L) . : . :
Py Automatically Reproducing Android Bug Reports using Natural

Language Processing and Reinforcement Learning

Zhaoxu Zhang Robert Winn Yu Zhao
University of Southern California University of Southern California University of Central Missouri
USA USA USA

zhaoxuzh@usc.edu rwinn@usc.edu yzhao@ucmo.edu

Tingting Yu William G.J. Halfond
University of Cincinnati University of Southern California
USA USA
yutt@ucmail.uc.edu halfond@usc.edu

ABSTRACT

As part of the process of resolving issues submitted by users via
bug reports, Android developers attempt to reproduce and observe
the crashes described by the bug reports. Due to the low-quality of
bug reports and the complexity of modern apps, the reproduction
process is non-trivial and time-consuming. Therefore, automatic ap-
proaches that can help reproduce Android bug reports are in great
need. However, current approaches to help developers automati-
cally reproduce bug reports are only able to handle limited forms
of natural language text and struggle to successfully reproduce
crashes for which the initial bug report had missing or imprecise
steps. In this paper, we introduce a new fully automated approach
to reproduce crashes from Android bug reports that addresses these
limitations. Our approach accomplishes this by leveraging natural
language processing techniques to more holistically and accurately
analyze the natural language in Android bug reports and design-
ing new techniques, based on reinforcement learning, to guide the
search for successful reproducing steps. We conducted an empiri-
cal evaluation of our approach on 77 real world bug reports. Our
approach achieved 67% precision and 77% recall in accurately ex-
tracting reproduction steps from bug reports, reproduced 74% of
the total bug reports, and reproduced 64% of the bug reports that
contained missing steps, significantly outperforming state of the
art techniques.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

KEYWORDS

Android, Bug Reproduction, Reinforcement Learning, Natural Lan-
guage Processing

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598066

ACM Reference Format:

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Hal-
fond. 2023. Automatically Reproducing Android Bug Reports using Natural
Language Processing and Reinforcement Learning. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3597926.3598066

1 INTRODUCTION

In the hyper-competitive world of app marketplaces, app devel-
opers strive to provide their users with interesting features and
high-quality functionality to distinguish themselves from their
competition. An important mechanism for receiving feedback from
users is bug reporting systems, such as GitHub Issues Tracker [10]
and Google Code [11]. These systems enable users to create bug re-
ports in which they can describe the observed failures' and provide
reproduction steps. Developers can use this information to help
debug their apps. However, the use of this information is compli-
cated by the fact that the bug reports are often informally written in
natural language, imprecise, and incomplete [25, 31, 45]. This can
make it challenging for developers to reproduce the reported failure,
as important steps may be missing or poorly described. Even with
well-written bug reports, reproduction can still be challenging since
mobile apps often have complex event-driven user interfaces that
allow many similar sequences of actions, each of which may or may
not lead to the reported failure. Taken together, these aspects can
make bug report reproduction a time-consuming and error-prone
process, which can undermine the usefulness of the bug reporting
process.

The software engineering community has tried to address this
problem through the development of automated bug report repro-
duction techniques (e.g., [23, 41, 42]). These approaches generally
have two phases. In the first phase (i.e., bug report analysis), the ap-
proaches analyze the natural language in the bug reports in order to
identify the steps to reproduce (S2Rs). Each S2R describes an action
on a user interface (UI) element in the app under test (AUT). In the
second phase (i.e., app exploration), the reproduction approaches
attempt to execute each S2R on the AUT. Both phases represent
significant challenges that make it difficult to fully automate this
process. In the first phase, the natural language is generally un-
structured, written by users without a technical background, and

!We use the word "failure” and "crash” interchangeably in this paper.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

has similar concepts described in a multitude of ways [23, 27]. Even
if the first phase could be done perfectly, many bug reports have
missing steps [25, 39]. This complicates the second phase, since
the approaches must either find some ways to identify plausible
missing steps or dead end in their reproduction efforts when no UI
element matches the next S2R. This happens, for example, when
a missing S2R specifies a step that causes a Ul element to appear
that is then used by the subsequent S2Rs in the bug report.

Two state of the art approaches for reproducing crashes from An-
droid textual bug reports, YaAkusu [23] and RECDroID [43], define
techniques for handling these challenges. To address the challenge
in the first phase, both approaches extract S2Rs from bug report text
using manually crafted patterns and predefined word lists that map
to standard actions. For example, for the phrase "click the Home
button,' these approaches would identify a click action with the
"Home button" as the target. However, these techniques are unable
to handle natural language in bug reports with either previously
unseen words or different sentence structures. Maca [27] designs a
classifier to normalize action words into a standard form, but also
uses simple patterns to parse the sentence and therefore has limi-
tations when handling previously unseen sentence structures. To
address the challenge in the second phase, both approaches employ
a greedy strategy to explore the app and identify possible mappings
of S2Rs to UI events. However, the greedy strategy can lead the
approaches to prioritize matching an S2R with a UI event that is
the most similar, even though choosing a lower similarity match
may allow subsequent S2Rs to match better with other UI events.
This may occur, for example, when there are inaccurately described
or missing steps.

To address the aforementioned challenges, we designed a new
approach for reproducing crashes from Android bug reports. Our
approach follows the same two-phase architecture as prior ap-
proaches, however, for each phase, we developed new algorithms
and designs that enable our approach to be more broadly applicable
— able to handle a wider variety of natural language in bug reports —
and more successful in matching S2Rs extracted from the bug report
to actions in an app’s UL We achieved the first of these by develop-
ing a set of analyses that extract S2R information without relying
on predefined patterns. To improve reproduction, we formulate
the task of matching S2Rs with an app’s Ul events into a Markov
decision process (MDP). Our approach then identifies the repro-
duction event sequence by leveraging reinforcement learning (RL)
algorithms, specifically Q-learning [38]. Our approach employs
Q-learning to learn how to match the Ul events with the S2Rs in
such a way as to bridge missing steps and calculate an overall best
match between S2Rs and a Ul event sequence that can lead to the
observed failure. We implemented our approach as a prototype
tool and compared it against RECDRoOID and YAkuUsU. Our results
show that our natural language processing (NLP) techniques help
our approach to handle a wider variety of bug reports and our RL
based exploration leads to a more successful reproduction phase.
Together, these two techniques enable our approach to outperform
RECDRoID and YAKUSU by a significant margin and indicate that
our approach significantly improves state of the art bug report
reproduction techniques.

In summary, our paper makes the following contributions:

412

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.)J. Halfond

e We designed a novel NLP based analysis to analyze and
extract reproduction steps from Android bug reports.

e We designed a new exploration strategy, based on reinforce-
ment learning, for exploring Android apps and finding the
match between steps and Ul events.

e Based on the above two contributions, we developed a novel
approach to reproduce Android bug reports and implemented
it as a tool.

e We conducted an empirical evaluation showing the perfor-
mance of our approach.

e We made the implementation and dataset publicly available
for future research work [12].

MOTIVATING EXAMPLE

1 attempt to take a photo when viewing the preference
and click the OK button or CANCEL button in the circle.

