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Epidemic time series similarity is related to geographic distance and age struc-1

ture2

Abstract3

More similar locations may have similar infectious disease dynamics. There is clear overlap in4

putative causes for epidemic similarity, such as geographic distance, age structure, and popu-5

lation size. We compare the effects of these potential drivers on epidemic similarity compared6

to a baseline assumption that differences in the basic reproductive number (R0) will translate to7

differences in epidemic trajectories. Using COVID-19 case counts from United States counties,8

we explore the importance of geographic distance, population size differences, and age struc-9

ture dissimilarity on resulting epidemic similarity. We find clear effects of geographic space,10

age structure, population size, andR0 on epidemic similarity, but notably the effect of age struc-11

ture was stronger than the baseline assumption that differences in R0 would be most related to12

epidemic similarity. Together, this highlights the role of spatial and demographic processes on13

SARS-CoV2 epidemics in the United States.14
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Introduction15

The most recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2)16

has highlighted the pressing need to understand how epidemics emerge and spread, and how epi-17

demic models may be used for control and mitigation efforts. Models are used to estimate pa-18

rameters of interest, which are then used to calculate composite properties (e.g., basic reproduc-19

tion numberR0; Brauner et al. (2021); Ives & Bozzuto (2021)) and to simulate epidemics under20

different mitigation scenarios (e.g., Baker et al. (2020); Hinch et al. (2021); Sun et al. (2020)).21

However, these composite pathogen properties are not properties of the pathogen alone, but are22

conditional on the host population. Differences in susceptibility and contact patterns among23

individuals is critical to pathogen transmission and epidemic trajectories (Yin et al., 2017).24

Measures of R0 – quantifying the approximated number of secondary cases from a single case25

in a wholly susceptible host population – based on temporal case counts can hint at these dif-26

ferences in individual contact and transmission, but could also suggest differences in pathogen27

strain diversity and numerous other factors contributing to epidemic dynamics (Corcoran et al.,28

2020; Ives & Bozzuto, 2021). Understanding the processes that lead to differing epidemic dy-29

namics is a pressing research need, as many of these underlying drivers of estimated R0 may30

potentially change over time or with different intervention strategies (Islam et al., 2021).31

The SARS-CoV-2 pandemic has created a situation where it may be possible to start to dis-32

entangle the role of different factors on resulting epidemic trajectories. For one, county-level33

data on infectious case counts provide a means to compare how epidemics progressed at the34

county scale, and to compare epidemic trajectories between counties. At a basic level, this al-35

lows for the comparison of epidemic trajectories to differences in R0, as the larger difference36

in R0 would suggest that the epidemics should be quite dissimilar in their trajectories. For one,37

R0 may be estimated from the epidemic time series itself, such that epidemics with similar R038

would naturally have similar dynamics. However, R0 is a simple composite measure estimated39

from a time series that may belie the influence of mitigation efforts and fluctuating epidemic40

dynamics (e.g., COVID-19 case counts appeared in distinct waves, while R0 estimates do not41

use all waves; Ives & Bozzuto (2021)). Apart from similarity in R0 leading to similar epi-42

demics, differences in epidemic trajectories may be driven simply by geographic space between43

two epidemics. That is, epidemics should be more similar in nearby counties than in distant44
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counties. This could be driven by several interwoven drivers, which may not be reflected in45

differences in estimated R0, including spatial autocorrelation in demographics, climatic effects46

on transmission, differences in mitigation efforts, or the movement of infectious individuals.47

But there is an inherent circularity here, in that estimates of R0 are based on the epidemic48

trajectories, such that pairwise differences in R0 between counties should inherently be related49

to differences in epidemic trajectories. This creates an interesting baseline for comparison. That50

is, differences in R0 should hypothetically relate to differences in epidemic trajectory – barring51

time-varyingR0 and assumingR0 can be estimated accurately – simply becauseR0 is estimated52

from a portion of the epidemic time series. Here, we explore how epidemic trajectories are re-53

lated to differences in R0, and how other important differences between counties may further54

influence epidemic trajectories. Specifically, epidemic trajectories may differ as a function of55

geographic distance between counties, and differences in age structure and population size. We56

find that there is a clear signal of geographic distance and demographic (population size and57

age structure) dissimilarity on resulting epidemic trajectory differences for a set of 3139 US58

counties. We compare the strength of these relationships to the potentially circular relation-59

ship between epidemic trajectory differences and differences in R0, finding that age structure60

dissimilarity is more strongly related to epidemic trajectory similarity compared to differences61

in R0. Together, this suggests an important role for age structure to epidemic emergence and62

progression, and highlights the importance of considering the spatial landscape of infectious63

disease.64

Methods65

COVID-19 epidemic time series data Time series case data for SARS-CoV-2 were compiled66

by the Center for Systems Science and Engineering at Johns Hopkins University Dong, Du &67

