

1 **TITLE:**

2 Using Single-Worm Data to Quantify Heterogeneity in *Caenorhabditis elegans*-Bacterial
3 Interactions

4

5 **AUTHORS AND AFFILIATIONS:**

6 Megan N. Taylor¹, Satya Spandana Boddu², Nic M. Vega^{1,2}

7

8 ¹Department of Biology, Emory University, Atlanta, GA

9 ² Department of Physics, Emory University, Atlanta, GA

10

11 **Corresponding author:**

12 Nic M. Vega (nvega@emory.edu)

13

14 **Co-authors:**

15 Megan N. Taylor (megan.nicole.taylor@emory.edu)

16 Satya Spandana Boddu (satya.spandana.boddu@emory.edu)

17

18 **KEYWORDS:**

19 *Caenorhabditis elegans*, microbiome, heterogeneity, host-microbe, bacteria, transmission

20

21 **SUMMARY:**

22 This protocol describes a 96-well disruption of individual bacterially colonized *Caenorhabditis elegans* following cold paralysis and surface bleaching to remove external bacteria. The resulting suspension is plated on agar plates to allow accurate, medium-throughput quantification of bacterial load in large numbers of individual worms.

26

27 **ABSTRACT:**

28 The nematode *Caenorhabditis elegans* is a model system for host-microbe and host-microbiome interactions. Many studies to date use batch digests rather than individual worm samples to quantify bacterial load in this organism. Here it is argued that the large inter-individual variability seen in bacterial colonization of the *C. elegans* intestine is informative, and that batch digest methods discard information that is important for accurate comparison across conditions. As describing the variation inherent to these samples requires large numbers of individuals, a convenient 96-well plate protocol for disruption and colony plating of individual worms is established.

36

37 **INTRODUCTION:**

38 Heterogeneity in host-microbe associations is observed ubiquitously, and variation between individuals is increasingly recognized as a contributing factor in population-level processes from competition and coexistence¹ to disease transmission²⁻⁴. In *C. elegans*, “hidden heterogeneity” within isogenic populations has been observed repeatedly, with sub-populations of individuals showing distinct phenotypes in heat shock response^{5,6}, ageing, and lifespan⁷⁻¹¹, and many other aspects of physiology and development¹². Most analyses that attempt to identify sub-population structure provide evidence for two sub-populations in experimental populations of isogenic,

45 synchronized worms^{5,7,8}, though other data suggest the possibility of within-population
46 distributions of traits rather than distinct groups^{7,12,13}. Of relevance here, substantial
47 heterogeneity in intestinal populations is observed even within isogenic populations of worms
48 colonized from a shared source of microbes¹³⁻¹⁶, and this heterogeneity can be concealed by the
49 batch digest measurements that are widely used¹⁷⁻²⁰ for bacterial quantification in the worm.

50

51 This work presents data suggesting a need for greater reliance on single-worm measurements in
52 host-microbe association, as well as protocols for increasing accuracy and throughput in single-
53 worm disruption. These protocols are designed to facilitate mechanical disruption of large
54 numbers of individual *C. elegans* for quantification of viable bacterial load, while providing
55 better repeatability and lower effort per sample than pestle-based disruption of individual
56 worms. A recommended gut-purging step, where worms are permitted to feed on heat-killed *E.*
57 *coli* prior to the preparation for disruption, is included to minimize contributions from recently
58 ingested and other transient (non-adhered) bacteria. These protocols include a cold-paralysis
59 method for cleaning the cuticle with a low-concentration surface bleach treatment; surface
60 bleaching can be used as a preparatory step in single-worm disruption or as a method for
61 preparing live, externally germ-free worms. This surface-bleaching method is sufficient to
62 remove a wide range of external microbes, and cold treatment provides an alternative to
63 conventional levamisole-based paralysis; while levamisole will be preferred for cold-sensitive
64 experiments, cold paralysis minimizes contributions to hazardous waste streams and allows
65 rapid resumption of normal activity. While the full protocol describes a laboratory experiment
66 where worms are colonized with known bacteria, the procedures for cleaning worms and single-
67 worm disruption can readily be applied to worms isolated from wild samples or colonized in
68 microcosm experiments. The protocols described here will produce live bacteria extracted from
69 the worm intestine, suitable for plating and quantification of colony forming units (CFUs) in
70 individual worms; for sequencing-based intestinal community analysis, subsequent cell lysis and
71 nucleic acid extraction steps should be added to these protocols.

72

73 **PROTOCOL:**

74 Worms used in these experiments were obtained from the *Caenorhabditis* Genetic Center,
75 which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). Bristol N2 is
76 the wild-type. DAF-2/IGF mutants *daf-16(mu86)* I (CGC CF1038) and *daf-2(e1370)* III (CGC
77 CB1370) are used to illustrate differences in intestinal bacterial load.

78

79 HT115(DE3) *E. coli* carrying the *pos-1* RNAi vector is from the Ahringer library²¹. The MYb
80 collection of *C. elegans* native gut bacteria²² was obtained from the Schulenburg lab. *Salmonella*
81 *enterica* LT2 (ATCC 700720) *attB*:GFP-KmR is from this lab²³. *Pseudomonas mosselii* was isolated
82 in this lab. *Staphylococcus aureus* MSSA Newman pTRKH3-mGFP was obtained from the
83 LaRock lab at Emory University.

84

85 All worm buffers and media are prepared according to previously published literature²⁴ with
86 minor modifications (see **Supplementary File 1**).

87

88 **1. Preparation of synchronized sterile *C. elegans***

89
90 NOTE: In this section, step-by-step procedures are described for generating a synchronized
91 population of reproductively sterile adult worms. Feeding on *pos-1* RNAi plates is used here to
92 prevent production of progeny because this interference is embryonic lethal; L1 larvae raised to
93 adulthood on *pos-1* RNAi develop into egg-laying hermaphrodites, but these eggs are inviable²⁵.
94 The RNAi feeding protocol is as in the "Reverse genetics" chapter of Wormbook²⁶.
95
96 1.1. Before synchronizing worms, ensure that fresh 10 cm NGM + *pos-1* RNAi plates are
97 available. Plates can be prepared fresh from concentrated induced liquid culture (+Amp +IPTG)
98 or inoculated as lawns on NGM + 100 µg/mL ampicillin + 1 mM IPTG and allowed to grow at 25
99 °C in the dark for 1 day²⁷.
100
101 NOTE: Carbenicillin (25 µg/mL) is often used instead of ampicillin on RNAi plates. Ampicillin is
102 less expensive but less stable; if using ampicillin, plates should be seeded immediately once dry
103 and used as soon as possible (can be stored for <1 week at 4 °C)²⁷. The high antibiotic
104 concentration recommended here will help to ensure adequate selection.
105
106 1.2. Start with several (typically two to four) NGM plates with large populations of gravid
107 hermaphrodites. Isolate eggs using bleach-NaOH synchronization²⁴.
108
109 1.2.1. Wash worms off agar plates using 2 mL of sterile ddH₂O per plate. Distribute the liquid
110 evenly into 1.5 mL microcentrifuge tubes (one tube per plate or hermaphrodites).
111
112 1.2.2. Spin down for ~5 s in a benchtop minicentrifuge (2,000 x g) to pull adults to the bottom of
113 the tubes. Pipette off the supernatant and discard.
114
115 1.2.3. Wash with 1 mL of sterile ddH₂O; spin down as before and discard the supernatant.
116
117 1.2.4. Repeat the previous step to reduce remaining bacterial debris.
118
119 1.2.5. Resuspend the contents of each tube in 1 mL of sterile ddH₂O. Add to each tube 130 µL of
120 commercial bleach (8.25% sodium hypochlorite) and 130 µL of 5 N sodium hydroxide (NaOH,
121 final concentration 0.5 N).
122
123 1.2.6. Vortex tubes vigorously for at least 10–15 s every 2 min until adult bodies have broken up.
124 Do not allow bleach-NaOH treatment to go longer than 5 min to avoid killing eggs.
125
126 1.2.7. Spin in a minicentrifuge for 30–60 s at 2,000 x g to pellet the eggs. Pipette off the
127 supernatant and discard. There may or may not be a visible pellet, this is normal.
128
129 1.2.8. Add 1 mL of M9 worm buffer and spin for 30–60 s at 2000 x g. Discard the supernatant.
130
131 1.2.9. Repeat the rinse step (1.2.8) 5x to thoroughly remove bleach-NaOH mixture, removing as
132 much of the supernatant as possible without disturbing the egg pellet.