Figure 1: Bug Report Example

In this section we introduce a motivating example that we will
use throughout the paper to illustrate our approach and highlight
the limitations of existing approaches. The bug report, which is
shown in Figure 1, is based on bug reports that we found in our
evaluation subjects. The bug report describes a crash that occurs
when the user tries to take a photo on the preference page. It
reports four steps (as annotated) that need to be taken for repro-
duction. Although this report seems reasonably clear and is, in
fact, typical of most bug reports, it can cause several problems for
the state of the art automated bug report reproduction techniques
(e.g., RECDRoID [43], Yakusu [23]) when they try to reproduce it.
To reproduce a bug report, these automated techniques first ana-
lyze the natural language of the bug report to determine the S2Rs.
Each S2R is a structured form that contains information describing
the step such as UI action and target widget. Although the text is
seemingly easy to parse (for a human), these automated techniques
would run into several problems when trying to do so automati-
cally. Both techniques try to identify an S2R by matching text in
the bug report to a pre-defined vocabulary of words describing UI
actions. This would make them fail to extract the first step in our
example, which uses a verbal phrase “attempt to take” to express
the UI action, an unusual way to describe a Ul action that is not
present in either approach’s vocabulary. Second, after identifying a
Ul action, both techniques rely on hand-crafted rules to match other
S2R entities. However, none of these rules are able to identify the
target “photo”. Alternatively, a misidentification may also happen if
the rules are too simple. For example, RECDroID would identify the
target of the fourth step to be “CANCEL” and “circle”. These inaccu-
rate entity identifications would create noise when the automated
techniques attempt to match the S2Rs in the AUT. Additionally,
both approaches suppose the execution order of S2Rs is the same
as their syntactic order in the text. However, this could lead both of
them to obtain the wrong order of the first two steps. As indicated
by the semantics of the connective word "when" between the first

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning

D I
AUT

. ¥ 1 |
! Temporal | . . - .
1_Normalization |- SZ‘RS IState| Reward Action W |7= |
I I I Y’%} Reproduction;
Il S2R Entities | . Scripts |
\ Inference . | o f
\ .

7 . Q-learning .

Stage2: Matching S2Rs to UI Events
S2R Entities

Figure 2: Workflow of Our Approach

two steps, the second step should happen first and then be followed
by the first step.

Even assuming there is no noise in the S2Rs, these approaches
would face additional challenges during reproduction when they
try to automatically match S2Rs against UI events. First, both tech-
niques employ a greedy approach when matching the S2Rs with UI
events, meaning that they always choose the event that is the most
closely matched with the S2R. This could lead to a local maximum
in the matching process, effectively trapping the exploration and
preventing it from finding a better overall match. Second, both tech-
niques assume that missing steps only occur when there is no UI
event matched with the S2Rs during the exploration. However, the
missing steps could occur exactly when there are events that match
the S2Rs. When the above cases happen, prior reproduction tools
would either fail to reproduce the failure or reduce to an exhaustive
exploration of the AUT.

These limitations of the state of the art directly motivate the
design of our approach. Given a bug report sentence, our approach
first normalizes the execution order of S2Rs in the sentence. To
identify the entities for a S2R, instead of using predefined patterns,
we designed an analysis that infers them from a set of more general
syntactic parts that could be identified from any natural language
sentence. These two steps together allow our approach to have
a more accurate understanding of the bug report sentence and
are also more widely applicable. To match S2Rs and Ul events, we
designed an exploration and matching strategy based on MDP and
Q-learning. These techniques enable our exploration approach to
find a way to bridge possible gaps in the S2Rs and at the same time
avoid local search maxima (i.e., that would be found with a greedy
approach). In the next section, we explain our approach’s design
and algorithms for doing this in more detail.

3 APPROACH

The goal of our approach is to automatically reproduce the crashes
described in the text of Android bug reports. The input of our
approach is S2R sentences — natural language sentences describing
reproduction steps, and the AUT. At a high-level, Figure 2 shows the
two stages of our approach: Extraction of S2R Entities and Matching
S2Rs to UI Events. In the first stage, our approach analyzes the S2R
sentences to extract the S2R entities defining each step in the bug
report. The entities we extracted include information such as the
type of Ul action to be performed and the target of the action. Our
approach leverages a combination of natural language techniques
to systematically analyze S2R sentences to extract the entities more
accurately. In the second stage, our approach explores the app to

413

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

N

[and] [clic'k...]

(VEp]| S];AR]
¥ ¥
[attempt ...] [when ...]

(a) Constituency Parsing Tree
e 1 view the preference.
c [attempt to take a photo.
o 1 click the OK button in the circle.
o (I click the CANCEL button in the circle)

(b) Reordered Sentences

Figure 3: Example of S2Rs Reordering

match the S2Rs to UI events in the AUT. We formulate this task as
a Markov decision process (MDP) and use the Q-learning algorithm
to identify the matched UI events. The combination of MDP and
Q-learning allows our approach to effectively bridge missing steps
and identify the Ul events for reproduction.

3.1 Extraction of S2R Entities

The first phase of our approach analyzes the given sentences and
extracts the individual steps from them. For each of these sentences
our approach first carries out a temporal normalization analysis
that extracts the S2Rs in the sentence, converts them to standalone
sentences, and then reorders them based on the implied temporal
relationships in the original sentence (Section 3.1.1). The ordered
standalone sentences are then each analyzed to infer the entities of
an S2R — important reproduction information, such as the target
widget, action type, and input values (Section 3.1.2). Our S2R entity
inference is notable from related work since it does not require the
sentence to match one of a predetermined set of patterns. The final
output of the first phase is a list of S2Rs entities, each correspond-
ing to a reproduction step that the second phase of our approach
(Section 3.2) will use as it attempts to reproduce the bug report.

3.1.1 Normalizing the Temporal Order of S2Rs. The first step of the
extraction analysis normalizes the temporal order of S2Rs described
in a bug report sentence. For example, this step would address the
problem shown in the text of Section 2, where the bug report sen-
tence has multiple conjuncted S2Rs whose intended execution order
is not the same as their syntactic ordering. Reasoning about the
temporal relations among S2Rs is challenging due to the use of com-
plex sentence structures, such as nested clauses and phrases. Our
insight is that this temporal ordering information can be extracted
by accounting for the semantics of connectives utilized between
clauses or phrases in a bug report sentence. To take advantage of
this insight, we designed an analysis that, given an S2R sentence,

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

recursively: (1) extracts the conjuncted S2R text spans (i.e., clauses
or phrases) and connectives, (2) converts each S2R text span into a
standalone sentence, and then (3) reorders the standalone sentences
based on the connectives between them. Each round of our analysis
generates a pair of reordered standalone sentences. Our analysis is
recursively performed on the generated sentences until no more
conjuncted S2Rs can be identified. The output of our analysis is
a list of the standalone sentences in the inferred order. We next
describe the details of each part of our analysis in detail, illustrating
the analysis using the sentence in Figure 1.

As a preprocessing step, each round of our analysis takes a given
sentence and converts it into a standard structure for represent-
ing a natural language sentence. This structure is known as the
constituency parsing tree (CPT) and captures the syntax of a sen-
tence from the perspective of constituency grammars [26]. Figure 3a
shows the CPT of the sentence in Section 2, which is computed
using standard NLP parsers [19]. Each terminal node of the CPT de-
notes a word in the sentence and each non-terminal node represents
a type of constituency, which captures the use of all terminal nodes
in its sub-tree as a single unit [28] (e.g., NP for a noun phrase).

Given the CPT, our analysis first extracts the conjuncted S2R
text spans (i.e., clauses and phrases) and their connectives in the
sentence. In order to extract the text spans, our analysis traverses
each constituency tag in the CPT from top to bottom and identi-
fies two types of conjunction: coordination and subordination, as
defined in standard English grammar rules [26]. To identify coordi-
nation, our approach searches for tags whose parent-child structure
satisfies the coordination grammar [26]. For example, the grammar
for coordinated clauses is defined as "S — S CC S", which indi-
cates that a parent constituency S (sentence) has three children:
two sub-clauses and a connective CC between them. By identify-
ing such a parent constituency S, our analysis can find the two
coordinated sub-clauses and their connectives from its children. To
identify subordination, our approach searches for its corresponding
constituency tag, SBAR, which represents subordinating clause,
and takes the words rooted at this tag as the text for a subordinate
clause and the first word in the clause as the connective. This step
of our analysis returns the first pair of conjuncted text spans it
identifies as it traverses the CPT from top to bottom. This ensures
that every round of analysis identifies the most outer conjuncted
text spans. For example, given the CPT in Figure 3a, our approach
identifies two coordinated verbal phrases (VP) as highlighted and
the word "and" as the connective in the first round of analysis.

