
Automatically Reproducing Android Bug Reports using Natural
Language Processing and Reinforcement Learning

Zhaoxu Zhang
University of Southern California

USA
zhaoxuzh@usc.edu

Robert Winn
University of Southern California

USA
rwinn@usc.edu

Yu Zhao
University of Central Missouri

USA
yzhao@ucmo.edu

Tingting Yu
University of Cincinnati

USA
yutt@ucmail.uc.edu

William G.J. Halfond
University of Southern California

USA
halfond@usc.edu

ABSTRACT

As part of the process of resolving issues submitted by users via

bug reports, Android developers attempt to reproduce and observe

the crashes described by the bug reports. Due to the low-quality of

bug reports and the complexity of modern apps, the reproduction

process is non-trivial and time-consuming. Therefore, automatic ap-

proaches that can help reproduce Android bug reports are in great

need. However, current approaches to help developers automati-

cally reproduce bug reports are only able to handle limited forms

of natural language text and struggle to successfully reproduce

crashes for which the initial bug report had missing or imprecise

steps. In this paper, we introduce a new fully automated approach

to reproduce crashes from Android bug reports that addresses these

limitations. Our approach accomplishes this by leveraging natural

language processing techniques to more holistically and accurately

analyze the natural language in Android bug reports and design-

ing new techniques, based on reinforcement learning, to guide the

search for successful reproducing steps. We conducted an empiri-

cal evaluation of our approach on 77 real world bug reports. Our

approach achieved 67% precision and 77% recall in accurately ex-

tracting reproduction steps from bug reports, reproduced 74% of

the total bug reports, and reproduced 64% of the bug reports that

contained missing steps, significantly outperforming state of the

art techniques.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Android, Bug Reproduction, Reinforcement Learning, Natural Lan-

guage Processing

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598066

ACM Reference Format:

Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Hal-

fond. 2023. Automatically Reproducing Android Bug Reports using Natural

Language Processing and Reinforcement Learning. In Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing and Anal-

ysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3597926.3598066

1 INTRODUCTION

In the hyper-competitive world of app marketplaces, app devel-

opers strive to provide their users with interesting features and

high-quality functionality to distinguish themselves from their

competition. An important mechanism for receiving feedback from

users is bug reporting systems, such as GitHub Issues Tracker [10]

and Google Code [11]. These systems enable users to create bug re-

ports in which they can describe the observed failures1 and provide

reproduction steps. Developers can use this information to help

debug their apps. However, the use of this information is compli-

cated by the fact that the bug reports are often informally written in

natural language, imprecise, and incomplete [25, 31, 45]. This can

make it challenging for developers to reproduce the reported failure,

as important steps may be missing or poorly described. Even with

well-written bug reports, reproduction can still be challenging since

mobile apps often have complex event-driven user interfaces that

allow many similar sequences of actions, each of which may or may

not lead to the reported failure. Taken together, these aspects can

make bug report reproduction a time-consuming and error-prone

process, which can undermine the usefulness of the bug reporting

process.

The software engineering community has tried to address this

problem through the development of automated bug report repro-

duction techniques (e.g., [23, 41, 42]). These approaches generally

have two phases. In the first phase (i.e., bug report analysis), the ap-

proaches analyze the natural language in the bug reports in order to

identify the steps to reproduce (S2Rs). Each S2R describes an action

on a user interface (UI) element in the app under test (AUT). In the

second phase (i.e., app exploration), the reproduction approaches

attempt to execute each S2R on the AUT. Both phases represent

significant challenges that make it difficult to fully automate this

process. In the first phase, the natural language is generally un-

structured, written by users without a technical background, and

1We use the word "failure" and "crash" interchangeably in this paper.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

411

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Halfond

has similar concepts described in a multitude of ways [23, 27]. Even

if the first phase could be done perfectly, many bug reports have

missing steps [25, 39]. This complicates the second phase, since

the approaches must either find some ways to identify plausible

missing steps or dead end in their reproduction efforts when no UI

element matches the next S2R. This happens, for example, when

a missing S2R specifies a step that causes a UI element to appear

that is then used by the subsequent S2Rs in the bug report.

Two state of the art approaches for reproducing crashes from An-

droid textual bug reports, Yakusu [23] and ReCDroid [43], define

techniques for handling these challenges. To address the challenge

in the first phase, both approaches extract S2Rs from bug report text

using manually crafted patterns and predefined word lists that map

to standard actions. For example, for the phrase "click the Home

button," these approaches would identify a click action with the

"Home button" as the target. However, these techniques are unable

to handle natural language in bug reports with either previously

unseen words or different sentence structures. Maca [27] designs a

classifier to normalize action words into a standard form, but also

uses simple patterns to parse the sentence and therefore has limi-

tations when handling previously unseen sentence structures. To

address the challenge in the second phase, both approaches employ

a greedy strategy to explore the app and identify possible mappings

of S2Rs to UI events. However, the greedy strategy can lead the

approaches to prioritize matching an S2R with a UI event that is

the most similar, even though choosing a lower similarity match

may allow subsequent S2Rs to match better with other UI events.

This may occur, for example, when there are inaccurately described

or missing steps.

To address the aforementioned challenges, we designed a new

approach for reproducing crashes from Android bug reports. Our

approach follows the same two-phase architecture as prior ap-

proaches, however, for each phase, we developed new algorithms

and designs that enable our approach to be more broadly applicable

– able to handle a wider variety of natural language in bug reports –

andmore successful in matching S2Rs extracted from the bug report

to actions in an app’s UI. We achieved the first of these by develop-

ing a set of analyses that extract S2R information without relying

on predefined patterns. To improve reproduction, we formulate

the task of matching S2Rs with an app’s UI events into a Markov

decision process (MDP). Our approach then identifies the repro-

duction event sequence by leveraging reinforcement learning (RL)

algorithms, specifically Q-learning [38]. Our approach employs

Q-learning to learn how to match the UI events with the S2Rs in

such a way as to bridge missing steps and calculate an overall best

match between S2Rs and a UI event sequence that can lead to the

observed failure. We implemented our approach as a prototype

tool and compared it against ReCDroid and Yakusu. Our results

show that our natural language processing (NLP) techniques help

our approach to handle a wider variety of bug reports and our RL

based exploration leads to a more successful reproduction phase.

Together, these two techniques enable our approach to outperform

ReCDroid and Yakusu by a significant margin and indicate that

our approach significantly improves state of the art bug report

reproduction techniques.

In summary, our paper makes the following contributions:

• We designed a novel NLP based analysis to analyze and

extract reproduction steps from Android bug reports.

• We designed a new exploration strategy, based on reinforce-

ment learning, for exploring Android apps and finding the

match between steps and UI events.

• Based on the above two contributions, we developed a novel

approach to reproduceAndroid bug reports and implemented

it as a tool.

• We conducted an empirical evaluation showing the perfor-

mance of our approach.

• We made the implementation and dataset publicly available

for future research work [12].

2 MOTIVATING EXAMPLE

I attempt to take a photo when viewing the preference

and click the OK button or CANCEL button in the circle.

Figure 1: Bug Report Example

In this section we introduce a motivating example that we will

use throughout the paper to illustrate our approach and highlight

the limitations of existing approaches. The bug report, which is

shown in Figure 1, is based on bug reports that we found in our

evaluation subjects. The bug report describes a crash that occurs

when the user tries to take a photo on the preference page. It

reports four steps (as annotated) that need to be taken for repro-

duction. Although this report seems reasonably clear and is, in

fact, typical of most bug reports, it can cause several problems for

the state of the art automated bug report reproduction techniques

(e.g., ReCDroid [43], Yakusu [23]) when they try to reproduce it.

To reproduce a bug report, these automated techniques first ana-

lyze the natural language of the bug report to determine the S2Rs.

