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ABSTRACT: Direct conversion of solar energy to mechanical work promises higher efficiency than multistep processes, adding a
key tool to the arsenal of energy solutions necessary for our global future. The ideal photomechanical material would convert
sunlight into mechanical motion rapidly, without attrition, and proportionally to the stimulus. We describe crystals of a tetrahedral
isocyanoazobenzene—copper complex that roll continuously when irradiated with broad spectrum white light, including sunlight.
The rolling results from bending and straightening of the crystal due to blue light-driven isomerization of a highly twisted
azobenzene ligand. These findings introduce geometrically constrained crystal packing as a strategy for manipulating the electronic
properties of chromophores. Furthermore, the continuous, solar-driven motion of the crystals demonstrates direct conversion of

solar energy to continuous physical motion using easily accessed molecular systems.

hotoactive materials that harness nanoscale molecular

transformations to generate macroscopic motion have
promising applications in microfluidics, information storage,
flexible electronics, and as artificial muscles.'~” Chromophores
that respond to visible light are especially desirable as they
avoid the use of harmful ultraviolet (UV) light and can be used
in devices powered by solar energy.”’

Because of their rapid, reversible cis—trans isomerization and
facile synthesis,w’11 azobenzenes represent an ideal class of
photoactive compounds whose 1properties have been exploited
for applications in biology'”~"* and materials science.”™"”
While azobenzene crystals have been shown to photomechani-
cally bend,***" curl,”* crack,”® and slowly crawl®* under UV
light, azobenzene systems that respond to visible light in the
solid state are rare.””>”*® Rarer still are examples of
azobenzene systems exhibiting continuous motion induced
by visible light””~** or sunlight.””****

In this work we present the first example of solar-powered
continuous motion in azobenzene single crystals. While
strategies to allow visible light control over azobenzene
isomerization typically rely on extensive substitution on the
azobenzene rings,36_39 this work demonstrates that molecular
conformations imposed by crystal packing can produce visible
light responsive azobenzene crystals. We show that a
tetrahedral Cu(I)—isocyanoazobenzene complex packs in the
solid state with one highly twisted azobenzene ligand, resulting
in crystals that continuously roll under white light stimulus
(Figure la—c, Movie S1), including sunlight (Movie S2). This
discovery represents a new avenue for the design of visible light
responsive materials from simple commercial starting materi-
als.

Combining tetrakis(acetonitrile)copper(I) hexafluorophos-
phate ([Cu(MeCN),][PF,]) with 4-isocyanoazobenzene
(CNAB) in acetonitrile at room temperature yields [Cu-
(CNAB),][PFs] (1) as an orange powder (Figure la).
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Diffusing hexanes vapor into a solution of 1 in tetrahydrofuran
(THF) produces rodlike crystals, henceforth 1T, with a variety
of dimensions. These crystals are responsive to broad spectrum
white light and blue light. Under white or blue light and a thin
coating of oil, thick crystals crack, thin crystals bend (Movie S4
and Movie S5), and intermediate size crystals (height:length
0.02—0.04, height:width 0.61—0.94) roll. With oil as a
lubricant, the crystals roll continuously and even move across
the slide, while without oil they bend or jump (Movie S6). The
rolling speed is linearly dependent on the light irradiance
(Figures 1d and SS), and the crystals roll faster in a
hemispherical cavity (>60 rolls/min; Movie S7). The crystals
also roll upon exposure to bright, unfocused sunlight (Movie
S2) and without apparent mechanical fatigue. We continuously
illuminated one crystal under white light for S days (500000
full rotations) and observed no damage or change in rolling
rate (Movie S7).