The next step of our analysis transforms each text span identified
by the previous step into a standalone sentence. This transformation
is necessary since part of the text in the original sentence may be
shared by the conjuncted texts (e.g., the subject "I" is shared by
all the four S2Rs in the sentence in Figure 1). Only extracting and
reordering the conjuncted text will lose such information. To do
this, our approach first removes the conjuncted constituency tags
(identified in the previous step) and their sub-tree from the original
CPT. This gives us the part of the original CPT that is shared by
the conjuncted text spans. Then our approach duplicates this part
and joins it to the subtree of each conjuncted text to form new
CPTs, representing the transformed sentences. To illustrate this
transformation, after identifying the two highlighted verbal phrases
in Figure 3a, our approach extracts the left subtree of the root node,

414

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.)J. Halfond

which indicates the subject "I", duplicates it, and rejoins it to the
subtree of each verbal phrase. This forms two standalone sentences.
The last part of our analysis infers the intended execution or-
der of the transformed standalone sentences. Our inference is
based on the semantics of the connectives between the sentences.
To obtain a comprehensive view of connectives used in English
text and their semantics, we referred to the Peen Discourse Tree-
bank (PDTB) [30, 33]. The PDTB contains a large-scale annotation
on the English connectives and provides a comprehensive catego-
rization based on their semantics. Our approach focuses on the
connectives with semantics in two categories from PDTB: temporal
succession and alternative. Connectives in the first category indicate
that the second conjuncted text span happens earlier than the first
conjuncted span, and connectives in the second category indicate
that the conjuncted text spans could be used alternatively to rep-
resent the meaning of the sentence. The reason to focus on these
two categories is that connectives within them would affect the
temporal order or the selection of S2Rs. To perform the temporal
inference, given the connective, our approach first checks which
category it belongs to. If the connective belongs to the first category,
our approach reverses the order of conjuncted sentences. If the con-
nective belongs to the second category, our approach only selects
one from the given sentences. For the example in Figure 1, our ap-
proach would reverse the order of standalone sentences generated
by the first two S2R text spans as it finds the connective "when"
indicating a temporal succession semantics. Figure 3b displays the
final sentence list generated by our tool where each sentence only
contains one reproduction step and their ordering is normalized.

3.1.2 Inferring S2R Entities from Standalone Sentences. The goal
of this part of the approach is to infer S2R entities from the stan-
dalone sentences produced by the analysis in Section 3.1.1. These
S2R entities will be used in the exploration phase of the approach
(i.e., Section 3.2) to navigate the UI of the AUT. We formally define
the entities of a S2R as (target widget, UI action, input value, target
direction). Taken together, these elements represent the Ul event
described in the standalone sentence. Prior work [23, 43] targeted
the identification of a similar set of S2R entities. However, as we
discussed in Section 2, these approaches can only work for prede-
fined sentence patterns since they require a mapping of parts of
the pattern to the S2R entities. Our insight is that each of these
S2R entities can instead be inferred based on more general syntac-
tic constituents (i.e., subject, predicate, object, and modifier) of a
sentence. For example, the predicate of a sentence, regardless of
where it appears in a given sentence, can be used to infer the action
performed by the user. This insight allows our approach of extract-
ing S2R entities to work on any standalone sentence, regardless of
its form, as long as it can be decomposed into these syntactic con-
stituents — a condition that would be satisfied by any standalone
sentence produced by our analysis in Section 3.1.1. Our approach
leverages this insight as follows. First, given a standalone sentence
produced by the analysis in Section 3.1.1, our approach decomposes
the sentence into its syntactic constituents using standard open
information extraction (Open IE) techniques [15, 16, 20, 21, 34, 40].
In the second step, our approach identifies the text in the sentence
that defines the S2R entities by using inference rules based on these
syntactic constituencies. In the remainder of this section, we first

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning

give an example of the syntactic constituents that our approach
works on and then define the inference rules we use for each entity.

For background purposes, we provide an example of the syntactic
constituents using the last sentence in Figure 3b. The predicate of
this sentence is "click,’ the subject is "I", the object is "the CANCEL
button,’" and the modifier is the phrase "in the circle". Notably, not
all of them exist in every sentence. To retrieve all these constituents,
our approach in practice employs a recent Open IE technique [16].
Next, we explain the rules we defined to infer each S2R entity.

The target widget is the text description of the UI widget that the
user interacts with in the S2R. The part of the sentence that contains
the target widget depends on the voice with which the sentence
was written. If the sentence is written in an active voice, the target
widget is defined in the sentence object (e.g., "I click the button").
Otherwise, if the sentence is written in the passive voice, the target
widget is defined in the subject of the sentence (e.g., "The button
is clicked"). Therefore, to identify the target widget, our approach
first infers the voice of the sentence. The voice can be determined
simply by checking whether the predicate is in a form of a static
verb and a verb in its past participle (e.g., is clicked) [1]. Based
on this determination, our approach extracts either the subject
or object text, which is part of the syntactic constituents defined
previously and then uses this text for the target widget.

The UI action represents the type of interaction that the sen-
tence describes as performed on the AUT. This naturally corre-
sponds to the predicate part of the sentence. If the sentence does
not have a predicate (e.g., "Setting button."), our approach takes
click as the default UI action. Otherwise, our approach maps the
predicate to one of the five standard actions that can be performed
on an Android UL click, input, rotate, swipe, and scroll. However,
the key challenge is that actions may be described using a wide
range of words, so there is no direct mapping from the predicate
to the known action types. Existing approaches rely on a predeter-
mined list of synonyms for each known action type to identify a
direct mapping. The limitation of this approach is that if the pred-
icate uses previously unseen words, it cannot be classified. Our
insight is to classify the Ul action type of a given predicate based
on its semantic similarity with a set of synonyms defined for each
standard Ul action.

Our approach for action type identification is as follows. We
assume the availability of a word list, as used in related approaches
(e.g., [43]), that contains a group of synonyms for each standard
action type. For example, "press" and "tap" for the click action. To
handle action types described using words that are not in the list,
we introduce the idea of semantic similarity to the action type
identification. Our approach computes the semantic similarity of
the predicate with a group representing the action type and its
synonyms. The semantic similarity enables our approach to know
which type of standard UI action the predicate is most similar to
semantically. Following the classic method [29], given two words
or phrases, we compute their semantic similarity as the cosine dis-
tance of their word embeddings, the vector representation of a text,
obtained from a pre-trained language model, such as Word2Vec [29].
Our approach considers the group with the highest semantic sim-
ilarity to be the inferred action type. However, if the similarity
score difference of the top two groups is within a threshold § then
both of the corresponding action types are considered during the

415

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

reproduction phase (i.e., Section 3.2). This aspect of our approach
allows it to more flexibly handle words that could be interpreted in
multiple ways. For example, the word "change" could be interpreted
as a click action or an input action in different cases. If the inferred
action type is rotate, our approach also checks whether its inferred
target widget describes the screen or the device. If neither is de-
scribed, our approach chooses the next highest scored Ul action as
the result. The reason for this is that intuitively the rotation action
is performed on the whole device or the screen instead of a specific
widget, so if neither is the target widget, then the action is not
rotate. This heuristic helps our approach identify rotation action
more accurately.

The input value is the text to be entered for an input action.
This information can be inferred by analyzing the object and the
modifier part of a sentence. Due to the way actions are described in
the English language, input values are associated with their targets
using prepositional phrases. This is captured by the modifier of
a sentence. However, depending on the preposition used in the
modifier, the input value may be contained in different constituents
of the sentence. For example, for the sentence “I enter A on B”, the
input value A is captured by the object. However, for the sentence
“I fill A with B”, the input value B is contained in the modifier.
Therefore, our approach identifies the input value based on the
preposition used in the modifier. If the modifier starts with the
preposition "with", our approach extracts the text following it as
the input value. If the modifier starts with a preposition in {"in",
"on", "into", "onto", "at"}, our approach uses the object as the input
value. It also replaces the previously identified target widget with
the modifier text. In the case that there is no modifier identified in
the given sentence, which happens when reporters only specified
the input value or target widget as the object of the sentence (e.g., "I
enter a number 13"), our approach takes the object text as the input
value. Our approach employs two heuristics to refine the identified
input value text to make it more precise. First, if the input value
text contains numbers, our approach only keeps the number as
the input value. The reason for this heuristic is that reporters may
include other words or phrases when describing the input number
as the underlined phrase in the previous example. However, the
input value to reproduce the failure needs to be very precise, in
this case, only the number is entered. Second, if the text uses a text-
based description of a special value, such as "space", our approach
replaces it with the corresponding literal value.