Each S2R is a structured form that contains information describing

the step such as UI action and target widget. Although the text is

seemingly easy to parse (for a human), these automated techniques

would run into several problems when trying to do so automati-

cally. Both techniques try to identify an S2R by matching text in

the bug report to a pre-defined vocabulary of words describing UI

actions. This would make them fail to extract the first step in our

example, which uses a verbal phrase “attempt to take” to express

the UI action, an unusual way to describe a UI action that is not

present in either approach’s vocabulary. Second, after identifying a

UI action, both techniques rely on hand-crafted rules to match other

S2R entities. However, none of these rules are able to identify the

target “photo”. Alternatively, a misidentification may also happen if

the rules are too simple. For example, ReCDroid would identify the

target of the fourth step to be “CANCEL” and “circle”. These inaccu-

rate entity identifications would create noise when the automated

techniques attempt to match the S2Rs in the AUT. Additionally,

both approaches suppose the execution order of S2Rs is the same

as their syntactic order in the text. However, this could lead both of

them to obtain the wrong order of the first two steps. As indicated

by the semantics of the connective word "when" between the first

412

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Bug Report

Temporal

Normalization

S2R Entities

Inference

Reward

Function

AUT
Action

Q-learning

State RewardS2Rs

Reproduction

Scripts

Stage1: Extraction of

S2R Entities
Stage2: Matching S2Rs to UI Events

Figure 2: Workflow of Our Approach

two steps, the second step should happen first and then be followed

by the first step.

Even assuming there is no noise in the S2Rs, these approaches

would face additional challenges during reproduction when they

try to automatically match S2Rs against UI events. First, both tech-

niques employ a greedy approach when matching the S2Rs with UI

events, meaning that they always choose the event that is the most

closely matched with the S2R. This could lead to a local maximum

in the matching process, effectively trapping the exploration and

preventing it from finding a better overall match. Second, both tech-

niques assume that missing steps only occur when there is no UI

event matched with the S2Rs during the exploration. However, the

missing steps could occur exactly when there are events that match

the S2Rs. When the above cases happen, prior reproduction tools

would either fail to reproduce the failure or reduce to an exhaustive

exploration of the AUT.

These limitations of the state of the art directly motivate the

design of our approach. Given a bug report sentence, our approach

first normalizes the execution order of S2Rs in the sentence. To

identify the entities for a S2R, instead of using predefined patterns,

we designed an analysis that infers them from a set of more general

syntactic parts that could be identified from any natural language

sentence. These two steps together allow our approach to have

a more accurate understanding of the bug report sentence and

are also more widely applicable. To match S2Rs and UI events, we

designed an exploration and matching strategy based on MDP and

Q-learning. These techniques enable our exploration approach to

find a way to bridge possible gaps in the S2Rs and at the same time

avoid local search maxima (i.e., that would be found with a greedy

approach). In the next section, we explain our approach’s design

and algorithms for doing this in more detail.

3 APPROACH

The goal of our approach is to automatically reproduce the crashes

described in the text of Android bug reports. The input of our

approach is S2R sentences — natural language sentences describing

reproduction steps, and the AUT. At a high-level, Figure 2 shows the

two stages of our approach: Extraction of S2R Entities andMatching

S2Rs to UI Events. In the first stage, our approach analyzes the S2R

sentences to extract the S2R entities defining each step in the bug

report. The entities we extracted include information such as the

type of UI action to be performed and the target of the action. Our

approach leverages a combination of natural language techniques

to systematically analyze S2R sentences to extract the entities more

accurately. In the second stage, our approach explores the app to

S

NP VP

PRP

I

VP

VBP SBAR

when ...

VPCC

and

attempt ...

click ...

(a) Constituency Parsing Tree

I view the preference.

I attempt to take a photo.

I click the OK button in the circle.

(I click the CANCEL button in the circle)

(b) Reordered Sentences

Figure 3: Example of S2Rs Reordering

match the S2Rs to UI events in the AUT. We formulate this task as

a Markov decision process (MDP) and use the Q-learning algorithm

to identify the matched UI events. The combination of MDP and

Q-learning allows our approach to effectively bridge missing steps

and identify the UI events for reproduction.

3.1 Extraction of S2R Entities

The first phase of our approach analyzes the given sentences and

extracts the individual steps from them. For each of these sentences

our approach first carries out a temporal normalization analysis

that extracts the S2Rs in the sentence, converts them to standalone

sentences, and then reorders them based on the implied temporal

relationships in the original sentence (Section 3.1.1). The ordered

standalone sentences are then each analyzed to infer the entities of

an S2R — important reproduction information, such as the target

widget, action type, and input values (Section 3.1.2). Our S2R entity

inference is notable from related work since it does not require the

sentence to match one of a predetermined set of patterns. The final

output of the first phase is a list of S2Rs entities, each correspond-

ing to a reproduction step that the second phase of our approach

(Section 3.2) will use as it attempts to reproduce the bug report.

3.1.1 Normalizing the Temporal Order of S2Rs. The first step of the

extraction analysis normalizes the temporal order of S2Rs described

in a bug report sentence. For example, this step would address the

problem shown in the text of Section 2, where the bug report sen-

tence has multiple conjuncted S2Rs whose intended execution order

is not the same as their syntactic ordering. Reasoning about the

temporal relations among S2Rs is challenging due to the use of com-

plex sentence structures, such as nested clauses and phrases. Our

insight is that this temporal ordering information can be extracted

by accounting for the semantics of connectives utilized between

clauses or phrases in a bug report sentence. To take advantage of

this insight, we designed an analysis that, given an S2R sentence,

413

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Halfond

recursively: (1) extracts the conjuncted S2R text spans (i.e., clauses

or phrases) and connectives, (2) converts each S2R text span into a

standalone sentence, and then (3) reorders the standalone sentences

based on the connectives between them. Each round of our analysis

generates a pair of reordered standalone sentences. Our analysis is

recursively performed on the generated sentences until no more

conjuncted S2Rs can be identified. The output of our analysis is

a list of the standalone sentences in the inferred order. We next

describe the details of each part of our analysis in detail, illustrating

the analysis using the sentence in Figure 1.

As a preprocessing step, each round of our analysis takes a given

sentence and converts it into a standard structure for represent-

ing a natural language sentence. This structure is known as the

constituency parsing tree (CPT) and captures the syntax of a sen-

tence from the perspective of constituency grammars [26]. Figure 3a

shows the CPT of the sentence in Section 2, which is computed

using standard NLP parsers [19]. Each terminal node of the CPT de-

notes a word in the sentence and each non-terminal node represents

a type of constituency, which captures the use of all terminal nodes

in its sub-tree as a single unit [28] (e.g., NP for a noun phrase).

Given the CPT, our analysis first extracts the conjuncted S2R

text spans (i.e., clauses and phrases) and their connectives in the

sentence. In order to extract the text spans, our analysis traverses

each constituency tag in the CPT from top to bottom and identi-

fies two types of conjunction: coordination and subordination, as

defined in standard English grammar rules [26]. To identify coordi-

nation, our approach searches for tags whose parent-child structure

satisfies the coordination grammar [26]. For example, the grammar

for coordinated clauses is defined as "(→ (�� (", which indi-

cates that a parent constituency ((sentence) has three children:

two sub-clauses and a connective �� between them. By identify-

ing such a parent constituency (, our analysis can find the two

coordinated sub-clauses and their connectives from its children. To

identify subordination, our approach searches for its corresponding

constituency tag, (��', which represents subordinating clause,

and takes the words rooted at this tag as the text for a subordinate

clause and the first word in the clause as the connective. This step

of our analysis returns the first pair of conjuncted text spans it

identifies as it traverses the CPT from top to bottom. This ensures

that every round of analysis identifies the most outer conjuncted

text spans. For example, given the CPT in Figure 3a, our approach

identifies two coordinated verbal phrases (VP) as highlighted and

the word "and" as the connective in the first round of analysis.

