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Surface roughness and texture are critical to the functional performance of engineering components. The ability
to analyze roughness and texture effectively and efficiently is much needed to ensure surface quality in many
surface generation processes, such as machining, surface mechanical treatment, etc. Discrete Wavelet Transform
(DWT) and Discrete Cosine Transform (DCT) are two commonly used signal decomposition tools for surface
roughness and texture analysis. Both methods require selecting a threshold to decompose a given surface into its
three main components: form, waviness, and roughness. However, although DWT and DCT are part of the ISO
surface finish standards, there exists no systematic guidance on how to compute these thresholds, and they are
often manually selected on case by case basis. This makes utilizing these methods for studying surfaces
dependent on the user’s judgment and limits their automation potential. Therefore, we present two automatic
threshold selection algorithms based on information theory and signal energy. We use machine learning to
validate the success of our algorithms both using simulated surfaces as well as digital microscopy images of
machined surfaces. Specifically, we generate feature vectors for each surface area or profile and apply supervised
classification. Comparing our results with the heuristic threshold selection approach shows good agreement with
mean accuracies as high as 95%. We also compare our results with Gaussian filtering (GF), and show that while
GF results for areas can yield slightly higher accuracies, our results outperform GF for surface profiles. We further
show that our automatic threshold selection has significant advantages in terms of computational time as evi-
denced by decreasing the number of mode computations by an order of magnitude compared to the heuristic
thresholding for DCT.

1. Introduction

Enhancements in measurement technology have opened the door for
applying surface texture analysis to various applications such as medical
imaging [1-3], construction materials [4], remote sensing [5,6] and
tribology [7,8]. Some of the challenges in surface texture analysis
include the data size and the computational effort of some of the current
methods. Specifically, as the resolution of the surface images increases,
their size also increases, which makes the data processing cumbersome
and computationally expensive. Therefore, there is a need for increasing
automation and decreasing the computational complexity of algorithms
for surface texture analysis. Another challenge is to extract appropriate
descriptors for a surface in an automated way. The most common
approach used in the literature is to decompose data into form, wavi-
ness, and roughness components. This approach is applied to both
profiles [9-12] and surfaces [13-15]. The form component includes

* Corresponding author.

low-frequency content in the surface or profiles, waviness involves the
mid-range frequencies, while the high frequencies are collected in the
roughness component. In general, the form and the waviness of a surface
scan or profiles are obtained, then they are subtracted from the original
data to obtain the roughness component.

Gaussian filter is one of the widely adopted signal processing tools
for surface roughness analysis [9,16-19]. It is used to smooth the surface
profile measurement to obtain an approximation of the raw surface
profile. The mean line is then subtracted from the measurement to
obtain a roughness profile. Raja et al. used a Gaussian filter to obtain an
approximation to surface profiles, and they compared this approxima-
tion with the ones obtained from the 2RC filter, one of the earliest filters
used for surface metrology [9]. Hendarto et al. focus on the roughness
analysis of wood surface using Gaussian filter [18]. However, the main
drawback for Gaussian filtering approach is the boundary distortion
where the mean of the end parts of a surface profile cannot be used [9].
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Raja et al. suggested that the end parts of the mean line should be
ignored for evaluation [9], while this is not feasible for profiles with
shorter lengths. Therefore, Janecki proposed a solution that extrapolates
both ends of profiles with polynomial functions to eliminate the edge
effect [19]. Another approach used in the analysis of profiles of engi-
neering surfaces is Fast Fourier Transform (FFT). Raja and Radhak-
rishnan used FFT to obtain the surface roughness by removing the lower
frequency components of form and waviness. Dong et al. provide an
extensive understanding of two-dimensional FFT (2D-FFT) analysis on
engineering surfaces [20]. Peng et al. used 2D-FFT to identify the type of
the wear particles on surfaces using angular spectrum values which are
obtained by converting Cartesian coordinates into polar form [21].
Empirical Mode Decomposition (EMD), one of the most commonly
adopted signal decomposition tools, is another approach used for the
analysis of engineering surfaces. Several versions of EMD are proposed
to analyze surfaces such as Bidimensional EMD (BEMD) [22], Image
EMD (IEMD) [23], Bidimensional Multivariate EMD (BMEMD) [24].
However, the computation of EMD in 2D is slow compared to other
approaches.