The common mechanism by which photoresponsive
azobenzene crystals bend or crack is well-understood:**>*!
trans-to-cis isomerization of azobenzene molecules occurs at
the exposed surface, with the degree of isomerization
decreasing with distance from the surface and giving rise to
strain from the difference between the lattice of the cis
molecules and that of the trans. This strain causes the crystals
to crack or bend toward or away from the light source.”"***!
Limited light penetration into the crystal means that as little as
1% of the azobenzene molecules are isomerized.'
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Figure 1. (a) Synthesis of 1. (b) Hlustration of crystal rolling. (c) Images of a 1T crystal rolling taken from Movie S1; the scale bar is 20 ym. (d)
Average rate of rolling on a flat surface vs white light irradiance (measured at 532 nm) for five crystals from one batch of 1T. The error bars
represent the standard deviations and the dashed line is the linear fit (slope = 5.2 X 107%).
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Figure 2. (a) Molecular structure of 1T highlighting twisted CNAB L1, as determined by SCXRD. (b) Congested packing of 1T surrounding L1.
(c) Molecular structure of 1F. H atoms are omitted in (a, c) for clarity. (d) Absolute value of the N—=N—C—C dihedral angles in 1T (L1-L4) and

the two crystallographically disordered CNAB units in 1F (LS and LS’).

1T crystals bend and crack by the mechanism described
above. When crushed 1T crystals are dissolved and examined
by 'H NMR, all the CNAB units are trans. After 15 s of
exposure to 456 nm blue light, dissolution of the crushed
crystals results in a "H NMR with 2.5% of the CNAB units
isomerized to the cis isomer (Figure $20). This cis percentage
decreases as the crystals thermally relax back to the all-trans
state in the dark (Figure S20). 1T crystals bend away from the
light source, indicating that the cis lattice is expanded relative
to that of the trans, because isomerization leads to expansion of
the light-exposed face relative to the dark face of the crystal.*”

As the light used to roll the crystals also provides heat, we
examined the rolling behavior at various temperatures to
further demonstrate that the rolling is due to isomerization
rather than a photothermal process. A 1T crystal under white
light rolls at 15, S, and —5 °C, while a 1T crystal that rolls at 25
°C stops rolling at 40 and 60 °C (Movie S8). Higher
temperatures prevent rolling, likely by allowing rapid isomer-
ization back to the more thermally stable trans isomer.

To explain why blue light triggers this isomerization, we turn
to the crystal structure of 1T. Single-crystal X-ray diffraction
(SCXRD) reveals that 1T features a highly twisted azobenzene
(Figure 2a,b). The twist of the phenyl rings with respect to the
N=N bond is described by the N=N—C—C dihedral angles,
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0, and Oy (Figure 2d) In 1T, two azobenzenes are twisted out
of planarity, one with 6§, = —13° and 63 = —12° and another
with 6, = 03 = 37°. In contrast to 1T, crystals of an undistorted
polymorph of 1 (1F, Figure 2c) formed by slow cooling of a
saturated solution of 1 in 1:1 hexanes:THF do not respond to
blue or white light (Figure S1S5), suggesting that the
photomechanical response of 1T crystals arises from the
severely twisted azobenzene. To evaluate this hypothesis, we
examine the electronic transitions of the two polymorphs in
detail.

The trans and cis isomers of azobenzene feature overlapping
bands in the UV (x — #*) and the visible (n — 7*), as do
CNAB and 1 in solution (Figure 3a,b). Typically, UV light
drives trans-to-cis isomerization and visible light drives back to
the cis isomer, as the trans has the higher extinction coeflicient
in the UV while that of the cis is higher in the visible.'”"
Shifting the trans n — #* band away from the cis peak allows
for visible light isomerization in both directions.®® Since 1985,
theory has predicted that in the absence of ortho substitution
twisting the phenyl rings will blue-shift the trans n — 7* peak
due to loss of conjugation,** but experimental validation of this
prediction has not yet been realized.

The diffuse reflectance electronic absorption spectra of 1T
and 1F show that the n — 7 transition of 1T is blue-shifted
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Figure 3. (a) CNAB isomerization. (b) Electronic absorption spectra of trans- and cis-CNAB and 1 in MeCN as molar absorptivity (¢) per CNAB
unit. (c) Normalized diffuse reflectance solid state electronic absorption spectra of 1T and 1F with DFT-calculated energies and relative oscillator
strengths of n—7* transitions of cis- and trans-CNAB for N=N—C—C dihedral angles relevant to the structures of 1T and 1F. (d) Normalized
diffuse reflectance solid-state electronic absorption spectra of 1T before and after exposure to 456 nm light with irradiance 329 W/m?” and upon

thermal relaxation back to the trans in the dark.
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Figure 4. (a) Wavelength ranges of 1T bending and straightening. (b) Stepwise breakdown of 1T crystal rolling 180° under white light taken from
Movie S1; the scale bar is 20 ym. The images in (b) are false colored to specify which face of the crystal is up.

compared to that of 1F (Figure 3c). Because the spectrum of
1T includes contributions from all four azobenzene units, the
blue-shift of the most twisted azobenzene is likely even larger
than what is observed in the aggregate. The shift is consistent
with the theoretical results of Bunce and Zerner** and our
calculations on trans-CNAB (Figure 3c).