The next step of our analysis transforms each text span identified

by the previous step into a standalone sentence. This transformation

is necessary since part of the text in the original sentence may be

shared by the conjuncted texts (e.g., the subject "I" is shared by

all the four S2Rs in the sentence in Figure 1). Only extracting and

reordering the conjuncted text will lose such information. To do

this, our approach first removes the conjuncted constituency tags

(identified in the previous step) and their sub-tree from the original

CPT. This gives us the part of the original CPT that is shared by

the conjuncted text spans. Then our approach duplicates this part

and joins it to the subtree of each conjuncted text to form new

CPTs, representing the transformed sentences. To illustrate this

transformation, after identifying the two highlighted verbal phrases

in Figure 3a, our approach extracts the left subtree of the root node,

which indicates the subject "I", duplicates it, and rejoins it to the

subtree of each verbal phrase. This forms two standalone sentences.

The last part of our analysis infers the intended execution or-

der of the transformed standalone sentences. Our inference is

based on the semantics of the connectives between the sentences.

To obtain a comprehensive view of connectives used in English

text and their semantics, we referred to the Peen Discourse Tree-

bank (PDTB) [30, 33]. The PDTB contains a large-scale annotation

on the English connectives and provides a comprehensive catego-

rization based on their semantics. Our approach focuses on the

connectives with semantics in two categories from PDTB: temporal

succession and alternative. Connectives in the first category indicate

that the second conjuncted text span happens earlier than the first

conjuncted span, and connectives in the second category indicate

that the conjuncted text spans could be used alternatively to rep-

resent the meaning of the sentence. The reason to focus on these

two categories is that connectives within them would affect the

temporal order or the selection of S2Rs. To perform the temporal

inference, given the connective, our approach first checks which

category it belongs to. If the connective belongs to the first category,

our approach reverses the order of conjuncted sentences. If the con-

nective belongs to the second category, our approach only selects

one from the given sentences. For the example in Figure 1, our ap-

proach would reverse the order of standalone sentences generated

by the first two S2R text spans as it finds the connective "when"

indicating a temporal succession semantics. Figure 3b displays the

final sentence list generated by our tool where each sentence only

contains one reproduction step and their ordering is normalized.

3.1.2 Inferring S2R Entities from Standalone Sentences. The goal

of this part of the approach is to infer S2R entities from the stan-

dalone sentences produced by the analysis in Section 3.1.1. These

S2R entities will be used in the exploration phase of the approach

(i.e., Section 3.2) to navigate the UI of the AUT. We formally define

the entities of a S2R as ⟨target widget, UI action, input value, target

direction⟩. Taken together, these elements represent the UI event

described in the standalone sentence. Prior work [23, 43] targeted

the identification of a similar set of S2R entities. However, as we

discussed in Section 2, these approaches can only work for prede-

fined sentence patterns since they require a mapping of parts of

the pattern to the S2R entities. Our insight is that each of these

S2R entities can instead be inferred based on more general syntac-

tic constituents (i.e., subject, predicate, object, and modifier) of a

sentence. For example, the predicate of a sentence, regardless of

where it appears in a given sentence, can be used to infer the action

performed by the user. This insight allows our approach of extract-

ing S2R entities to work on any standalone sentence, regardless of

its form, as long as it can be decomposed into these syntactic con-

stituents — a condition that would be satisfied by any standalone

sentence produced by our analysis in Section 3.1.1. Our approach

leverages this insight as follows. First, given a standalone sentence

produced by the analysis in Section 3.1.1, our approach decomposes

the sentence into its syntactic constituents using standard open

information extraction (Open IE) techniques [15, 16, 20, 21, 34, 40].

In the second step, our approach identifies the text in the sentence

that defines the S2R entities by using inference rules based on these

syntactic constituencies. In the remainder of this section, we first

414

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

give an example of the syntactic constituents that our approach

works on and then define the inference rules we use for each entity.

For background purposes, we provide an example of the syntactic

constituents using the last sentence in Figure 3b. The predicate of

this sentence is "click," the subject is "I", the object is "the CANCEL

button," and the modifier is the phrase "in the circle". Notably, not

all of them exist in every sentence. To retrieve all these constituents,

our approach in practice employs a recent Open IE technique [16].

Next, we explain the rules we defined to infer each S2R entity.

The targetwidget is the text description of the UIwidget that the

user interacts with in the S2R. The part of the sentence that contains

the target widget depends on the voice with which the sentence

was written. If the sentence is written in an active voice, the target

widget is defined in the sentence object (e.g., "I click the button").

Otherwise, if the sentence is written in the passive voice, the target

widget is defined in the subject of the sentence (e.g., "The button

is clicked"). Therefore, to identify the target widget, our approach

first infers the voice of the sentence. The voice can be determined

simply by checking whether the predicate is in a form of a static

verb and a verb in its past participle (e.g., is clicked) [1]. Based

on this determination, our approach extracts either the subject

or object text, which is part of the syntactic constituents defined

previously and then uses this text for the target widget.

The UI action represents the type of interaction that the sen-

tence describes as performed on the AUT. This naturally corre-

sponds to the predicate part of the sentence. If the sentence does

not have a predicate (e.g., "Setting button."), our approach takes

click as the default UI action. Otherwise, our approach maps the

predicate to one of the five standard actions that can be performed

on an Android UI: click, input, rotate, swipe, and scroll. However,

the key challenge is that actions may be described using a wide

range of words, so there is no direct mapping from the predicate

to the known action types. Existing approaches rely on a predeter-

mined list of synonyms for each known action type to identify a

direct mapping. The limitation of this approach is that if the pred-

icate uses previously unseen words, it cannot be classified. Our

insight is to classify the UI action type of a given predicate based

on its semantic similarity with a set of synonyms defined for each

standard UI action.

Our approach for action type identification is as follows. We

assume the availability of a word list, as used in related approaches

(e.g., [43]), that contains a group of synonyms for each standard

action type. For example, "press" and "tap" for the click action. To

handle action types described using words that are not in the list,

we introduce the idea of semantic similarity to the action type

identification. Our approach computes the semantic similarity of

the predicate with a group representing the action type and its

synonyms. The semantic similarity enables our approach to know

which type of standard UI action the predicate is most similar to

semantically. Following the classic method [29], given two words

or phrases, we compute their semantic similarity as the cosine dis-

tance of their word embeddings, the vector representation of a text,

obtained from a pre-trained language model, such asWord2Vec [29].

Our approach considers the group with the highest semantic sim-

ilarity to be the inferred action type. However, if the similarity

score difference of the top two groups is within a threshold X then

both of the corresponding action types are considered during the

reproduction phase (i.e., Section 3.2). This aspect of our approach

allows it to more flexibly handle words that could be interpreted in

multiple ways. For example, the word "change" could be interpreted

as a click action or an input action in different cases. If the inferred

action type is rotate, our approach also checks whether its inferred

target widget describes the screen or the device. If neither is de-

scribed, our approach chooses the next highest scored UI action as

the result. The reason for this is that intuitively the rotation action

is performed on the whole device or the screen instead of a specific

widget, so if neither is the target widget, then the action is not

rotate. This heuristic helps our approach identify rotation action

more accurately.

The input value is the text to be entered for an input action.

This information can be inferred by analyzing the object and the

modifier part of a sentence. Due to the way actions are described in

the English language, input values are associated with their targets

using prepositional phrases. This is captured by the modifier of

a sentence. However, depending on the preposition used in the

modifier, the input value may be contained in different constituents

of the sentence. For example, for the sentence “I enter A on B”, the

input value A is captured by the object. However, for the sentence

“I fill A with B”, the input value B is contained in the modifier.

Therefore, our approach identifies the input value based on the

preposition used in the modifier. If the modifier starts with the

preposition "with", our approach extracts the text following it as

the input value. If the modifier starts with a preposition in {"in",

"on", "into", "onto", "at"}, our approach uses the object as the input

value. It also replaces the previously identified target widget with

the modifier text. In the case that there is no modifier identified in

the given sentence, which happens when reporters only specified

the input value or target widget as the object of the sentence (e.g., "I

enter a number 13"), our approach takes the object text as the input

value. Our approach employs two heuristics to refine the identified

input value text to make it more precise. First, if the input value

text contains numbers, our approach only keeps the number as

the input value. The reason for this heuristic is that reporters may

include other words or phrases when describing the input number

as the underlined phrase in the previous example. However, the

input value to reproduce the failure needs to be very precise, in

this case, only the number is entered. Second, if the text uses a text-

based description of a special value, such as "space", our approach

replaces it with the corresponding literal value.

