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seeks to produce focused images with the sharpest contrast,
TSOM captures a series of through-focus images with the focal
plane sweeping through the sample object. These defocused
images describe the evolution of light in the vicinity of the
object, which is associated with the k-space distribution of the
scattering light and, as predicted by the Mie theory,19 is
sensitive to the object size. The TSOM technique retrieves
precise size information up to the subnanometer level by
matching the through-focus images to a precalculated library
with electromagnetic (EM) simulation results.20,21 However,
one limitation of TSOM is the few choices of sample
geometries, primarily due to the expensive computation load
required for a comprehensive library, which is aggravated if the
EM simulations have the dimension expanded from 2D (e.g.,
nanowires or trenches) to 3D (e.g., nanoparticles) or include
the variations in material optical properties for samples
prepared with di"erent fabrication methods. Data-driven
machine learning algorithms can potentially remove the need
for EM simulations and make TSOM an e"ective tool for
predicting the size and morphology of nanomaterials from
their di"raction-limited microscopy images.
In this paper, we describe a supervised machine learning

algorithm, in combination with TSOM, for the precise analysis
of nanomaterials, including size and morphology. The
proposed algorithm achieves an estimation error of 5% at the
single-particle level within a broad size range of 80−180 nm,
while the error in the average size at the ensemble level is as
low as 1.6%, with a size distribution error of merely 0.4 nm. To
train the algorithm, a pseudo-labeling procedure was
developed, which involves estimating particle size based on
the percentile of the scattering intensity of a large number of
nanoparticles with a known size distribution. In comparison
with other particle-size analysis methods such ultraviolet−
visible (UV−vis) absorption spectroscopy22 and DLS,23 the
proposed machine learning assisted TSOM method allows for
the estimation of individual particle size with high throughput
and is capable of analyzing complex, polydispersed ensembles

with broad size distributions. The performance of the proposed
algorithm on other nanoscale features such as the tip
morphology of nanowires is also evaluated. The approach
has the potential to be widely applied to various types of
nanomaterials and may facilitate the optimization of synthesis
and processing strategies to achieve systematic and reprodu-
cible control over size tunability and dispersity.

■ RESULTS AND DISCUSSION
As illustrated in Figure 1a, the TSOM system is composed of
an upright optical microscope, an sCMOS camera, and a
piezoelectric positioner. A white light source with a color
temperature of 3200 K was used for illumination, and a
monochromatic camera was employed for imaging. The broad-
bandwidth light source can smooth the spectral variation in the
metal particle scattering spectrum, originating from the
plasmonic resonant e"ect (refer to the Supporting Information
for detailed information). To prepare samples for imaging,
nanoparticles were deposited onto a SiO2/Si wafer (300 nm
SiO2) using drop-casting followed by blow drying, creating a
sparse layer of particles with a significant separation distance (5
to 10 μm between most particles) to avoid overlapping in the
defocused images. The sample was mounted on the piezo-
electric stage to capture TSOM stacked images. Each image
stack consisted of 301 images with a 50 nm interval between
focal planes and required approximately 30 s to acquire, with
50 to 100 nanoparticles included for subsequent data analysis.
Lateral scanning of the sample was accomplished via a
motorized microscope stage with a step size of approximately
100 μm, and the entire data acquisition process was completed
in approximately 5 min. The collected data was sent to a
computer for preprocessing.
The preprocessing procedure employed in this study to

generate stacked optical images consists of two key steps:
target prescreening and autofocusing. In the target prescreen-
ing step, a conventional computer vision approach is utilized to
eliminate background noise from the CCD images and to

