
A MODEL-CONSTRAINED TANGENT SLOPE LEARNING
APPROACH FOR DYNAMICAL SYSTEMS

Abstract. Real-time accurate solutions of large-scale complex dynamical systems are in critical
need for control, optimization, uncertainty quantification, and decision-making in practical engineer-
ing and science applications, especially digital twin applications. This paper contributes in this di-
rection a model-constrained tangent slope learning (mcTangent) approach. At the heart of mcTangent
is the synergy of several desirable strategies: i) a tangent slope learning to take advantage of the
neural network speed and the time-accurate nature of the method of lines; ii) a model-constrained
approach to encode the neural network tangent slope with the underlying governing equations; iii)
sequential learning strategies to promote long-time stability and accuracy; and iv) data random-
ization approach to implicitly enforce the smoothness of the neural network tangent slope and its
likeliness to the truth tangent slope up second order derivatives in order to further enhance the
stability and accuracy of mcTangent solutions. Rigorous results are provided to analyze and justify
the proposed approach. Several numerical results for transport equation, viscous Burgers equation,
and Navier-Stokes equation are presented to study and demonstrate the robustness and long-time
accuracy of the proposed mcTangent learning approach.
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1. Introduction. Dynamical systems are pervasive in engineering and science
applications. They are typically time-dependent systems of ordinary differential equa-
tions (ODEs) or partial differential equations (PDEs). The latter is not different from
the former from the method of lines viewpoint in which a PDE reduces to a system
of ODEs after a spatial discretization. For practical settings, simulating a dynamical
system could be challenging due to a large number of degrees of freedom, and hence
the number of ODEs, interdependent on each other in a highly nonlinear manner.
For multi-scale or stiff systems of ODEs, explicit time discretization schemes, though
straightforward, are not efficient to due time stepsize limitation to ensure stability.
Implicit schemes, on the other hand, are stable but computationally expensive as a
large linear system of equations needs to be solved at each time step. Though cur-
rently infeasible, real-time accurate approximate solutions for the practical complex
dynamical system are highly desirable for control, optimization, uncertainty quantifi-
cation, and decision-making.

Towards achieving real-time solutions for dynamical systems, various pure data-
driven deep learning attempts have been made. Autoencoder architecture has been
explored to simulate fluid flows [19]. Autoencoder with physics-informed regulariza-
tion to improve accuracy has been proposed to predict the future sea surface temper-
ature given past series of measurements [10]. In [45], a graph network-based model is
trained to approximate the forward map and inference model, and then used to speed
up control algorithms. As an effort to combine traditional and machine learning
approaches, the authors in [31] introduce a deep Koopman model—an auto-encoder
architecture of convolution neural network—to predict the dynamics of airflow over a
cylinder. Comprehensive overviews of machine learning methods for forecasting dy-
namical systems can be found in [25] and [2]. The work in [11] presents a review and
aspects of using machine learning techniques to simulate turbulent flows.

Instead of replacing traditional computational approaches with pure data-driven
machine learning models, which is debatable and an active research direction, one can
use machine learning methods to speed up only computationally demanding modules.
This could maintain desirable physics constraints as in traditional approaches while
gaining computational time. Indeed, a convolution neural network (CNN) can be
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trained to learn the numerical error between high-resolution and low-resolution simu-
lations [34]. Combining the CNN prediction with low-resolution simulations can then
achieve similar high-resolution accuracy while being faster and at that the same time
not compromising the physics. In a different effort, neural networks are trained to
replace components/terms severely affected by a low-resolution grid [21]. The pre-
dictions from neural networks are then unrolled over multiple time steps to improve
long-time inference performance. A recurrent neural network can also be used to en-
hance the effectiveness of geometric multigrid methods for simulating Navier-Stokes
equations [29].

Completely replacing traditional methods while respecting governing equations,
we argue, is highly desirable for machine learning methods because fast but nonphysi-
cal solutions are undesirable. A popular deep-learning approach aiming to accomplish
this goal is the physics-informed neural network (PINN) [42]. Similar to least squares
finite element methods, PINN trains deep learning solution constrained by the PDE
residual through a regularization [42, 38, 40, 41, 57, 51]). PINN can learn solutions
that attempt to make the PDE residual small. However, the PINN approach directly
approximates the PDE solution in infinite dimensional spaces. While universal ap-
proximation results (see, e.g., [9, 13, 28, 18]) could ensure any desired accuracy with
a sufficiently large number of neurons, practical network architectures are moderate
in both depth and width, and hence the number of weights and biases, the accuracy
of PINN can be limited. Moreover, PINN requires a retrain for new scenarios such as
new boundary conditions, or new initial conditions, or new values of the underlying
parameters. A physics-informed recurrent neural network has also been studied in
[15]. In order to produce physically consistent and better prediction results, energy
flow and density-depth constraint laws are integrated into the loss function.

Instead of learning the infinite-dimensional solution as in PINN, learning dis-
cretized solutions of dynamical systems is equally popular. The work in [59] uses a
neural network to approximate the derivative of the system state in reduced projected
subspace. The neural network is then combined with forward Euler and Runge-Kutta
time discretization schemes to achieve high-accuracy solutions. Alternatively, a feed
forward neural network can be used to directly learn the map from the solution at the
current time step to the solution in the next time step [33]. The stability and accuracy
of long-time prediction are reinforced by introducing a Jacobian regularization into the
loss function. Realizing several drawbacks of the direct learning approach, the authors
in [54] propose to learn the tangent slope with Runge-Kutta schemes. Once trained,
the learned tangent slope can be used with any time discretization schemes and any
time step size. In [53], the authors propose to learn a correction neural network that
lifts low-resolution solutions to high-resolution accuracy, and the training procedure
includes low-resolution differentiable codes. Similarly, differential molecular dynam-
ics simulations [47] have been implemented in Jax [4]. Alternatively, the authors in
[14] develop a differentiable simulations package that wraps a numerical simulator as
a gradient kernel for end-to-end back-propagation used in optimization algorithms.
Similar to [47], a differentiable physic simulations package equipped with the adjoint
method for backpropagation is developed in [12], which enables the embedding of
physical forward model into the training process.

In this paper, aiming at simulating dynamical systems in real-time, we propose a
model-constrained tangent slope deep learning (mcTangent) approach that has several
appealing features over existing methods. First, it operates on finite dimensional
systems and is thus in principle easier to train. However, it is spatial discretization-
dependent for systems governed by PDEs. Second, it learns the underlying tangent
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slope and thus is semi-discrete in nature. Once trained, it can be deployed with
any time discretization schemes with any time step size. The next three features are
the main advances beyond the work in [54]. Third, it aims to fulfill the governing
equations by constraining a fully discrete system in the loss function during training.
Fourth, it is equipped with sequential learning strategies and thus promotes stability
and accuracy in simulating the underlying dynamical systems far beyond the training
time horizon. Fifth, our approach imposes regularizations on the smoothness of the
neural network tangent and its derivatives implicitly via data randomization. This
provides extra stability and accuracy for mcTangent solutions.

The paper is organized as follows. Section 2 introduces an abstract dynamical
system and a model-constrained tangent slope learning (mcTangent) approach. Both
sequential machine learning and sequential model-constrained strategies will be dis-
cussed in detail in subsection 2.2 and subsection 2.3. Data randomization approach
then follows with an in-depth semi-heuristic argument to reveal its implicit regulariza-
tion nature in subsection 2.4. In particular, data randomization induces smoothness
regularization for the underlying neural network via the standard machine learning
loss. The beauty of the model-constrained loss term is that it not only enforces the like-
liness of the neural network and the truth tangent slopes but also implicitly constrains
their likeliness up to second-order derivatives via data randomization. subsection 2.5
provides a rigorous estimation for prediction error using mcTangent approach. Sev-
eral numerical results using the proposed mcTangent approach for transport equation,
viscous Burger’s equation, and Navier-Stokes equation are presented in section 3. We
also provide detailed information on parameter tuning, randomness setting, and the
cost for both training and testing. Section 4 concludes the paper with future work.

2. Model-constrained tangent slope deep learning solutions for dynam-
ical systems.

2.1. Motivation. For the concreteness and simplicity of the exposition, let us
consider an abstract dynamical system governed by the following time-dependent
scalar PDE equation of the form

(2.1)
∂u

∂t
= G (u,∇u, . . .) in Ω ⊂ Rd,

where t ∈ [0, T ], u (x) ∈ R for any x ∈ Rd, and d ∈ {1, 2, 3}. We also assume (2.1)
is equipped with appropriate initial conditions and boundary conditions to ensure its
well-posedness.