Unlike in ortho-substituted azobenzenes where green light
drives trans-to-cis isomerization due to red-shifting of the trans
n — 7 peak, here crystal packing allows blue light to drive the
same process via a twist-induced blue-shift of the trans n — 7*
peak. We can further prove this by observing the change in the
n — m* peak of 1T after irradiation with 456 nm blue light of
irradiance 329 W/m?—the n — 7z* peak is red-shifted by the
partial trans-to-cis isomerization in the solid state, reverting to
the original signal gradually over 60 min in the dark, consistent
with thermal relaxation back to the trans (Figure 3d). This
conclusively demonstrates that the trans n — 7* transition in
1T is higher energy than that of the cis. By contrast, 1F crystals
show no change in absorbance after irradiation with blue light
(Figure S11), consistent with the assignment of the blue-light
responsive nature of 1T to its highly twisted CNAB arm. This
finding both accounts for the photomechanical response of 1T
crystals to blue and white light and establishes shape-

16775

constrained crystal packing as a powerful design strategy for
the manipulation of chromophores.

To further isolate the effects of specific wavelengths of light
on the rolling process itself, we irradiated 1T crystals using
bandpass filters. The bending and straightening of a thin crystal
signify surface isomerization to cis and trans, respectively.”’
Light from 450 to 530 nm bends crystals, light from 530 to 560
nm produces no response, and light from 560 to 580 nm
straightens crystals (Figures 4a and S1). Thus, we can also
demonstrate from the behavior of single crystals that blue light
isomerizes azobenzenes at the surface of 1T from trans to cis,
while green light reverses the process, consistent with both
spectroscopic data and calculations.

Finally, we can parse the motion of a 1T crystal into four
stages: (1) starting with the widest part of the crystal, the ac
face, facing up, the crystal bends away from the light, (2) it tips
onto its thinner side such that the ab face is now face up, (3) it
straightens, and (4) it is unstable on its thin edge and falls over
such that the top face is now the opposite ac face to that which
was originally face up (Figure 4b). The continued rolling is the
iteration of this process. We attribute the tipping in step 2 to
the slanted crystal ends—a feature that also contributes to the
rolling mechanism of azobenzene crystals that roll briefly when
heated through a thermal phase transition.”> The stepwise
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rolling mechanism of the 1T crystals is also similar to the
thermally induced rolling mechanism of liquid crystalline
elastomer rods prepared by the Cai group.46

While the bending process is clearly attributable to blue
light, straightening (step 3) could be due to cis-to-trans
isomerization of the bent face by green light, trans-to-cis
isomerization of the newly exposed opposite face by blue light,
or both. We irradiated a crystal by using only 450—550 nm
light, excluding light that drives the cis-to-trans isomerization.
Though the crystal still rolled, step 3 was markedly slower
(~11 s) compared to the same crystal under broad spectrum
white light (~1.5 s) (Movie S9 and Movie S1). While blue
light alone is sufficient to roll the crystals, the fast rolling under
white light is actively facilitated by the presence of green light
and thus by both trans-to-cis and cis-to-trans isomerization.

Our data present a complete picture of how and why 1T
crystals roll under blue light, white light, and sunlight and
demonstrate that crystal packing alone can dramatically change
the electronic absorption and physical response of an
azobenzene chromophore. Given these results, the electronic
manipulation of well-known chromophores by crystal packing
using novel geometric templates promises to be a rich and
productive area of study. Lastly, the crystals described above
exhibit complex and continuous motion and are easily
prepared in two steps from commercial starting materials,
making them excellent candidates for solar-driven micro-
actuators.
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