The target direction defines the intended direction for a scrolling

action (i.e., up or down) or a swiping action (i.e., left or right). The

direction is also expressed in the object portion of a sentence. For

example, "I scroll down". Given the simplistic nature of this entity,

we found it sufficient for our approach to directly search for di-

rectional keywords in the object text and use those as the target

direction.

3.2 Matching S2Rs to UI Events

The second phase of our approach explores the AUT to match

the S2Rs to UI events that reproduce the failure. As explained in

Section 2, for state of the art techniques, their exploration-based

process of finding such UI events is limited due to the problems of

local optimums and missing steps. Our approach addresses these

415

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Halfond

challenges by defining the matching problem as a Markov deci-

sion process (MDP) and using a type of reinforcement learning

algorithm, Q-learning, to find the desired UI event sequence.

The combination of MDP and Q-learning is well-suited for our

problem domain and addressing these challenges. The expected

reward used by Q-learning combines the immediate reward for

the current action and the accumulated reward of potential future

actions. This enables our approach to avoid local optimums by

allowing it to consider and evaluate a UI event that itself may not

be the closest match with the S2Rs but leads to subsequently better

matched UI events. For missing steps, a similar mechanism can be

leveraged. In this case, a no operation (no-op) is added to the actions

in the MDP for a given state. When combined with the Q-learning

future rewards, this effectively allows our approach to evaluate the

total expected rewards if it assumes the next step is missing. The

no-op action can be added repeatedly to simulate the possibility

of multiple missing steps. Taken together, the combination of Q-

learning and MDP enables our approach to break out the local

optimum and bridge missing steps effectively.

In the following sections, we first provide a formal definition

of our instance of the MDP, which maps it to the problem of S2R

matching (Section 3.2.1). Next, we explain how our approach utilizes

Q-learning on this MDP to find a UI event sequence that reproduces

the bug report (Section 3.2.2).

3.2.1 Formulation of Markov Decision Process. In our approach, we

define an instance of the MDP to describe the process of matching

S2Rs with UI events in the AUT. The MDP is formally defined as a

tuple ⟨S,A,P,R⟩ where S is the state set, A is the action set, P

is the transition function, and R is the reward function. We define

each part of the MDP for our problem as follows:

S: States The state represents the MDP at each time step. We

define a state of the MDP as B = ⟨�, '(, =⟩. The first element � is

the current view hierarchy (VH) of the AUT, which includes all the

widgets on the UI as well as their attributes. The second element

'(is a list of the remaining S2Rs that are not yet matched. The last

element = is an integer indicating the remaining amount of no-op

actions that are available for the matching process. Our approach

defines a finite limit on no-ops actions to avoid the situation where

the reproduction phase can endlessly explore an app along all paths

with no likely matches. Allowing an infinite number of missing

steps would be unrealistic, implying a bug report that had an infinite

(or extremely large number) of missing steps. We define the initial

state as B0 = ⟨�0, '(0, =0⟩ where �0 is the VH of the UI where the

reproduction starts, '(0 is a list containing all of the S2Rs in the

bug report identified by the first stage analysis of our approach

and =0 is the total number of allowed no-op actions during whole

matching process. We define the terminal state of the MDP as BC ,

which has no available actions, i.e., it is the ending of the matching

process. This happens when our approach matches all S2Rs and

used all available no-op actions.

A: Actions In the context of S2R matching problem, the action

represents a match between a UI event and an S2R. (Note, this

terminology can be confusing since in Section 3.1.2, action refers

to the standard Android operations, such as click and swipe.) We

formally represent an action 0 as ⟨4, AB⟩ where 4 is the UI event that

is chosen to be executed on the AUT and AB is the step matched

with the UI event. To handle missing steps, we define a special

action, no-op, which is denoted as ⟨4,−⟩ where the dash represents

a placeholder for a missing step. We will discuss how our approach

identifies available actions at a given state in Section 3.2.2.

P: Transition Function The transition function of an MDP

takes in the current state B and the selected action 0 and returns the

next state B ′. In our problem domain, the transition to next state

happens in two steps. First, our approach executes the UI event 0.4

on the AUT and extracts the new VH produced by the app. Then,

our approach dequeues the selected step from B .'(or decreases B .=

if 0 is a no-op action. The new VH and the possibly updated values

of '(and = are returned as the new state.

R: Reward Function The reward function generates a value

indicating the quality of the action, i.e., the quality of the match

between an S2R and a UI action. Our reward function evaluates

an action as a sum of three subscores: similarity score, exploration

penalty, and failure state penalty.

The similarity score measures the similarity between an action’s

UI event and S2R. It guides our approach to explore UI events closely

related to the descriptions in the bug report. The computation of

similarity scores is done in two ways. First, for actions matching

with UI events interacting with a specific widget, i.e., click and input

events, the similarity score is computed as the textual similarity be-

tween the description of the widget on the UI and the target widget

entity of the S2R. This textual similarity indicates how related the

UI event is to the S2R. To do this, our approach analyzes the VH of

the UI and extracts three attributes of the widget as its description:

(1) text: This attribute is the text appearing on the widget, which is

readily available to bug reporters; (2) id: This attribute contains the

file name of the linked resources used in the widget, such as icons.

The file name is normally meaningful and descriptive of the content

it contains [23]; and (3) content description: This is the description

of the widget defined by the developers. Its content is used by An-

droid accessibility service (e.g., screen reader) when describing a

widget to people with disabilities [9]. Therefore it is supposed to

contain a meaningful and informative explanation of the widget.

Our approach computes the semantic similarity of the text in the

target widget entity with each of these three description texts, using

the same approach described in Section 3.1. Our approach uses the

highest of these three values as the overall similarity score, as long

as the value is above a threshold 3 that represents the similarity of

non-synonym words [43]. However, if the value is not above this

threshold then our approach considers them not to be synonyms

and assigns a default negative score A3 . The rationale for using the

maximum of the three values is that our approach cannot know

which of these three descriptions sources would be used by the

bug reporter, so this mechanism allows for using the best or most

informative fit. Second, for actions that match with rotate, scroll,

swipe, or the no-op, our approach assigns their similarity score as

the default score A3 . The reason for this is that for these actions, the

matched UI event does not interact with a specific UI widget or the

matched S2R is not a concrete step from the bug report. Therefore,

our approach cannot compute a score to show the relevance or

similarity for the UI event and the S2R.

The exploration penalty is designed to encourage our approach

to select meaningful UI events during exploration (i.e., the ones that

result in changes on the UI). For example, in the UI with a tab, it is

416

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 1:Matching S2Rs to UI Events

Input: the app under test �*) , steps to reproduce (2'B ,

timeout C , error message<

Output: reproduction UI events

1 & ← ∅ ; /* initialize Q-table */

2 while ¬C8<4>DC (C) do

3 B8+1 ← B0 ; /* reset to initial state */

4 � ← ∅;

5 while true do

6 B8 ← B8+1;

7 A ← inferActions(B8);

8 if randomNum() < n then

9 08 ← rand({0 ∈ A | 0 ≠ 0A6<0G0′& (B, 0
′)});

10 else

11 08 ← 0A6<0G0& (B, 0);

12 end

13 � ← � ∪ 08 .4;

14 B8+1 ← P(08 , B8 , �*));

15 if success(<) then

16 return E;

17 end

18 A ← R(08 , B8 , B8+1);

19 & (B8 , 08) ← (1 − U)& (B8 , 08) + U (A + W&
∗ (B8+1, 0));

20 if B8+1 is a terminal state then

21 break;

22 end

23 end

24 end

meaningless to click the current tab button again. To do this, our

approach evaluates the VH before and after executing the selected

UI event. If all the widgets and their attributes on the VH remain

the same, our approach gives an exploration penalty to the action.