In this paper, we are interested in parametrized PDEs. For downstream tasks
such as design, control, optimization, inference, and uncertainty quantification, these
PDEs need to be solved many times. As such, we wish to approximate solutions of
(2.1) in real time for any parameters (e.g. initial conditions or boundary conditions,
or some parameter). Training a PINN together with parameters (either by themselves
or their neural networks weights and biases as another set of optimization variables)
[8, 39, 26, 27] may not be efficient as a new solution (corresponding to new parameters)
requires a retrain. We note that attempts using pure data-driven deep learning to learn
the parameter-to-solution map have been explored (see, e.g., [22, 55, 35, 50, 36, 22, 49,
16]). On the other hand, standard numerical methods such as finite difference, finite
volume, and finite elements [48, 23, 17] discretize (2.1) both in time and space. One of
the most popular approaches is perhaps the method of lines (see, e.g., [46]) in which
one performs spatial discretization first to obtain a system of (possibly nonlinear)
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ordinary differential equations of the form

(2.2)
∂u

∂t
= G (u) ,

where u and G are vector representations of finite dimensional approximations of u
and G, respectively. Now, either an explicit or implicit (or their combination) can be
deployed to discretize the temporal derivative. For the former, the most expensive
operation is the evaluation of tangent slope1 G (u). For the latter, evaluating both
G (u) and its (possibly approximate) Jacobian for each time step play a vital role.
Implementing the Jacobian, even with the adjoint method [52], is a significant part
of the programming effort. Automatic differentiation can mitigate this programming
burden at the expense of more memory bandwidth. In summary, computing G (u)
and its Jacobian is a major part, both in implementation and computational time, of
existing numerical methods.

To overcome the time burden of estimating the tangent slope and its Jacobian,
we present a model-constrained tangent slope deep learning approach (mcTangent)
inspired by the semi-discrete nature of the method of lines. In particular, we first
learn the tangent slope G (u) using neural network and then use a time discretiza-
tion to solve for approximations of u. Our approach thus aims to approximate only
the spatial discretization and leaves the temporal discretization for traditional time
integrators. At the heart of our approach is the incorporation of the governing equa-
tions into the neural network tangent by constraining the learning task to respect a
temporal discretization of (2.2). Again, unlike PINN and its siblings which learn the
infinite-dimensional solution u, our approach learns the tangent slope of the finite-
dimensional approximation u. Furthermore, we constrain the physics on the discrete
level. Clearly, our approach is discretization-dependent while PINN requires neither
spatial discretization nor temporal discretization.

2.2. Model-constrained neural network approach with sequential data
learning. In this section, we construct a model-constrained neural network Ψ (u) to
learn G (u). This is done in tandem with a time discretization of (2.2). For clarity,
we limit our presentation to forward Euler method

(2.3) uk+1 = uk +∆tG
(
uk
)
,

as it is straightforward to extend the approach to any time discretization scheme, and
we provide a brief discussion at the end of the section. The task at hand is to train
Ψ (u) on a certain spatial mesh T corresponding to a spatial discretization. To begin,
let us denote the numerical solutions of (2.3) at Nt+1 time steps on a finer mesh T f

as {
u0,u1, . . . ,uNt

}
.

which are then down-sampled on T for training Ψ (u). Doing so has proved to yield
more accurate predictions than training directly on the solutions on T [34, 21, 58].
This is not surprising as the down-sampled training data on T is more accurate than
the solution on T .

The next idea that we like to incorporate into our approach is sequential training.
The key is to feed the predictions back to the neural network model to enable a

1We call the right hand side G (u) as the tangent slope as it is a generalization of the tangent
slope field in scalar ordinary differential equation.
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better long-time predictive capability. Using this idea [56] deploys a mixture of graph
neural network and 3D-U-Net neural network to model fluid flows. Similarly, in [58]
sequential learning is used to train a network to obtain the optimal finite difference
coefficients from the high-resolution training data. In the context of atmosphere
modeling, [5] introduces a stable and highly accurate long-time prediction loss function
with sequential training. Following [34, 21, 56, 58], we partition the training data in
Nt − S overlapping subsets

U :=
{(

u0,u1, . . . ,uS+1
)
,
(
u1,u2, . . . ,uS+2

)
, . . . ,

(
uNt−S−1,uNt−S , . . . ,uNt

)}
.

For convenience in the exposition, we enumerate these Nt − S subsets as

U :=
{ (

u0,0,u0,1, . . . ,u0,S+1
)
,
(
u1,0,u1,1, . . . ,u1,S+1

)
,

. . . ,
(
uNt−S−1,0,uNt−S−1,1, . . . ,uNt−S−1,S+1

) }
,

where the second superscript denotes the local index in each subset. To distinguish
from the sequential model-constrained learning in subsection 2.3, let us call the ma-
chine learning approach based on these overlapping subsets as sequential data learning.

We next discuss how we use each subset in our model-constrained approach.
Consider the kth subset

(
uk,0,uk,1, . . . ,uk,S+1

)
, for k = 0, . . . , Nt − S − 1. Starting

from ũk,0 = uk,0, we can write the sequence of approximate solutions
{
ũk,i

}S+1

i=1
for

(2.2) using forward Euler time discretization with the neural network tangent Ψ (u)
as

(2.4) ũk,i+1 = ũk,i +∆tΨ
(
ũk,i

)
, i = 0, . . . , S.

On the other hand, if we feed ũk,i through the forward Euler discretization (2.3) we
obtain

(2.5) ūk,i+1 = ũk,i +∆tG
(
ũk,i

)
, i = 0, . . . , S.

As can be seen ũk,i+1 ̸= ūk,i+1, though we wish they are the same. If they were,
the approximate solutions using neural network tangent would respect the governing
discretized equation exactly. Obviously, this is not feasible in general. Thus, we resort
to requiring ũk,i+1 as close as possible to ūk,i+1. One way to accomplish this is to
consider the following loss function for the kth batch:

(2.6) Jk :=
1

S + 1

S+1∑
i=1

(∥∥∥uk,i − ũk,i
∥∥∥2
2
+ α

∥∥∥ūk,i − ũk,i
∥∥∥2
2

)
,

where α is a model-constrained penalty (or regularization) parameter, which controls
the magnitude of the model-constrained loss (relative to the machine learning loss
and). Parameter tuning in subsection 3.4 shows that a single value α = 105 works
well for all numerical examples in section 3. The first term of the loss (2.6)—the ML
Loss in Figure 1—ensures the data consistency, while the second term—the MC Loss
in Figure 1—is to force approximate solutions of (2.2) using neural network tangent
Ψ (u) to best fit the underlying space-time discretization (2.3). The schematic of the
mcTangent architecture with sequential data learning for the kth data subset and
S = 1 is illustrated in Figure 1. We note that, unlike SINDy [6], which discovers the
dynamic systems from a dictionary of common differential operators, mcTangent aims
to approximate high dimensional complex nonlinear tangent slope G operator using
neural network.

5



Remark 2.1. Note that it is not essential that ūi must be obtained by the forward
Euler scheme (2.3). In fact, our approach is flexible in the sense that any one-step
explicit scheme, denoted as F , (including explicit Runge-Kutta) is admissible. In
such a case, our neural network can be considered as learning the forward Euler
approximation of the ground-truth scheme.

uk,0 + ε ũk,1 ũk,2Ψ Ψ
×∆t ×∆t

F ūk,1 F ūk,2

ML Loss:
∑S+1

i=1

∥∥∥uk,i − ũk,i
∥∥∥2
2

MC Loss: α
∑S+1

i=1

∥∥∥ūk,i − ũk,i
∥∥∥2
2

Fig. 1: The schematic of the mcTangent approach with sequential data learning with
S = 1. For the data randomization approach in Section 2.4, the random noise vector,
ε, is added to the first input of the neural network.

Taking all the batches into account yields the total loss function

(2.7) J :=
1

(Nt − S) (S + 1)

Nt−S−1∑
k=0

S+1∑
i=1

(∥∥∥uk,i − ũk,i
∥∥∥2
2
+ α

∥∥∥ūk,i − ũk,i
∥∥∥2
2

)
.

To gain insight into our mcTangent approach, we consider a linear problem in
which G (u) = Gu, and a one-layer linear neural network Ψ

(
uk,0

)
= Wuk,0 + b.

Under a mild condition, our approach should exactly recover the underlying tangent
slope, i.e. Ψ (u) = Gu. Indeed, let S = 0 so that the loss function (2.7) becomes

(2.8)

J =
1 + α

Nt

Nt−1∑
k=0

∥∥∥uk,1 − ũk,1
∥∥∥2
2
=

1 + α

Nt

∥∥∥U1 − Ũ1
∥∥∥2
F

=
(1 + α)∆t2

Nt

∥∥GU0 −
(
WU0 + b1T

)∥∥2
F

where U ti and Ũ ti are matrices with true and predictive solutions as columns, respec-
tively, and 1 is the unit column vector.

Lemma 2.2. The optimal solution (W ∗,b∗) for the training problem

min
W ,b

J

is given by

(2.9) W ∗ = GUU
†
, b∗ = G

(
I− UU

†)
u,
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where u := 1
Nt

U t01 is the column-average of matrix U t0 , U := U t0 − u1T , and †

denotes the pseudo-inverse. Consequently, the optimal network reads

Ψ(u) = GUU
†
u+G

(
I− UU

†)
u.

Remark 2.3. Lemma 2.2 tells us that the optimal network exactly recovers the

true forward map G if U is a full row rank matrix. (In that case, UU
†
= I.) This

holds, for example, when the number of independent data samples is equal to the
discretized dimension. We would like to point out that the MC loss term is the
same as the ML loss term (up to a constant), and thus does not provide any extra
information in this simple case. When S > 0, at the time of writing this paper, we
are not able to find a closed form solution as in Lemma 2.2. We leave it as future
work.

