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A B S T R A C T   

Surface roughness and texture are critical to the functional performance of engineering components. The ability 
to analyze roughness and texture effectively and efficiently is much needed to ensure surface quality in many 
surface generation processes, such as machining, surface mechanical treatment, etc. Discrete Wavelet Transform 
(DWT) and Discrete Cosine Transform (DCT) are two commonly used signal decomposition tools for surface 
roughness and texture analysis. Both methods require selecting a threshold to decompose a given surface into its 
three main components: form, waviness, and roughness. However, although DWT and DCT are part of the ISO 
surface finish standards, there exists no systematic guidance on how to compute these thresholds, and they are 
often manually selected on case by case basis. This makes utilizing these methods for studying surfaces 
dependent on the user’s judgment and limits their automation potential. Therefore, we present two automatic 
threshold selection algorithms based on information theory and signal energy. We use machine learning to 
validate the success of our algorithms both using simulated surfaces as well as digital microscopy images of 
machined surfaces. Specifically, we generate feature vectors for each surface area or profile and apply supervised 
classification. Comparing our results with the heuristic threshold selection approach shows good agreement with 
mean accuracies as high as 95%. We also compare our results with Gaussian filtering (GF), and show that while 
GF results for areas can yield slightly higher accuracies, our results outperform GF for surface profiles. We further 
show that our automatic threshold selection has significant advantages in terms of computational time as evi
denced by decreasing the number of mode computations by an order of magnitude compared to the heuristic 
thresholding for DCT.   

1. Introduction 

Enhancements in measurement technology have opened the door for 
applying surface texture analysis to various applications such as medical 
imaging [1–3], construction materials [4], remote sensing [5,6] and 
tribology [7,8]. Some of the challenges in surface texture analysis 
include the data size and the computational effort of some of the current 
methods. Specifically, as the resolution of the surface images increases, 
their size also increases, which makes the data processing cumbersome 
and computationally expensive. Therefore, there is a need for increasing 
automation and decreasing the computational complexity of algorithms 
for surface texture analysis. Another challenge is to extract appropriate 
descriptors for a surface in an automated way. The most common 
approach used in the literature is to decompose data into form, wavi
ness, and roughness components. This approach is applied to both 
profiles [9–12] and surfaces [13–15]. The form component includes 

low-frequency content in the surface or profiles, waviness involves the 
mid-range frequencies, while the high frequencies are collected in the 
roughness component. In general, the form and the waviness of a surface 
scan or profiles are obtained, then they are subtracted from the original 
data to obtain the roughness component. 

Gaussian filter is one of the widely adopted signal processing tools 
for surface roughness analysis [9,16–19]. It is used to smooth the surface 
profile measurement to obtain an approximation of the raw surface 
profile. The mean line is then subtracted from the measurement to 
obtain a roughness profile. Raja et al. used a Gaussian filter to obtain an 
approximation to surface profiles, and they compared this approxima
tion with the ones obtained from the 2RC filter, one of the earliest filters 
used for surface metrology [9]. Hendarto et al. focus on the roughness 
analysis of wood surface using Gaussian filter [18]. However, the main 
drawback for Gaussian filtering approach is the boundary distortion 
where the mean of the end parts of a surface profile cannot be used [9]. 
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Raja et al. suggested that the end parts of the mean line should be 
ignored for evaluation [9], while this is not feasible for profiles with 
shorter lengths. Therefore, Janecki proposed a solution that extrapolates 
both ends of profiles with polynomial functions to eliminate the edge 
effect [19]. Another approach used in the analysis of profiles of engi
neering surfaces is Fast Fourier Transform (FFT). Raja and Radhak
rishnan used FFT to obtain the surface roughness by removing the lower 
frequency components of form and waviness. Dong et al. provide an 
extensive understanding of two-dimensional FFT (2D-FFT) analysis on 
engineering surfaces [20]. Peng et al. used 2D-FFT to identify the type of 
the wear particles on surfaces using angular spectrum values which are 
obtained by converting Cartesian coordinates into polar form [21]. 
Empirical Mode Decomposition (EMD), one of the most commonly 
adopted signal decomposition tools, is another approach used for the 
analysis of engineering surfaces. Several versions of EMD are proposed 
to analyze surfaces such as Bidimensional EMD (BEMD) [22], Image 
EMD (IEMD) [23], Bidimensional Multivariate EMD (BMEMD) [24]. 
However, the computation of EMD in 2D is slow compared to other 
approaches. 