Note that our definition of state includes the attributes of each

widget in the view hierarchy. Therefore, UI events, such as clicking

checkboxes or inputting, will change the attributes of widgets (in

this case, the “checked” or "text" attribute will be changed) and our

approach will not generate an exploration penalty for these events.

The failure state penalty A 5 is assessed when the selected action

leads to a terminal state that does not reproduce the observed failure.

This penalty discourages the exploration of event sequences that

do not lead to the observed failure.

3.2.2 Match S2Rs to UI Events. This part of our approach utilizes

Q-learning to find a UI event sequence that matches the given

S2Rs and reproduces the observed failure of the bug report. Our

approach is described in Algorithm 1. As input, our approach takes

the app under test (AUT), steps to reproduce (S2Rs), a time budget

(t), and the error message (m) of the observed failure as inputs.

Our approach then iteratively explores the AUT, guided by the

Q-learning, to find a UI event sequence that reproduces the failure.

The iterative exploration starts from the initial state B0 (Line 3).

At each iteration, our approach first identifies all the possible actions

(A), available in the current state B8 (Line 7). Recall that an action

in the MDP is actually a possible match between an S2R and a UI

event. Our approach identifies the set of possible matches from

two sources. First, the match set includes the cross product of all

available UI events in the UI and the next S2R in B8 .'(, if the two

represent the sameUI action. In the case that our approach predicted

two possible types of UI actions for a S2R, it includes matches for

both of them. Second, the match set also includes a possible no-ops

match for all UI events if the no-op limit has not been reached at B8
(i.e., B8 .= > 0).

After identifying the set of all possible matches, our approach

selects one match and performs the matched UI event on the AUT.

Our approach selects the match using the epsilon-greedy algo-

rithm [36], a standard method for Q-learning. Specifically, with

probability 1 − n , our approach will choose the match with the

highest Q-value (Line 11) or with probability n , select a random

one from the matches with lower Q-value (Line 9). In practice, our

approach sets the n with a low value so that our approach can focus

on exploring the current optimal choice (i.e., the match with highest

Q-value) in most time in order to match more S2Rs along this path,

but also have chance to explore other random actions to break out

the local optimum. It is worth emphasizing that, the epsilon-greedy

policy gives our approach a chance, at any given state, to explore

lower-scored matches which could be a match between a UI event

that is not the most similar to the S2R or a match with a missing

step holder. By doing this, our approach could evaluate their future

rewards, which enables it to effectively escape the local optimal

during the exploration and, in combination with the no-op, bridge

missing steps. In the case that a previously unexplored state is

matched, the initial Q-value for all the actions is set to its similarity

score as defined in Section 3.2.1. By doing this, our approach is given

a pre-knowledge of the potential reward of each action so it can be

more effective in selecting a better match with less exploration. For

the scroll, swipe, or rotate actions, since a similarity score is not

defined, the approach assumes a similarity threshold 3 (defined in

Section 3.2.1) as their initial Q-value. This adjustment ensures that

these impactful actions will be explored. The selected UI event is

stored in an event list, which is returned in the case of successful

reproduction (Line 13). By calling the transition function, our ap-

proach executes the selected UI event on the AUT and updates the

current state (Line 14).

After executing the UI event in the selected match, our approach

then determines its reward using the reward function R (as defined

in Section 3.2.1) and updates its Q-value using the Bellman function

(Line 19). Note that U and W are standard parameters defined in

the Bellman function. In the case of encountering a terminal state

(Lines 20 to 21), our approach resets the current state and restarts

the exploration. Our approach terminates either when the timeout

occurs or the failure is successfully reproduced (Line 16). The suc-

cess of the reproduction is determined by checking whether the

AUT crashes with the specified error message (Line 15).

4 EVALUATION

In this section, we evaluated the effectiveness and runtime of our

approach. We also compared our approach against two state of the

art Android bug report reproduction approaches, ReCDroid and

Yakusu. Our evaluation addressed the following research questions:

417

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Halfond

RQ1 How effective is our approach in identifying S2Rs?

RQ2 How effective is our approach in reproducing Android bug

reports?

RQ2.1 How helpful is the NLP technique for reproduction?

RQ2.2 How helpful is the RL-based exploration for reproduction?

RQ3 What is the running time of our approach?

4.1 Approach Implementations

For the purposes of the evaluation, we implemented a prototype,

ReproBot, of our approach. The core algorithms of our approach

are implemented in Python, and we leveraged functionality from

several well-known libraries: Graphene [16] and OpenIE5 [3] to

identify syntactic constituents in natural language text; UIAutoma-

tor [13] to interact with Android apps, and Spacy [24] to com-

pute the semantic similarity of texts. Our implementation is pub-

licly available via the project website [12]. We obtained the imple-

mentations of ReCDroid [43] and Yakusu [23], two state of the

art reproduction tools on Android bug reports, from their public

websites[5, 7]. Our experiments were performed on Android emu-

lators on a physical x86 Ubuntu 20.04 machine with eight 3.6GHz

CPUs and 32G of memory.

4.2 Dataset Collection

To evaluate our tool, we built a dataset containing 77 bug reports.

We collected the bug reports from the artifacts of four related works:

(1) the evaluation dataset of ReCDroid [42, 43]; (2) the evaluation

dataset of Yakusu [23]; (3) an empirical study on Android bug

report reproduction [25], and (4) an Android bug report dataset [39].

Altogether, there were 199 bug reports from these four sources. For

each bug report, the authors interacted with the corresponding app

to both ensure that the selected bug report was reproducible and to

remove any duplicates. As part of this process, we also separately

documented the steps that weremissing from the bug report but that

were necessary to reproduce the reported failure, and recorded the

specific error message written to the Android device log when the

failure occurred, which was then used by our approach to determine

whether a bug report’s crash was successfully reproduced. During

this process, a total of 99 bug reports were found to be no longer

reproducible and 23 were duplicates, leaving us with 77 bug reports.

The lack of reproducibility of a given bug report was generally

attributable to one or more of the following reasons: the lack of

available apks or bug reports (due to an expired link), environmental

configuration issues that were not resolvable, or failure to obtain the

necessary setup information for the app (e.g., personal accounts or

specific inputs). Additionally, we manually analyzed and identified

the ground truth for each S2R within the 77 bug reports, specifically

its UI action, target widget, input value, and target direction. The

average, median, minimum and maximum steps of the ground truth

of the bug reports were: 3, 3, 1, and 9. However, after manually

reproducing each bug report and identifying the actual number of

required steps for each bug report reproduction, we found that the

average number of required steps increased to 6, the median to 5,

and the maximum to 26, while the minimum remained at 1.

4.3 Experiment 1

4.3.1 Protocol. The first experiment evaluated the accuracy of

ReproBot in identifying S2Rs and compared these results with

those of ReCDroid and Yakusu. To do this, we ran ReproBot,

ReCDroid, and Yakusu on our dataset and verified the correctness

of all identified S2Rs against the ground truth. An S2R extracted by

a tool was determined to be correct if all of the following conditions

were satisfied: (1) the action type was an exact match with the

action type from the ground truth; (2) the target widget, if it existed,

included target widget words from the ground truth; (3) the input

value, if it existed, was an exact match with that from the ground

truth; and (4) the target direction, if it existed, was an exact match

with that from the ground truth. As metrics for the accuracy of

the three tools, we calculated precision by dividing the number of

correctly extracted S2Rs by the total number of extracted S2Rs, and

calculated recall by dividing the number of correctly extracted S2Rs

by the total number of S2Rs in the ground truth.