Remark 2.4. Although we learn the tangent slope using the Forward Euler scheme,
it is straightforward to use any explicit scheme, such as Adams–Bashforth and Runge-
Kutta methods to accomplish our goal. For example (ignoring extra subscripts for
sequential data learning for simplicity), using the two-step Adams-Bashforth scheme,
mcTangent solutions read

ũi+1 = ũi +
3

2
∆tΨ

(
ũi
)
− 1

2
∆tΨ

(
ũi−1

)
,

as oppose to the solutions using the truth tangent slope

ui+1 = ui +
3

2
∆tG

(
ui
)
− 1

2
∆tG

(
ui−1

)
.

Similarly, mcTangent solutions based on the second-order Runge-Kutta scheme reads

k̃1 = ∆tΨ
(
ũi
)

k̃2 = ∆tΨ
(
ũi + k1

)
ũi+1 = ũi +

k̃1 + k̃2
2

,

as oppose to the solutions using the truth tangent slope

k1 = ∆tG
(
ui
)

k2 = ∆tG
(
ui + k1

)
ui+1 = ui +

k1 + k2
2

.

Clearly, we have to modify the lost function accordingly, but the idea is the same as
forward Euler approach that we have presented above.

Remark 2.5. Note that we have used forward Euler time discretization for both
(2.4) and (2.5) for simplicity, but this is not necessary. We recommend to use time
discretizations with the same order of accuracy for both as accuracy gain in incom-
patible discretizations may not be well paid-off by additional computational demand.
For example, if we use low-order accuracy for (2.4) but higher-order accuracy for
(2.5), mcTangent solution could be more accurate with smaller constant in the order
of accuracy (still low-order) since it tries to match more accurate solution from (2.5).
However, the training cost could increase significantly due to several evaluations (and
hence differentiations for back-propagation) of the truth tangent slope G in (2.5).
Clearly high-order accurate approaches could tax the training time significantly.
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2.3. Model-constrained neural network approach both sequential data
and sequential model learnings. In subsection 2.2, we present a sequential data
learning approach for the proposed model-constrained neural network Ψ (u) to learn
the tangent slope while being constrained to provide the best possible approximate
solutions for (2.3) for each time step. In order to improve the long-time predictive
capability and accuracy, this section constructs, in addition to sequential data learning,
a sequential model learning strategy for training the neural network Ψ (u) is proposed.
Sequential model learning is designed to promote the neural network solutions to
respect the underlying discretization scheme for multiple time steps concurrently. In
particular, starting from ũk,i we can carry out R steps forward in time using the
underlying discretization (2.3) as

ūk,i,r = ūk,i,r−1 +∆tG
(
ūk,i,r−1

)
, r = 1, . . . , R,

and using the neural network approximation (2.4) as

ũk,i,r = ũk,i,r−1 +∆tΨ
(
ũk,i,r−1

)
, r = 1, . . . , R,

where ūk,i,0 = ũk,i,0 = ũk,i. Here the third superscript r has been introduced to
keep track of R sequential forward steps starting from ũk,i for both exact and neural
network tangent slopes. In order to ensure that these corresponding R sequential
predictions closely match each other, we consider the following loss function
(2.10)

J :=
1

(Nt − S) (S + 1)

Nt−S−1∑
k=0

S+1∑
i=1

(∥∥∥uk,i − ũk,i
∥∥∥2
2
+

α

R

R∑
r=1

∥∥∥ūk,i,r − ũk,i,r
∥∥∥2
2

)
.

uk,0 ũk,1 ũk,2 ũk,3Ψ Ψ Ψ

S = 0 S = 1 S = 2

×∆t ×∆t ×∆t

F

ūk,0,1

F

ūk,0,2

F

ūk,1,1

F

ūk,1,2

F

ūk,2,1

F

ūk,2,2

F

ūk,3,1

F

ūk,3,2

R = 1

R = 2

Fig. 2: The schematic of the mcTangent approach with both sequential data and
model learnings with S = 2, R = 2.

The schematic of the mcTangent architecture with both sequential data and model
learnings for the kth data subset and S = 2, R = 2 is depicted in Figure 2. Clearly,
when R = 1 we recover (2.7) from (2.10). In other words, (2.10) is a generalization of
(2.7). Intuitively, larger values for R,S increase the predictive capacity of mcTangent
solutions, and as an example this will be demonstrated for the Burgers equation in
3.2. However, it is computationally expensive to use large values for both S and
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R. In the numerical results in section 3, we study two combinations: S ≥ 1, R = 1
and S = 1, R ≥ 1. In order to have a deeper understanding of the role of the loss
function (2.10) in training the neural network tangent and its predictive capability,
we shall provide an in-depth heuristic argument in subsection 2.4 and a rigorous error
estimation for mcTangent predictions in subsection 2.5.

2.4. Data randomization. It has been observed [44] that adding a small amount
of noise to training data not only increases the generalization on unseen data but also
reduces accumulated errors in predictions. In fact, clean noise-free data does not rep-
resent the accumulated error in the predictive state that is fed back to the network
to produce subsequent predictions. Moreover, noisy data encourages neural network
predictions to be more robust to noise-corrupted inputs and errors. In order to inves-
tigate the significance of different noise additions (adding noise to the training inputs,
weights of the neural network, and output labels) on the model generalization, [1]
demonstrates that the reasonable noise level in the outputs does not influence the
trained network. Randomizing training data, on the one hand, prevents the neural
network from overfitting data, and on the other hand, can make the network insensi-
tive to noise in data in the validation phase.

It is well-known that randomization induces a regularization of the gradient of
the loss function with respect to the inputs [43]. Consequently, the neural network,
if a proper noise level is used, is regularized to be a smooth function of the input
data. The smoothness reduces the sensitivity to the variation in the input [30] and
can enhance the stability of long-time predictions [37]. The work in [3] showed that
adding noise to data is equivalent to introducing a Tikhonov regularization to the loss
function (where the regularization parameter is the noise variance) and thus improving
the model generalization. However, the analysis is only valid in the context of infinite
training data set, as pointed out in [1].

Inspired by the aforementioned work, we randomize the input data for the model-
constrained network. We shall show that randomization induces regularizations not
only to promote the smoothness of the network but also to enhance the similarity of
the derivatives of the network Ψ (u) and the true tangent slopeG (u). As shall be seen,
the numerical results in section 3 reveal that randomization improves significantly the
long-term stability and accuracy.

In this paper, we randomize the input u of the network as

(2.11) v = u+ ε,

where ε is a normal random vector ε ∼ N
(
0, δ2I

)
. Note that the following heuristic

arguments also hold for any random vector with independent components, each of
which is a random variable with zero mean and variances δ2. Let E [·] denote the
expectation with respect to ε. Following [1], for a generic loss function L (u) we have

(2.12)

E [L (v)] =L (u) + E
[
∂L
∂u

∣∣∣∣
u

ε

]
+

1

2
E
[
εT

∂2L
∂u2

∣∣∣∣
u

ε

]
+ o

(
∥ε∥2

)
≈L (u) +

1

2
E
[
εT

∂2L
∂u2

∣∣∣∣
u

ε

]
,

where we have used sufficient small noise ε (relatively to u) so that the high-order

term o
(
∥ε∥2

)
, using the standard “small o” notation, is assumed to be negligible.

We consider S = 0 and R = 1. (For S > 0 and/or R > 1 , the sequential inputs to
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the network contain the error which may not satisfy the condition for (2.12) to hold.)
In this case, the loss function (2.7) becomes

(2.13)
J =

1

Nt

Nt−1∑
k=0

∥∥∥uk,1 − ũk,1
∥∥∥2
2︸ ︷︷ ︸

LML(uk,0+ε)

+α
∥∥∥ūk,1 − ũk,1

∥∥∥2
2︸ ︷︷ ︸

LMC(uk,0+ε)

We now study the randomized ML loss term LML

(
uk,0 + ε

)
and the randomized MC

loss term LMC

(
uk,0 + ε

)
to gain insights into the role of randomization.

The machine learning loss term reads

LML

(
uk,0 + ε

)
=
∥∥uk,1 −

(
uk,0 + ε+∆tΨ

(
uk,0 + ε

))∥∥2
2

which is a function of true input uk,0 plus a random noise vector ε. It is important
to note that we do not randomize the true data uk,1 against which we compare the
machine prediction ũk,1. Replacing L by LML in (2.12) yields
(2.14)

E
[
LML

(
uk,0 + ε

)]
≈
∥∥uk,1 −

(
uk,0 +∆tΨ

(
uk,0

))∥∥2
2︸ ︷︷ ︸

LML(uk,0)

+δ2
[
P1

(
uk,0

)
+ P2

(
uk,0

)]
,

where

(2.15) P1

(
uk,0

)
= Tr

[(
I+∆t

∂Ψ

∂u

∣∣∣∣
uk,0

)T (
I+∆t

∂Ψ

∂u

∣∣∣∣
uk,0

)]
,

with Tr [·] as the trace operator, and

(2.16) P2

(
uk,0

)
=Tr

[
∆t

∂2Ψ

∂u2

∣∣∣∣
uk,0

⊙
[(
uk,0 +∆tΨ

(
uk,0

))
− uk,1

]]
,

where ⊙ denotes the dot product of the third order tensor ∆t ∂2Ψ
∂u2

∣∣∣
uk,0

and the vector[(
uk,0 +∆tΨ

(
uk,0

))
− uk,1

]
.