Discrete Cosine Transform (DCT) is another widely used approach 
for decomposing a surface scan into its form, waviness, and roughness 
components [13,14,25,26]. Lecompte et al. developed an approach to 
identify the form and the contribution of classical defects such as posi
tioning error and tool deflection [13]. They used only a certain per
centage of the DCT coefficients to obtain a filtered surface. However, 
when we have a large number of images, each image may require the 
usage of a different percentage of the DCT coefficients to generate the 
form. In general, DCT requires selecting two threshold values for 
delineating the three different components of the surface. 

Discrete Wavelet Transform (DWT) is another approach used 
extensively for surface texture analysis [9,14,27–33]. Chen et al. intro
duced DWT for surface profiles [27]. Liu et al. obtained a threshold that 
isolates the form of the surface by computing all possible approxima
tions that can be obtained using the coefficients at each level. Another 
example of this approach is seen in Refs. [9,29] where the separation of 
the three components of a profile is performed using multi-resolution 
analysis approximations. The common procedure is to apply the DWT 
at a certain level and obtain the approximation and detail coefficients, 
and then use the approximation coefficients for the reconstruction of the 
form component [34]. The detail coefficients are then used to recon
struct waviness and roughness. Nevertheless, there is a need for a 
guideline on how to automatically choose the threshold that separates 
the mid-frequency content from the higher ones in the DWT approach. In 
addition, selection of the mother wavelet function can also affect the 
resulting components. Stkepien et al. used autocorrelation, 
cross-correlation, and entropy-based test to evaluate the performance of 
different wavelet functions used in surface texture analysis [35]. 

To our knowledge, there is no approach for automatically separating 
the form, waviness, and roughness components for DCT and DWT, and 
the current practice is to manually select them using the user’s experi
ence and judgment call. Therefore, we propose an automatic, data- 
driven approach for identifying the needed thresholds for DCT and 
DWT. For DWT, we utilize the energy of the reconstructed signals to 
separate the waviness and roughness from each other, while for DCT we 
leverage the surface entropy to define the form and waviness compo
nents. Roughness is then found by subtracting the filtered surface from 
the original one. 

In addition to our contributions to the automatic threshold selection 
in DCT and DWT, we identify the machining processes through which 
surface samples are generated. Most studies in the literature are focused 
on small patch processes with few samples where human interpretation 
is heavily used to identify and compute profile or surface roughness. In 
contrast, we validate our approach for a large data set obtained from 
simulated surfaces, as well as experimental surface scans. We obtain the 
roughness components of surfaces and profiles using our automatic 
threshold algorithms and we extract the 1D and 2D features introduced 

in the ISO standards [36,37]. We then utilize machine learning to assess 
the accuracy of the automatic thresholds. Specifically, we use the ob
tained features in supervised classification algorithms to classify sur
faces that are labeled with respect to the generating surface parameter 
for the simulated surfaces, and with respect to the generating machining 
process for the experimental data. We use support vector machine 
(SVM), logistic regression (LR), random forest (RF), and gradient 
boosting (GB) algorithms for classification and employ hyperparameter 
tuning using the grid search approach. 

This article is organized as follows. Section 2.1 provides the details 
for synthetic surface generation, experimental data collection, and data 
preprocessing. Section 3 introduces our new automatic threshold se
lection algorithms and explains how to use them for feature extraction. 
Section 4 provides classification results obtained using the proposed 
algorithms and compares them to the results obtained by heuristic 
threshold selection. We provide our concluding remarks in Sec. 5. 

2. Data collection 

Our data includes both synthetic surfaces (Section 2.1), and digital 
scans of machined surfaces (Section 2.2. The following subsections 
provide more information on each data type. 