Figure 1. Schematic of the nanoparticle size prediction method incorporating the through-focus optical microscope imaging and the supervised
machine learning. (a) The sample is swept across the focus plane by a piezo stage, generating a stacked image for data analysis. (b) Typical optical
images of a nanoparticle at di"erent focus/defocus positions. (c−e) Target classification, segmentation, and deep-CNN training. SEM-labeled data
are used for the test. (f) Nanoparticle size and size distribution are acquired.
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discard images that contain impurities, such as nanowires,
nanodisks, and large or small aggregates. While aggregates
containing a few nanoparticles are typically unavoidable in
colloidal samples, they are removed from the data set as their
image profiles tend to be elliptical. Additional information
about the prescreening algorithm is available in the Supporting
Information. Following prescreening, stacked images contain-
ing individual nanoparticles are cropped from the original
image and resized to 51 by 51 pixels. This size is su#cient to
capture most of the optical evolution information. The 51-by-
51 pixel size requires a minimum separation of approximately 5
μm between particles, and particles with a separation distance
smaller than this requirement are discarded during preprocess-
ing.
An autofocusing method is employed in this study to ensure

that the on-focus images are placed at the center of each stack.
This method involves segmenting the stacked images and
identifying the on-focus image by evaluating the normalized
variance of each image and selecting the one with the
maximum value.24,25 While this approach results in a reduction
of the number of images per stack from 301 to 151, it ensures
that the images used for training and testing are of the highest
quality. Following the prescreening and autofocusing pro-
cesses, the cropped stacks are combined with the labels and fed
into a convolutional neural network (CNN) for further
processing and analysis (see Figure 1e). The predicted sizes
of a large quantity of particles can then be used to generate a
statistical distribution of the nanoparticles (see Figure 1f).
The labels in the training data set were generated through an

optical intensity-correlated pseudo-labeling method, which
skips the one-to-one comparison between electron microscopy
and optical microscopy images. This method is based on the
fact that the statistical size distribution of nanoparticles is the
same for both the TSOM measurement and the electron
microscopy characterization. Although in practice the acquired
size distributions may not be identical due to inaccuracies in

statistical measures, their di"erence can be minimized by
accumulating more data. To this end, we performed a large
number of scanning electron microscopy (SEM) measure-
ments (∼1500 particles) to obtain accurate size distributions
for six silver nanocube (AgNC) ensembles. An equivalent
number of AgNCs were examined using TSOM, resulting in an
intensity distribution based on optical scattering intensity. This
distribution was then mapped to the size distribution obtained
from SEM measurements to determine the size of each AgNC
using its percentile in the intensity distribution. Such mapping
between two distributions requires a linear relationship
between the scattering intensity and the particle size, which
has been confirmed through full-wave EM simulations (details
in the Supporting Information). By eliminating the need for
one-to-one comparison between the electron microscope
results and the optical microscopy images, this pseudo-labeling
method reduces the working load and saves a substantial
amount of time, reducing the training-data preparation time
from tens of hours to less than an hour. Notably, the size
information from electron microscopy measurements is from
random AgNCs, which do not necessarily need to be the same
ones in the TSOM measurement.
In Figure 2b, we present the training workflow and network

architecture, which utilizes a series of cropped image stacks
comprising both pseudo-labeled and SEM-labeled sizes as
inputs for training. The number of SEM-labeled data used in
each training iteration was modified to evaluate the confidence
of the pseudo-labeled data set. In the visible range, the
scattering intensity of an AgNC is related to its diameter and
microscope lamp power, which is susceptible to several
fluctuating properties such as filament temperature, lamp
voltage, and aging. To mitigate systematic error arising from
intensity fluctuation, the stacked images were normalized
sample-wise to the range of [0, 1], completely discarding the
brightness information. The network architecture consists of
four convolution layers, each with an increasing number of

Figure 2. Machine learning data preparation, algorithm, and prediction accuracy. (a) The pseudolabeling step carries out the SEM characterization
and TSOM measurements on di"erent samples prepared from the same solution and generates the labels for the training data set based on their
percentiles in the scattering intensity distribution. The test data set is prepared through a one-to-one comparison. (b) Workflow of the CNN, which
is composed of 4, 4, 1, 1, and 3 layers for convolution, ReLU activation, flatten, LSTM, and fully connected layers, respectively. (c) The system
RMSE in the training process.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.3c02448
ACS Appl. Mater. Interfaces 2023, 15, 18244−18251