Gardner (2020) for a set of 3139 United States counties, with recorded case counts every day68

for the period between January 22, 2020, and May 9, 2022. These data were then rescaled69

to cases per 100,000 residents based on county population estimates from the United States70

Census Bureau from 2019 Loftin (2019). County age structure data was also obtained from the71

US Census Bureau Loftin (2019), and standardized to sum to one within a given county. Age72

structure dissimilarity was estimated as the Euclidean distance between two counties in their73
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age structure distributions. Estimates of R0 were obtained from Ives & Bozzuto (2021), which74

were estimated from the epidemic time series directly.75

Dynamic time warping Dynamic time warping (DTW) is an approach to measure the sim-76

ilarity between two time series based on the notion that there is not an inherent 1:1 matching77

between values in each time series (Berndt & Clifford, 1994), largely applied to problems in78

speech (Amin &Mahmood, 2008) and gait (Boulgouris, Plataniotis & Hatzinakos, 2004) recog-79

nition and comparison. The underlying idea is that the speed of speech or gait could be different,80

while the actual underlying pattern is the same (e.g., the same words can be spoken more quickly81

or with differing amounts of pauses). In our application to infectious disease, there is no reason82

to believe that the pairwise difference in Covid-19 case counts between two counties is actu-83

ally a measure of how similar the epidemics are, given that the epidemics may have started at84

different times. This fundamental disconnect means that perhaps it is more suitable to attempt85

to match the time series data based on the start of the epidemic or to use an approach which is86

flexible to different epidemic start times, as we do here. By allowing an elastic transformation87

of the time series, DTW attempts to minimize the difference between the two trajectories while88

accounting for phase shifts in epidemic dynamics (Figure 1).89

DTW (x, y) = minπ∈A(x,y)

 ∑
(i,j)∈π

d(xi, yj)
q

1/q

(1)

Here, we want to compare two epidemic time series (x and y), considering an alignment90

path π of all possible paths (Ax,y), where i and j correspond to the position in the time series91

mapping onto the potential alignments, where q is a normalization constant. The goal is to find92

an alignment which minimizes the overall dissimilarity between the two time series. We use93

the dtw R package (Giorgino, 2009), and consider the dissimilarity between the time series to94

be the normalized cumulative dissimilarity between the two time series. There is a possibility95

that the results could be sensitive to the inclusion of many leading or trailing zero counts, where96

epidemics were on a fundamentally different timescale across US counties. While this approach97

should account for this, we explore the effect of truncating the epidemic time series to include 598

leading and 5 trailing zero values before the calculation of the DTW values. Trimming the time99

series to remove these zero-values did not affect our findings (see Supplementary Material).100
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What is related to epidemic similarity? Epidemic similarity was measured by comparing101

epidemic time series for every pair of US counties. This creates a pairwise dissimilarity ma-102

trix. To project this high-dimensional matrix into lower dimensions for analysis, we used t-103

distributed stochastic neighbor embedding (t-SNE), a method that offers a low-dimensional104

projection of high-dimensional data (Gisbrecht, Schulz & Hammer, 2015). The result of this105

embedding is the production of two t-SNE axes, in which each axis contains one value per US106

county, and the distance along each axis relates to epidemic dissimilarity, mapping counties out107

along the two axes. This allows us to relate these low-dimensional axes representing epidemic108

trajectory similarity to differences between counties in terms of spatial distance, demograph-109

ics (e.g., age structure and population size), and estimated epidemic properties (R0 (Ives &110

Bozzuto, 2021)).111

We used Moran’s I to quantify the effects of geographic distance and age structure dissimi-112

larity on resulting epidemic similarity. That is, how similar are epidemics in different counties113

as a function of geographic distance between counties or differences in age structure between114

counties? Originally designed as a measure of spatial autocorrelation, Moran’s I is essentially115

a distance-weighted Pearson’s correlation, allowing the relationship between a distance ma-116

trix (e.g., pairwise geographic distance between all US counties) and a county-level trait (e.g.,117

t-SNE axis values). We related each t-SNE axis – representing the projected epidemic dissim-118

ilarity between two US counties – to pairwise matrices of 1) geographic distance between US119

counties, 2) age structure dissimilarity, 3) absolute difference in population size, and 4) abso-120

lute difference in R0. The underlying idea being that counties that are closer to one another,121

with similar age structure, and not differing greatly in population size or estimated R0 (Ives &122