Discrete Cosine Transform (DCT) is another widely used approach
for decomposing a surface scan into its form, waviness, and roughness
components [13,14,25,26]. Lecompte et al. developed an approach to
identify the form and the contribution of classical defects such as posi-
tioning error and tool deflection [13]. They used only a certain per-
centage of the DCT coefficients to obtain a filtered surface. However,
when we have a large number of images, each image may require the
usage of a different percentage of the DCT coefficients to generate the
form. In general, DCT requires selecting two threshold values for
delineating the three different components of the surface.

Discrete Wavelet Transform (DWT) is another approach used
extensively for surface texture analysis [9,14,27-33]. Chen et al. intro-
duced DWT for surface profiles [27]. Liu et al. obtained a threshold that
isolates the form of the surface by computing all possible approxima-
tions that can be obtained using the coefficients at each level. Another
example of this approach is seen in Refs. [9,29] where the separation of
the three components of a profile is performed using multi-resolution
analysis approximations. The common procedure is to apply the DWT
at a certain level and obtain the approximation and detail coefficients,
and then use the approximation coefficients for the reconstruction of the
form component [34]. The detail coefficients are then used to recon-
struct waviness and roughness. Nevertheless, there is a need for a
guideline on how to automatically choose the threshold that separates
the mid-frequency content from the higher ones in the DWT approach. In
addition, selection of the mother wavelet function can also affect the
resulting components. Stkepien et al. wused autocorrelation,
cross-correlation, and entropy-based test to evaluate the performance of
different wavelet functions used in surface texture analysis [35].

To our knowledge, there is no approach for automatically separating
the form, waviness, and roughness components for DCT and DWT, and
the current practice is to manually select them using the user’s experi-
ence and judgment call. Therefore, we propose an automatic, data-
driven approach for identifying the needed thresholds for DCT and
DWT. For DWT, we utilize the energy of the reconstructed signals to
separate the waviness and roughness from each other, while for DCT we
leverage the surface entropy to define the form and waviness compo-
nents. Roughness is then found by subtracting the filtered surface from
the original one.

In addition to our contributions to the automatic threshold selection
in DCT and DWT, we identify the machining processes through which
surface samples are generated. Most studies in the literature are focused
on small patch processes with few samples where human interpretation
is heavily used to identify and compute profile or surface roughness. In
contrast, we validate our approach for a large data set obtained from
simulated surfaces, as well as experimental surface scans. We obtain the
roughness components of surfaces and profiles using our automatic
threshold algorithms and we extract the 1D and 2D features introduced
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Table 1
Selected surfaces under various machining conditions.

Machining Type Roughness height (micrometers(microinches))

M — milling 3.175 (125) 6.35(250) 12.7(500)
P - profiled 3.175 (125) 6.35(250) 12.7(500)
ST - shaped or turned 3.175 (125) 6.35(250) 12.7(500)

in the ISO standards [36,37]. We then utilize machine learning to assess
the accuracy of the automatic thresholds. Specifically, we use the ob-
tained features in supervised classification algorithms to classify sur-
faces that are labeled with respect to the generating surface parameter
for the simulated surfaces, and with respect to the generating machining
process for the experimental data. We use support vector machine
(SVM), logistic regression (LR), random forest (RF), and gradient
boosting (GB) algorithms for classification and employ hyperparameter
tuning using the grid search approach.

This article is organized as follows. Section 2.1 provides the details
for synthetic surface generation, experimental data collection, and data
preprocessing. Section 3 introduces our new automatic threshold se-
lection algorithms and explains how to use them for feature extraction.
Section 4 provides classification results obtained using the proposed
algorithms and compares them to the results obtained by heuristic
threshold selection. We provide our concluding remarks in Sec. 5.