133

134 1.2.10. Transfer eggs to 10 mL of M9 worm buffer in a 50 mL conical tube or 30 mL culture tube
135 with cap. If using conical tubes, leave the lid unscrewed slightly and use a bit of tape to keep it
136 secure. Incubate with shaking overnight (16 h) at 25 °C and 200 RPM to allow the larvae to
137 hatch.

138

139 1.3. Transfer synchronized L1 larvae to RNAi plates to grow to adulthood.

140

141 1.3.1. Add 2 mL of sterile M9 buffer + 0.01% Triton X-100 (henceforth M9TX-01) to each L1 tube
142 and transfer the entire volume (12 mL) to a 15 mL screw-top conical tube.

143

144 1.3.2. Place 15 mL tubes with L1 worms at 4 °C for 10 min to slow the larval movement.

145

146 1.3.3. Spin down 15 mL conical tubes in a large tabletop centrifuge (1,500 x g at 4 °C for 3 min;
147 acceleration and deceleration should be no higher than 80% of maximum).

148

149 1.3.4. Carefully pipette off the supernatant without disturbing the L1 pellet. Discard the
150 supernatant.

151

152 1.3.5. Add 12 mL of cold M9TX-01 to each tube. Repeat the centrifugation. Carefully pipette off
153 and discard the supernatant. Each tube should have ~200 µL remaining.

154

155 1.3.6. Rinse a 200 µL pipette tip in M9TX-01 to keep worms from sticking to the plastic, then use
156 this tip to resuspend the worm pellet. Transfer resuspended worms to prepared *pos-1* plates by
157 pipetting drops of liquid onto the bacterial lawn.

158

159 1.3.7. Incubate the plates at 25 °C until the first day of adulthood.

160

161 NOTE: If growing worms on *pos-1* RNAi plates, worms MUST feed *ad libitum* on the RNAi
162 bacteria until they have fully transitioned to adulthood to ensure high penetrance of the
163 embryonic-lethal phenotype. Check the plates at 24 and 48 h. If the plates appear starved or
164 nearly starved, the worms will need to be moved to fresh plates to finish growing into full-sized
165 adults. To avoid depleting plates before worms are grown, aim to add 250–500 L1 larvae to each
166 10 cm RNAi plate.

167

168 1.4. Harvest adults and clear intestinal *E. coli* to create germ-free worms.

169

170 1.4.1. Rinse adult worms from plates using 5 mL of M9TX-01 per plate. Transfer buffer + worms
171 to a 15 mL conical tube and allow adults to settle to the bottom of the tube.

172

173 1.4.2. Rinse adults in changes of 10 mL of fresh M9TX-01 buffer until no visible bacterial
174 turbidity remains (typically 1–2x). Tubes can be centrifuged at 700 x g for 30 s to pellet worms,
175 or adults can be allowed to settle by gravity.

176

177 1.4.3. Perform one additional wash with 10 mL of M9TX-01 to reduce external bacteria.

178

179 1.4.4. Transfer worms to 50 mL conical tubes or 30 mL culture tubes containing 5 mL S Medium

180 + 2x heat-killed *E. coli* OP50 ($\sim 5 \times 10^9$ killed cells/mL) + 200 μ g/mL of gentamycin + 50 μ g/mL of

181 chloramphenicol. If using conical tubes, leave the lid unscrewed slightly and use a bit of tape to

182 keep it secure. Use glass pipettes or rinse plastic pipettes in M9TX-01 to keep the worms from

183 sticking.

184

185 1.4.5. Incubate adults at 25 °C with shaking at 200 RPM for 24–48 h to produce germ-free

186 adults.

187

188 NOTE: If the worms are to remain in antibiotics for >24 h, more heat-killed OP50 may have to be

189 added to ensure that the worms have an adequate food source. Check tubes at 24 h and

190 supplement with heat-killed OP50 if turbidity is visibly reduced.

191

192 1.5. Sucrose wash adults according to the Wormbook protocols²⁴ to obtain clean, reproductively

193 sterile, synchronized adult-only stocks for bacterial colonization.

194

195 1.5.1. Ensure that cold volumes of 60% sucrose, M9 worm buffer, and M9TX-01 are ready for the

196 use. For simplicity, these can be left at 4 °C the night before.

197

198 1.5.2. For each sample to be washed, create a labeled 15 mL conical tube containing 8 mL of

199 M9TX-01 and set aside on ice. These will be needed in 1.5.10.

200

201 1.5.3. Add 5 mL of M9TX-01 to each 50 mL tube containing L1 larvae. Transfer the entire volume

202 (now 10 mL) to an empty 15 mL screw-top conical tube and allow adults to settle to the bottom

203 of the tube.

204

205 1.5.4. Carefully pipette off the supernatant and discard.

206

207 1.5.5. Add 10 mL M9TX-01 to each tube and move tubes to an ice bucket for 5–10 min.

208

209 NOTE: Starting at this point, worms and all buffers should be kept on ice.

210

211 1.5.6. Use the "fast temp" setting to cool a large tabletop centrifuge to 4 °C.

212

213 1.5.7. Add 10 mL of cold M9TX-01 to each tube to rinse off any remaining debris. Let worms

214 settle on ice; remove the supernatant and discard.

215

216 1.5.8. Sucrose float: Add 5 mL of cold M9 buffer and 5 mL of cold 60% sucrose solution to each

217 tube, mixing thoroughly. Then, carefully float 1 mL of cold M9 buffer on top of the sucrose-

218 buffer mixture in each tube. Do not mix after the float has been added.

219

220 CAUTION: Move quickly for the next few steps—worms can desiccate if exposed to high
221 concentrations of sucrose for too long!

222

223 1.5.9. Centrifuge at 1500 \times g for 3 minutes at 4 °C. Live adult worms will be at the interface of
224 the M9 and the sucrose, approximately 1 mL from the top of the tube.

225

226 1.5.10. Use a glass 5 mL serological pipette to transfer the worm layer to prepared 15 mL conical
227 tubes with cold M9TX-01 (from step 1.5.2). Be very careful to get the layer of live worms
228 without pipetting up too much of the sucrose.

229

230 1.5.11. If necessary, add M9TX-01 to get equal volumes of 10–12 mL/tube. Centrifuge at 1500 \times
231 g at 4 °C for 1 min, then pipette off the supernatant. Worms can be returned to room
232 temperature at this point.

233

234 1.5.12. Repeat the wash step 1.5.11 twice, reducing the speed to 700 \times g at 4 °C and time to 30
235 s.

236

237 2. Feeding worms on live bacteria in liquid culture

238

239 NOTE: This protocol is used to colonize worms with laboratory-grown bacteria in well-mixed
240 conditions in liquid culture (**Supplementary Figure 1**). Worms can be colonized with individual
241 isolates from pure culture (e.g., pathogens such as *Enterococcus faecium*^{28,29}) or mixtures of
242 isolates (e.g., minimal microbiome communities¹⁴).

243

244 2.1. Start with sucrose washed synchronized adult worms from protocol step 1.5 in a 15 mL
245 conical tube. Wash the worms once in 12 mL of S buffer and discard the supernatant.

246

247 2.2. Resuspend the washed worms in the volume of S medium needed for the experiment.
248 Consider the volume of experimental conditions, the number of conditions over which worms
249 will be split, and the final concentrations of worms and bacteria.

250

251 NOTE: Feeding in worms varies with bacterial availability³⁰ and worms can be stressed by
252 crowding³¹. For colonization in liquid culture, <1000 worms/mL and >10⁷ CFU/mL are
253 recommended; 10¹¹ CFU/mL is considered “*ad libitum*” feeding density on *E. coli*³².

254

255 2.3. Spin down bacterial cultures. Pour off the supernatant; aspiration or pipetting can be used
256 to remove the supernatant for bacteria that form loose pellets.