Table 1: S2R Extraction Results

S2Rs Correct S2Rs Precision Recall

ReproBot 294 198 67% 77%

ReCDroid 220 116 53% 45%

Yakusu 260 147 57% 57%

4.3.2 RQ1 S2R Entity Extraction Results. Experiment 1’s results

are presented in Table 1. For each approach, the column “S2Rs”

denotes the total number of S2Rs extracted by the given approach,

and “Correct S2Rs” denotes the total number of correctly extracted

S2Rs. Note that the total number of S2Rs in the ground truth was

256. The results show that ReproBot could identify more S2Rs

and was more accurate, in terms of precision and recall, than both

ReCDroid and Yakusu in doing so.

We also investigated the specific reasons for our tool’s inaccurate

S2Rs and found five categories of root causes: (1) The UI action

word list used by ReproBot was not comprehensive. For example,

because ReproBot was unable to find a semantically similar word

in the word list for the click action, our approach misclassified

the word "navigate" as an input action. Our approach was unable

to accurately classify the UI action of a given predicate word in

these cases. (2) The imprecision of the underlying NLP techniques

was also found to be a cause of failure in our tool. Specifically, the

underlying techniques occasionally failed to identify the syntactic

constituents accurately, which caused our tool to misidentify the

target widget. Additionally, the underlying tool sometimes failed to

identify conjunction relations between clauses, which caused our

tool to miss the S2Rs in those clauses. (3) A few S2Rs were found to

have target widgets described via the predicate of the sentence. In

these cases, our tool failed to extract the target widgets. An example

of this is “I finish the dialog”, where it expresses a step to press the

“finish” button in the AUT. ReproBot was unable to extract the

target widget in this case since it assumes the predicate is used for

describing the UI action. (4) Bug reports were occasionally found

to have utilized a special or unique way to express required input

values to trigger a crash. Our tool relies on bug reports expressing

418

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

input values in the specific literal form for input, rather than us-

ing descriptive language, and, thus, failed to extract input values

correctly when these situations occurred. For example, one bug

report included “enter a number larger than Integer.MAX_VALUE”.

ReproBot did not identify the correct input value because it was not

directly specified in the bug report. (5) A few bug reports contained

text that either did not relate to or was not required to reproduce

the described crash. In these situations, our tool often extracted

extra S2Rs from such sentences, which were not intended to be

a part of the desired reproduction steps. Our approach assumes

that all text contained within a given bug report is intended to be

included in the reproduction process, which can lead to failure if

this was not the case. Our tool is unable to identify sentences that

should not be considered a part of the reproduction process.

4.4 Experiment 2

4.4.1 Protocol. The second experiment evaluated the effectiveness

(RQ2) and running time (RQ3) of our approach. To carry out this

experiment, we ran ReproBot on the collected dataset, and then

compared its results against those of ReCDroid and Yakusu. In

addition to RQ2, we introduced two sub RQs that evaluated the

contributions of the two parts of our approach independently. RQ2.1

evaluated the S2R extraction (Section 3.1). For this RQ, we created

a variant of our approach, RBa, that did not use the S2R extraction

method described in Section 3.1, and instead, utilized the S2Rs

extraction method from ReCDroid to drive the reproduction phase.

RQ2.2 evaluated the S2R matching approach (Section 3.2). For this

RQ, we created another variant of our approach, RBb, which did

utilize the S2Rs extracted by our approach, but used ReCDroid’s

exploration algorithm instead of the Q-Learning approach defined

in Section 3.2. Note that we used ReCDroid’s implementation for

these variants since its implementation dependencies were more

readily updated and its results in RQ2 showed it could be more

easily adapted to run on newer and more modern subjects.

To compute effectiveness, we ran the three approaches and two

variants on each of the bug reports in the dataset. Following pre-

vious related works [23, 43], each tool had a time limit of 3,600

seconds per bug report, and if the tool exceeded this time or threw

an exception, then we considered the reproduction to have failed.

For each successful reproduction reported by a tool, we manually

replayed the identified event sequence to determine if it correctly

reproduced the target failure. Since our Q-Learning based reproduc-

tion is non-deterministic, we ran ReproBot and RBa three times

on each bug report. If a tool succeeded at reproducing a given bug

report at least once, then the reproduction of the said report was

deemed a success. To address RQ3, we measured the running time

of all the approaches on each bug report. For ReproBot, we took

the average of the three runs.

Table 2: Bug Report Reproduction Results

SR MSR

ReproBot 57 (74%) 32 (64%)

ReCDroid 37 (48%) 21 (42%)

Yakusu 9 (12%) 3 (6%)

4.4.2 RQ2 Effectiveness. The reproduction results of each approach

are presented in Table 2. The column “SR” denotes the number and

percentage of our dataset’s 77 bug reports that could be success-

fully reproduced by each approach, and the column “MSR” denotes

the number and percentage of the subset of 50 bug reports with

missing steps that could be successfully reproduced by each ap-

proach. As shown by the results, ReproBot was able to reproduce

more bug reports overall and reproduce more among the subset of

bug reports that had missing steps than ReCDroid and Yakusu.

Among the bug reports successfully reproduced by ReproBot, 98%

were reproduced more than once, which demonstrates the stability

of the performance of our tool. Specifically, of the three runs of

ReproBot, 1 bug report was successfully reproduced once, 9 twice,

and 47 all three times. Taken together, these results demonstrate

that ReproBot can reproduce Android bug reports more success-

fully than current state of the art approaches (i.e., ReCDroid and

Yakusu).

One possibly confounding factor that we mention here is that

Yakusu’s implementationwas tightly coupledwith specific versions

of Espresso and the Android OS. In turn many of our more modern

apps required more recent versions of Android. While many of

these apps could run with Yakusu, we confirmed with the authors

of Yakusu that this issue could affect the generalizability of Yakusu

on new apps.

We further analyzed the reasons for the 20 bug reports that our

tool was unable to reproduce. Among them, eight reports could not

be reproduced because the total number of missing steps in the bug

report exceeded the limit of no-op actions set in ReproBot. For

example, the reproduction of AnkiDroid-6432 [8] required 26 steps,

20 of which were missed in the bug report. Two reports, Transistor-

149 [2] and Materialistic-1067 [4], could not be reproduced since

the reproduction required pressing a button very quickly and the

crash was non-deterministic. One report, FDroidClient-1821 [6]

was failed to be reproduced because ReproBot failed to extract

an S2R from the bug report due to the failure of the underlying

tool. ReproBot failed to bridge the missed step, since the step is to

click a specific button in a long list containing many other possible

buttons. ReproBot failed to infer the correct button in this case.

The remaining nine bug reports could not be reproduced because

the S2R text description written in the bug report did not match

with the reproducing UI events. This happens because reporters

may use their ownwords when describing the steps and the widgets

do not have a meaningful description. In either case, even though

the S2R is given in the bug report, ReproBot could not find a match

between the given S2R and the correct UI event.

We also analyzed the bug reports that our tool was not able to

reproduce for all three runs. Specifically, we found one bug report

that our approach was only reproduced once and none of ReC-

Droid and Yakusu could reproduce it. We found that the reason

is that the provided S2Rs do not match with the UI events. There-

fore, our approach spent a long time figuring out how to match

these S2Rs and was only managed to reproduce it once. Among the

eight bug reports that ReproBot successfully reproduced twice,

the same reason was also found on four bug reports. For the other

four bug reports, ReproBot generates a UI event sequence that

triggers the same error message as the failure reported by the bug

report but in a different way. We did not consider them as true

419

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Halfond

successful reproductions. The potential reason is that ReproBot

stops exploring the AUT once it found the AUT crashes with the

specified error message. Therefore, it may trigger the crash when

performing random exploration.

4.4.3 RQ2.1&2.2 Contribution of Different Components. Our results

showed that RBa and RBb both performed worse than ReproBot.