2. Data collection

Our data includes both synthetic surfaces (Section 2.1), and digital
scans of machined surfaces (Section 2.2. The following subsections
provide more information on each data type.

2.1. Synthetic surface generation

We used the model described in Ref. [38] to generate synthetic
surfaces. The roughness level of the surfaces is controlled by varying the
Hurst exponent H, which takes parameter values between 0 (rough
surface) and 1 (smooth surface). We chose 201 different H values in this
range, and for each H value we generated a different surface. We then
categorized these surfaces with respect to their roughness level. For
instance, the first 67 surfaces were labeled smooth, while the last 67
surfaces were considered rough. The surfaces in between these two ex-
tremes were considered somewhat rough. The generated surfaces were
then used to obtain both areal and profile features. Profiles of the
generated surfaces were obtained by taking cross-sections along the
generated surface’s x and y directions, and they were assigned the same
labels as the original surface. Depending on the type of signal processing
tool used, we obtained roughness surfaces or roughness surface profiles,
and then we extracted the corresponding features needed for the clas-
sification algorithms.

2.2. Experimental data collection and preprocessing

A standard S-22 Microfinish Comparator is used for physical surface
texture data collection. To better recognize the surface texture, 9 sample
surfaces with clearly observed rough texture on the comparator are
selected (see Table 1).

The scanned area is 5 mm x 5 mm, and it was consistently located at
the upper left corner for each measured sample surface. Specifically, the
microfinish comparator was placed on a free-angle XYZ motorized
observation system (VHX-S650E), and the surface textures were
measured using a Keyence digital microscope (VHX6000), as shown in
Fig. 2a. A real zoom lens (Keyence VH-Z500R, RZ x500-x5000) is used to
capture the surface texture and x 500 magnification is used to achieve
sufficient spatial resolution (0.42 ym). The stitching technique (11 x 11
scans in the horizontal and vertical directions) is performed to enlarge
the observation view so that the whole selected area can be captured
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Fig. 1. Scan sample of 125 M.

under this magnification. The spatial sampling rate of the images was
approximately 2.4 samples per ym. Fig. 2b shows the resulting scanned
surfaces.

2.3. Data preprocessing

The resulting raw surface scans include different numbers of pixels
with lower grey-level intensity values on the edges of the image as
shown in Fig. 1. These pixels are tedious to isolate manually, so we
copped the images and adaptively removed these pixels using the
following algorithm. First, we found the remainder of image pixel values
in each direction when they are divided by 1000. The halves of the

(a) Scanned portions of the sample and the digital microscope.
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remainders are used as the number of pixels to remove from each edge.
This procedure was successful in significantly reducing the number of
pixels with lower grey-level intensity values at the boundaries, and the
resulting images had similar sizes.

The other challenge was the large dimension of the microscope
surface scans which can exceed 10000 pixels in each direction of the
image thus elevating computational expenses. Consequently, we split
each surface scan into 25 sub-images each with a dimension of 2400 x
2400 pixels.

2.3.1. Image subsampling

The resulting subimages still presented computational challenges for
some signal processing tools such as DCT where the maximum number
of modes is equal to the total number of pixels. Therefore, we sub-
sampled the images to further reduce the number of samples in the
subimages when using 2D signal processing tools for surface classifica-
tion. Several approaches are available for image scaling/resampling in
the literature. These also include some signal processing approaches to
upscale or downscale an image. One of the simple and widely used
subsampling methods is to replace a block of pixels with their average
values, and that is the approach we used in this study. After testing
different sampling factors such as 0.1, 0.2, and 0.5, we adopted a sam-
pling factor of 0.1 for the experimental data set. This means the size of
each block is 10 x 10 pixels.

3. Methods
3.1. Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is one of the widely adopted
signal processing tools [39-43]. While a signal’s frequency spectrum can
only be represented over the entire time domain with Fourier Transform,
Wavelet Transform can decompose the signal into components with
different time and frequency resolutions [44]. In DWT, the time series is
passed through low pass and high pass filters to obtain approximation

(b) The scanned surface textures.

Fig. 2. The microscope used for experimental data collection, and the sample surfaces.