257

258 NOTE: For cultures >5 mL, transfer to 15 mL tubes and spin at ~2800 \times g in a large tabletop
259 centrifuge for 8–10 min. Cultures <5 mL can be transferred to 1.5 mL tubes and centrifuged at
260 9000 \times g for 1–2 min in a small tabletop centrifuge. Highly motile bacteria (e.g., many species of
261 *Pseudomonas*) may need to be chilled at 4 °C for 10–15 min to facilitate formation of a stable
262 pellet, and it may be better to centrifuge at 4 °C.

263

264 2.4. Resuspend bacterial cultures in one volume of S buffer and centrifuge again to pellet.
265 Remove and discard the supernatant as before.
266
267 2.5. Resuspend bacterial cultures in S medium at the desired density for the experiment, plus
268 any antibiotics for selection. The antibiotics to be used, if any, will depend on the resistance
269 profile of the bacteria used for colonization.
270
271 2.6. Using a pipette tip coated in M9TX-01, pipette worms gently up and down until worms are
272 thoroughly resuspended in S medium, then transfer to tubes or plate wells for bacterial
273 colonization.
274
275 2.7. Add bacterial suspension to each worm culture to reach the desired bacterial concentration
276 and final volume.
277
278 2.8. If using a multi-well plate for colonization, cover the plate with a sterile 96-well gas-
279 permeable sealing membrane.
280
281 2.9. Incubate with shaking at 200 RPM to prevent bacteria from settling during incubation.
282

283 **3. Mechanical disruption of individual worms in a 96-well format**

284
285 NOTE: This section describes a 96-well plate format protocol for mechanical disruption of
286 individual bacterially colonized *C. elegans*. The first steps in the protocol (3.1–3.8) describe a
287 method for purging non-adhered bacteria from the worm intestine and cleaning the exterior of
288 the worms using cold paralysis and surface-bleaching. These steps will produce clean, live adult
289 worms that can be mechanically disrupted for quantification of bacterial contents (3.8-end) or
290 used for further experiments (**Supplementary Figure 1**). This protocol can be adapted to
291 quantify bacteria in worms colonized in liquid culture (Section 2), on agar plates, or from natural
292 or microcosm soil.

293
294 3.1. Place an aliquot of M9TX-01 on ice to chill (4–5x the number of samples in mL).
295
296 3.2. Prepare an aliquot of M9TX-01 + bleach (6% sodium hypochlorite, 1:1000 or 1:2000 v/v, 1
297 mL per sample + 1 mL extra) and place on ice to chill. This aliquot will be used in step 3.8.
298
299 3.3. Prepare 96-well plates for serial dilution of disrupted worm samples.
300
301 3.3.1. Obtain sterile 300 μ L capacity 96-well plates with lids; this protocol uses one dilution
302 plate per 12 worms digested.
303
304 3.3.2. Use a 96-well multichannel pipettor to fill rows B–D of each 96 well plate (300 μ L
305 capacity) with 180 μ L of 1x PBS buffer. Leave the top row empty. Rows B–D will become 10x
306 serial dilutions of the worm digests [0.1x, 0.01x, 0.01x].
307

308 3.3.3. Set plates aside. Dilution plates will be used in step 3.13.

309
310 3.4. Resuspend each worm sample in 1 mL of M9TX-01 in a 1.5 mL microcentrifuge tube.

311
312 3.5. Spin tubes briefly (2–3 s) in a low speed minicentrifuge (2,000 \times g) at 25 °C to pellet adults.

313 Pipette off the supernatant and discard, being sure not to disturb the worm pellet.

314
315 3.6. Using the centrifugation settings in step 3.5, rinse worms twice with 1 mL of M9TX-01, then
316 once with 1 mL of M9 worm buffer, to reduce external bacteria.

317
318 3.7. Purge non-adhered bacteria from the worm intestine.

319
320 3.7.1. Resuspend each sample of worms in 1 mL of S medium + 2x heat-killed OP50 in a culture
321 tube.

322
323 3.7.2. Incubate at 25 °C for 20–30 min to allow passage of any non-adhered bacteria from the
324 gut.

325
326 NOTE: This will also purge any extracellular fluorescent protein from the lumen and allow
327 clearer visualization of labeled bacteria adhered to the intestinal epithelium, particularly when
328 acid-fast fluorophores (e.g., mCherry, dsRed) are used.

329
330 3.8. Surface bleach worms to clear external bacteria.

331
332 3.8.1. Rinse purged worms twice with 1 mL of cold M9TX-01 and discard the supernatant.

333
334 3.8.2. Allow tubes to chill for 10 min on ice (preferred) or at 4 °C. This will paralyze worms and
335 prevent ingestion of bleach.

336
337 NOTE: Other protocols use a chemical paralysis agent such as levamisole; this is an established
338 approach³³ which requires addition of a hazardous waste stream.

339
340 3.8.3. Add 1 mL of ice-cold M9 worm buffer + unscented bleach (8.25% sodium hydroxide,
341 1:1000 or 1:2000 v/v) to each tube. Allow tubes to sit on ice (preferred) or at 4 °C for at least 10
342 min to kill external bacteria.

343
344 NOTE: Do not exceed 1:1000 concentration of bleach. Even in paralyzed worms, mortality can
345 result.

346
347 3.8.4. Pipette off bleach buffer and discard; return tubes to ice to ensure worms do not resume
348 pumping until bleach is cleared.

349
350 3.8.5. Add 1 mL of cold M9TX-01 to each tube. Spin for ~5 s in a minicentrifuge (2,000 \times g at 25
351 °C); return tubes to ice. Remove the supernatant and discard.

352

353 3.8.6. Repeat this rinse step with another 1 mL of cold M9TX-01, discarding as much of the
354 supernatant as possible.

355

356 NOTE: If using worms for further experiments, skip the permeabilization step (Protocol 3.9) and
357 instead transfer freshly surface-bleached adults to ice-cold buffer in a 6 cm Petri dish and
358 separate worms into experimental conditions as in Protocol 3.10. Keep worms cold to prevent
359 motility from resuming but work quickly — keeping worms for >30 min on ice can potentially
360 result in <100% resumption of normal activity³⁴.

361

362 3.9. Chemical permeabilization of worm cuticle with sodium dodecyl sulfate and dithiothreitol
363 (0.25% SDS + 300 mM DTT) (based on³⁵)

364

365 CAUTION: DTT is a reducing agent and irritant. Wear PPE and work in a fume hood when
366 handling dry stocks or solutions. A hazardous waste stream is required.

367

368 3.9.1. In the fume hood, prepare enough SDS/DTT solution to allow 100 µL for each sample. For
369 1 mL, to 965 µL of M9 worm buffer or M9TX-01 in a 1.5 mL microcentrifuge tube, add 5 µL of 5%
370 (w/v) SDS and 30 µL of 1M DTT.

371

372 NOTE: 1 M DTT solution (aqueous) should be prepared fresh or stored in aliquots at -20 °C to
373 ensure potency. Aliquots should be sized to be used up in two to three experiments to avoid
374 excessive freeze-thaw cycling.

375

376 3.9.2. Move microcentrifuge tubes containing surface-bleached worms to a room-temperature
377 tube rack. Each tube should contain worms in ~20 µL of buffer.

378

379 3.9.3. Add 100 µL of SDS/DTT solution to each worm sample. Dispose of any remaining SDS/DTT
380 solution in the appropriate hazardous waste stream.

381

382 3.9.4. Allow the treatment to proceed for up to 8 min on the bench to partially break down the
383 resistant cuticle of the adult worms. Worms will die and settle to the bottom of the tube during
384 this time.

385

386 3.9.5. After permeabilization time is up, carefully pipette off the SDS/DTT supernatant and
387 dispose of it in an appropriate SDS/DTT hazardous waste stream.

388

389 3.9.6. Add 1 mL of M9TX-01 to each tube. Spin briefly in a table-top centrifuge to pellet the
390 worms or allow worms to settle by gravity to the bottom of the tubes, then draw off the
391 supernatant and dispose of it in an SDS/DTT hazardous waste stream.