18246

https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02448/suppl_file/am3c02448_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02448/suppl_file/am3c02448_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02448/suppl_file/am3c02448_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02448?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02448?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02448?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02448?fig=fig2&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c02448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


kernels to progressively extract features from the stacked
images, followed by a batch normalization layer and a rectified
linear unit (ReLU) activation layer. After feature extraction,
the trained parameters are flattened and sent through long−
short-term memory (LSTM) recurrent layers26,27 to capture
the evolution of scattered light in the stack, followed by a series
of fully connected layers (typically three layers) to produce the
final regression results, which are the predicted particle sizes in
the model. To assess confidence of pseudolabeled data, we
varied the portion of SEM-labeled data in the training set from
5% to 30% while keeping the size of the training data set fixed

(550 pieces of stacked images) and observed that the use of
pseudo-labeled data did not compromise the model perform-
ance. We present the root-mean-square error (RMSE) of a
typical training process in Figure 2b, where RMSE reflects the
accuracy of the trained CNN and has the unit of nanometer.
Most trainings resulted in an RMSE of approximately 8 nm. To
evaluate the role of the LSTM layer in the model, we trained a
control group of networks that replaced the LSTM layer with
either another fully connected layer or a global pooling layer.
The performance of the control group (RMSE ∼ 18 nm) was
significantly hindered compared to that of the LSTM−CNN

Figure 3. Performance evaluation of the CNN model. (a) SEM images of four AgNCs of di"erent sizes, with the predicted and SEM-measured
sizes labeled. The scale bar is 100 nm. (b) Correlation between the predicted and SEM-measured (ground truth) AgNC sizes. (c) Histogram of
relative prediction errors and the Gaussian fit.

Figure 4. Classification of sharp and blunt tip AgNWs. (a) Generation of SEM-labeled AgNW tip classification data set. (b) Modified LST−CNN
structure designed for AgNW tip classification, showing the reduced input dimension, a smaller LSTM layer, and a classification output layer. (c)
Validation accuracy of the trained model, showing average accuracy of 81.82% after 100 epochs.
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model, as the former lacked the ability to capture the evolution
of scattered light in the input data. A detailed comparison of
the results is available in the Supporting Information.
As a proof-of-principle demonstration, we present the use of

a CNN trained with only pseudo-labeled data to predict the
size of AgNCs. Figure 3a displays SEM images of four
representative AgNCs with di"erent sizes and their predicted
sizes labeled on the side. To further validate the performance
of the model, an additional 78 AgNCs from three ensembles
were examined, and their predicted sizes were compared with
their actual sizes (ground truth) obtained from SEM images
(resolution ∼1.5 nm) in Figure 3b. A solid red line represents
the perfect matching, and deviations from this line indicate the
divergence between the predicted and true values. The model

achieved a mean absolute error (MAE) of 5.3 nm and a root-
mean-square error (RMSE) of 8.2 nm. The relative error
normalized by the particle size is depicted in Figure 3c, which
follows a Gaussian distribution with a standard deviation of 5%
at the single particle level. At the statistical level, the mean
errors of the sizes and size distributions for the three ensembles
are 1.6% and 0.4 nm, respectively.
Following the validation of its capability in determining

particle size, we investigated the algorithm’s performance for
quantifying the shapes of nanomaterials. Specifically, we
utilized silver nanowires (AgNW) with distinct tip morphol-
ogies prepared via the modified polyol-mediated synthesis
method described in our previous works.28 The AgNW
samples consisted of both sharp-tip and blunt-tip AgNWs, as