From (2.14), three observations are in order. First, on average, the randomized
ML loss term is approximately the original ML loss term plus two additional terms
P1 and P2 scaled by the variance δ2 of the noise. Second, the first term P1 is pos-
itive and thus is a regularization. It enforces the boundedness of the gradient (and
hence the smoothness) of the neural network. Third, the second term P2 can be ei-
ther positive or negative. However, when the time step ∆t is small and/or the ML
misfit term

[(
uk,0 +∆tΨ

(
uk,0

))
− uk,1

]
is small (e.g. with sufficient training), the

contribution of the second term is expected to be dominated by the first and thus is
negligible. When neither of these two conditions is satisfied, if the training enforces

small “curvature” of the neural network (i.e. small ∂2Ψ
∂u2

∣∣∣
uk,0

) then the second term

is also negligible. When this happens, training with randomization provides extra
smoothness to the network.

Next, from (2.4) and (2.5), the randomized MC loss term can be written as

LMC

(
uk,0 + ε

)
=
∥∥∥ūk,1 − ũk,1

∥∥∥2
2
= ∆t2

∥∥G (uk,0 + ε
)
−Ψ

(
uk,0 + ε

)∥∥2
2
.
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Applying (2.12) with LMC in place of L gives
(2.17)

E
[
LMC

(
uk,0 + ε

)]
≈ ∆t2

∥∥G (uk,0
)
−Ψ

(
uk,0

)∥∥2
2︸ ︷︷ ︸

LMC(uk,0)

+δ2
[
Q1

(
uk,0

)
+Q2

(
uk,0

)]
,

where

(2.18) Q1

(
uk,0

)
= ∆t2Tr

[(
∂G

∂u

∣∣∣∣
uk,0

− ∂Ψ

∂u

∣∣∣∣
uk,0

)T (
∂G

∂u

∣∣∣∣
uk,0

− ∂Ψ

∂u

∣∣∣∣
uk,0

)]
,

and
(2.19)

Q2

(
uk,0

)
=Tr

[
∆t

(
∂2G

∂u2

∣∣∣∣
uk,0

− ∂2Ψ

∂u2

∣∣∣∣
uk,0

)
⊙∆t

(
Ψ
(
uk,0

)
−G

(
uk,0

))]
.

As can be seen, the randomized MC loss term is approximately a sum of the original
ML loss term and two additional terms. The first term Q1 is non-negative and behaves
like a regularization to enforce the likeliness of the derivatives with respect to u of the
neural network tangent Ψ (u) and the true tangent G (u). The second term, though
could be either negative or positive, can be negligible with sufficient training so that
the MC misfit ∆t

(
Ψ
(
uk,0

)
−G

(
uk,0

))
is relatively small. Another possibility for

the insignificance of the second term is when the difference in the “curvature” of
the neural network tangent and the true tangent is sufficiently small. In that case,
training with randomization promotes the closeness of not only Ψ (u) and G (u)
but their first and second derivatives with respect to u: confirming the significant
advantages obtained from data randomization. Next, combining (2.13), (2.14), and
(2.17) yields the following result.

Theorem 2.6. Let the input of the neural network be randomized as in (2.11).
Then

E [J ] =
1

Nt

Nt−1∑
k=0

(
LML

(
uk,0

)
+ αLMC

(
uk,0

))
(2.20)

+
δ2

Nt

Nt−1∑
k=0

[
P1

(
uk,0

)
+ P2

(
uk,0

)
+ α

(
Q1

(
uk,0

)
+Q2

(
uk,0

))]
+ o

(
∥ε∥2

)
.

The first sum in (2.20) is the original loss (without randomization) and the second
sum consists of additional terms induced by data randomization. These additional
terms play a vital role in stimulating the stability and accuracy of the neural network.
Indeed, as discussed above, randomizing the machine learning loss term encourages the
smoothness of the neural network tangent by penalizing its first and second derivatives
implicitly. Note that explicitly penalizing the first derivative of a neural network as in
[33] is possible, but this could be computationally expensive and challenging. Doing
so for both the first and second derivatives is not recommended. The above heuristic
analysis of data randomization also reveals the power of the model-constrained term
in training neural network: it promotes the agreement of the neural network tangent
and the true tangent up to second order that is otherwise not realizable using the
standard data-driven approach with only machine learning loss term.
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2.5. Estimation of prediction errors. In this section, we show how data ran-
domization helps improve the stability and accuracy of long-time predictions. We are
interested in predicting solutions of the system (2.2) starting from an initial condition
u0 that is not in the training set. To that end, it is natural to compare the mcTangent
solutions ũi in (2.4) with the solutions ui obtained from the discretized system (2.3).
Let us define the neural prediction error as

(2.21) eML

(
ũi
)
= ui+1 −

[
ũi +∆tΨ

(
ũi
)]

, εi+1 =
∥∥eML

(
ũi
)∥∥

2
.

From (2.3), (2.4), and (2.21) we have

(2.22)
eML

(
ũi
)
=
(
ui +∆tG

(
ui
))

−
(
ũi +∆tΨ

(
ũi
))

=∆tG
(
ũi + eML

(
ũi−1

))
−∆tΨ

(
ũi
)
+ eML

(
ũi−1

)
Applying the Taylor expansion for the first term gives

(2.23) ∆tG
(
ũi + eML

(
ũi−1

))
= ∆tG

(
ũi
)
+∆t

∂G

∂u

∣∣∣∣
ũi

eML

(
ũi−1

)
+ o

(
εi
)

Substituting back to (2.22), we have

(2.24)

eML

(
ũi
)
= ∆t

[
G
(
ũi
)
−Ψ

(
ũi
)]

+∆t
∂G

∂u

∣∣∣∣
ũi

eML

(
ũi−1

)
+ eML

(
ũi−1

)
+ o

(
εi
)
= ∆t

[
G
(
ũi
)
−Ψ

(
ũi
)]

+∆t

[
∂G

∂u

∣∣∣∣
ũi

− ∂Ψ

∂u

∣∣∣∣
ũi

]
eML

(
ũi−1

)
+

[
I+∆t

∂Ψ

∂u

∣∣∣∣
ũi

]
eML

(
ũi−1

)
+ o

(
εi
)

Applying triangle inequality and Cauchy–Schwarz inequality for (2.24) and using
(2.21) yields

(2.25)

εi+1 ≤∆t
∥∥G (ũi

)
−Ψ

(
ũi
)∥∥

2

+∆t

∥∥∥∥ ∂G∂u
∣∣∣∣
ũi

− ∂Ψ

∂u

∣∣∣∣
ũi

∥∥∥∥
2

εi +

∥∥∥∥1 + ∆t
∂Ψ

∂u

∣∣∣∣
ũi

∥∥∥∥
2

εi + o
(
εi
)
, i ≥ 0.

We observe in (2.25) that the first term on the right-hand side is the model-constrained
loss term being as small as possible at the training data. On the other hand, ∆t

∥∥ ∂G
∂u

∣∣
ũi − ∂Ψ

∂u

∣∣
ũi

∥∥
2

and
∥∥1 + ∆t ∂Ψ

∂u

∣∣
ũi

∥∥
2
are regularized to be bounded and/or small by data randomiza-

tion (see subsection 2.4). A heuristic argument reveals that the prediction error is un-
der control at all times. Indeed, suppose ∆t

∥∥G (ũi
)
−Ψ

(
ũi
)∥∥

2
, ∆t

∥∥ ∂G
∂u

∣∣
ũi − ∂Ψ

∂u

∣∣
ũi

∥∥
2
,

and
∥∥1 + ∆t ∂Ψ

∂u

∣∣
ũi

∥∥
2
are bounded. Since ε0 = 0, ε1 is bounded, and by induction εi

is also bounded for i ≥ 0. A rigorous version of this argument is given in Theorem
2.7.

Theorem 2.7. Assume that the second derivative of G (u) with respect to u is
uniformly bounded. Let

f i+1 := ∆t
∥∥G (ũi

)
−Ψ

(
ũi
)∥∥

2
,

and

gi+1 := ∆t

∥∥∥∥ ∂G∂u
∣∣∣∣
ũi

− ∂Ψ

∂u

∣∣∣∣
ũi

∥∥∥∥
2

+

∥∥∥∥1 + ∆t
∂Ψ

∂u

∣∣∣∣
ũi

∥∥∥∥
2

+ ci,
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where ci = O
(
εi
)
. Then, the prediction error εn at time tn satisfies

εn ≤
n∑

k=1

(
Πn

i=k+1g
i
)
fk.

Proof. The proof is a simple application of a discrete Gronwall lemma on (2.25).