392

393 3.9.7. Resuspend worms in 1 mL M9 worm buffer + 0.1% Triton X-100 until ready to use.

394

395 3.10. Separate worms into a deep 96-well plate with silicon carbide grit for mechanical
396 disruption. Prepare the 96-well disruption plate as under.

398 3.10.1. Obtain a sterile 2 mL deep-well 96-well plate and a matching silicon 96-well plate cover.

399 NOTE: It is important to use plates that are compatible with the 96-well adaptors for the tissue
400 disruptor. Tiny differences in external dimensions make the difference between a plate that can
401 be removed from the adaptors and one that cannot.

403 3.10.2. Using a sterile scoop spatula, add a small amount of sterile 36-grit silicon carbide to each
404 well of the plate that will receive a worm. Use enough grit to barely cover the bottom of the
405 well (about 0.2 g per well). Excessive material will make it difficult to get a pipette tip to the
406 bottom of the well when retrieving the contents.

408 3.10.3. Add 180 μ L of M9 worm buffer to each well.

410 3.10.4. Label the columns or rows to indicate where each sample will go, then cover the plate
411 loosely with the silicon 96-well plate cover.

413 3.11. Transfer individual worms to the 96-well plate for disruption.

415 3.11.1. Move permeabilized worms carefully to a small (35 or 60 mm) Petri dish containing
416 sufficient M9TX-01 to fill the dish to a depth of ~1 cm.

418 NOTE: If a large number of worms are present, it may not be feasible to transfer the entire
419 sample as the liquid will become crowded and it will be difficult to pipette individual worms.

421 3.11.2. Using a dissecting microscope or other low-magnification device, pipette off individual
422 worms in 20 μ L volumes, and transfer these worms to individual wells of the 96-well plate.

424 NOTE: It is best to harvest only freshly killed worms. Avoid worms with a rigid linear shape, as
425 these worms may have been dead for some time. Try to take worms that are curved or S-
426 shaped, with normal gross physiology and an intact gut.

428 3.11.3. After transferring each volume, make sure that the selected worm was actually ejected
429 into the well. To do this, pipette up 20 μ L of M9TX-01 from a clear area of the Petri dish and
430 release the full volume back into the dish; this will normally eject the worm if it is stuck to the
431 pipet. If the worm was stuck, remove 20 μ L from the well and try the transfer again.

433 3.11.4. Once all worms have been transferred, cover the 96-well plate with a sheet of
434 commercially available flexible paper-backed sealing film (2 x 2 squares), making sure that the
435 paper-backed side of the sealing film is facing down onto the sample wells. Be careful not to
436 stretch the sealing film too thin, or it will be very difficult to remove later.

437

438 3.11.5. Place the silicon sealing mat lightly on top of the flexible sealing film; do not press the
439 cover down into the wells at this time.

440
441 3.11.6. Move the plate to 4 °C to chill for 30–60 min. This will prevent over-heating during
442 disruption, which can damage the samples.

443
444
445 NOTE: This is a break point in the protocol. In most cases, the plate can be left at 4°C for up to 4
446 h before grinding. Do not leave the worms overnight, as this will change the bacterial counts.

447
448 3.12. Load 96-well plates onto a tissue disruptor to break up worm tissues and release intestinal
449 bacteria.

450
451 NOTE: (Optional) If using an odd number of 96-well plates for digests, it is necessary to prepare
452 a counterweight before proceeding. Use an empty deep 96-well plate and fill wells with water
453 until it weighs the same as the first plate.

454
455 3.12.1. Press the silicon sealing mat down firmly into the wells to create a seal, making sure the
456 lid lies flat across the entire surface of the plate.

457
458 NOTE: If the flexible sealing film is too thick after stretching, it will be difficult to secure the
459 silicon lid such that it is lying flat in all wells. This will result in an insufficient seal and well-to-
460 well contamination during shaking.

461
462 3.12.2. Secure plates in the tissue disruptor using the 96-well plate adaptors. Shake plates for 1
463 min at 30 Hz, then rotate plates 180° and shake again for 1 min. This will help ensure even
464 disruption in all wells of the plate.

465
466 3.12.3. Tap plates firmly on the bench two or three times to dislodge any grit from the flexible
467 sealing film.

468
469 3.12.4. Using a large centrifuge with two 96-well plate adaptors, spin the plates down at 2400 x
470 g for 2 min to gather all material to the bottom of the wells.

471
472 3.12.5. Remove the silicon lid and carefully pull off the flexible sealing film.

473
474 NOTE: If the flexible sealing film sticks in any of the wells, use a 200 µL pipette tip to remove it.
475 This is common when the flexible sealing film was stretched too thin.

476
477 3.13. Serially dilute worm digest samples in 300 µL in 96-well plates.

478
479 3.13.1. Using a multi-well pipettor set to 200 µL, pipette up and down several times slowly and
480 carefully to re-mix the contents of the wells, then draw off as much of the liquid as possible.
481 Transfer this liquid to the top rows of the 96-well plates prepared in step 3.3.

482

483 3.13.2. Using a 96-well pipettor set to 20 μ L, remove this volume of liquid from the top row and
484 dispense into row B. Pipette up and down 8–10x to mix. Discard tips.

485

486 3.13.3. Repeat step 3.13.2, starting from the 0.1x samples in row B to create 0.01x dilution
487 samples in row C.

488

489 3.13.4. Repeat step 3.13.2 again, going from row C to row D.

490

491 3.13.5. Plate onto solid agar for bacterial quantification. For mono-colonized worms, it is
492 generally sufficient to plate 10–20 μ L drops of each dilution [1x–0.001x] on agar plates. For
493 multi-species colonization, plate each dilution separately by pipetting 100 μ L onto a 10 cm agar
494 plate; spread immediately using glass plating beads.

495

496 4. Cleaning silicon carbide grit for re-use

497

498 NOTE: This procedure is used to clean and sterilize the grinding material, silicon carbide grit, for
499 re-use after experiments. This protocol should be followed in its entirety before first use, as
500 silicon carbide grit is an industrial product and does not come pre-sterilized. Si-carbide grit (3.2
501 g/cc) is a dense, rough-edged material that works efficiently to disrupt tough samples. However,
502 the particles can wear down over repeated use and should be replaced when wear becomes
503 apparent. Fortunately, the material is inexpensive, and the sizes typically sold (~1 lb) are
504 sufficient for many experiments.

505

506 4.1. After removing samples for plating, add 10% bleach solution to all wells of the 96-well plate
507 and let sit for at least 10 min.

508

509 4.2. Remove the bulk of the grit by rapidly inverting the 96-well plate over a small high-sided
510 tray or empty P1000 pipette tip container large enough to catch all the contents. The grit will
511 sink immediately to the bottom of the tray. Pour off the bleach solution into a sink.

512

513 4.3. Re-fill the 96-well plate with tap water and invert into the same tray to rinse out remaining
514 grit. Pour the water off into the sink.

515

516 4.4. Repeat one to three more times with tap water until plate is completely clear of grit.

517

518 4.5. Rinse grit 2x in tap water, filling the tray each time.

519

520 NOTE: The 96-well deep-well plate can be washed in a laboratory dishwasher, covered securely
521 with foil, and autoclaved with other reusable plastics. Grit does not need to be washed
522 immediately and can be set aside at this point. Used grit is usually accumulated from multiple
523 experiments before washing and autoclaving.

524

525 4.6. Wash grit in a solution of laboratory detergent for 30 min, agitating occasionally by swirling
526 or mixing with a metal spatula.

527

528 4.7. Rinse away all traces of detergent in several (8–10) changes of tap water, then rinse 2x with
529 distilled water.

530

531 4.8. Spread grit in an open tray, such as a shallow polypropylene autoclave tray, and dry at 40–
532 70 °C for several hours.

533

534 NOTE: If the grit is clumpy when dry, it was not cleaned or rinsed sufficiently. Repeat the
535 cleaning protocol starting at step 4.6, adding additional rinses in step 4.7.

536

537 4.9. Distribute clean, dry grit into screw-top autoclavable glass bottles to a maximum depth of
538 5–6 cm. Autoclave on pre-vacuum cycle for 30 min to sterilize.