RBa only reproduced 45 bug reports and RBb only reproduced 35

bug reports. Note that ReproBot was able to reproduce all bug

reports that RBa and RBb were able to reproduce, with exception

of one bug report that only RBa was able to reproduce. The dif-

ference in reproduction results between ReproBot and the two

variants showed the contribution of the combination of both the

NLP techniques and the RL-based exploration. In comparison to

ReCDroid, RBa reproduced eight more bug reports in total (i.e., 45

to 37), and RBb reproduced two less in total (i.e., 35 to 37). Specif-

ically, RBa succeeded on 14 bug reports where ReCDroid failed,

and ReCDroid succeeded on 6 bug reports where RBa failed. More-

over, RBb succeeded on 1 bug report where ReCDroid failed, and

ReCDroid succeeded on 3 bug reports where RBb failed.

We further investigated RBa’s result to understand the reasons

behind the changes in its performance compared with ReproBot.

We observed that the reduced effectiveness of RBa can be primar-

ily attributed to the inaccurate S2Rs extracted by ReCDroid. For

example, when ReCDroid misidentified an extra input S2Rs, our

RL-based exploration method was not able to match it with any

UI event. However, even with mistakes in identifying S2Rs, RBa
still outperformed ReCDroid by reproducing 8 more bug reports in

total. This showed that, in many cases, our RL matching algorithm

was able to make up for the inaccuracy in S2Rs.

We also explored the reasons why RBb did not reproduce more

bug reports and found the reasons to be twofold. First, ReCDroid’s

exploration algorithmwas found to be less effective in handling low-

quality steps and missing steps. When a report contained poorly-

written or missing steps, the algorithm took a long time to discover

the correct matching, which often caused a timeout. Second, ReC-

Droid’s algorithm failed to leverage some useful information, such

as resource id or content description for a widget from the VH, during

the exploration. The algorithm, instead, only utilized the displayed

text on a given UI element as a reference when matching it with

an S2R, which was not enough. In conjunction, these limitations

prohibited RBb from effectively utilizing the S2Rs extracted by our

approach.

4.4.4 RQ3 Running Time. The runtime distribution of each ap-

proach is shown in Figure 4. The result of each approach is vi-

sualized within a given row, with the minimum and maximum

running time being 0 and 3, 600 seconds, respectively. Each black

line within an approach’s visualization represents a running time

of the approach for a variable amount of bug reports and the length

each line is proportional to the frequency of the recorded running

time in the dataset. Therefore, the shape of a given approach’s vi-

sualization is determined by its running time distribution over all

bug reports, where a visualization’s width is larger in ranges with

more recorded running times. On average, ReproBot spent 1, 334

seconds (30 on S2R Extraction and 1, 304 on S2R Matching) on each

reproduction, which was the fastest among all three techniques.

In contrast, ReCDroid spent 1, 991 (4 on S2R Extraction and 1, 987

0 500 1000 1500 2000 2500 3000 3500
Runtime

ReproBot

ReCDroid

Yakusu

Figure 4: Runtime Distribution of the Three Approaches

on S2R Matching) and Yakusu spent 3, 245 seconds (496 on S2R

Extraction and 2, 749 on S2R Matching), on reproduction. These

results show that ReproBot was faster than ReCDroid and Yakusu

with regards to reproduction runtime.

4.5 Threats to Validity

4.5.1 External Validity. The primary threat to external validity is

the representativeness of the bug reports in the evaluation dataset.

We attempted to overcome this threat by using bug reports from

related research works, which aided in avoiding biases that could

potentially be introduced by our own search for reports. Note that

similar to ReCDroid and Yakusu, our approach is unable to repro-

duce non-crash bug reports. Therefore, we did not collect non-crash

bug reports in the evaluation dataset.

4.5.2 Internal Validity. One threat to the internal validity is the

potential effect on the experimental results of the randomness of

the RL algorithm used by ReproBot for S2R matching. To reduce

this threat, we ran our tool and RBa three times and reported the

running results for each run. An additional threat is potentially

incorrect ground truth for RQ1. This threat was mitigated by having

several authors individually define the RQ1 ground truth and come

to a consensus on the finalized version. Note that neither ReCDroid

nor Yakusu carried out a similar evaluation, so this information

was not provided in their online datasets. The last internal validity

threat is regarding the issues we observed when running Yakusu on

our dataset. These issues came from the limitations of Yakusu’s im-

plementation. As much as possible, we worked to set up compatible

environments that could run the app and tool.

5 RELATED WORK

ReCDroid [43] and Yakusu [23] are the most closely related works.

Their approaches rely on manually-crafted patterns to analyze bug

reports and greedy-based exploration to discover the UI events for

reproduction. In contrast, our approach incorporates a combination

of advanced NLP techniques to analyze the bug report, which could

extract S2Rs more accurately. Moreover, our approach leverages

RL to guide the search for UI events, which is more effective at

identifying the reproducing UI events. Section 2 discusses both in

more detail, and we compare against both ReCDroid and Yakusu

in the evaluation.

420

Automatically Reproducing Android Bug Reports using Natural Language Processing and Reinforcement Learning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

There are some research works focusing on studying and analyz-

ing Android bug reports. Johnson et al. [25] conducted an empirical

study on 180 Android bug reports to identify challenges to repro-

ducing Android bug reports. Chaparro et al. [18] conducted an

empirical study on how users report observed behavior; reproduc-

tion steps and expected behavior; and identified discourse patterns

used by reporters. Based on these identified patterns, they designed

an automatic tool to detect which information were missing in bug

reports. However, none of them automatically extracted S2Rs from

the bug report or reproduced the report. Chaparro et al. developed

Euler [17], an automatic technique to assess the quality of S2Rs in

Android bug reports. Euler resolves S2Rs from bug reports using

simple grammar patterns. Different from Euler, our approach holis-

tically analyzes the bug report’s sentences to extract S2Rs, which

is more broadly applicable.

Several previous research works have focused on augmenting

Android bug reports or facilitating the reporting process. Liu et al.

proposed a machine learning based classifier, Maca [27], which

classifies action words of S2Rs into standard categories (click, input

etc.) using both the textual information and the AUT information.

Maca could potentially complement our technique by standardiz-

ing the action. However, Maca used simple grammar patterns to

extract S2Rs, which limits its capability when it cannot accurately

parse the S2Rs. Fusion, developed by Moran et al. [31], leveraged

dynamic analysis to obtain UI events of the AUT and help create

more actionable events in bug reports during the testing stage.

Fazzini et al. proposed EBUG [22] to assist reporters to write more

accurate reproduction steps by using information from static and

dynamic analysis of the AUT to predict the next step. Yang et al.

proposed an interactive bug reporting system, BURT [35], which

provides a guided reporting of essential bug report elements (i.e., the

observed behavior, expected behavior, and steps to reproduce the

bug), instant feedback of problems with the elements, and graphical

suggestions of the said elements. These three approaches mainly

help improve the quality of the bug report at the moment when

users write the report, but do not reproduce them. Our technique is

complementary to these techniques by automatically reproducing

the reports for developers.

Several works used RL for automatically testingAndroid apps [14,

32, 37] or web applications [44]. However, different from these

works, we are the first work to adapt RL to the Android bug report

reproduction domain.

6 CONCLUSION

In this paper, we proposed a novel approach to automatically re-

produce Android bug reports. Our approach leverages advanced

natural language processing techniques to holistically and accu-

rately analyze a given bug report and adopts reinforcement learning

to effectively reproduce it. The empirical evaluation shows that our

approach is able to accurately extract reproduction steps from the

bug report and effectively reproduce the bug report. Our approach

outperformed state of the art techniques.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under

Grant No. 2211454.