Figure 5. Evolution of the AgNC size distribution in a synthesis reaction. (a) Schematic illustration of the synthesis. (b) Five representative size
distributions taken at di"erent times after the reaction started, generated by the ML-assisted TSOM measurement (left column). The
corresponding UV−vis absorption spectra are listed in the right column. (c) Left: size evolution over the reaction time. The error bars indicate the
size deviation. Right: the wavelength of the selected plasmonic resonance peak (indicated by arrows in (b)) as a function of the predicted AgNC
size. Error bars indicate the FWHM of the peak and the size deviation. (d) Size distribution of a mixture of AgNC with three di"erent sizes
acquired by the ML-assisted TSOM method (left) and the corresponding UV−vis absorption spectra (right).
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shown by the SEM images in Figure 4a, where the sharp-tip
AgNWs are particularly useful for near-field optical imag-
ing.29−31 Due to their small feature sizes, the AgNWs have tips
and diameters beyond the di"raction limit and therefore are
indistinguishable under conventional microscopy, as depicted
by the optical microscopy images in Figure 4a. The CNN
training workflow is illustrated in Figure 4b. The data set
comprised 80 sharp-tip and 80 blunt-tip AgNWs drop-cast on a
silicon wafer and verified with SEM imaging. To minimize the
influence of optical aberrations from the microscope, all
AgNWs were aligned in the same direction through the
grazing-incidence-spraying drop-casting deposition.32 Each
TSOM image stack contained 51 images (31 by 31 pixels),
as presented in the network structure schematic in Figure 4b.
The 160 stacked images were randomly split into training
(∼70% of the images) and validation (∼30%) data sets. As
shown in Figure 4c, an average accuracy of 82% was achieved
after training for 100 epochs. These results demonstrate the
potential of our CNN-based approach for quantifying the
shape of nanomaterials, with implications for a range of
scientific and industrial applications.
Particle Size Evolution in Chemical Synthesis. The

real-time monitoring of particle size evolution during nano-
material synthesis is essential to address the challenges
associated with systematic and predictable control over yield,
size tunability, dispersity, and batch-to-batch reproducibil-
ity.33−35 It can also accelerate parameter optimization and
growth mechanism study36 in a low-cost and time-e"ective
way. Here, we tracked the particle size evolution over a 20 min
synthesis of AgNC using a modified polyol synthesis
approach.37 Shortly after the start of the formation of faceted
nanocubes, small aliquots (500 μL) were withdrawn from the
reacting mixture every minute. The removal of an aliquot from
the hot reaction mixture quenched nanoparticle growth in the
aliquot due to a rapid drop in temperature, providing a
snapshot of the nanoparticles in the continuing reaction. Each
aliquot was divided into two parts. One part of each aliquot
was drop-casted onto a substrate for TSOM inspection, while
the other was diluted in ethanol for UV−vis measurement.
UV−vis extinction spectroscopy combined with analytical
frameworks such as Mie theory has been widely used as a
convenient way for particle size analysis.38 Figure 5b shows the
CNN-predicted size distributions based on analyzing ∼300
nanoparticles from each sample and the corresponding UV−vis
absorption spectra from the corresponding solutions. As shown
in Figure 5c, a relatively linear growth rate of around 10 nm/
min was observed at the early stage of the growth (t < 13 min),
after which the growth slows to ∼2 nm/min as the growth of
larger AgNCs was limited by the precursor feeding rate. The
particle size distribution unambiguously narrowed down
during this period, implying that this phase is important for
the high-uniformity AgNCs. The UV−vis absorption spectra
exhibit a red-shift in the plasmonic resonant wavelengths with
the increase of AgNC size. Among the several plasmonic
resonant features, the narrow peak with the second longest
wavelength in the 500−600 nm range stems from the electric
dipole oscillation with charges accumulated at the AgNC39 and
has been widely adopted to determine the AgNC size. Figure
5c confirms the relative linear relation between plasmonic
resonance wavelength and particle size. Empirically, the peak
width was also used to evaluate the size distribution
qualitatively. However, this experience has strict limitations
as the peak width was also limited by other factors, such as the

sharpness of the nanocube edge and the shape dispersity of the
sample. As shown in Figure 5c, the peak width (indicated by
the vertical error bar) monolithically increases with the
increase of AgNC size, although the width of the particle
size distribution (the horizontal error bar) decreases.
The trained CNN has the potential to provide an e"ective

solution for the analysis of complex nanoparticle systems that
exhibit broad size distributions, which are typically unsuitable
for analysis via UV−vis spectroscopy due to overlapping
optical features. To demonstrate this capability, we conducted
an experiment involving the mixing of three sample solutions,
each with an average particle size of 99, 120, and 162 nm. The
results obtained from the machine learning algorithm were
compared with those obtained from UV−vis analysis. As
depicted in Figure 5c, the CNN successfully identified the
centers of the three particle sizes in the size distribution of 750
nanoparticles. However, the corresponding UV−vis spectrum
exhibited a smearing of plasmonic features in the mixed
solution, which rendered it unsuitable for accurate particle size
prediction.