539

540 **REPRESENTATIVE RESULTS:**

541 **Bleach sterilization of live worms**

542 Surface-bleached worms are effectively free of external bacteria until motility returns and
543 excretion resumes. Under the conditions used here, rapid extinction of bacteria in buffer is
544 observed (**Figure 1A–C, Supplementary Figure 2, Video 1**) without disturbing the gut-associated
545 bacteria in cold-paralyzed worms (**Figure 1D–F, Video 2**). These data indicate that surface
546 bleaching can be used effectively to sanitize worms externally without compromising the
547 intestinal contents (comparisons of surface-bleached vs. no-bleach worm-associated CFU counts
548 are non-significant, Wilcoxon rank-sum test $p > 0.05$).

549

550 **Variations on multi-sample mechanical disruption**

551 The 96-well technique for mechanical disruption of worms is robust to the specific materials
552 used, and practical considerations dictate the choice of grinding material. Similar to a previous
553 report³³, manual disruption (**Figure 2A**) resulted in more heterogeneity than the standard 96-
554 well protocol (silicon carbide grit, **Figure 2B**) ($\text{var}(\log_{10}\text{CFU}) = 0.499$) across all buffer conditions,
555 as compared with 0.229 for Si-carbide, 0.243 for large glass beads (**Figure 2C**), and 0.227 for
556 small glass beads (**Figure 2D**). Nonetheless, most differences in CFU/worm distributions were
557 not significant (Kruskal-Wallace, $p = 0.017$ with $df = 3$; significant post-hoc Wilcoxon tests for
558 large beads vs. small beads, $p = 0.021$, and large beads vs. silicon carbide grit, $p = 0.02$). The use
559 of Triton X-100 as a surfactant was not associated with any significant difference in yield when
560 considered as an individual factor (Kruskal-Wallace, $p = 0.94$, $df = 3$), although there is an
561 apparent increase in yield in no-Triton vs. Triton-containing samples when large beads (2.7 mm)
562 were used (**Figure 2C**), possibly attributable to the excessive “foaming” observed in these wells
563 when Triton was present. These results indicate that large glass beads, while ideal for use in
564 homogenization tubes³³, are not suitable for the 96-well technique. While small glass beads
565 produced reasonable results (**Figure 2D**), they consistently clogged 200 μL pipette tips during
566 mixing and plating. The standard material in this assay, silicon carbide grit, is inexpensive, too
567 large to clog standard tips, and like glass beads can be washed and reused after autoclaving. The

568 grit does release a small amount of “dust” into the buffer, which does not interfere with plating
569 but needs to be filtered off if the products of disruption are to be used for flow cytometry.

570

571 **Heterogeneity in bacterial colonization in adult worms**

572 Successful disruption of individual worms reveals heterogeneity in bacterial colonization.
573 Individuals from isogenic synchronized populations of worms, colonized at the same time on the
574 same pool of bacteria, consistently show 100-fold or greater range in intestinal bacterial load.
575 This is observed for different bacterial colonists (**Figure 3A**) and during colonization on multi-
576 species bacterial communities (**Figure 3B**). This heterogeneity is also evident in individual-worm
577 measurements of fluorescence when worms are colonized with bacteria expressing a
578 fluorescent protein (GFP) (**Figure 3C–D**). The properties of the host play a role in shaping this
579 heterogeneity, as can be seen by comparing colonization of wild-type Bristol N2 worms to
580 colonization by the same bacteria in DAF-2/IGF mutants; this *daf-16* mutant supports larger
581 populations of many bacteria as compared with N2, while *daf-2* is resistant to colonization by a
582 range of bacteria³⁶ (**Figure 3B,D**). This heterogeneity is characteristic, showing variation across
583 different combinations of host and colonist(s), while retaining a consistent structure over
584 different runs of the same experiment (**Figure 3E–F**).

585

586 **Importance of individual heterogeneity for accurate comparison of groups**

587 The importance of individual heterogeneity can be easily seen by considering how batch digests
588 could alter the distributions of data. Colonization by native microbiome bacteria MYb53
589 (*Rhodococcus erythropolis*) and MYb120 (*Chryseobacteria* spp.) (**Figure 3A, 4A**) in N2 adults are
590 used as examples. The individual worm data are clearly similar in distribution (two-tailed t-test,
591 $p = 0.9$, Wilcoxon rank sum, $p = 0.59$). When resampling these data to simulate the effects of
592 batch digests, the batch extrapolated CFU/worm pulls toward the upper quantiles of the data
593 due to the positive skew in these distributions (mean > median). As batching effectively
594 averages over the individuals within a batch, batch-extrapolated CFU/worm will center around
595 the arithmetic mean of the individual data, with decreasing distance to this mean as batches
596 become large according to the central limit theorem (**Figure 4B–D**). Accordingly, signal from
597 biological variation is quickly lost; batch-inferred CFU/worm measurements converge toward
598 the average, which is not a representative metric of these log-scale-distributed data. Differences
599 in inferred colonization by MYb53 vs. MYb120 quickly become significant in simulated batch
600 digests (t-test batch 5, $p = 0.049$; batch 10, $p = 2.27e-4$; batch 20, $p = 1.19e-15$; Wilcoxon rank
601 sum test batch 5, $p = 2.27e-4$; batch 10, $p = 2.70e-06$; batch 20, $p = 1.80e-09$) as the original
602 signal is obscured.

603

604 **Effects of individual heterogeneity on microbial transmission**

605 As individual worms show substantial heterogeneity in bacterial colonization, it is reasonable to
606 ask whether this heterogeneity has downstream effects. For example, it is reasonable to expect
607 that transmission might be a function of intestinal bacterial load. By transferring individual
608 surface-bleached worms to a clean environment, it is possible to observe inoculation of the
609 environment with excreted live bacteria. In these experiments, surface-bleached pre-colonized
610 adults, carrying generally substantial populations (10^3 – 10^5 CFU/worm, **Figure 5**) of commensal
611 *Ochrobactrum* MYb14-GFP or pathogenic *S. aureus*-GFP, were allowed to roam on heat-killed

612 OP50 lawns on NGM agar for 1.5 h. When these worms are re-harvested from excretion plates
613 and disrupted for bacterial quantification, there is no significant relationship between bacterial
614 load and excretion rate of live bacteria (Pearson correlations between log-transformed
615 colonies/hr and CFU/worm: MYb14 rho = 0.19, p = 0.45; *S. aureus* rho = 0.02, p = 0.9) (**Figure 5**).
616 Nor is there a significant relationship between the presence/absence of colonies on a plate and
617 intestinal bacterial load (binomial logistic regression with log-transformed CFU/worm as factor:
618 p = 0.15 with df = 53). A substantial fraction of plates remained free of new growth (9/18 plates
619 for MYb14, 10/36 plates for *S. aureus*), indicating low overall excretion rates.
620

621 When worms are allowed to excrete onto agar plates, the actual number of live excreted
622 bacteria per worm is confounded by “farming”, where worms pass through colonies and create
623 trails of new growth (**Figure 6**)³⁷. A plate with n colonies represents at least one, and at most n ,
624 events where live colony-forming bacteria were excreted. From this observation, it is not
625 possible to know how many excretion events in $(1, n)$ actually occurred, nor is it possible to
626 know how many bacteria were excreted in each event. It is therefore not possible to precisely
627 estimate excretion rates of live bacteria from the gut using these data. However, it is possible to
628 infer some bounds. Although the number of colonies per plate is not very informative,
629 presence/absence data can be used for rough inference of excretion rates. For simplicity, if it is
630 assumed that excretion rate of live bacteria is not a function of bacterial load and that excretion
631 is a Poisson process, there is a ~50% chance of observing at least nine events in 18 trials when λ
632 $\approx 0.33 \text{ worm}^{-1} \text{ hr}^{-1}$ in MYb14. For *S. aureus*, similar plausible rates of $\lambda \approx 0.2 \text{ worm}^{-1} \text{ hr}^{-1}$ are
633 obtained. While these rough calculations suggest low rates of excretion of live bacteria, more
634 precise quantification of this process over larger numbers of individual worms will be necessary
635 to obtain reliable estimates.
636