The target direction defines the intended direction for a scrolling
action (i.e., up or down) or a swiping action (i.e., left or right). The
direction is also expressed in the object portion of a sentence. For
example, "I scroll down". Given the simplistic nature of this entity,
we found it sufficient for our approach to directly search for di-
rectional keywords in the object text and use those as the target
direction.

3.2 Matching S2Rs to UI Events

The second phase of our approach explores the AUT to match
the S2Rs to UI events that reproduce the failure. As explained in
Section 2, for state of the art techniques, their exploration-based
process of finding such UI events is limited due to the problems of
local optimums and missing steps. Our approach addresses these

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

challenges by defining the matching problem as a Markov deci-
sion process (MDP) and using a type of reinforcement learning
algorithm, Q-learning, to find the desired UI event sequence.

The combination of MDP and Q-learning is well-suited for our
problem domain and addressing these challenges. The expected
reward used by Q-learning combines the immediate reward for
the current action and the accumulated reward of potential future
actions. This enables our approach to avoid local optimums by
allowing it to consider and evaluate a Ul event that itself may not
be the closest match with the S2Rs but leads to subsequently better
matched Ul events. For missing steps, a similar mechanism can be
leveraged. In this case, a no operation (no-op) is added to the actions
in the MDP for a given state. When combined with the Q-learning
future rewards, this effectively allows our approach to evaluate the
total expected rewards if it assumes the next step is missing. The
no-op action can be added repeatedly to simulate the possibility
of multiple missing steps. Taken together, the combination of Q-
learning and MDP enables our approach to break out the local
optimum and bridge missing steps effectively.

In the following sections, we first provide a formal definition
of our instance of the MDP, which maps it to the problem of S2R
matching (Section 3.2.1). Next, we explain how our approach utilizes
Q-learning on this MDP to find a Ul event sequence that reproduces
the bug report (Section 3.2.2).

3.2.1 Formulation of Markov Decision Process. In our approach, we
define an instance of the MDP to describe the process of matching
S2Rs with Ul events in the AUT. The MDP is formally defined as a
tuple (S, A, P, R) where S is the state set, A is the action set, P
is the transition function, and R is the reward function. We define
each part of the MDP for our problem as follows:

S: States The state represents the MDP at each time step. We
define a state of the MDP as s = (H, RS, n). The first element H is
the current view hierarchy (VH) of the AUT, which includes all the
widgets on the UI as well as their attributes. The second element
RS is a list of the remaining S2Rs that are not yet matched. The last
element 7 is an integer indicating the remaining amount of no-op
actions that are available for the matching process. Our approach
defines a finite limit on no-ops actions to avoid the situation where
the reproduction phase can endlessly explore an app along all paths
with no likely matches. Allowing an infinite number of missing
steps would be unrealistic, implying a bug report that had an infinite
(or extremely large number) of missing steps. We define the initial
state as so = (Ho, RSp, ng) where Hy is the VH of the Ul where the
reproduction starts, RSy is a list containing all of the S2Rs in the
bug report identified by the first stage analysis of our approach
and ny is the total number of allowed no-op actions during whole
matching process. We define the terminal state of the MDP as s;,
which has no available actions, i.e., it is the ending of the matching
process. This happens when our approach matches all S2Rs and
used all available no-op actions.

A: Actions In the context of S2R matching problem, the action
represents a match between a Ul event and an S2R. (Note, this
terminology can be confusing since in Section 3.1.2, action refers
to the standard Android operations, such as click and swipe.) We
formally represent an action a as (e, rs) where e is the Ul event that
is chosen to be executed on the AUT and rs is the step matched

416

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.)J. Halfond

with the UI event. To handle missing steps, we define a special
action, no-op, which is denoted as (e, —) where the dash represents
a placeholder for a missing step. We will discuss how our approach
identifies available actions at a given state in Section 3.2.2.

P: Transition Function The transition function of an MDP
takes in the current state s and the selected action a and returns the
next state s”. In our problem domain, the transition to next state
happens in two steps. First, our approach executes the Ul event a.e
on the AUT and extracts the new VH produced by the app. Then,
our approach dequeues the selected step from s.RS or decreases s.n
if a is a no-op action. The new VH and the possibly updated values
of RS and n are returned as the new state.

R: Reward Function The reward function generates a value
indicating the quality of the action, i.e., the quality of the match
between an S2R and a UI action. Our reward function evaluates
an action as a sum of three subscores: similarity score, exploration
penalty, and failure state penalty.

The similarity score measures the similarity between an action’s
Ul event and S2R. It guides our approach to explore Ul events closely
related to the descriptions in the bug report. The computation of
similarity scores is done in two ways. First, for actions matching
with Ul events interacting with a specific widget, i.e., click and input
events, the similarity score is computed as the textual similarity be-
tween the description of the widget on the Ul and the target widget
entity of the S2R. This textual similarity indicates how related the
Ul event is to the S2R. To do this, our approach analyzes the VH of
the UI and extracts three attributes of the widget as its description:
(1) text: This attribute is the text appearing on the widget, which is
readily available to bug reporters; (2) id: This attribute contains the
file name of the linked resources used in the widget, such as icons.
The file name is normally meaningful and descriptive of the content
it contains [23]; and (3) content description: This is the description
of the widget defined by the developers. Its content is used by An-
droid accessibility service (e.g., screen reader) when describing a
widget to people with disabilities [9]. Therefore it is supposed to
contain a meaningful and informative explanation of the widget.
Our approach computes the semantic similarity of the text in the
target widget entity with each of these three description texts, using
the same approach described in Section 3.1. Our approach uses the
highest of these three values as the overall similarity score, as long
as the value is above a threshold d that represents the similarity of
non-synonym words [43]. However, if the value is not above this
threshold then our approach considers them not to be synonyms
and assigns a default negative score r;. The rationale for using the
maximum of the three values is that our approach cannot know
which of these three descriptions sources would be used by the
bug reporter, so this mechanism allows for using the best or most
informative fit. Second, for actions that match with rotate, scroll,
swipe, or the no-op, our approach assigns their similarity score as
the default score r;. The reason for this is that for these actions, the
matched Ul event does not interact with a specific UI widget or the
matched S2R is not a concrete step from the bug report. Therefore,
our approach cannot compute a score to show the relevance or
similarity for the Ul event and the S2R.

The exploration penalty is designed to encourage our approach
to select meaningful Ul events during exploration (i.e., the ones that
result in changes on the UI). For example, in the UI with a tab, it is

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning

Algorithm 1: Matching S2Rs to UI Events
Input: the app under test AUT, steps to reproduce S2Rs,
timeout ¢, error message m
Output: reproduction Ul events
1 Q0«0; /* initialize Q-table =*/
2 while —timeout(t) do

3 Si+1 < S0 ; /* reset to initial state */
4 E « 0;

5 while true do

6 Si < Si+1;

7 A « inferActions(s;);

8 if randomNum() < € then

9 ‘ a; — rand({a € A | a # argmaxy Q(s,a’)});
10 else

1 ‘ a; — argmaxaQ(s, a);

12 end

13 E«— EUaj.e;

siv1 < Pai, si, AUT);
if success(m) then
‘ return E;

14
15
16
17 end
r « R(aj, si, si+1);
O(si,ai) « (1= a)Q(si, ai) + a(r + yQ* (si+1,a));
if sjy1 is a terminal state then

‘ break;

end

18
19
20
21

22

23 end

24 end

meaningless to click the current tab button again. To do this, our
approach evaluates the VH before and after executing the selected
Ul event. If all the widgets and their attributes on the VH remain

the same, our approach gives an exploration penalty to the action.