2.1. Synthetic surface generation 

We used the model described in Ref. [38] to generate synthetic 
surfaces. The roughness level of the surfaces is controlled by varying the 
Hurst exponent H, which takes parameter values between 0 (rough 
surface) and 1 (smooth surface). We chose 201 different H values in this 
range, and for each H value we generated a different surface. We then 
categorized these surfaces with respect to their roughness level. For 
instance, the first 67 surfaces were labeled smooth, while the last 67 
surfaces were considered rough. The surfaces in between these two ex
tremes were considered somewhat rough. The generated surfaces were 
then used to obtain both areal and profile features. Profiles of the 
generated surfaces were obtained by taking cross-sections along the 
generated surface’s x and y directions, and they were assigned the same 
labels as the original surface. Depending on the type of signal processing 
tool used, we obtained roughness surfaces or roughness surface profiles, 
and then we extracted the corresponding features needed for the clas
sification algorithms. 

2.2. Experimental data collection and preprocessing 

A standard S-22 Microfinish Comparator is used for physical surface 
texture data collection. To better recognize the surface texture, 9 sample 
surfaces with clearly observed rough texture on the comparator are 
selected (see Table 1). 

The scanned area is 5 mm × 5 mm, and it was consistently located at 
the upper left corner for each measured sample surface. Specifically, the 
microfinish comparator was placed on a free-angle XYZ motorized 
observation system (VHX-S650E), and the surface textures were 
measured using a Keyence digital microscope (VHX6000), as shown in 
Fig. 2a. A real zoom lens (Keyence VH-Z500R, RZ x500-x5000) is used to 
capture the surface texture and × 500 magnification is used to achieve 
sufficient spatial resolution (0.42 μm). The stitching technique (11 × 11 
scans in the horizontal and vertical directions) is performed to enlarge 
the observation view so that the whole selected area can be captured 

Table 1 
Selected surfaces under various machining conditions.  

Machining Type Roughness height (micrometers(microinches)) 

M − milling 3.175 (125) 6.35(250) 12.7(500) 
P - profiled 3.175 (125) 6.35(250) 12.7(500) 
ST - shaped or turned 3.175 (125) 6.35(250) 12.7(500)  
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under this magnification. The spatial sampling rate of the images was 
approximately 2.4 samples per μm. Fig. 2b shows the resulting scanned 
surfaces. 

2.3. Data preprocessing 

The resulting raw surface scans include different numbers of pixels 
with lower grey-level intensity values on the edges of the image as 
shown in Fig. 1. These pixels are tedious to isolate manually, so we 
copped the images and adaptively removed these pixels using the 
following algorithm. First, we found the remainder of image pixel values 
in each direction when they are divided by 1000. The halves of the 

remainders are used as the number of pixels to remove from each edge. 
This procedure was successful in significantly reducing the number of 
pixels with lower grey-level intensity values at the boundaries, and the 
resulting images had similar sizes. 

The other challenge was the large dimension of the microscope 
surface scans which can exceed 10000 pixels in each direction of the 
image thus elevating computational expenses. Consequently, we split 
each surface scan into 25 sub-images each with a dimension of 2400 ×
2400 pixels. 

2.3.1. Image subsampling 
The resulting subimages still presented computational challenges for 

some signal processing tools such as DCT where the maximum number 
of modes is equal to the total number of pixels. Therefore, we sub
sampled the images to further reduce the number of samples in the 
subimages when using 2D signal processing tools for surface classifica
tion. Several approaches are available for image scaling/resampling in 
the literature. These also include some signal processing approaches to 
upscale or downscale an image. One of the simple and widely used 
subsampling methods is to replace a block of pixels with their average 
values, and that is the approach we used in this study. After testing 
different sampling factors such as 0.1, 0.2, and 0.5, we adopted a sam
pling factor of 0.1 for the experimental data set. This means the size of 
each block is 10 × 10 pixels. 

3. Methods 

3.1. Discrete Wavelet Transform 

Discrete Wavelet Transform (DWT) is one of the widely adopted 
signal processing tools [39–43]. While a signal’s frequency spectrum can 
only be represented over the entire time domain with Fourier Transform, 
Wavelet Transform can decompose the signal into components with 
different time and frequency resolutions [44]. In DWT, the time series is 
passed through low pass and high pass filters to obtain approximation 

Fig. 1. Scan sample of 125 M.  

Fig. 2. The microscope used for experimental data collection, and the sample surfaces.  
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