Remark 2.8. Note that the boundedness of the second derivative of G (u) with
respect to u is valid for problem (2.2) with a smooth tangent slope. The boundedness
of f i and gi is not too restricted if the prediction scenarios are close to the training
data. Indeed, as argued in subsection 2.4, data randomization enforces the small
values for f i and gi at the training points. Now, due to the smoothness of Ψ (u) and
G (u) and their closeness in both values and derivatives (again by randomization),
the continuity guarantees the small values for f i and gi during the prediction.

Remark 2.9. Theorem 2.7 allows us to bound the error between the neural net-
work prediction with the exact solution of the original PDEs (2.1) provided that an
error estimation of the solution of the discretized equation (2.3) is given. Indeed,
suppose the error in the discretized solution un and the exact solution u (tn) at time
tn is bounded by O (∆t+ hp), where h is the mesh size and p is the order of accu-
racy of the underlying spatial discretization. Then by a simple application of triangle
inequality we have

ũn − u (tn) = O

(
∆t+ hp +

n∑
k=1

(
Πn

i=k+1g
i
)
fk

)
,

which shows that in order to get the optimal accuracy and computational effort we
ideally need to balance not only the temporal and spatial discretization errors but
also the error in the neural network. Clearly, balancing the former two is not that
difficult from a numerical analysis point of view, but balancing also the network error
is challenging as it depends on the actual training process and randomization.

3. Numerical results. In this section, we present several numerical results us-
ing the proposed model-constrained tangent slope neural network (mcTangent) ap-
proach for transport equation (subsection 3.1), viscous Burger’s equation (subsec-
tion 3.2), and Navier-Stokes equation (subsection 3.3). As shall be shown, mcTangent
solutions are—thanks to the model-constrained term and data randomization—stable
and capable of producing accurate approximations far beyond the training time hori-
zons. In subsection 3.4 we provide detailed information on parameter tuning, ran-
domness setting, and the cost for both training and testing.

Five hyperparameters of interest are the number of training samples, noise level
δ, sequential machine learning steps S, sequential model-constrained learning steps R,
and regularization parameter α. For convenience, we shall conventionally write them
in a group. For example the (d600, 2%, 1, 1, 0) setting means we consider 600 training
data samples, 2% noise, S = 1, R = 1, and α = 0. In order to ensure the fairness
between simulations and the comparison among approaches, we use fixed random keys
for training and testing data generation, for adding noise, and for neural network
parameter initialization We implement our approach and perform all computations
in JAX [4]. We would like to point out that all computations (training, testing, and
predicting) are done with single precision accuracy.

13



3.1. One-dimensional (1D) wave/transport equation. The 1D wave equa-
tion considered in this section is given by

∂u

∂t
+ c

∂u

∂x
= 0,

with the wave speed c = 1, the spatial domain x ∈ (0, 1), and time horizon t ∈
(0, T ). The equation is equipped with an initial condition u(x, 0) = u0(x) and periodic
boundary condition. We are interested in real-time approximate solutions of the wave
equation for any initial condition u0(x).

Data generation. In this problem, the initial condition samples are drawn from

u0(x) =
5∑

i=1

ai sin (2πx i) +
5∑

i=1

bi cos (2πx i) ,

where ai, bi are distributed by the standard normal distribution with zero mean and
unit variance, i.e., ai, bi ∼ N (0, 1). We solve the wave equation with the forward
Euler scheme for the temporal derivative and the first order upwind finite difference
scheme for spatial derivative. The time horizon is chosen as T = 5 × 10−2. A fine
space-time mesh with nx = 10000 points in space and nt = 2000 points in time is
deployed to achieve highly accurate solutions. The training data samples are obtained
by extracting the high resolution solutions on a coarser uniform space-time mesh with
nx = 200 and nt = 100. In this simple problem, we generate a fixed training data set
of 200 initial conditions. Note that we aim to predict long-time solutions, t ∈ (0, 3),
from the short-time training data in the interval t ∈

(
0, 5× 10−2

)
.

Neural network architecture. Because of the linear nature of the problem
and the first order upwind finite difference scheme, a linear neural work is sufficient
to approximate the resulting tangent slope. The linear neural network is defined as

Ψ
(
ui
)
= Wui + b,

where the weights W ∈ Rnx×nx , and the bias b ∈ Rnx . To train, we use ADAM [20]
optimizer with default parameters and the learning rate of 10−3. We determine the
best combination of weights and biases (and hence the final trained network) as the
one that provides the lowest accumulated mean square error for 500 time steps for
the test sample. Specifically, during the training process, at each epoch, we solve for
the predictions from the test initial condition with the current-epoch learned network.
The accumulated mean-square error between predictive solutions and ground truth
solutions is calculated at the 500th time step to determine the “optimal” network.

Long-time predictions. Shown in Figure 3 is the mean-square error between
true (high resolution) solutions and predicted ones obtained by various neural net-
works, each of which is trained with both randomized and noise-free training data.

For pure data-driven machine learning networks (α = 0, and thus no model-
constrained term), we observe that noise-free data trained networks outperform those
trained with noisy data ones. This is not surprising as for this linear problem, as
predicted by Lemma 2.2, one can obtain linear networks that accurately learn the
tangent slope with sufficiently rich data. Therefore, the predictions by the learned
linear networks are almost the same as the ground truth solutions. On the contrary,
training with noisy data causes the neural network to predict solutions with a small
amount of error such that it adapts to (possibly overfits) the amount of noise in the
ground-truth solutions. Figure 4 presents the weight matrix and bias vector for two
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Fig. 3: Wave/transport equation. Comparison between different neural network
approaches with/without randomization.

cases (d200, 0%, 10, 1, 0) and (d200, 0%, 1, 1, 0) with noise-free data. It can be seen
that both networks are almost identical and both have only an upper diagonal with
a large magnitude. We also note that the bias vector is relatively small and thus we
ignore this bias vector in the subsequent comparisons. We present the test predicted
solutions for the setting (d200, 0%, 1, 1, 0) in Figure 5. As the network fits the tangent
slope for high-resolution data, accurate results are preserved far beyond the training
time horizon, while finite difference results on the same coarse grid show a severe
diffusion/dissipation effect. Furthermore, settings with a large number of sequential
steps such as (d200, 0%, 10, 1, 0), (d200, 1%, 10, 1, 0) and (d200, 2%, 10, 1, 0) yield more
accurate neural networks than their counterparts with S = 1. The reason is that long
sequential training reduces the prediction error.

For model-constrained neural networks, we use α = 105 as the regularization pa-
rameter for all cases. We tested with different values for α and almost the same results
are obtained for larger values, while smaller values make neural networks perform sim-
ilarly to the pure data-driven machine learning networks. It can be seen in Figure 3
that training with randomized data returns neural networks, regardless of S,R values,
as good as the coarse finite difference approximation with nx = 200. This is expected
as we constrain the training with a coarse finite difference model. The trained weight
matrices and bias vectors for these neural networks corresponding to three settings(
d200, 1%, 10, 1, 105

)
,
(
d200, 1%, 1, 1, 105

)
and

(
d200, 1%, 1, 5, 105

)
are shown in Fig-

ure 6. Again, the bias vectors do not have a significant role in the predictions. Note

15



that, unlike those from purely data-driven in Figure 4 which have arbitrary structure,
the model-constrained weight matrices, after ignoring small elements, have the same
structure as the first-order upwind scheme matrix. Among these neural networks, the
long sequential model-constrained network with R = 5 is closest to the first-order
upwind scheme matrix. It is not surprising as the neural network is constrained to
satisfy the first-order upwind scheme in multiple time steps. On the other hand, the
neural network trained with noise-free data shows instability starting from the 2000th
time step in long-term predictions. This instability is due to the lack of regulariza-
tions as compared to the randomized cases for which regularizations are explicit via
the model-constrained term and implicit via randomization (see subsection 2.4).

S
=

1
0

0 50 100 150 200
0

50

100

150

200
102

101

100

0

-100

-101

-102

Column index of W

R
o
w

in
d
e
x

o
f
W

0 50 100 150 200
-6e-02

-4e-02

-2e-02

0e+00

2e-02

4e-02

6e-02

Index of bias vector b

M
a
g
n
it
u
d
e

b
i

S
=

1

0 50 100 150 200
0

50

100

150

200
102

101

100

0

-100

-101

-102

Column index of W

R
o
w

in
d
e
x

o
f
W

0 50 100 150 200
-6e-02

-4e-02

-2e-02

0e+00

2e-02

4e-02

6e-02

Index of bias vector b

M
a
g
n
it
u
d
e

b
i

Fig. 4: Wave/transport equation. Pure data-driven trained linear neural network
parameters: weight matrix heat maps (left column) and bias vector magnitudes (right
column) with α = 0, δ = 0%.

Implicit time integration with learned network. One of the advantages
of our proposed tangent slope learning approach is that once trained the learned
tangent slope can be used with any time discretization method. To demonstrate this,
we use the learned neural network tangent for the setting (d200, 0%, 1, 1, 0) with both
backward and forward Euler schemes using a time stepsize ∆t′ = 50

3 ∆t which is much
larger than the training stepsize. It can be seen in Figure 7 that the forward Euler
solutions blow up for both learned and true tangent slopes, which is obvious as the
time stepsize is much larger than the stable time stepsize. Both approaches are stable
with implicit integration and the results are comparable (though the learned tangent
slope was trained with a smaller time step size).