Bozzuto, 2021) would also be closer together along t-SNE axes. All distance and dissimilarity123

matrices – describing the relative difference in geographic distance, age structure, population124

size, and R0 among US county pairs – were standardized to be bound between 0 and 1, and125

inverted, such that the largest distances corresponded to the smallest values. This allows us126

to calculate z-scores based on the null distributions, and to compare these scores across the127

different distance/dissimilarity matrices.128

However, we are fundamentally limited by the almost inherent collinearity between some of129

these measures. For instance, geographic distance and age structure dissimilarity were posi-130

6



tively related, based on a Mantel test (z = 247, p = 0.001), suggesting that more distant counties131

also have more dissimilar age structure. We explore this further in the Supplemental Materials,132

where we use Mantel tests on the pairwise epidemic dissimilarity matrix directly, instead of133

attempting to project the dissimilarity into two axes using t-SNE. However, regressions of dis-134

tance matrices are notoriously error-prone (Legendre, Fortin & Borcard, 2015), which is why135

we present the analyses of the t-SNE axes here. By compressing epidemic similarity into a136

low-dimensional space, more traditional regression techniques can be used. The results of both137

analyses are qualitatively similar (see Supplementary Materials for further discussion).138

Reproducibility R code and data to reproduce the analyses is provided at139

https://doi.org/10.6084/m9.figshare.19782406.v1140

Results141

Pairwise epidemic time series similarity was calculated using dynamic time warping (DTW),142

which was weakly related to Euclidean distance in epidemic time series, suggesting that this143

approach was able to capture additional information relative to a more simple distance measure144

(see Supplemental Materials). The matrix of pairwise DTW values were reduced to two axes145

using t-SNE (Gisbrecht, Schulz & Hammer, 2015). This low-dimensional representation of146

site-level epidemic similarity showed clear spatial patterns for the first two t-SNE axes (Figure147

2). Interestingly, the spatial patterns adhere to geopolitical (i.e., US state) boundaries in some148

instances, a phenomenon which may be due to differences between states in case reporting149

standards and practices (Sen-Crowe et al., 2021), but is worthy of future investigation. The150

extent to which geographic distance is related to epidemic similarity is difficult to discern, as151

we observed spatial structure in population age structure differences (Figure S3), as well as152

clear relationships between R0 and population size (Figure 3).153

What is related to epidemic dissimilarity? Despite these difficulties, we find a clear rela-154

tionship between epidemic similarity and geographic distance, age structure dissimilarity, and155

differences in population size and R0 between counties (Table 1). These relationships were156

estimated using Moran’s I , relating the two axes of epidemic similarity to pairwise matrices de-157

scribing differences in age structure, geographic distance, R0, and population size. Moran’s I is158
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scaled between -1 and 1, where a value of 0 represents a lack of distance-based (or dissimilarity-159

based) autocorrelation (either negative or positive). All estimated Moran’s I values in the cur-160

rent analysis were positive, suggesting positive spatial autocorrelation for all dissimilarity and161

distance matrices examined here. Both t-SNE axes – representing epidemic dissimilarity – were162

positively related to 1) geographic distance between US counties, 2) age structure dissimilarity,163

3) absolute difference in population size, and 4) absolute difference inR0 (Table 1). Geographic164

distance was more related to both t-SNE axes relative to age structure, population size, and R0165

based on both the raw observed value and the corresponding standardized z-score (Table 1).166

Differences in R0 between counties showed the next strongest signal in the t-SNE axes, fol-167

lowed by age structure dissimilarity (Table 1).168

Discussion169

Here, we explored how geographic space, demographics, andR0 influence differences in epi-170

demic trajectories for over 3000 United States counties. We expected – and found – that coun-171

ties with similar R0 values tended to have similar epidemics. Independent of this, we found172

clear effects of geographic distance between counties and dissimilarities in county age struc-173

ture on resulting epidemic trajectories, suggesting that R0 estimated from case or mortality data174

(Ives & Bozzuto, 2021) may not capture the full potential of the epidemic in a given location.175