Note that our definition of state includes the attributes of each
widget in the view hierarchy. Therefore, Ul events, such as clicking
checkboxes or inputting, will change the attributes of widgets (in
this case, the “checked” or "text" attribute will be changed) and our

approach will not generate an exploration penalty for these events.

The failure state penalty ry is assessed when the selected action

leads to a terminal state that does not reproduce the observed failure.

This penalty discourages the exploration of event sequences that
do not lead to the observed failure.

3.2.2 Match S2Rs to Ul Events. This part of our approach utilizes
Q-learning to find a Ul event sequence that matches the given
S2Rs and reproduces the observed failure of the bug report. Our
approach is described in Algorithm 1. As input, our approach takes
the app under test (AUT), steps to reproduce (S2Rs), a time budget

(t), and the error message (m) of the observed failure as inputs.

Our approach then iteratively explores the AUT, guided by the

Q-learning, to find a UI event sequence that reproduces the failure.
The iterative exploration starts from the initial state sy (Line 3).

Ateach iteration, our approach first identifies all the possible actions
(A), available in the current state s; (Line 7). Recall that an action

417

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

in the MDP is actually a possible match between an S2R and a UI
event. Our approach identifies the set of possible matches from
two sources. First, the match set includes the cross product of all
available Ul events in the UI and the next S2R in s;.RS, if the two
represent the same Ul action. In the case that our approach predicted
two possible types of Ul actions for a S2R, it includes matches for
both of them. Second, the match set also includes a possible no-ops
match for all UI events if the no-op limit has not been reached at s;
(i.e., si.n > 0).

After identifying the set of all possible matches, our approach
selects one match and performs the matched UI event on the AUT.
Our approach selects the match using the epsilon-greedy algo-
rithm [36], a standard method for Q-learning. Specifically, with
probability 1 — €, our approach will choose the match with the
highest Q-value (Line 11) or with probability e, select a random
one from the matches with lower Q-value (Line 9). In practice, our
approach sets the € with a low value so that our approach can focus
on exploring the current optimal choice (i.e., the match with highest
Q-value) in most time in order to match more S2Rs along this path,
but also have chance to explore other random actions to break out
the local optimum. It is worth emphasizing that, the epsilon-greedy
policy gives our approach a chance, at any given state, to explore
lower-scored matches which could be a match between a UI event
that is not the most similar to the S2R or a match with a missing
step holder. By doing this, our approach could evaluate their future
rewards, which enables it to effectively escape the local optimal
during the exploration and, in combination with the no-op, bridge
missing steps. In the case that a previously unexplored state is
matched, the initial Q-value for all the actions is set to its similarity
score as defined in Section 3.2.1. By doing this, our approach is given
a pre-knowledge of the potential reward of each action so it can be
more effective in selecting a better match with less exploration. For
the scroll, swipe, or rotate actions, since a similarity score is not
defined, the approach assumes a similarity threshold d (defined in
Section 3.2.1) as their initial Q-value. This adjustment ensures that
these impactful actions will be explored. The selected UI event is
stored in an event list, which is returned in the case of successful
reproduction (Line 13). By calling the transition function, our ap-
proach executes the selected Ul event on the AUT and updates the
current state (Line 14).

After executing the Ul event in the selected match, our approach
then determines its reward using the reward function R (as defined
in Section 3.2.1) and updates its Q-value using the Bellman function
(Line 19). Note that « and y are standard parameters defined in
the Bellman function. In the case of encountering a terminal state
(Lines 20 to 21), our approach resets the current state and restarts
the exploration. Our approach terminates either when the timeout
occurs or the failure is successfully reproduced (Line 16). The suc-
cess of the reproduction is determined by checking whether the
AUT crashes with the specified error message (Line 15).

4 EVALUATION

In this section, we evaluated the effectiveness and runtime of our
approach. We also compared our approach against two state of the
art Android bug report reproduction approaches, RECDroID and
Yaxusu. Our evaluation addressed the following research questions:

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

RQ1 How effective is our approach in identifying S2Rs?

RQ2 How effective is our approach in reproducing Android bug
reports?

RQ2.1 How helpful is the NLP technique for reproduction?
RQ2.2 How helpful is the RL-based exploration for reproduction?
RQ3 What is the running time of our approach?

4.1 Approach Implementations

For the purposes of the evaluation, we implemented a prototype,
REPROBOT, of our approach. The core algorithms of our approach
are implemented in Python, and we leveraged functionality from
several well-known libraries: Graphene [16] and OpenlE5 [3] to
identify syntactic constituents in natural language text; UlAutoma-
tor [13] to interact with Android apps, and Spacy [24] to com-
pute the semantic similarity of texts. Our implementation is pub-
licly available via the project website [12]. We obtained the imple-
mentations of RECDRoID [43] and YAKUSU [23], two state of the
art reproduction tools on Android bug reports, from their public
websites[5, 7]. Our experiments were performed on Android emu-
lators on a physical x86 Ubuntu 20.04 machine with eight 3.6GHz
CPUs and 32G of memory.

4.2 Dataset Collection

To evaluate our tool, we built a dataset containing 77 bug reports.
We collected the bug reports from the artifacts of four related works:
(1) the evaluation dataset of RECDROID [42, 43]; (2) the evaluation
dataset of Yakusu [23]; (3) an empirical study on Android bug
report reproduction [25], and (4) an Android bug report dataset [39].
Altogether, there were 199 bug reports from these four sources. For
each bug report, the authors interacted with the corresponding app
to both ensure that the selected bug report was reproducible and to
remove any duplicates. As part of this process, we also separately
documented the steps that were missing from the bug report but that
were necessary to reproduce the reported failure, and recorded the
specific error message written to the Android device log when the
failure occurred, which was then used by our approach to determine
whether a bug report’s crash was successfully reproduced. During
this process, a total of 99 bug reports were found to be no longer
reproducible and 23 were duplicates, leaving us with 77 bug reports.
The lack of reproducibility of a given bug report was generally
attributable to one or more of the following reasons: the lack of
available apks or bug reports (due to an expired link), environmental
configuration issues that were not resolvable, or failure to obtain the
necessary setup information for the app (e.g., personal accounts or
specific inputs). Additionally, we manually analyzed and identified
the ground truth for each S2R within the 77 bug reports, specifically
its Ul action, target widget, input value, and target direction. The
average, median, minimum and maximum steps of the ground truth
of the bug reports were: 3, 3, 1, and 9. However, after manually
reproducing each bug report and identifying the actual number of
required steps for each bug report reproduction, we found that the
average number of required steps increased to 6, the median to 5,
and the maximum to 26, while the minimum remained at 1.

418

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.)J. Halfond

4.3 Experiment 1

4.3.1 Protocol. The first experiment evaluated the accuracy of
RePrOBOT in identifying S2Rs and compared these results with
those of RECDRoID and Yakusu. To do this, we ran REPROBOT,
ReCDRroID, and YAKUSU on our dataset and verified the correctness
of all identified S2Rs against the ground truth. An S2R extracted by
a tool was determined to be correct if all of the following conditions
were satisfied: (1) the action type was an exact match with the
action type from the ground truth; (2) the target widget, if it existed,
included target widget words from the ground truth; (3) the input
value, if it existed, was an exact match with that from the ground
truth; and (4) the target direction, if it existed, was an exact match
with that from the ground truth. As metrics for the accuracy of
the three tools, we calculated precision by dividing the number of
correctly extracted S2Rs by the total number of extracted S2Rs, and
calculated recall by dividing the number of correctly extracted S2Rs
by the total number of S2Rs in the ground truth.