Direct learning versus mcTangent slope learning. We now compare our
tangent slope learning and direct learning. Here, by direct learning we mean learning
the map from ui to ui+1 for two consecutive time steps. Clearly, unlike the former, the
latter is tailored, and thus limited, to a particular space-time discretization. To be fair,
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Fig. 5: Wave/transport equation. The predicted solutions at time steps nt =
2000, 4000, 6000 by learned neural network corresponding to (d200, S = 1, R = 1, α =
0, δ = 0%), finite difference solutions on coarse grid with nx = 200, and the high
resolution solutions (True).
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Fig. 6: Wave/transport equation. Trained model-constrained linear neural net-
work parameters: weight matrix heat map (top row) and bias vector magnitude (bot-
tom row) with α = 1e5, δ = 1%.
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Fig. 8: Wave/transport equation. Comparison between direct neural networks
(Direct) and tangent slope neural networks (mcTangent).

we also use the linear network with zero bias for the direct learning approach. Figure 8
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Fig. 9: Wave/transport equation. Heat map of weight matrix of direct linear
neural networks.

presents the mean-square error of predictions obtained by direct neural networks and
tangent slope networks, both with and without model-constrained terms. As can
be seen, both direct and tangent slope neural networks are comparable in terms of
accuracy. However, the learned weight matrices of direct neural networks do not
have the pattern of the underlying space-time discretization matrices, and this can
be observed from Figure 9. That is, while our tangent slope approach preserves the
structure of spatial discretization, the direct approach, which seems to be natural,
does not.

3.2. 2D Burger’s equation. We consider the following viscous 2D Burger’s
equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂x2
+

∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ν

(
∂2v

∂x2
+

∂2v

∂y2

)
,

where x, y ∈ [0, 1] and t ∈ (0, T ]. The boundary condition is periodic and the initial
velocity is given by v(x, y, 0) = v0 (x, y) = 1 and u(x, y, 0) = u0 (x, y). We take the
viscosity coefficient to be ν = 10−2. We aim to predict x-velocity u in the time interval
t ∈ (0, 1.5) given an initial velocity u0(x, y) at t = 0.

Data generation. We draw periodic samples of u using the truncated Karhunen-
Loève expansion

u0(x, y) = exp

(
15∑
i=1

√
λi ωi(x, y) zi

)
,

where z = {zi}15i=1 ∼ N (0, I), and (λ, ω) are eigenpairs obtained by the eigende-

composition of the covariance operator 7
3
2 (−∆+ 49I)

−2.5
, where ∆ is the Laplacian

operator, with periodic boundary conditions. Training data corresponding to each
initial velocity is generated from a 128 × 128 high-resolution spatial mesh and 1000
time steps for the time horizon T = 0.1 using finite difference method. These high res-
olution solutions are down-sampled on a coarser mesh of 100 time steps (∆t = 10−3)
and 32×32 spatial mesh. These down-sampled solutions are treated as true solutions
for the training process. Meanwhile, we draw 10 test initial velocity samples inde-
pendently, and the corresponding test data set of 10 samples is created in the same
manner. However, the time horizon T = 1.5 for test samples is chosen—much larger
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than the trained time horizon—with time stepsize ∆t = 10−3. This helps us test the
accuracy and stability of neural network solutions beyond the training regime.

Neural network architecture. We use a shallow network of one layer with 5000
neurons for all cases to approximate the tangent slope of Burger’s equations. Note
that we have compared the one-layer network with two- and three-layer networks
with different numbers of neurons ranging from 100 to 5000. These deeper networks
perform poorly with small data sets and are improved with large data sets in which
the shallow one has comparable performance. Note that one-layer neural network
approximation capabilities are rigorously justified by past universal approximation
theories (see, e.g. [9, 13, 28, 18]) and our current work [7]. Thus we shall use a
one-layer neural network for all numerical results. In addition, ReLU [32] is used as
the activation function. ADAM optimizer is used with the learning rate of 10−4 and the
training batch size is 40 samples. For this example, reasonably optimal weights/biases
are the ones giving the lowest accumulated mean square error after 1500 time steps
for 10 test data. We take α = 105 for the regularization parameter as this gives the
best results from our numerical experiments (not shown here).
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Fig. 10: Burger’s equations. Comparison of mean square error among different
neural networks trained with 200 data with/without noise. Recall that α = 0 cor-
responds to the pure data-driven neural network training without model-constrained
terms. Forward solver denotes the numerical solution on 32 × 32 spatial mesh.

Comparison of different learned neural networks. Figure 10 presents the
comparison of mean square error obtained by different learned neural networks with
the data set of 200 samples. It can be seen that, in general, the model-constrained
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neural networks are far better than their pure data-driven counterparts (i.e. with
α = 0). Additionally, long sequential machine learning trainings with S = 10 provide
slightly better accuracy than S = 1, except for the noisy data with pure data-driven
network in which the improvement is significant.

For model-constrained neural networks, long sequential training results with S =
10 in two settings

(
d200, 0%, 10, 1, 105

)
and

(
d200, 2%, 10, 1, 105

)
show an marginal

improvement compared to short sequential training with S = 1 in two settings(
d200, 0%, 1, 1, 105

)
and

(
d200, 2%, 1, 1, 105

)
. Therefore, S = 1 is sufficient and

we use it for the rest of numerical results with model-constrained neural networks.
Figure 10 shows that using 5% noise causes the neural network corresponding to(
d200, 5%, 1, 1, 105

)
to perform poorly, while 1% noise gives almost the same accu-

racy as 2% noise. It is noticeable that the long sequential model-constrained training
with R = 5 (d200, 2%, 1, 5, 105) yields higher accuracy than the others. However, large
R is more computationally expensive since many passes through the back-propagation
computational graph are needed.
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Fig. 11: Burger’s equations. The mean square error versus the number of time
steps for various learned neural networks using 200, 600, and 1000 data samples with
S = 1.

Long-time predictions with small and large training data sets. As dis-
cussed above, since long sequential machine learning training does not provide sig-
nificant improvement, we consider S = 1 for numerical results using large data sets
in Figure 11. As can be seen, compared to 200 data samples, training with 600 data
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Fig. 12: Burger’s equations. Predicted solutions at different time steps (nt) ob-
tained by various learned neural network tangents with 600 training data samples
and S = 1 and ∆t = 10−3. Top row: True high-resolution solution; Second row:
pure data-driven network without data randomization; Third row: pure data-driven
network with noisy data; Fourth row: model-constrained network without data ran-
domization; Fifth row: model-constrained network with noisy data.

samples provides more accurate predictions. Moreover, model-constrained neural net-
works with randomized data are the most accurate among others (model-constrained
with noise-free data and pure machine learning with/without randomized data). We
can also observe that using more than 600 data samples does not provide significant
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improvements but is more expensive. Unlike the case with 200 data samples, long
and short sequential model-constrained trainings with R = 5 and R = 1, respectively,
provide similar results for 600 data samples. This is expected as richer data reduces
the significance of the model-constrained term.

As shown in Figure 12, predicted solutions obtained by the model-constrained
approach (the fifth row) with data randomization are in good agreement with the
ground-truth counterparts. On the contrary, the pure data-driven approach with
data randomization (the third row) shows poor long-time predictions. We also ob-
serve that both pure data-driven learning solutions and model-constrained solutions
(the second and fourth rows, respectively) without randomization are unstable for
long-time predictions. It is not surprising since both do not have sufficient regulariza-
tions compared to the randomized cases in which extra regularizations are implicitly
performed (see subsection 2.4). Moreover, regularizations induced by data randomiza-
tion shown in subsection 2.4 stabilize the network predictions and this can be clearly
seen by comparing the third and the second rows for the pure data-driven learning
approach, and by comparing the fourth and the fifth rows for the model-constrained
learning approach.

Figure 13 plots the contours of the learned and the true tangent slopes. Clearly,
the learned model-constrained tangent slope with data randomization provides the
best agreement with the true tangent slope. This is not surprising as both the gov-
erning equations (explicit via model-constrained term) and sufficient regularizations
(implicit via data randomization) are incorporated.

Predictive flexibility in time for mcTangent approach As discussed above,
one appealing feature of tangent slope learning is that once trained it can be used
to solve for approximate solutions with smaller or larger time stepsizes, despite the
fact that it is trained based on a particular spatial discretization. On the contrary,
direct learning is attached to a space-time discretization. Figure 14 shows the model-
constrained tangent slope learning solutions and contours of the corresponding learned
tangent slope at various times for the setting

(
d600, 2%, 1, 1, 105

)
. Here we use half

of the training time stepsize ∆t′′ = 1
2∆t = 5 × 10−4. It can be seen that these

predictions are indistinguishable from ones (the fifth row in Figure 12 for prediction
solutions and the fifth column in Figure 13 for predicted tangent slopes) obtained by
using the training time stepsize ∆t = 10−3 with the same learned network.