637 **Data Availability:**

638 Data shown here are available on Dryad (<https://doi.org/10.5061/dryad.7wm37pvw2>).
639

640 **FIGURE AND TABLE LEGENDS:**

641 **Figure 1. Low-concentration surface-bleaching treatment rapidly kills bacteria in buffer but**
642 **does not disturb intestinal communities in cold-paralyzed worms. (A–C)** Bacterial CFU/mL in
643 M9 worm buffer during surface bleaching at three different concentrations (1:1000, 1:2000,
644 1:5000 v/v; unbleached control for comparison), targeting **(A)** *S. aureus* Newman, **(B)** *S. enterica*
645 LT2, or **(C)** *E. coli* OP50. Samples were taken at indicated time points up to 20 min post-exposure
646 and washed twice with sterile buffer to prevent bleach from killing colonies on plates. Data for
647 the 1:1000 condition are offset slightly so that these data are visible on the plot. **(D–F)** Intestinal
648 bacteria in individual N2 worms ($n = 24$ worms per experiment, two or three independent runs
649 on separate days). All comparisons of surface-bleached and no-bleach worm-associated CFU
650 counts are non-significant (Wilcoxon rank-sum test $p > 0.05$). Grey horizontal lines represent
651 threshold of detection, defined as the density (40 CFU/worm) at which probability of observing
652 at least one colony is ~60% when plating 10 μL aliquots from 200 μL volumes.
653

654 **Figure 2. The 96-well disruption protocol produces consistent results and is robust to the**
655 **choice of materials.** N2 adult worms colonized with a single bacterial species for 48 h (*P.*

656 *mosselii*) were surface bleached and permeabilized according to standard protocols, then
657 individual worms ($n = 24$ per condition) were mechanically disrupted for CFU plating using (A)
658 manual disruption in individual 0.5 mL tubes, using a motorized pestle or (B–D) variations on
659 the 96-well disruption protocol described in detail in the Protocol. Disruption was carried out in
660 M9 worm buffer containing varying concentrations of Triton X-100 (x-axis, 0–0.1%, v/v) and one
661 of (B) 36-grit silicon carbide, (C) small (425–600 μm) glass beads, or (D) large (2.7 mm) glass
662 beads. For all plots, data shown are $\log_{10}(\text{CFU}/\text{worm})$, and each point is one individual worm.
663

664 **Figure 3. Heterogeneous bacterial colonization of the *C. elegans* intestine.** (A) Single-species
665 colonization of N2 adult hermaphrodites prepared as in Methods. Bacteria are four species from
666 the MYb native worm microbiome collection (Dirksen et al. 2016) ($n = 24$ worms, one
667 experiment each) and two pathogens, *Staphylococcus aureus* MSSA Newman (SA) and
668 *Salmonella enterica* LT2 (SE) ($n = 96$ –144 worms over two/three independent experiments).
669 Colonization by native microbiome species was assessed after a 48 h incubation at 25°C in liquid
670 S medium + 108 CFU/mL bacteria; colonization by pathogens was assessed after incubation on
671 lawns on NGM worm agar for 24 (SA) or 48 (SE) h at 25°C. (At 48 h, worms on *S. aureus* have
672 mostly died.) (B) Total CFU/worm in N2, *daf-16(mu86)*, and *daf-2(e1370)* adults colonized for 4
673 days in liquid media on an eight-species minimal native microbiome (data from Taylor and Vega,
674 2021)¹⁴. (C–D) Green fluorescence in individual worms colonized with GFP-expressing bacteria,
675 observed by large object flow cytometry. In (C), synchronized populations of N2 adults were
676 colonized with OP50 (non-fluorescent, $n = 1908$ individual adult worms), *S. aureus* (GFP, $n =$
677 968), or *S. enterica* (GFP, $n = 1153$) as described in (A); the OP50 control indicates typical levels
678 of green-channel autofluorescence in day-3 adult N2 worms. In (D), synchronized populations of
679 N2 ($n = 1165$), *daf-16(mu86)* ($n = 1180$), and *daf-2(e1370)* ($n = 2267$) adults were colonized with
680 commensal *Ochrobactrum* MYb14-GFP for 2 days on plates as described in (A). (E–F) Day-to-day
681 variation in colonization by *S. aureus* (E) and *S. enterica* (F) (same data as in panel A and Figure
682 1, $n = 48$ worms per experiment). The x-axis indicates the day of sampling. Grey horizontal lines
683 represent threshold of detection, defined as the density at which probability of observing at
684 least one colony is ~60% (40 CFU/worm for single-species colonization and four CFU/worm for
685 multi-species colonization, due to different plating volumes of 10 μL and 100 μL respectively out
686 of 200 μL).
687

688 **Figure 4. Batching erases biological variation in skewed log-scale data.** CFU/worm data from
689 Figure 3 were resampled with replacement to create $n = 25$ replicate sets of simulated data for
690 each batch size, where size is the number of individual worms per batch. CFU/worm is the total
691 CFU in each simulated batch divided over the number of worms per batch. In the raw data
692 (panel A), average CFU/worm for MYb53 is 4450.8 ($10^{3.6}$), and for MYb120, 1398.3 ($10^{3.1}$); the
693 batch-inferred numbers converge to these values as batch size increases (B, five worms/batch;
694 C, 10 worms/batch; D, 20 worms/batch), consistent with expectations from central limit
695 theorem.
696

697 **Figure 5. Excretion of live bacteria is poorly correlated with CFU load in the intestine of
698 individual worms.** Here, N2 adults were colonized by feeding for 1 or 2 days respectively on
699 lawns of *S. aureus*-GFP or MYb14-GFP. Worms with detectable GFP fluorescence (total GFP > 1.8

700 logs on large object flow cytometer) were sorted from the bulk population, surface bleached as
701 described in Methods, and transferred individually to NGM + heat-killed OP50 plates as
702 described for **Figure 5**. Pearson correlations between log-transformed colonies/h and
703 CFU/worm are non-significant (MYb14 rho = 0.19, p = 0.45; *S. aureus* rho = 0.02, p = 0.9).

704

705 **Figure 6. Bacterial “farming” obscures the number of excretion events on agar plates.** Here are
706 two plates with MYb14-GFP colonies from worm excreta. The first plate (**A**) has clear evidence
707 of “farming” along worm paths and appears to represent at least two separate excretion events
708 based on differences in GFP expression (visible as yellowish pigmentation) across colonies.
709 While the second plate (**B**) is more ambiguous, farming cannot be ruled out based on the
710 positions of the colonies. In these experiments, N2 adult worms were pre-colonized for 48 h by
711 feeding on agar plates containing lawns of MYb14-GFP. After colonization, worms were
712 prepared and surface bleached according to Methods, then transferred in 5 μ L aliquots of M9
713 worm buffer + 0.1% Triton X-100 to 6 cm NGM + heat-killed OP50 plates (prepared by allowing
714 50 μ L spots of 5x concentrated heat-killed OP50 to dry on the surface). Worms were permitted
715 to roam for 1.5 h at 25°C, then picked from plates and disrupted for CFU/worm plating (manual
716 disruption in 20 μ L buffer in individual 0.5 mL tubes, using a motorized pestle). Plates were
717 incubated at 25°C for 2 days before counting.

718

719 **Video 1. Visualization of N2 worms colonized with GFP fluorescent *S. aureus* without surface**
720 **bleaching.** A small number of fluorescent cells on the cuticle move into and out of focus as the
721 image passes through the body of the worm, and spatially heterogeneous colonization of the
722 gut becomes visible as the field of view moves from the body surface into the intestine. Z-stack
723 image was taken at 20x magnification on an inverted fluorescent microscope. Bright-field and
724 GFP filtered fluorescent images were overlaid, and images across the Z-stack stitched together,
725 using the vendor software. Image is from the same slide as in **Supplementary Figure 2**.