Table 1: S2R Extraction Results

S2Rs Correct S2Rs Precision Recall
ReprOBoOT 294 198 67% 77%
ReCDroiD 220 116 53% 45%
YAKUSU 260 147 57% 57%

4.3.2 RQI S2R Entity Extraction Results. Experiment 1’s results
are presented in Table 1. For each approach, the column “S2Rs”
denotes the total number of S2Rs extracted by the given approach,
and “Correct S2Rs” denotes the total number of correctly extracted
S2Rs. Note that the total number of S2Rs in the ground truth was
256. The results show that REPROBOT could identify more S2Rs
and was more accurate, in terms of precision and recall, than both
RECDRroID and YAKUSU in doing so.

We also investigated the specific reasons for our tool’s inaccurate
S2Rs and found five categories of root causes: (1) The UI action
word list used by REPROBOT was not comprehensive. For example,
because REPROBOT was unable to find a semantically similar word
in the word list for the click action, our approach misclassified
the word "navigate" as an input action. Our approach was unable
to accurately classify the Ul action of a given predicate word in
these cases. (2) The imprecision of the underlying NLP techniques
was also found to be a cause of failure in our tool. Specifically, the
underlying techniques occasionally failed to identify the syntactic
constituents accurately, which caused our tool to misidentify the
target widget. Additionally, the underlying tool sometimes failed to
identify conjunction relations between clauses, which caused our
tool to miss the S2Rs in those clauses. (3) A few S2Rs were found to
have target widgets described via the predicate of the sentence. In
these cases, our tool failed to extract the target widgets. An example
of this is “I finish the dialog”, where it expresses a step to press the
“finish” button in the AUT. REPROBOT was unable to extract the
target widget in this case since it assumes the predicate is used for
describing the UT action. (4) Bug reports were occasionally found
to have utilized a special or unique way to express required input
values to trigger a crash. Our tool relies on bug reports expressing

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning

input values in the specific literal form for input, rather than us-
ing descriptive language, and, thus, failed to extract input values
correctly when these situations occurred. For example, one bug
report included “enter a number larger than Integer MAX_VALUE”.
ReproBoT did not identify the correct input value because it was not
directly specified in the bug report. (5) A few bug reports contained
text that either did not relate to or was not required to reproduce
the described crash. In these situations, our tool often extracted
extra S2Rs from such sentences, which were not intended to be
a part of the desired reproduction steps. Our approach assumes
that all text contained within a given bug report is intended to be
included in the reproduction process, which can lead to failure if
this was not the case. Our tool is unable to identify sentences that
should not be considered a part of the reproduction process.

4.4 Experiment 2

4.4.1 Protocol. The second experiment evaluated the effectiveness
(RQ2) and running time (RQ3) of our approach. To carry out this
experiment, we ran REPROBOT on the collected dataset, and then
compared its results against those of RECDroID and Yakusu. In
addition to RQ2, we introduced two sub RQs that evaluated the
contributions of the two parts of our approach independently. RQ2.1
evaluated the S2R extraction (Section 3.1). For this RQ, we created
a variant of our approach, RB,, that did not use the S2R extraction
method described in Section 3.1, and instead, utilized the S2Rs
extraction method from RECDRoID to drive the reproduction phase.
RQ2.2 evaluated the S2R matching approach (Section 3.2). For this
RQ, we created another variant of our approach, RBg, which did
utilize the S2Rs extracted by our approach, but used RECDROID’s
exploration algorithm instead of the Q-Learning approach defined
in Section 3.2. Note that we used RECDRroID’s implementation for
these variants since its implementation dependencies were more
readily updated and its results in RQ2 showed it could be more
easily adapted to run on newer and more modern subjects.

To compute effectiveness, we ran the three approaches and two
variants on each of the bug reports in the dataset. Following pre-
vious related works [23, 43], each tool had a time limit of 3,600
seconds per bug report, and if the tool exceeded this time or threw
an exception, then we considered the reproduction to have failed.
For each successful reproduction reported by a tool, we manually
replayed the identified event sequence to determine if it correctly
reproduced the target failure. Since our Q-Learning based reproduc-
tion is non-deterministic, we ran REproBoT and RB, three times
on each bug report. If a tool succeeded at reproducing a given bug
report at least once, then the reproduction of the said report was
deemed a success. To address RQ3, we measured the running time
of all the approaches on each bug report. For REPRoBOT, we took
the average of the three runs.

Table 2: Bug Report Reproduction Results

SR MSR
ReproBoT 57 (74%) 32 (64%)
RECDRoOID 37 (48%) 21 (42%)
Yakusu 9 (12%) 3 (6%)

419

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

4.4.2 RQ2 Effectiveness. The reproduction results of each approach
are presented in Table 2. The column “SR” denotes the number and
percentage of our dataset’s 77 bug reports that could be success-
fully reproduced by each approach, and the column “MSR” denotes
the number and percentage of the subset of 50 bug reports with
missing steps that could be successfully reproduced by each ap-
proach. As shown by the results, REPROBOT was able to reproduce
more bug reports overall and reproduce more among the subset of
bug reports that had missing steps than RECDRoID and YAKUSU.
Among the bug reports successfully reproduced by REproBoT, 98%
were reproduced more than once, which demonstrates the stability
of the performance of our tool. Specifically, of the three runs of
REPROBOT, 1 bug report was successfully reproduced once, 9 twice,
and 47 all three times. Taken together, these results demonstrate
that REPROBOT can reproduce Android bug reports more success-
fully than current state of the art approaches (i.e., RECDroID and
Yakusu).

One possibly confounding factor that we mention here is that
Yaxusu’s implementation was tightly coupled with specific versions
of Espresso and the Android OS. In turn many of our more modern
apps required more recent versions of Android. While many of
these apps could run with Yakusu, we confirmed with the authors
of Yakusu that this issue could affect the generalizability of Yakusu
on new apps.

We further analyzed the reasons for the 20 bug reports that our
tool was unable to reproduce. Among them, eight reports could not
be reproduced because the total number of missing steps in the bug
report exceeded the limit of no-op actions set in REPROBOT. For
example, the reproduction of AnkiDroid-6432 [8] required 26 steps,
20 of which were missed in the bug report. Two reports, Transistor-
149 [2] and Materialistic-1067 [4], could not be reproduced since
the reproduction required pressing a button very quickly and the
crash was non-deterministic. One report, FDroidClient-1821 [6]
was failed to be reproduced because REPROBOT failed to extract
an S2R from the bug report due to the failure of the underlying
tool. REPROBOT failed to bridge the missed step, since the step is to
click a specific button in a long list containing many other possible
buttons. REPROBOT failed to infer the correct button in this case.
The remaining nine bug reports could not be reproduced because
the S2R text description written in the bug report did not match
with the reproducing UI events. This happens because reporters
may use their own words when describing the steps and the widgets
do not have a meaningful description. In either case, even though
the S2R is given in the bug report, REPROBOT could not find a match
between the given S2R and the correct UI event.

We also analyzed the bug reports that our tool was not able to
reproduce for all three runs. Specifically, we found one bug report
that our approach was only reproduced once and none of ReC-
Droip and YAkuUsU could reproduce it. We found that the reason
is that the provided S2Rs do not match with the UI events. There-
fore, our approach spent a long time figuring out how to match
these S2Rs and was only managed to reproduce it once. Among the
eight bug reports that REPROBOT successfully reproduced twice,
the same reason was also found on four bug reports. For the other
four bug reports, REPROBOT generates a Ul event sequence that
triggers the same error message as the failure reported by the bug
report but in a different way. We did not consider them as true

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

successful reproductions. The potential reason is that REPrRoBoT
stops exploring the AUT once it found the AUT crashes with the
specified error message. Therefore, it may trigger the crash when
performing random exploration.

