Large Scale Site-Controlled Fabrication of Single Photon Emitters in Silicon Nitride Nanopillars

Samuel Peana^{1,2,3,4}, Omer Yesilyurt^{1,2,3,4}, Alexander Senichev^{1,2,3,4}, Zachariah O. Martin^{1,2,3,4}, Vahagn Mkhitaryan^{1,2}, Alexei S. Lagutchev^{1,4}, Alexandra Boltasseva^{1,2,3,4}, Vladimir M. Shalaev^{*,1,2,3,4}

¹Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

²School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

³Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA

⁴Quantum Science Center, a National Quantum Information Science Research Center of the U.S. Department of Energy,
Oak Ridge, TN 37931, USA

*Email: shalaev@purdue.edu

Abstract: A high yield (67%) method of creating single photon emitters in annealed silicon nitride on silicon oxide pillars is demonstrated. Furthermore, the SPE emitter placement precision is found to be between ±30nm- ±85nm. © 2022 The Author(s)

1. Introduction

One of the key difficulties facing practical large scale quantum optics is the difficulty of integrating single photon sources with integrated quantum photonic circuitry. Integration of single photon sources with quantum photonic circuitry arises from two main issues: placement issues and materials issues. The material difficulties arise from the need for hybrid integration of different material platforms where the single photon source and photonic circuitry are made from different materials [1][2]. Alternatively, if a material has native emitters it may be difficult to fabricate high quality photonic circuitry out of it scalably[2]. The second major issue is the lack of lithographically defined site-controlled emitters, in many platforms emitters are formed at random making large scale integration of emitters difficult, either requiring extensive SPE prelocalization methods or painful placement of nanostructures containing SPEs. Recently, bright and stable native single photon emitters were discovered in Silicon Nitride (SiN)[3]. The discovery of such native emitters promises simple monolithic integration into industry standard and scalable SiN photonic circuitry while avoiding the pitfalls of hybrid integration such as fabrication complexity and poor light coupling [1][2][3][4]. In this work we addressed the second major issue of fabricating these emitters lithographically through the development of a large-scale high-yield fabrication process for these emitters with deeply sub-diffraction limited placement precision.

2. Results

The process of creating site controlled single photon emitters consists of growing 50nm of SiN via High density plasma enhanced chemical vapor deposition (HDPCVD) onto SiO₂ coated Si wafers. The SiO₂ layer is approximately 3um thick. Once the full thin film layer stack has been fabricated the nanopillars are created. To create nanopillars, first the pillar is defined lithographically using ebeam lithography. This is followed by the deposition of a chrome hardmask and liftoff. At this point the pillar is etched using ICP plasma etching. Importantly, the etch is allowed to overshoot the SiN layer and cut into the SiO₂ layer. The result are pillars that are 90nm tall with a 40nm SiO₂ base and a cap of 50nm of SiN. The diameter of the measured pillars is 170nm. A cross section of the fabricated pillars can be seen in Figure 1b. This was done to avoid any SiN between layers and the possible formation of emitters between pillars. Finally, after the etch, the chrome mask is removed using chrome etch. Critically, the pillars are then annealed using a Jetfirst rapid thermal annealing system (1100C). An SEM of the resulting pillars can be seen in figure 1c.

Once the pillars have been fabricated we explored two major questions: the yield, and the placement accuracy. To assess the yield of single photon emitters per pillar we used a home built confocal photoluminescence system which is also capable of performing the Hanbury-Brown-Twiss autocorrelation measurements. Spatial imaging of the pillar array demonstrates that the vast majority of the pillars exhibit photoluminescence as can be seen in Figure 1a. Once the spatial map has been taken we measured the autocorrelation curves of 55 pillars sequentially to avoid any sampling bias. This includes pillars that do not appear to be promising. An example of a good measured autocorrelation curve can be seen in the inset of Figure 1d. Finally, after the autocorrelation curves have been measured they were fitted with a standard 3 level model to extract the $g^{(2)}(0)$ value. From the 55 emitters we measured we found that 67% have $g^{(2)}(0)$ values below 0.5 indicating that 67% of the measured pillars contain single

photon emitters. Furthermore, the vast majority of the measured pillars exhibit some level of antibunching indicating the presence of multiple emitters or dim single photon emitters with poor signal to background noise levels. These results when taken together confirm that this process is capable of producing single photon emitters deterministically since the yield does not follow a typical stochastic poissonian distribution. To assess the placement accuracy lines of emitters are imaged in the photoluminescence maps. The emitters are then fitted with gaussian curves to find their centers. By looking at the variation in the measured emitter center we find that the emitters have a maximum variation of approximately ± 30 nm. Due to symmetry of the pillars this indicates that the emitters are occurring near the center of the pillars and with high precision.

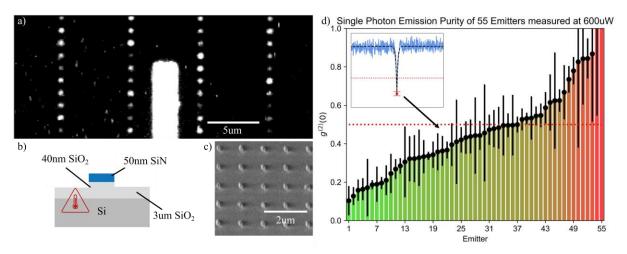


Figure 1. (a) A scanning photoluminescence map taken with an excitation wavelength of 532nm, the cross is an alignment marker, and the pillars are clearly visible in the PL map (b) A cross section of the fabricated pillars (c) A scanning electron microscope(SEM) image of the nanopillar array. (d) A summary of the $g^{(2)}(0)$ values retrieved from 55 different pillars. The error bars shows the fit uncertainty. The inset shows a autocorrelation curve and how the $g^{(2)}(0)$ is retrieved from fitting with a 3 level model.

3. Conclusion

This method of single photon emitter fabrication is capable of producing industrial quantities of single photon emitters with yields of at least 67%. Furthermore, this method allows for the lithographic definition of these emitters with relatively high spatial accuracy (± 30 nm to ± 85 nm). Finally, the emitters being patterned are native to silicon nitride avoiding many of the issues associated with hybrid integration. These three features promise to pave the way towards quantum photonic systems deterministically and seamlessly integrated with large numbers of single photon emitters.

References

- [1] J. Kim, et al., "Hybrid integration methods for on-chip quantum photonics," Optica 7.4 (2020).
- [2] S. Bogdanov et al., "Material Platforms for Integrated Quantum Optics," Optics Materials Express. 7, 111-132 (2017)
- [3] Senichev, Alexander, et al. "Room-temperature single-photon emitters in silicon nitride." Science Advances 7, no. 50 (2021): eabj0627.
- [4] P. Munoz, et al. "Foundry developments toward silicon nitride photonics from visible to the mid-infrared," IEEE Journal of Selected Topics in Quantum Electronics 25.5 (2019).

This work is supported by the U.S. Department of Energy (DOE), Office of Science through the Quantum Science Center (QSC), and the National Science Foundation Award 2015025-ECCS.