Implicit time integration with learned network. Another appealing feature
of tangent slope learning is that once trained it can be deployed with any time dis-
cretization schemes. We use the learned network from the setting

(
d600, 2%, 1, 1, 105

)
together with the backward Euler method with a larger time stepsize ∆t′ = 12.5∆t =
1.25 × 10−2, where ∆t = 10−3 is the training stepsize. Shown in Figure 15 are pre-
dicted solutions at t = {0, 0.1, 0.5, 1.5} corresponding to 0, 100, 500, 1500th time steps.
We observe that solutions using the forward Euler scheme, regardless of using the true
tangent slope or learned one (second and third rows, respectively), are unstable as the
time stepsize ∆t′ is too big for stability. On the contrary, using the backward Euler
scheme, mcTangent solutions are comparable to the true counterparts (fourth and
fifth rows, respectively). Clearly, due to large time stepsize, both are more diffusive
compared to the true solutions with small time stepsize ∆t in the first row.

Direct learning versus mcTangent slope learning. Recall that by direct
learning we mean learning the map from ui to ui+1 for two consecutive time steps.
We investigate the difficulty and complexity of direct learning. Specifically, we use
a data set with 600 samples with/without data randomization to learn the neural
network with one layer of 5000 neurons that maps velocities from one step to the
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Fig. 13: Burger’s equations. Contours of True and various learned tangent slopes.
Contours are plotted at different time steps nt for four different combinations of
regularization parameter α and noise level δ. For all cases, we use 600 data sam-
ples, S = 1, and ∆t = 10−3. First column: True tangent slope ; Second column:
pure data-driven tangent slope without data randomization (0, 0%); Third column:
pure data-driven tangent slope with data randomization (0, 2%); Fourth column:
model-constrained tangent slope without data randomization

(
105, 0%

)
; Fifth col-

umn: model-constrained tangent slope with data randomization
(
105, 2%

)
.

next. As shown in Figure 16, the direct learning approach (with the best combination
of hyperparameters) for the setting (d600, 2%, 1, 3, 2) is less accurate for both short-
time and long-time predictions compared to the tangent learning counterpart with
even a smaller data set of 200 samples with the setting

(
d200, 2%, 1, 1, 105

)
. Interest-

ingly, unlike the tangent learning approach, the direct learning approach, both pure
data-driven and model-constrained approaches, trained with randomized data is less
accurate compared to noise-free data in short sequential training S = 1. On the other
hand, data randomization does not have visible benefits on long sequential training
S = 10. Specifically, both (d600, 0%, 10, 1, 0) and (d600, 2%, 10, 1, 0) settings behave
similarly.

Also seen in Figure 16, among pure data-driven networks (α = 0) with direct
learning, long sequential machine learning training with S = 10 is the most accurate.
Model-constrained network with direct learning for the setting (d600, 2%, 1, 1, 10) is
much more accurate compared to the pure data-driven network with direct learning
for the same setting. Moreover, sequential model-constrained networks for R = 2, 3
corresponding to two settings (d600, 2%, 1, 2, 2) and (d600, 2%, 1, 3, 2) are comparable
to much longer sequential machine learning network with S = 10 for the setting
(d600, 2%, 10, 1, 0). In the presented results, it is important to point out that for
direct learning, care must be taken in choosing a good regularization parameter α.
For example, α = 2 is good for R = 2, 3, but α = 10 is good for R = 1. On the
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Fig. 14: Burger’s equations. Predicted solutions and tangent slope using by
mcTangent neural networks with

(
d600, 2%, 1, 1, 105

)
, and time step ∆t′′ = 1

2∆t =
5 × 10−4. First row : True high-resolution solutions; Second row : contours of True
tangent slope, G(u); Third row : Predicted mcTangent solutions, u; Fourth row : con-
tours of mcTangent tangent slope, Ψ(u).

contrary, tangent learning is more robust. In particular, a single α = 105 works
well for all settings. Solutions predicted by direct and tangent learnings (both with
model-constrained terms) for (d600, 2%, 1, 3, 2) and

(
d200, 2%, 1, 1, 105

)
, respectively,

are shown in Figure 17. As can be observed, tangent learning solutions with even
smaller data set

(
d200, 2%, 1, 1, 105

)
are much more accurate than the direct learning

with (d600, 2%, 1, 3, 2). This is due to the fact that direct learning tries to learn a
mixed space-time discretization, which is more difficult than learning only the spatial
discretization in tangent learning.
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Fig. 15: Burger’s equations. Predicted solutions at different times obtained by
Forward Euler (FE) scheme and Backward Euler (BE) scheme using large stepsize
∆t′ = 12.5∆t = 1.25 × 10−2 with the true tangent slope G and the learned neural
network Ψ for the setting

(
d600, 2%, 1, 1, 105

)
.
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Fig. 16: Burger’s equations. The mean square error versus time steps obtained
by the direct learning approach (Direct) using 600 training samples and the tangent
learning approach (mcTangent) using 200 training samples.

3.3. Navier-Stokes equation. The vorticity form of the 2D Navier-Stokes
equation for viscous and incompressible fluid [24] can be written as

∂tu(x, t) + v(x, t) · ∇u(x, t) = ν∆u(x, t) + f(x), x ∈ (0, 1)
2
, t ∈ (0, T ]

∇ · v(x, t) = 0, x ∈ (0, 1)
2
, t ∈ (0, T ]

u(x, 0) = u0(x), x ∈ (0, 1)
2

where v (x, t) is the velocity field, u = ∇× v is the vorticity, u0 is the initial vorticity,
f(x) = 0.1 (sin (2π (x1 + x2)) + cos (2π (x1 + x2))) is the forcing function and ν =
10−3 is the viscosity coefficient. Our goal is to solve for the vorticity u (x, y, t) given
the initial condition u0 at t = 0 by a trained tangent network Ψ .

Data generation. Data pair (u,y) is generated by a similar procedure outlined
for Burger’s equation problem in subsection 3.2. In particular, we draw samples of
u0 using the truncated Karhunen-Loève expansion

u0 =
15∑
i=1

√
λi ωi(x) zi,

where zi ∼ N (0, 1) , i = 1, . . . , 15, and (λ, ω) is eigenpairs obtained by the eigen-

decomposition of the covariance operator 7
3
2 (−∆+ 49I)

−2.5
with periodic boundary
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Fig. 17: Burger’s equations. Solutions at different times, First row : True high-
resolution solutions; Second row : learned tangent slope neural network solutions
with

(
d200, 2%, 1, 1, 105

)
; Third row : learned direct neural network solutions with

(d600, 2%, 1, 3, 2).

conditions. Next, given initial vorticity u0, we solve the Navier-Stokes equation by
the stream-function formulation with a pseudospectral method [24]. High resolution
solutions are obtained on a uniform 128 × 128 spatial mesh and uniform 1000 time
steps in (0, 2). The high-resolution solutions are then down-sampled on a coarser
mesh 32× 32 in space and 200 uniform time steps, and they are used as the training
data. To verify the accuracy of the learned neural network, we draw 10 test samples
independently. It turns out that the Navier-stokes equation is much more challenging
than Burger’s equation, thus we use 200 time steps for each training data as opposed
to 100 for the Burger equation. Similar to the above, to challenge the learned network
we use 1500 time steps for testing, and thus the testing time horizon is far beyond
the training time horizon.

Neural network architecture. With the same observation for the Burger
equation in subsection 3.2, we use a shallow network of one layer with 5000 neurons
using ReLU activation function. ADAM optimizer with default parameters is used with
the learning rate of 2 × 10−4, while the training batch size is 2 samples. The chosen
“optimal” network is the one having the lowest accumulated mean square error after
1500 time steps for 10 testing samples. Following the wave and Burger examples,
we pick a relatively large value for the model-constrained regularization parameter
α = 105.

Long-time predictions. Figure 18 shows the mean-square error of predictions
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Fig. 18: Navier-Stokes equation. The mean-square error versus time steps ob-
tained by the various learned neural network with S = 1.

and ground truth solutions as a function of time steps. It can be seen that train-
ing with a large data set with 600 samples provides much more accurate solutions
than with small data set with 100 samples. On the one hand, among learned neu-
ral networks trained with 100 data samples, the model-constrained network with data
randomization for

(
d100, 2%, 1, 1, 105

)
setting is far closer to the true solution than the

other networks. This implies that the model-constrained approach has a significant
contribution to producing accurate predictions in the context of small data. In the case
of richer data set with 600 samples, networks with two settings (d600, 0%, 1, 1, 0) and(
d600, 0%, 1, 1, 105

)
trained with noise-free data show a good performance in the short

time predictions, while the long-time predictions deteriorate. Noticeably, between
these two networks, the model-constrained one has more accurate predictions starting
from the 500th time step. In the meantime, with the same data set with 600 samples,
pure data-driven neural networks trained with higher noise level data give a higher
error, for example, (d600, 2%, 1, 1, 0) neural network predictions are less accurate than
those obtained from (d600, 1%, 1, 1, 0). In contrast, model-constrained network with
2% noise level

(
d600, 2%, 1, 1, 105

)
is superior to 1% noise level

(
d600, 1%, 1, 1, 105

)
.