4.4.3 RQ2.1%&2.2 Contribution of Different Components. Our results
showed that RB, and RBj both performed worse than REPROBOT.
RB, only reproduced 45 bug reports and RBg only reproduced 35
bug reports. Note that REPROBOT was able to reproduce all bug
reports that RB, and RBg were able to reproduce, with exception
of one bug report that only RB, was able to reproduce. The dif-
ference in reproduction results between REPROBOT and the two
variants showed the contribution of the combination of both the
NLP techniques and the RL-based exploration. In comparison to
ReCDRroID, RB,4 reproduced eight more bug reports in total (i.e., 45
to 37), and RBy reproduced two less in total (i.e., 35 to 37). Specif-
ically, RB, succeeded on 14 bug reports where RECDRoID failed,
and RECDRroID succeeded on 6 bug reports where RB, failed. More-
over, RBy succeeded on 1 bug report where RECDRoID failed, and
RECDRoOID succeeded on 3 bug reports where RBj failed.

We further investigated RB,’s result to understand the reasons
behind the changes in its performance compared with REPROBOT.
We observed that the reduced effectiveness of RB, can be primar-
ily attributed to the inaccurate S2Rs extracted by RECDro1D. For
example, when RECDroID misidentified an extra input S2Rs, our
RL-based exploration method was not able to match it with any
UI event. However, even with mistakes in identifying S2Rs, RB,
still outperformed RECDRoID by reproducing 8 more bug reports in
total. This showed that, in many cases, our RL matching algorithm
was able to make up for the inaccuracy in S2Rs.

We also explored the reasons why RBg did not reproduce more
bug reports and found the reasons to be twofold. First, RECDRoID’s
exploration algorithm was found to be less effective in handling low-
quality steps and missing steps. When a report contained poorly-
written or missing steps, the algorithm took a long time to discover
the correct matching, which often caused a timeout. Second, REC-
Drorp’s algorithm failed to leverage some useful information, such
as resource id or content description for a widget from the VH, during
the exploration. The algorithm, instead, only utilized the displayed
text on a given Ul element as a reference when matching it with
an S2R, which was not enough. In conjunction, these limitations
prohibited RBg from effectively utilizing the S2Rs extracted by our
approach.

4.4.4 RQ3 Running Time. The runtime distribution of each ap-
proach is shown in Figure 4. The result of each approach is vi-
sualized within a given row, with the minimum and maximum
running time being 0 and 3, 600 seconds, respectively. Each black
line within an approach’s visualization represents a running time
of the approach for a variable amount of bug reports and the length
each line is proportional to the frequency of the recorded running
time in the dataset. Therefore, the shape of a given approach’s vi-
sualization is determined by its running time distribution over all
bug reports, where a visualization’s width is larger in ranges with
more recorded running times. On average, REPROBOT spent 1,334
seconds (30 on S2R Extraction and 1, 304 on S2R Matching) on each
reproduction, which was the fastest among all three techniques.
In contrast, RECDROID spent 1,991 (4 on S2R Extraction and 1, 987

420

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.)J. Halfond

ReproBot
ReCDroid
Yakusu Cor—— «
0 500 1000 1500 2000 2500 3000 3500
Runtime

Figure 4: Runtime Distribution of the Three Approaches

on S2R Matching) and YAKUsU spent 3, 245 seconds (496 on S2R
Extraction and 2,749 on S2R Matching), on reproduction. These
results show that REPROBOT was faster than RECDRoID and YAKUSU
with regards to reproduction runtime.

4.5 Threats to Validity

4.5.1 External Validity. The primary threat to external validity is
the representativeness of the bug reports in the evaluation dataset.
We attempted to overcome this threat by using bug reports from
related research works, which aided in avoiding biases that could
potentially be introduced by our own search for reports. Note that
similar to RECDroID and YAKUSU, our approach is unable to repro-
duce non-crash bug reports. Therefore, we did not collect non-crash
bug reports in the evaluation dataset.

4.5.2 Internal Validity. One threat to the internal validity is the
potential effect on the experimental results of the randomness of
the RL algorithm used by REprRoBoT for S2R matching. To reduce
this threat, we ran our tool and RB, three times and reported the
running results for each run. An additional threat is potentially
incorrect ground truth for RQ1. This threat was mitigated by having
several authors individually define the RQ1 ground truth and come
to a consensus on the finalized version. Note that neither RECDROID
nor YAKUSU carried out a similar evaluation, so this information
was not provided in their online datasets. The last internal validity
threat is regarding the issues we observed when running YAKusu on
our dataset. These issues came from the limitations of YAkusu’s im-
plementation. As much as possible, we worked to set up compatible
environments that could run the app and tool.

5 RELATED WORK

ReECDRoID [43] and YAKUSU [23] are the most closely related works.
Their approaches rely on manually-crafted patterns to analyze bug
reports and greedy-based exploration to discover the UI events for
reproduction. In contrast, our approach incorporates a combination
of advanced NLP techniques to analyze the bug report, which could
extract S2Rs more accurately. Moreover, our approach leverages
RL to guide the search for UI events, which is more effective at
identifying the reproducing Ul events. Section 2 discusses both in
more detail, and we compare against both RECDRroID and Yakusu
in the evaluation.

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning

There are some research works focusing on studying and analyz-
ing Android bug reports. Johnson et al. [25] conducted an empirical
study on 180 Android bug reports to identify challenges to repro-
ducing Android bug reports. Chaparro et al. [18] conducted an
empirical study on how users report observed behavior; reproduc-
tion steps and expected behavior; and identified discourse patterns
used by reporters. Based on these identified patterns, they designed
an automatic tool to detect which information were missing in bug
reports. However, none of them automatically extracted S2Rs from
the bug report or reproduced the report. Chaparro et al. developed
EULER [17], an automatic technique to assess the quality of S2Rs in
Android bug reports. EULER resolves S2Rs from bug reports using
simple grammar patterns. Different from EULER, our approach holis-
tically analyzes the bug report’s sentences to extract S2Rs, which
is more broadly applicable.

Several previous research works have focused on augmenting
Android bug reports or facilitating the reporting process. Liu et al.
proposed a machine learning based classifier, Maca [27], which
classifies action words of S2Rs into standard categories (click, input
etc.) using both the textual information and the AUT information.
Maca could potentially complement our technique by standardiz-
ing the action. However, MAcA used simple grammar patterns to
extract S2Rs, which limits its capability when it cannot accurately
parse the S2Rs. Fusion, developed by Moran et al. [31], leveraged
dynamic analysis to obtain UI events of the AUT and help create
more actionable events in bug reports during the testing stage.
Fazzini et al. proposed EBUG [22] to assist reporters to write more
accurate reproduction steps by using information from static and
dynamic analysis of the AUT to predict the next step. Yang et al.
proposed an interactive bug reporting system, BURT [35], which
provides a guided reporting of essential bug report elements (i.e., the
observed behavior, expected behavior, and steps to reproduce the
bug), instant feedback of problems with the elements, and graphical
suggestions of the said elements. These three approaches mainly
help improve the quality of the bug report at the moment when
users write the report, but do not reproduce them. Our technique is
complementary to these techniques by automatically reproducing
the reports for developers.

Several works used RL for automatically testing Android apps [14,
32, 37] or web applications [44]. However, different from these
works, we are the first work to adapt RL to the Android bug report
reproduction domain.

6 CONCLUSION

In this paper, we proposed a novel approach to automatically re-
produce Android bug reports. Our approach leverages advanced
natural language processing techniques to holistically and accu-
rately analyze a given bug report and adopts reinforcement learning
to effectively reproduce it. The empirical evaluation shows that our
approach is able to accurately extract reproduction steps from the
bug report and effectively reproduce the bug report. Our approach
outperformed state of the art techniques.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
Grant No. 2211454.

421

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

1]

—

2005. Wikipedia Page of Passive Voice. https://en.wikipedia.org/wiki/English_
passive_voice#Identifying the_ English_passive.

[2] 2017. Bug Report - Transistor 149. https://github.com/y20k/transistor/issues/149.

[3] 2017. OpenlE 5.1 Github repository. https://github.com/dair-iitd/OpenlIE-
standalone.