Together, we highlight the importance of considering population demographics, age-specific176

contact network structure, and geographic distance when attempting to estimate epidemic tra-177

jectories. While we approach the problem as one of pairwise dissimilarity in epidemics, it178

may be possible to use similar approaches to recreate an expected epidemic time series for an179

unsampled location given information on geography and demography.180

Spatial structure in both age structure and population sizes precludes the attribution of any181

form of causal link between age structure or geographic distance and resulting epidemic trajec-182

tories. However, our findings, based on the entire epidemic time, broadly agree with similar183

studies which focused on components of the transmission process or summary statistics such184

as R0. Further, the analyses can be updated as the epidemic progresses, or using different185

time windows to explore how time series clustering changes temporally. It is recognized that186

both parts of the transmission process – encounter and susceptibility – vary with individual age187
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(Covid et al., 2020; Jones et al., 2021; Kerr et al., 2021; Magpantay, King & Rohani, 2019), sug-188

gesting that for some pathogens including SARS-CoV-2, considering the age structure is quite189

important to epidemic forecasting (Kerr et al., 2021). Additionally, geographic patterns in R0190

(Ives & Bozzuto, 2021), non-pharmaceutical interventions initiation and compliance (Amuedo-191

Dorantes, Kaushal & Muchow, 2021; Yang et al., 2021), and vaccine hesitancy (Zuzek, Zipfel192

& Bansal, 2022) have emerged as potential drivers for spatial variation in epidemic progression193

(Richards et al., 2022). By comparing epidemic trajectories directly, using a flexible framework194

which allows epidemics to be sampled at different timescales, we have found that these simi-195

larity patterns in summary values, transmission components, and intervention uptake scale up196

directly to the similarity between entire epidemics.197

One major result is the marked state-level clustering of epidemic similarity (Figure 2). Pre-198

vious clustering of US states was observed early in the pandemic at the state-level (Rojas,199

Valenzuela & Rojas, 2020), potentially reflecting large scale differences in mitigation proto-200

cols (e.g., closing bars and restaurants) or differences in testing regimes across US states. The201

consistent clustering at US state level when considering counties as the unit of study suggests202

that state-level variation in reporting, testing, or mitigation may manifest to influence epidemic203

similarity. Understanding the cause of this clustering may help to inform mitigation efforts, and204

help to uncover differences in testing or reporting that may be important to understand spatial205

patterns of infectious disease.206

It is interesting that epidemic similarity showed clear signals of geographic distance, age207

structure, and county-level differences in population size andR0, given that counties also varied208

in other marked ways. For instance, differences in non-pharmaceutical interventions, vaccina-209

tion rate variation, and other demographic factors which we recognize are important to pathogen210

spread (Abedi et al., 2021; Ge et al., 2022; Zuzek, Zipfel & Bansal, 2022) did not mask the ef-211

fect of age structure. One reason for this may be that age structure is serving as a surrogate for212

other measures of population demography not inherently related to age-structured transmission.213

That is, differences in vaccination hesitancy (Zuzek, Zipfel & Bansal, 2022) and risk perception214

(Bruine de Bruin, 2021) may differ across age groups. One way to parse this out would be to215

examine epidemic trajectory similarity in other geopolitical locations and at different spatial216

scales, where the relative influence of geographic connectivity, population demographics, and217
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pathogen strain diversity may be quite different. The incorporation of temporal information on218

mitigation efforts, strain diversity, and availability of health care infrastructure is a clear next219

step to understanding and forecasting epidemic time series. This effort is obviously not aimed at220

forecasting directly, but could potentially be used to infer approximate epidemic dynamics for221

future epidemics or to explore how deviations from epidemic trajectories between neighboring222

counties (or those with similar age structure) may be driven by other critical variables.223

The COVID-19 pandemic will not be the last pandemic (Medicine, 2022), and understand-224

ing the factors which influence epidemic dynamics are intrinsically important to public health225

measures. Perhaps this current pandemic is a special case, as comparisons inR0 between SARS-226

CoV2 and 1918 pandemic influenza revealed little consensus in heavily impacted cities (Foster227

et al., 2022). But it seems relevant to use approaches such as the one we do here to understand228

how epidemic trajectories differ, both within the same pandemic and potentially for different229

pathogens (e.g., how dissimilar are temporal patterns in seasonal flu epidemics in a given lo-230

cation?). The comparison of epidemic trajectories – especially along moving windows as the231

epidemic progresses – can provide insight into the relative effects of different mitigation and232

control efforts. Finally, while many approaches to forecasting epidemics rely on a single time233

series, this work alludes to the possibility of incorporating information on nearby or similar234

time series, creating the possibility of joint epidemic forecasts.235
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Tables327