Another point is that as we increase the sequential model-constrained value to R = 5,
we obtain good predictions in both short-time and long-time intervals. Two model-
constrained networks with

(
d600, 0%, 1, 5, 105

)
and

(
d600, 2%, 1, 5, 105

)
are compara-

ble to the network with much larger data set
(
d1000, 0%, 1, 1, 105

)
without randomiza-

tion. However, the noisy data network
(
d600, 2%, 1, 5, 105

)
outperforms the noise-free

one
(
d600, 0%, 1, 5, 105

)
in the long-time predictions. In summary, model-constrained

network with data randomization outperforms all other networks. Given a test initial
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Fig. 19: Navier-Stokes equation. Predicted solutions at different time steps ob-
tained by various trained networks with 600 data samples. First row : ground truth;
Second row : pure data-driven network solutions with noise-free data; Third row : pure
data-driven network solutions with randomized data; Fourth row : model-constrained
network solutions with noise-free data; Fifth row : model-constrained network solu-
tions with randomized data.

vorticity, the plots of predicted solutions obtained by different learned networks are
shown in Figure 19. As can be seen, the model-constrained network with the setting(
d600, 2%, 1, 1, 105

)
provides the most accurate solutions as opposed to others trained
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Fig. 20: Navier-Stokes equation. Comparison of various neural network solu-
tions. Top row : True solutions with spectral method (Crank–Nicolson time integra-
tion scheme) with the true tangent slope; Second row : Forward Euler (FE) scheme
(a different scale bar in the third and fourth columns); Third row : Backward Eu-
ler (BE) scheme with the learned neural network for 20 times larger time stepsize
∆t′ = 20∆t = 0.2.

from the same data set.
Implicit time integration with learned network. We used the learned net-

work for backward Euler scheme with 20 times larger time stepsize, ∆t′ = 20∆t = 0.2,
compared to training stepsize ∆t = 0.01. As shown in Figure 20, forward Euler scheme
with the learned network shows severe instability, while the backward Euler scheme
with the learned network solutions is in good agreement with the spectral solution
with Crank–Nicolson scheme with a much smaller time stepsize.

3.4. Information on parameter tuning, randomness, and cost.

3.4.1. Parameter tuning. The purpose of this section is to determine a good
set of hyperparameters including the learning rate, batch size, the number of lay-
ers, and the number of neurons on each layer. To that end, we set the random
seed to 0 in order to have a fair initialization for all networks. For initialization,
weights are drawn randomly from zero-mean Gaussian distribution with a variance
of 0.01, while biases are set to zero. For all cases, we take S = 1, R = 1, and noise-
free data set with 600 samples. We carry out the tuning process manually for only
Burgers and Navier-Stokes examples as the transport example admits an analytical
solution. We pick the learning rate in

{
10−4, 2× 10−4, 5× 10−4, 10−3

}
, batch size in

31



{2, 10, 40, 100}, the number of layers in {1, 2, 3}, the number of neurons per layers
in {50, 200, 1000, 5000, 10000}, and the model-constrained regularization parameter
α in

{
10, 103, 105, 107

}
. We pick the combination of parameters that provides the

best testing accuracy (see also subsection 3.2 and subsection 3.3 for the discussion on
testing accuracy) in each numerical problem. The chosen parameter set is then used
for training different values of S,R and noise level δ.

3.4.2. Robustness with random initializations and data randomization.
In this section, we study the effect of weights/biases random initialization and data
randomization on the performance of the chosen neural network architectures in sub-
section 3.4.1. We provide the study for Burger’s equations in subsection 3.2 since
the result for the Navier-Stokes equation in subsection 3.3 would be similar. For ran-
dom initialization of weights/biases, we initialize the neural network with 32 different
random seeds ranging from 0 to 31. For each random seed, we use the same set of
hyper-parameters found in subsection 3.4.1. As shall be shown, our model-constrained
approach is robust in random initialization, that is, all random seeds work equally
well. Thanks to this robustness, we simply initialize weights/biases with random seed
0 and study the effect of 32 different noise random seeds ranging from 0 to 31 for data
randomization. As an example, we compare the mean and variance of the mean square
error between the pure data-driven machine learning case [d600, 2%, 0, 1, 0] and the
corresponding model-constrained case

[
d600, 2%, 105, 1, 1

]
. The mean and variance

results in Figure 21 and Figure 22 show that mcTangent networks are not only accu-
rate but also more reliable with a smaller variance compared to the pure data-driven
counterparts. Consequently—again thanks to the model-constrained term—the per-
formance of mcTangent networks are robust to both weights/biases random initial-
ization and data randomization.
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Fig. 21: The mean and variance of mean square error of predictions for mcTangent

and pure data-driven machine learning approaches, obtained by 32 different neural
networks corresponding to 32 different weights/biases random initializations.

3.4.3. Training and testing cost. Table 1 presents the training computational
cost for Burgers’ problem using different values of S and R. The mcTangent neural
network is learned with 200 training samples with 2% additive noise, α = 105, learning
rate 10−4, and batch size 40. It can be seen that in the purely data-driven approach,
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Fig. 22: The mean and variance of mean square error of predictions for mcTangent

and pure data-driven machine learning approaches, obtained by training a neural
network (with weights/biases being initialized with random seed 0) with 32 random
realizations of data corresponding to 32 different random seeds.

i.e. S = 1, R = 0, the computational time per epoch is small, but the number of
required epochs for convergence is larger. It is not surprising that adding larger R
and S leads to a significant increase in computational cost per epoch. However, in
this problem, since the overall convergence rate (measured in the terms of the number
of epochs) is faster, the total amount of time for training model-constrained neural
networks are at most three times larger than the pure machine learning method. To
be more specific, S = 1, R = 0 network requires 11.67 hours compared to 22.22 hours
for S = 1, R = 1 network. On the other hand, 35 hours and 34 hours are needed to
train the cases S = 10, R = 1 and S = 1, R = 5, respectively. We note that all model-
constrained networks corresponding to S = 1, R = 1, S = 10, R = 1 and S = 1, R = 5
provide comparable accuracy levels which are significantly better than that obtained
by the pure data-driven machine learning approach corresponding to S = 1, R = 0,
and this is shown in Figure 10.

To verify the computational benefits in the prediction stage, we compare the com-
putational time between the ground truth solution using the truth tangent slope G (ũ)
and mcTangent tangent slope Ψ (ũ) in Table 2. It can be seen that the mcTangent tan-
gent slope is much faster (more than 10 times faster) than the truth tangent slope for
the 2D Navier-Stokes problem. For the 2D Burgers’ problem, the mcTangent tangent
slope evaluation is negligibly faster than the truth. That is, even with small-scale 2D
problems with fast finite difference evaluations, the neural network is still faster. It
is important to point out that the computational cost for mcTangent neural network
remains unchanged, 2× 10−4 seconds, for either Burgers or Navier-Stokes equations.
We expect the computational gain is much more notable for 3D complex problems
where the evaluation of the truth tangent slope is much more demanding. The gain is
even more significant for implicit methods as in these cases not only the evaluation of
the tangent slope but also the evaluation of its Jacobian is needed. This poses great
challenges for traditional numerical methods, but for the mcTangent approach, the
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evaluations of a feed-forward network and its Jacobian are trivial and fast.

Table 1: Training cost for Burgers’ equations using different values of S and R.
mcTangent neural network is learned with 200 samples with 2% additive noise, α =
105, learning rate 10−4, and batch size 40.

1 Epoch (seconds) Number of Epoch Training time (hours)
S = 1, R = 0 0.07 6.0× 105 11.67
S = 1, R = 1 0.20 4.0× 105 22.22
S = 10, R = 1 0.86 1.5× 105 35.83
S = 1, R = 5 0.62 2.5× 105 34.44

Table 2: Computational cost of ground truth tangent slope G(ũi) (mesh grid: 32×32),
and trained neural network Ψ

(
ũi
)

G(u) (seconds) Ψ(u) (seconds)
Burgers’ equation 2.1× 10−4 2× 10−4

Navier-Stokes equation 7.0× 10−3 2× 10−4

4. Conclusions. We have presented a model-constrained tangent slope learning
(mcTangent) approach to simulate dynamical systems in real-time. At the heart of
mcTangent is a careful craft synergizing several desirable strategies: i) a tangent slope
learning to take advantage of the neural network speed and time-accurate nature of the
method of lines; ii) a model-constrained approach to encode the neural network tan-
gent slope with the underlying physics; iii) sequential learning strategies to promote
long-time stability and accuracy; and iv) data randomization approach to implicitly
regularize the smoothness of the neural network tangent and its likeliness to the truth
tangent up second order derivatives in order to further enhance the stability and accu-
racy of mcTangent solutions. Rigorous results are provided to analyze and justify the
proposed approach. Several numerical results for transport equation, viscous Burgers
equation, and Navier-Stokes equation are presented to study and demonstrate the
capability of the proposed mcTangent learning approach. Further theoretical analysis
of mcTangent with both sequential learning strategies is ongoing to provide a deeper
understanding of the approach. Strategies to improve the accuracy and to strongly
encode the underlying governing equations are also part of future work.

Disclosure statement. No potential conflict of interest was reported by the
author(s).
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