[4] 2018. Bug Report — Materialistic 1067. https://github.com/hidroh/materialistic/
issues/1067.

[5] 2018. Yakusu Official Website. https://sites.google.com/view/yakusumobile/
home.

[6] 2019. Bug Report — FDroidClient 1821. https://gitlab.com/fdroid/fdroidclient/
issues/1821.

[7] 2019. ReCDroid Github repository. https://github.com/AndroidTestBugReport/
ReCDroid.

[8] 2020. Bug Report — AnkiDroid 6432. https://github.com/ankidroid/Anki- Android/
issues/6432.

[9] 2023. Android Accessibility. https://support.google.com/accessibility/android/

answer/71586907hl=en.

2023. Github Issue Tracker. https://github.com/issues.

2023. Google Code Issue Tracker. https://code.google.com/archive/.

2023. ReproBot Website. https://sites.google.com/usc.edu/reprobot/home.
2023. UI Automator. https://developer.android.com/training/testing/ui-
automator.

David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. 2018.
Reinforcement Learning for Android GUI Testing. In Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Selection, and
Evaluation. ACM, Lake Buena Vista FL USA, 2-8. https://doi.org/10.1145/3278186.
3278187

Nikita Bhutani, H V Jagadish, and Dragomir Radev. 2016. Nested Propositions
in Open Information Extraction. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics, Austin, Texas, 55-64. https://doi.org/10.18653/v1/D16-1006
Matthias Cetto, Christina Niklaus, André Freitas, and Siegfried Handschuh. 2018.
Graphene: Semantically-Linked Propositions in Open Information Extraction.
In Proceedings of the 27th International Conference on Computational Linguistics.
Association for Computational Linguistics, Santa Fe, New Mexico, USA, 2300-
2311.

Oscar Chaparro, Carlos Bernal-Cardenas, Jing Lu, Kevin Moran, Andrian Marcus,
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing
the Quality of the Steps to Reproduce in Bug Reports. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, Tallinn Estonia,
86-96. https://doi.org/10.1145/3338906.3338947

Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting Missing
Information in Bug Descriptions. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, Paderborn Germany, 396-407.
https://doi.org/10.1145/3106237.3106285

Dangi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency
Parser Using Neural Networks. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Doha, Qatar, 740-750. https://doi.org/10.3115/v1/D14-1082
Luciano Del Corro and Rainer Gemulla. 2013. ClauslE: Clause-Based Open
Information Extraction. In Proceedings of the 22nd International Conference on
World Wide Web - WWW ’13. ACM Press, Rio de Janeiro, Brazil, 355-366. https:
//doi.org/10.1145/2488388.2488420

Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld. 2008. Open
Information Extraction from the Web. In Proceedings of the 20th International
Joint Conference on Artifical Intelligence, Vol. 51. Morgan Kaufmann Publishers
Inc., Hyderabad, India, 2670-2676. https://doi.org/10.5555/1625275.1625705
Mattia Fazzini, Kevin Patrick Moran, Carlos Bernal-Cardenas, Tyler Wendland,
Alessandro Orso, and Denys Poshyvanyk. 2022. Enhancing Mobile App Bug
Reporting via Real-time Understanding of Reproduction Steps. IEEE Transactions
on Software Engineering (2022), 1-1. https://doi.org/10.1109/TSE.2022.3174028
Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically Translating Bug Reports into Test Cases for Mobile Apps. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, Amsterdam Netherlands, 141-152. https://doi.org/10.1145/
3213846.3213869

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. (2020).
https://doi.org/10.5281/zenodo.1212303

Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin,
and Mattia Fazzini. 2022. An Empirical Investigation into the Reproduction of
Bug Reports for Android Apps. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, Honolulu, HI, USA, 321-322.
https://doi.org/10.1109/SANER53432.2022.00048

[16

(17

oy
&

[19]

[20

[21]

[22

[23

[24

[25]

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

[26

[27

[28

[29

[30

(31

[32

[33

[34

]

]

Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition (3rd ed.). Vol. 13. Prentice Hall PTR, USA.

Hui Liu, Mingzhu Shen, Jiahao Jin, and Yanjie Jiang. 2020. Automated Classifica-
tion of Actions in Bug Reports of Mobile Apps. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, Virtual
Event USA, 128-140. https://doi.org/10.1145/3395363.3397355

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Comput. Linguist.
19, 2 (jun 1993), 313-330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2. Curran Associates Inc., Red Hook, NY, USA, 9.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. 2004. The
Penn Discourse Treebank. In Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04). European Language Resources
Association (ELRA), 4.

Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, and Denys Poshy-
vanyk. 2015. Auto-Completing Bug Reports for Android Applications. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, Bergamo Italy, 673-686. https://doi.org/10.1145/2786805.2786857
Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement Learning Based Curiosity-Driven Testing of Android Applications.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, Virtual Event USA, 153-164. https://doi.org/10.1145/
3395363.3397354

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind
Joshi, and Bonnie Webber. 2008. The Penn Discourse TreeBank 2.0.. In Proceed-
ings of the Sixth International Conference on Language Resources and Evaluation
(LREC’08), Vol. Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08). European Language Resources Association
(ELRA), Marrakech, Morocco, 8.

Michael Schmitz, Robert Bart, Stephen Soderland, and Oren Etzioni. 2012. Open
Language Learning for Information Extraction. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning. Association for Computational Linguistics,
Jeju Island, Korea, 523-534.

Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin Moran, Andrian
Marcus, and Denys Poshyvanyk. 2022. Toward Interactive Bug Reporting for
(Android App) End-Users. In In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE °22). ACM, Singapore, Singapore, 13.

422

[36

[37

[38

[39

[40

[41

[42

[43

[44

[45

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.)J. Halfond

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

Thi Anh Tuyet Vuong and Shingo Takada. 2018. A Reinforcement Learning
Based Approach to Automated Testing of Android Applications. In Proceedings of
the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation. ACM, Lake Buena Vista FL USA, 31-37. https://doi.
org/10.1145/3278186.3278191

Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. In Machine learning.
279-292. https://aclanthology.org/P13-1045

Tyler Wendland, Jingyang Sun, Junayed Mahmud, S. M. Hasan Mansur, Steven
Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A Dataset
of Manually-Reproduced Bug Reports for Android Apps. In 2021 [EEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, Madrid,
Spain, 600-604. https://doi.org/10.1109/MSR52588.2021.00082

Fei Wu and Daniel S Weld. 2010. Open Information Extraction Using Wikipedia.
In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Uppsala, Sweden, 118—
127.

Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Auto-
matically Extracting Bug Reproducing Steps from Android Bug Reports. In
Reuse in the Big Data Era, Xin Peng, Apostolos Ampatzoglou, and Tanmay
Bhowmik (Eds.), Vol. 11602. Springer International Publishing, Cham, 100-111.
https://doi.org/10.1007/978-3-030-22888-0_8

Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,
William G. J. Halfond, and Tingting Yu. 2022. ReCDroid+: Automated End-to-End
Crash Reproduction from Bug Reports for Android Apps. ACM Transactions on
Software Engineering and Methodology 31, 3 (July 2022), 1-33. https://doi.org/10.
1145/3488244

Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William
G.J. Halfond. 2019. ReCDroid: Automatically Reproducing Android Application
Crashes from Bug Reports. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 128-139. https://doi.
org/10.1109/ICSE.2019.00030

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu.
2021. Automatic Web Testing Using Curiosity-Driven Reinforcement Learning.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE%.
IEEE, Madrid, ES, 423-435. https://doi.org/10.1109/ICSE43902.2021.00048
Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE
Transactions on Software Engineering 36, 5 (Sept. 2010), 618-643. https://doi.org/
10.1109/TSE.2010.63

Received 2023-02-16; accepted 2023-05-03

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Extraction of S2R Entities
	3.2 Matching s2r to ui Events

	4 Evaluation
	4.1 Approach Implementations
	4.2 Dataset Collection
	4.3 Experiment 1
	4.4 Experiment 2
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	References