■ CONCLUSION
We present a machine learning algorithm that utilizes TSOM
images to determine the size, size distribution, and shape of
nanoparticles. To establish a training data set, we developed a
pseudo-labeling method that avoids the time-consuming task
of cross-referencing electron microscopy and optical micros-
copy images on a one-to-one basis. This algorithm reduces the
preparation time for the training data set to less than an hour
and the acquisition time for testing data to a few minutes. On
AgNC samples, we achieved a single-particle level relative error
of 5% and an ensemble-level averaged error of 1.6%. The
algorithm can also classify the nanoscale tip geometry of
AgNWs with an accuracy of 82%. We applied the machine
learning algorithm to monitor the particle size evolution in a
AgNC synthesis reaction and compared the results with those
obtained from UV−vis analysis. The algorithm accurately
visualizes particle size distribution, even for complex samples
such as a mixture with a broad size distribution. We anticipate
that this method can be expanded to examine complex
nanoparticles with asymmetrical shapes, which introduce
spatial variation along the azimuthal direction in the stacked
TFM images that can be identified through machine learning.
This technique requires only a conventional optical micro-
scope and a motorized stage, enabling high-throughput size
determination at the single-particle level, which has the
potential to increase research productivity in the field of
nanomaterials.

■ METHODS
Chemical Synthesis. The AgNCs were synthesized using a

modified polyol method.37 AgNO3 (0.20 g) and CuCl2 (0.34 ug) were
dissolved in 10 mL of 1,5-pentanediol. In a separate vial, PVP (Mw =
55000 amu, 0.20 g) was dissolved in 10 mL of 1,5-pentanediol. After
heating 20 mL of 1,5-pentanediol in a silicone oil bath (180 °C) for
10 min, two precursor solutions were dropwise added into the flask
using two syringe pumps with a feeding rate of 500 μL/min. At
various times during the whole synthesis, AgNC samples (500 μL) are
extracted from the solution and divided equally into two portions for
size analysis and UV−vis spectroscopy.

Optical Measurement. The home-built TSOM system comprises
an upright optical microscope (Nikon, Eclipse Ni-U), a piezoelectric
stage (P-545.3R8S PInano XYZ Piezo System), and a sCMOS camera
(Andor, Zyla 4.2, 16 bit). A 50× dark-field objective lens with a
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numerical aperture (NA) of 0.55 was used to illuminate the sample
with white light and image the sample in the dark-field mode. The
microscope system has a magnification scale of 125 nm/pixel. The
sample was moved by the piezo stage at full speed and dwelled for 100
ms for every 50 nm displacement. The camera exposure time is 70 ms,
with an extra 30 ms of waiting time. To generate a stacked image, a
total of 301 images were acquired, taking 30 s for data acquisition.
After classification and segmentation, the stacked image provided 50−
100 nanoparticles for machine learning analysis.
Pseudo-labeling Method. The nanoparticle sizes were deter-

mined using scanning electron microscopy (SEM) imaging (Thermal-
Fisher Scientific, model Nova NanoSEM 450), operating at 15 kV
acceleration voltage and with a spatial resolution of 1.5 nm. The
nanoparticles were deposited onto a silicon wafer using either
Langmuir−Blodgett (LB) densely packed film40 or drop-casting
methods. The particle size information was extracted using ImageJ
software. The training data set comprised six batches of AgNC
samples with di"erent sizes, and their mean particle sizes, standard
deviation (STD), and polydispersity index (PDI) are presented in
Table 1. The corresponding histograms of particle size distributions
are available in the Supporting Information.
Training Configuration. The machine learning algorithm was

realized through the deep learning toolbox on MATLAB. Model
parameters are listed in Table 2.
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