the 7 = 0 lag
correlations (cf. Figure 3a), whereas the map of causal links from the EAM-L feature is helpful for describing the
OLR patterns over North Pacific and Pacific Northwest at 7= —10 days (cf. Figure 3b). By including the NPac-L.
patterns, there is a clearer OLR signal over North America (Figure 9¢). The causal maps indicate that the EAM
rainfall often leads to a mid-latitude response over East Asia about 1 week later, including a strengthening of the
NPac-L feature. Once the NPac-L feature strengthens, the circulation and OLR anomalies over North America
often respond to strengthen the EAM-related signals another 1 week later.

In brief, EAM rainfall and EAM-L feature contribute to Z200 and OLR patterns over the mid-latitude Pacific
and/or North America with a 1 week lag. However, EAM rainfall is more directly linked to Great Plains rainfall
variability on this timescale, while EAM-L may modulate or amplify EAM-forced activity (or vice versa). Strong
upper-level circulation anomalies over North America from Figure 3i were not explained by the monsoons nor
the EAM-L feature, suggesting that localized feedbacks by the Great Plains rainfall itself might be forcing or
amplifying that pattern.

3.4. Associated Dynamical Mechanisms

To further interpret the causal maps and contextualize these results with respect to potential dynamical mecha-
nisms, we consider the composited 200 hPa anomalies of zonal wind, divergence, stream function as well as hori-
zontal wave activity flux during upper tercile WNPM or EAM days, which we calculated using the daily data. We
hypothesize that the magnitude and/or location of the diabatic heating from EAM generates a greater response
via jet stream perturbations and Rossby wave activity with greater magnitude than from the WNPM heating,
explaining the greater mid-latitude response and resulting teleconnection from EAM rainfall (cf. Figures 7-9).

Strong WNPM days are associated with weak zonal wind anomalies (shaded) over East Asia (Figure 10a). In
contrast, for EAM days, there are relatively strong zonal wind anomalies close to the climatological East Asian jet
stream (black contours) collocated with EAM-related divergence (purple contours; Figure 10b). The WNPM and
EAM days are associated with a similar pattern of stream function anomalies over Eurasia (shaded anomalies in
Figures 10c and 10d), resembling the CGT, which has been found to influence North American summer climate
(Beverley et al., 2021; Di Capua et al., 2020b; Ding & Wang, 2005). However, there is a regional amplification
of the CGT over East Asia and West North Pacific only during EAM days (Figure 10d). Wave activity flux is
used to diagnose the wave energy propagation in a zonally varying basic flow (calculated as MJJAS mean state
here) due to stationary Rossby waves (Takaya & Nakamura, 1997, 2001). The wave activity flux is similar for
both WNPM and EAM, that often Rossby waves will move equatorward over the North Pacific (northerly arrows
over West North Pacific). However, there is another pathway in which Rossby wave activity moves eastward over
North America. The amplified anomalous stream function pattern over East Asia and cross-Pacific wave pattern
during the EAM days suggests that the EAM forcing can more effectively trigger or modulate Rossby waves that
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dashed) as well as 1 and 3 x 107 s~! (purple solid), and U is contoured every 10 m s~! between 10 and 30 m s~!. Arrow scale for wave activity flux is on upper right

corner of (c).

propagate to North America. Overall, the Z200 response from the lagged correlation analysis (cf. Figure 3g) and
causal maps (cf. Figures 7b and 7c) can be explained by this teleconnection excitation from EAM-related diver-
gence, likely due to release of diabatic heating.

4. Summary and Discussion

Here, we explored the subseasonal predictability of Great Plains rainfall with a theory-guided application of
CENs. Using a traditional lead-lag analysis approach, we found that the BSISO is related to Great Plains rainfall,
the Great Plains LLJ, and PNA-HL pattern via a cross-Pacific wave train. The time between EAM-L anomalies
potentially influencing Great Plains rainfall anomalies is ~2 weeks; therefore, BSISO forcing or modulation of
the EAM-L may be valuable forecast of opportunity for subseasonal prediction of Great Plains rainfall. Causal
link patterns and associated RWS anomalies from the EAM rainfall revealed that the EAM is causally linked to
excitation or modulation of Rossby wave patterns, leading to downstream Great Plains LLJ and rainfall anoma-
lies. Anomalous geopotential height activity over EAM region (e.g., EAM-L pattern) may have a role in modu-
lating the EAM-related patterns.