726

727 **Video 2. Visualization of a N2 worm colonized with GFP fluorescent *S. aureus* with surface**
728 **bleaching (1:1000 v/v for 20 min).** Spatially-heterogeneous colonization by fluorescent bacteria
729 is visible in the intestine of this individual, and bacteria have infiltrated the body tissues,
730 indicating advanced infection. No bacteria are visible on the cuticle. Z-stack image was taken at
731 20x magnification on an inverted fluorescent microscope. Bright-field and GFP filtered
732 fluorescent images were overlaid, and images across the Z-stack stitched together, using the
733 vendor software. Image is from the same slide as in **Supplementary Figure 2B**.

734

735 **Supplementary Figure 1. Overview of the Protocol.** Here, synchronized adult worms are mono-
736 colonized with red bacteria, surface-bleached, and permeabilized before mechanical disruption
737 of individual worms in a 96-well format. Bacteria released from the intestine are dilution plated
738 in 10x series for CFU/worm quantification; plates shown are typical for observed heterogeneity.

739

740 **Supplementary Figure 2. Visualization of N2 worms colonized with GFP fluorescent *S. aureus***
741 **with and without surface bleaching (1:1000 v/v for 20 min).** (**A**) In the unbleached sample,
742 external bacteria are visible at low magnification as areas of green fluorescence not associated
743 with worms or worm body fragments. (**B**) In the surface-bleached sample, GFP fluorescence is

744 restricted to the interior of worm bodies (one worm body fragment is visible mid-image). All
745 images were taken at 4x magnification on an inverted fluorescent microscope. Bright-field and
746 GFP filtered fluorescent images were overlaid, and images from adjacent fields of view stitched
747 together, using the vendor software.

748

749 **Supplementary File 1: Buffer and solution recipes.**

750

751 **DISCUSSION:**

752 Here data are presented on the advantages of single-worm quantification of bacterial load in *C.*
753 *elegans*, along with a 96-well disruption protocol to allow the rapid and consistent acquisition of
754 large data sets of this type. As compared with existing methods³³, these protocols allow higher-
755 throughput measurement of intestinal microbial communities in the worm.

756

757 This approach has plating as a rate-limiting step and is not truly “high-throughput”. Large-object
758 flow cytometry (**Figure 3B,C**) is a useful high-throughput method for quantifying fluorescently
759 labeled bacteria in individual worms¹⁶, although the number of simultaneous fluorophores is a
760 limitation in multi-species communities. Linking multi-well plate disruption with community
761 sequencing is another way to increase throughput; however, the 96-well disruption procedure
762 described here was optimized specifically to leave bacterial cells intact. Sequencing-based
763 analysis, where thorough lysis of cells is desirable, will require addition of a nucleic acid
764 extraction step or modification of the beating protocol (Protocol 3.10–3.11) to extract cell
765 contents instead of live bacteria. Protocols for single-worm disruption and extraction of nucleic
766 acids have been published elsewhere^{38,39}.

767

768 Bacterial total abundance in the worm intestine is heterogeneous, and the data shown here
769 suggest that batch-based measurement can produce erroneous results in comparisons between
770 groups. However, other measures of bacterial communities in the worm may be less sensitive to
771 the effects of batching. Of note, relative abundances in worm-associated communities seem to
772 vary very little if at all with total intestinal population size, regardless of whether interactions
773 among microbes are neutral⁴⁰ or not¹⁴. It is plausible that, compared to count data, relative
774 abundance measures will be less susceptible to the false-positive rate issue described.
775 Sequencing-based community analysis, which generates relative abundance data for community
776 composition, may therefore not require measurement of single worms. Further investigation is
777 needed on this point.

778

779 Here, we use cold treatment to paralyze worms for surface bleaching. Other work has found
780 that worms resume normal activity rapidly (<15 min) if time on ice is kept under 30 min,
781 allowing immediate use in further assays, in contrast with chemical paralysis agents which can
782 require extended periods before full recovery³⁴. If worms are to be disrupted immediately for
783 bacterial quantification, this feature is dispensable, and the main advantage of chilling vs.
784 chemical paralysis is avoiding the need for a controlled waste stream. Extended cold treatment
785 should be used with caution when investigating stress responses, particularly if there is a known
786 connection to temperature. The cold paralysis protocols described here entail shorter acute cold
787 exposure than used in experiments for cold stress (20–30 min vs 2+ h at 2–4°C)^{41–43}, and a 1 h

788 cold shock produces no apparent phenotype in wild-type worms⁴³. Short-term (90 min)
789 incubation at 4 °C induces changes in cold-stress gene expression (measured by expression of a
790 TMEM-135::GFP reporter), but expression returns to unstressed levels within minutes once
791 worms are returned to room temperature³⁴. However, the effects on stress-sensitive worm
792 genotypes may be more severe than in wild-type. This procedure should be validated under the
793 experimental conditions to be used.

794
795 The surface bleaching protocol described here can be used as a way to limit or eliminate
796 passaging of external microbes in experiments. This method has additionally been used to clear
797 fungal contaminants by surface bleaching and transferring only L1/L2 larvae to fresh plates
798 (transfer of surface-bleached adults resulted in failure to clear the contaminant, presumably
799 due to carriage in the intestines of the larger animals). It is critically important to ensure that
800 bleach concentration does not exceed 1:1000 v/v, as damage to the worms and mortality will
801 result. This procedure may be useful in experimental host-microbe evolution and host-pathogen
802 interactions. For example, the low excretion rate of live bacteria observed here can help to
803 explain the highly variable rates observed for bacterial transmission from hermaphrodites to
804 offspring¹⁵. The lack of correlation between intestinal bacterial load and excretion rate observed
805 here is interesting, but requires further investigation; a larger number of data points across a
806 range of conditions will be needed to determine where (or whether) this observation will hold.
807

808 It may not always be necessary to clean worms to the extent provided by surface bleaching.
809 Multiple washes in sterile buffer are likely sufficient when worms are internally colonized with a
810 single microbe if the minimum expected CFU/worm is much higher (10–100-fold) than the
811 concentration of bacteria in buffer supernatant, as this carryover will minimally affect counts
812 (see **Figure 1**). Additionally, if the microbe(s) of interest primarily colonize(s) the cuticle, surface
813 bleaching should clearly be avoided. Thorough cleaning is more important to ensure accuracy
814 when dealing with mixed microbial communities (to ensure that all colonies/reads in a sample
815 are from worm-associated bacteria and not from the environment), when bacteria adhered to
816 the cuticle interfere with reading the internalized population, when expected minimum
817 CFU/worm is low, etc.
818

819 **Acknowledgments:**

820 The authors would like to acknowledge H. Schulenberg and C. LaRock for their generous sharing
821 of bacterial strains used in these experiments. This work was supported by funding from Emory
822 University and NSF (PHY2014173).
823

824 **Disclosures:**

825 The authors have no conflicts of interest.
826

827 **References:**

- 828 1. Armitage, D. W., Jones, S. E. How sample heterogeneity can obscure the signal of
829 microbial interactions. *The ISME Journal*. **13** (11), 2639–2646 (2019).

830 2. Stephenson, J. et al. Host heterogeneity affects both parasite transmission to and fitness
831 on subsequent hosts. *Philosophical Transactions of the Royal Society B: Biological Sciences*. **372**
832 (1719), 20160093 (2017).

833 3. VanderWaal, K. L., Ezenwa, V. O. Heterogeneity in pathogen transmission: mechanisms
834 and methodology. *Functional Ecology*. **30** (10), 1606–1622 (2016).

835 4. Dwyer, G., Elkinton, J. S., Buonaccorsi, J. P. Host heterogeneity in susceptibility and
836 disease dynamics: tests of a mathematical model. *The American Naturalist*. **150** (6), 685–707
837 (1997).

838 5. Wu, D., Rea, S. L., Yashin, A. I., Johnson, T. E. Visualizing hidden heterogeneity in isogenic
839 populations of *C. elegans*. *Experimental Gerontology*. **41** (3), 261–270 (2006).

840 6. Yashin, A. I. et al. Heat shock changes the heterogeneity distribution in populations of
841 *Caenorhabditis elegans* does it tell us anything about the biological mechanism of stress
842 response? *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*. **57**
843 (3), B83–B92 (2002).

844 7. Zhao, Y. et al. Two forms of death in ageing *Caenorhabditis elegans*. *Nature Communications*. **8** (1), 1–8 (2017).