REFERENCES
[1] 2005. Wikipedia Page of Passive Voice. https://en.wikipedia.org/wiki/English_

passive_voice#Identifying_the_English_passive.
[2] 2017. Bug Report – Transistor 149. https://github.com/y20k/transistor/issues/149.
[3] 2017. OpenIE 5.1 Github repository. https://github.com/dair-iitd/OpenIE-

standalone.
[4] 2018. Bug Report – Materialistic 1067. https://github.com/hidroh/materialistic/

issues/1067.
[5] 2018. Yakusu Official Website. https://sites.google.com/view/yakusumobile/

home.
[6] 2019. Bug Report – FDroidClient 1821. https://gitlab.com/fdroid/fdroidclient/

issues/1821.
[7] 2019. ReCDroid Github repository. https://github.com/AndroidTestBugReport/

ReCDroid.
[8] 2020. Bug Report – AnkiDroid 6432. https://github.com/ankidroid/Anki-Android/

issues/6432.
[9] 2023. Android Accessibility. https://support.google.com/accessibility/android/

answer/7158690?hl=en.
[10] 2023. Github Issue Tracker. https://github.com/issues.
[11] 2023. Google Code Issue Tracker. https://code.google.com/archive/.
[12] 2023. ReproBot Website. https://sites.google.com/usc.edu/reprobot/home.
[13] 2023. UI Automator. https://developer.android.com/training/testing/ui-

automator.
[14] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. 2018.

Reinforcement Learning for Android GUI Testing. In Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Selection, and
Evaluation. ACM, Lake Buena Vista FL USA, 2–8. https://doi.org/10.1145/3278186.
3278187

[15] Nikita Bhutani, H V Jagadish, and Dragomir Radev. 2016. Nested Propositions
in Open Information Extraction. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics, Austin, Texas, 55–64. https://doi.org/10.18653/v1/D16-1006

[16] Matthias Cetto, Christina Niklaus, André Freitas, and Siegfried Handschuh. 2018.
Graphene: Semantically-Linked Propositions in Open Information Extraction.
In Proceedings of the 27th International Conference on Computational Linguistics.
Association for Computational Linguistics, Santa Fe, New Mexico, USA, 2300–
2311.

[17] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian Marcus,
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing
the Quality of the Steps to Reproduce in Bug Reports. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, Tallinn Estonia,
86–96. https://doi.org/10.1145/3338906.3338947

[18] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting Missing
Information in Bug Descriptions. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, Paderborn Germany, 396–407.
https://doi.org/10.1145/3106237.3106285

[19] Danqi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency
Parser Using Neural Networks. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Doha, Qatar, 740–750. https://doi.org/10.3115/v1/D14-1082

[20] Luciano Del Corro and Rainer Gemulla. 2013. ClausIE: Clause-Based Open
Information Extraction. In Proceedings of the 22nd International Conference on
World Wide Web - WWW ’13. ACM Press, Rio de Janeiro, Brazil, 355–366. https:
//doi.org/10.1145/2488388.2488420

[21] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld. 2008. Open
Information Extraction from the Web. In Proceedings of the 20th International
Joint Conference on Artifical Intelligence, Vol. 51. Morgan Kaufmann Publishers
Inc., Hyderabad, India, 2670–2676. https://doi.org/10.5555/1625275.1625705

[22] Mattia Fazzini, Kevin Patrick Moran, Carlos Bernal-Cardenas, Tyler Wendland,
Alessandro Orso, and Denys Poshyvanyk. 2022. Enhancing Mobile App Bug
Reporting via Real-time Understanding of Reproduction Steps. IEEE Transactions
on Software Engineering (2022), 1–1. https://doi.org/10.1109/TSE.2022.3174028

[23] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically Translating Bug Reports into Test Cases for Mobile Apps. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, Amsterdam Netherlands, 141–152. https://doi.org/10.1145/
3213846.3213869

[24] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. (2020).
https://doi.org/10.5281/zenodo.1212303

[25] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin,
and Mattia Fazzini. 2022. An Empirical Investigation into the Reproduction of
Bug Reports for Android Apps. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, Honolulu, HI, USA, 321–322.
https://doi.org/10.1109/SANER53432.2022.00048

421

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William G.J. Halfond

[26] Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition (3rd ed.). Vol. 13. Prentice Hall PTR, USA.

[27] Hui Liu, Mingzhu Shen, Jiahao Jin, and Yanjie Jiang. 2020. Automated Classifica-
tion of Actions in Bug Reports of Mobile Apps. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, Virtual
Event USA, 128–140. https://doi.org/10.1145/3395363.3397355

[28] Mitchell P. Marcus, Mary AnnMarcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Comput. Linguist.
19, 2 (jun 1993), 313–330.

[29] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations ofWords and Phrases and Their Compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2. Curran Associates Inc., Red Hook, NY, USA, 9.

[30] Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. 2004. The
Penn Discourse Treebank. In Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04). European Language Resources
Association (ELRA), 4.

[31] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys Poshy-
vanyk. 2015. Auto-Completing Bug Reports for Android Applications. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, Bergamo Italy, 673–686. https://doi.org/10.1145/2786805.2786857

[32] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement Learning Based Curiosity-Driven Testing of Android Applications.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, Virtual Event USA, 153–164. https://doi.org/10.1145/
3395363.3397354

[33] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind
Joshi, and Bonnie Webber. 2008. The Penn Discourse TreeBank 2.0.. In Proceed-
ings of the Sixth International Conference on Language Resources and Evaluation
(LREC’08), Vol. Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08). European Language Resources Association
(ELRA), Marrakech, Morocco, 8.

[34] Michael Schmitz, Robert Bart, Stephen Soderland, and Oren Etzioni. 2012. Open
Language Learning for Information Extraction. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning. Association for Computational Linguistics,
Jeju Island, Korea, 523–534.

[35] Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin Moran, Andrian
Marcus, and Denys Poshyvanyk. 2022. Toward Interactive Bug Reporting for
(Android App) End-Users. In In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’22). ACM, Singapore, Singapore, 13.

[36] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

[37] Thi Anh Tuyet Vuong and Shingo Takada. 2018. A Reinforcement Learning
Based Approach to Automated Testing of Android Applications. In Proceedings of
the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation. ACM, Lake Buena Vista FL USA, 31–37. https://doi.
org/10.1145/3278186.3278191

[38] Christopher JCHWatkins and Peter Dayan. 1992. Q-learning. InMachine learning.
279–292. https://aclanthology.org/P13-1045

[39] Tyler Wendland, Jingyang Sun, Junayed Mahmud, S. M. Hasan Mansur, Steven
Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A Dataset
of Manually-Reproduced Bug Reports for Android Apps. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, Madrid,
Spain, 600–604. https://doi.org/10.1109/MSR52588.2021.00082

[40] Fei Wu and Daniel S Weld. 2010. Open Information Extraction Using Wikipedia.
In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Uppsala, Sweden, 118–
127.

[41] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Auto-
matically Extracting Bug Reproducing Steps from Android Bug Reports. In
Reuse in the Big Data Era, Xin Peng, Apostolos Ampatzoglou, and Tanmay
Bhowmik (Eds.), Vol. 11602. Springer International Publishing, Cham, 100–111.
https://doi.org/10.1007/978-3-030-22888-0_8

[42] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,
William G. J. Halfond, and Tingting Yu. 2022. ReCDroid+: Automated End-to-End
Crash Reproduction from Bug Reports for Android Apps. ACM Transactions on
Software Engineering and Methodology 31, 3 (July 2022), 1–33. https://doi.org/10.
1145/3488244

[43] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William
G.J. Halfond. 2019. ReCDroid: Automatically Reproducing Android Application
Crashes from Bug Reports. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 128–139. https://doi.
org/10.1109/ICSE.2019.00030

[44] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu.
2021. Automatic Web Testing Using Curiosity-Driven Reinforcement Learning.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, Madrid, ES, 423–435. https://doi.org/10.1109/ICSE43902.2021.00048

[45] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE
Transactions on Software Engineering 36, 5 (Sept. 2010), 618–643. https://doi.org/
10.1109/TSE.2010.63

Received 2023-02-16; accepted 2023-05-03

422

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Extraction of S2R Entities
	3.2 Matching s2r to ui Events

	4 Evaluation
	4.1 Approach Implementations
	4.2 Dataset Collection
	4.3 Experiment 1
	4.4 Experiment 2
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	References