We applied similar techniques to Di Capua et al. (2020a) and Di Capua et al. (2020b) to understand subseasonal
North American hydroclimate variability, and we focus on the EAM as a regionally significant branch of the
ASM based on results from Malloy and Kirtman (2022). The subseasonal patterns related to WNPM and EAM
convection in Figure 3 are different from the seasonal EAM-forced patterns from Malloy and Kirtman (2022),
demonstrating the importance of timescale for quantifying impacts (Yang et al., 2020). In addition, the definition/
index and spatial scale of the drivers may affect interpretation of results; for instance, the WNPM in Di Capua
et al. (2020b) was defined by maximum covariance analysis (MCA) between tropical OLR and mid-latitude
upper-level heights, highlighting their different approach in defining this region of active convection and its
remote impacts. It raises the question of whether the definition of the WNPM via MCA methodology in Di Capua
et al. (2020b) is too broad to capture the true source of the teleconnection since it conflates both the effects of the
WNPM and EAM rainfall, or whether the definition of the local-scale rainfall in this study is weakening the tele-
connection signals downstream. Nevertheless, our causal map results generally agree with the patterns from their
study, though future analysis should consider the (dis)advantages of both approaches.

There are limitations to using the CEN, such as the causal links are only determined based on the set of drivers
here. Adding other known influences of Great Plains rainfall, such as the North Atlantic subtropical high (L. Li
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et al., 2012; W. Li et al., 2011; Nieto Ferreira & Rickenbach, 2020; Wei et al., 2019), may change the CEN. In
addition, despite the ease of using weekly averaged indices for the CEN, there are drawbacks. Linkages consid-
ered contemporaneous on this weekly timescale may actually be causal on a sub-weekly timescale. For instance,
the contemporaneous link between EAM rainfall and EAM-L (Figure 4) and the contemporaneous link between
the Great Plains LLJ and rainfall (Figure 6) may be considered causal on daily timescales. Several modifications
could be made to this study's CEN, such as inputting the RWS or north-south temperature gradient over the EAM
region as a driver. Though we have not explored all possible input drivers to the CEN, we have demonstrated
how the CEN can be used to gain a deeper understanding compared to simple correlation or regression analyses,
aiming to separate correlation and causation between events or features. Future work should also consider poten-
tial nonlinear relationships between these drivers, perhaps through performing nonlinear independence testing.

Interestingly, the EAM-L feature was important for modulating Rossby wave activity over the North Pacific, even
when removing the influence of EAM. This suggests that the EAM-L feature can be forced by non-EAM activity.
The EAM is only a regional branch of the ASM system. Other sub-monsoonal systems via the CGT might be
impacting the variability of geopotential height activity over the EAM region (Di Capua et al., 2020a; Ding &
Wang, 2005; Ding et al., 2011; Kornhuber et al., 2019; Zhao et al., 2018; F. Zhou et al., 2020), and on different
timescales, which should be explored further. F. Zhou et al. (2020) suggested that the EAM might maintain the
CGT through latent heat release, which is supported in our causal map results as well as our EAM composite of
200 hPa stream function anomalies and wave activity flux (cf. Figure 10d). In addition, other aspects of subsea-
sonal variability unrelated to the monsoon might be involved. For example, the NAO has been shown to modulate
upper-level circulation over Eurasia (Di Capua et al., 2020a; Syed et al., 2012; Wang et al., 2018). Finally, the
amplified wave pattern in Figure 3g was not produced in our causal maps, which suggests that perhaps local
mechanisms (e.g., land-atmosphere or precipitation feedback processes) are involved (Dirmeyer et al., 2003; Guo
et al., 2011; Jong et al., 2021; Koster et al., 2004, 2006).

Future work should address the subseasonal predictability of summer Great Plains rainfall via the BSISO or, more
generally, wave activity over the EAM region, in climate forecast models. The CEN and causal maps with model
data may reveal dissimilar casual linkages from observations, which would be valuable for understanding model
biases of these teleconnections. Additionally, noting the influence of El Nifio-Southern Oscillation on monsoon
variability (Ding et al., 2011; F. Liu et al., 2016; Malloy & Kirtman, 2020) and general summertime predictability
over CONUS (Krishnamurthy et al., 2021; J. Y. Lee et al., 2011; Y. Liu et al., 2019; F. Zhou et al., 2020), it would
be advantageous to investigate the potential impacts warm or cool phases have on the causal pathways and link
magnitudes. It is possible that tropical forcing might influence the predictability of these casual links, such that
EAM-forced patterns might be stronger during El Nino years (Malloy & Kirtman, 2022) or ENSO might have a
greater causal link to the PNA, Great Plains LLJ, and related Plains rainfall.
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int/en/forecasts/datasets/reanalysis-datasets/eraS (Hersbach et al., 2020). The CPC Global Unified Gauge-based
Analysis data was provided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.
gov (Chen et al., 2008; Xie et al., 2007). OLR data was taken from the National Oceanic and Atmospheric
Administration (NOAA) Climate Data Record from https://www.ncei.noaa.gov/access/metadata/landing-page/
bin/iso?id=gov.noaa.ncdc:C00875 (H.-T. Lee & Program, 2011).

The PC-MCI algorithm (Runge, 2022) is publicly available and can be found at the https://doi.org/10.5281/
zenodo.6247837 or by visiting https://doi.org/10.5281/zenodo.6247837.
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