845 8. Eckley, D. M. et al. Molecular characterization of the transition to mid-life in
846 *Caenorhabditis elegans*. *AGE*. **35** (3), 689–703 (2012).

847 9. Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W., Johnson, T. E. A stress-sensitive reporter
848 predicts longevity in isogenic populations of *Caenorhabditis elegans*. *Nature Genetics*. **37** (8),
849 894–898 (2005).

850 10. Kinser, H. E., Mosley, M. C., Plutzer, I. B., Pincus, Z. Global, cell non-autonomous gene
851 regulation drives individual lifespan among isogenic *C. elegans*. *eLife*. **10**, e65026, doi:
852 10.7554/eLife.65026 (2021).

853 11. Churgin, M. A. et al. Longitudinal imaging of *Caenorhabditis elegans* in a microfabricated
854 device reveals variation in behavioral decline during aging. *eLife*. **6**, e26652, doi:
855 10.7554/eLife.26652 (2017).

856 12. Perez, M. F., Francesconi, M., Hidalgo-Carcedo, C., Lehner, B. Maternal age generates
857 phenotypic variation in *Caenorhabditis elegans*. *Nature*. **552** (7683), 106–109 (2017).

858 13. Baeriswyl, S. et al. Modulation of aging profiles in isogenic populations of *Caenorhabditis*
859 *elegans* by bacteria causing different extrinsic mortality rates. *Biogerontology*. **11** (1), 53 (2009).

860 14. Taylor, M., Vega, N. M. Host immunity alters community ecology and stability of the
861 microbiome in a *Caenorhabditis elegans* model. *mSystems*. **6** (2), 00608-20 (2021).

862 15. Diaz, S. A., Restif, O. Spread and transmission of bacterial pathogens in experimental
863 populations of the nematode *Caenorhabditis elegans*. *Applied and Environmental Microbiology*.
864 **80** (17), 5411–5418 (2014).

865 16. Twumasi-Boateng, K., Berg, M., Shapira, M. Automated separation of *C. elegans* variably
866 colonized by a bacterial pathogen. *Journal of Visualized Experiments: JoVE*. (85), e51090 (2014).

867 17. Ortiz, A., Vega, N. M., Ratzke, C., Gore, J. Interspecies bacterial competition regulates
868 community assembly in the *C. elegans* intestine. *The ISME Journal*. **15** (7), 2131–2145 (2021).

869 18. Berg, M. et al. TGF β /BMP immune signaling affects abundance and function of *C.*
870 *elegans* gut commensals. *Nature Communications*. **10** (1), 604 (2019).

872 19. Portal-Celhay, C., Blaser, M. J. Competition and resilience between founder and
873 introduced bacteria in the *Caenorhabditis elegans* gut. *Infection and Immunity*. **80** (3), 1288–
874 1299 (2012).

875 20. Scott, E., Holden-Dye, L., O'Connor, V., Wand, M. E. Intra strain variation of the effects of
876 gram-negative ESKAPE pathogens on intestinal colonization, host viability, and host response in
877 the model organism *Caenorhabditis elegans*. *Frontiers in Microbiology*. **10**, 3113 (2020).

878 21. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G., Ahringer, J. Effectiveness
879 of specific RNA-mediated interference through ingested double-stranded RNA in *Caenorhabditis*
880 *elegans*. *Genome Biology*. **2** (1), research0002.1-research0002.10 (2001).

881 22. Dirksen, P. et al. The native microbiome of the nematode *Caenorhabditis elegans*:
882 gateway to a new host-microbiome model. *BMC Biology*. **14**, 38, doi: 10.1186/s12915-016-0258-
883 1 (2016).

884 23. Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S., Collins, J. J. *Salmonella*
885 *typhimurium* intercepts *Escherichia coli* signaling to enhance antibiotic tolerance. *Proceedings
886 of the National Academy of Sciences*. **110** (35), 14420–14425 (2013).

887 24. Stiernagle, T. Maintenance of *C. elegans*. *WormBook*. doi: 10.1895/wormbook.1.101.1
888 (2006).

889 25. Tabara, H. et al. The *rde-1* gene, RNA interference, and transposon silencing in *C.*
890 *elegans*. *Cell*. **99** (2), 123–132 (1999).

891 26. Ahringer, J. Reverse genetics. *WormBook*. doi: 10.1895/wormbook.1.47.1 (2006).

892 27. Rual, J.-F. et al. Toward improving *Caenorhabditis elegans* genome mapping with an
893 ORFeome-based RNAi library. *Genome Research*. **14** (10b), 2162–2168 (2004).

894 28. Revtovich, A. V. et al. Development and characterization of high-throughput
895 *Caenorhabditis elegans* – *Enterococcus faecium* infection model. *Frontiers in Cellular and
896 Infection Microbiology*. **11**, 667327, doi: 10.3389/fcimb.2021.667327 (2021).

897 29. Anderson, Q. L., Revtovich, A. V., Kirienko, N. V. A high-throughput, high-content, liquid-
898 based *C. elegans* pathosystem. *JoVE (Journal of Visualized Experiments)*. (137), e58068, doi:
899 10.3791/58068 (2018).

900 30. Scholz, M., Dinner, A. R., Levine, E., Biron, D. Stochastic feeding dynamics arise from the
901 need for information and energy. *Proceedings of the National Academy of Sciences*. **114** (35),
902 9261–9266 (2017).

903 31. Wu, T. et al. Pheromones modulate learning by regulating the balanced signals of two
904 insulin-like peptides. *Neuron*. **104** (6), 1095-1109.e5 (2019).

905 32. Ching, T.-T., Hsu, A.-L. Solid plate-based dietary restriction in *Caenorhabditis elegans*.
906 *Journal of Visualized Experiments: JoVE*. (51), e2701 (2011).

907 33. Walker, A. C., Bhargava, R., Vaziriyani-Sani, A. S., Brust, A. S., Czyz, D. M. Quantification of
908 bacterial loads in *Caenorhabditis elegans*. *Bio-protocol*. **12** (2), e4291–e4291 (2022).

909 34. Manjarrez, J. R., Mailer, R. Stress and timing associated with *Caenorhabditis elegans*
910 immobilization methods. *Helix*. **6** (7), e04263, doi: 10.1016/j.helix.2020.e04263 (2020).

911 35. Zhang, S., Banerjee, D., Kuhn, J. R. Isolation and culture of larval cells from *C. elegans*.
912 *PLoS ONE*. **6** (4), e0019505 (2011).

913 36. Garsin, D. A. et al. Long-lived *C. elegans* *daf-2* mutants are resistant to bacterial
914 pathogens. *Science (New York, N.Y.)*. **300** (5627), 1921 (2003).

915 37. Thutupalli, S. et al. Farming and public goods production in *Caenorhabditis elegans*
916 populations. *Proceedings of the National Academy of Sciences*. **114** (9), 2289–2294 (2017).

917 38. Ly, K., Reid, S. J., Snell, R. G. Rapid RNA analysis of individual *Caenorhabditis elegans*.
918 *MethodsX*. **2**, 59–63 (2015).

919 39. Johnke, J., Dirksen, P., Schulenburg, H. Community assembly of the native *C. elegans*
920 microbiome is influenced by time, substrate, and individual bacterial taxa. *Environmental*
921 *Microbiology*. **22** (4), 1265–1279 (2020).

922 40. Vega, N. M., Gore, J. Stochastic assembly produces heterogeneous communities in the
923 *Caenorhabditis elegans* intestine. *PLOS Biology*. **15** (3), e2000633 (2017).

924 41. Gulyas, L., Powell, J. R. Cold shock induces a terminal investment reproductive response
925 in *C. elegans*. *Scientific Reports*. **12** (1), 1338 (2022).

926 42. Jiang, W. et al. A genetic program mediates cold-warming response and promotes stress-
927 induced phenoptosis in *C. elegans*. *eLife*. **7**, e35037 (2018).

928 43. Robinson, J. D., Powell, J. R. Long-term recovery from acute cold shock in *Caenorhabditis*
929 *elegans*. *BMC Cell Biology*. **17** (1), 2 (2016).

930