Table 1: Moran’s I analysis exploring how t-SNE axes are related to geographic distance, age
structure dissimilarity, difference in population size, and difference in R0. Mantel tests use
a randomization approach to generate null distributions to compare observed (obs) to null
(exp and sd) distributions. Z-scores estimate the divergence of the test statistic from the null
distribution.

covariate t-SNE axis obs exp sd p-value z-score
geography 1 0.02963 -0.00032 0.00014 < 0.0001 216.3

2 0.01930 -0.00032 0.00014 < 0.0001 141.7
age structure 1 0.00043 -0.00032 0.00001 < 0.0001 60.5

2 0.00017 -0.00032 0.00001 < 0.0001 39.4
population size 1 0.00002 -0.00032 0.00003 < 0.0001 11.7

2 0.00004 -0.00032 0.00003 < 0.0001 12.3
R0 1 0.00339 -0.00032 0.00003 < 0.0001 110.7

2 0.00135 -0.00032 0.00003 < 0.0001 49.8
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Figure 1: The similarity of epidemic time series was estimated using dynamic time warping,
where two time series (in blue and black in panel a) are mapped onto one another (indicated by
grey lines in panel a) to estimate epidemic dissimilarity. These time series are pairwise between
every county in the United States (panel b). These pairwise values are then compressed to a
low-dimensional space by using t-SNE (panel c), where point color corresponds to estimated
R0 for the given US county.
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Figure 2: The spatial distribution of epidemic trajectory similarity (t-SNE decomposition of the
pairwise dynamic time warping matrix). In this geographic projection of the t-SNE values, there
are clearly some states which cluster, suggesting similar mitigation efforts, sampling/reporting
biases, and/or epidemic trajectories.
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Figure 3: The relationship between t-SNE axes and county population size, with point color
corresponding to R0, highlighting the distribution of t-SNE values, the messy relationship be-
tween epidemic similarity and county population size, and the clear scaling of R0 with county
population size.
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Supplementary materials329

Title: Epidemic time series similarity is related to geographic distance and age structure330

Authors: Tad A Dallas, Grant Foster, Robert Richards, & Bret D Elderd331

Does time need to warped?332

We use dynamic time warping as a flexible way to compare time series similarity. Here, we333

explore how much of this signal would be observed if we simply calculated the summed differ-334

ence in pairwise epidemic trajectories. We found the two approaches are roughly similar, but335

that the dynamic time warping does result in different estimates of epidemic similarity (Figure336

S1), highlighting the application of such time series approaches to epidemic trajectory data.337
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Figure S1: The sum of the absolute difference between the two time series is related to the
dynamic time warp dissimilarity in this particular application. There are still clear differences
between the two.
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Truncating the epidemic time series338

In the main text, we considered the full epidemic time series, including case counts in which339

case counts were zero-valued. Here, we explore to what extent this influences the dynamic time340

warping estimates, and our overall results. This does not influence our overall results (Table341

S1), and the two estimates of epidemic dissimilarity produced by truncating the epidemic time342

series versus keeping the entire time series are quite positively related (Figure S2).343

Table S1: Moran’s I analysis exploring how t-SNE axes are related to geographic distance,
age structure dissimilarity, difference in population size, and difference in R0. Mantel tests
use a randomization approach to generate null distributions to compare observed (obs) to null
(exp and sd) distributions. Z-scores estimate the divergence of the test statistic from the null
distribution.

covariate t-SNE axis obs exp sd p-value z-score
geography 1 0.01832 -0.00032 0.00014 < 0.0001 134.7

2 0.02849 -0.00032 0.00014 < 0.0001 208.1
age structure 1 0.00041 -0.00032 0.00001 < 0.0001 58.9

2 0.00024 -0.00032 0.00001 < 0.0001 45.4
population size 1 0.00001 -0.00032 0.00003 < 0.0001 11.2

2 0.00008 -0.00032 0.00003 < 0.0001 13.7
R0 1 0.00231 -0.00032 0.00003 < 0.0001 78.6

2 0.00106 -0.00032 0.00003 < 0.0001 41.2
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Figure S2: The relationship between dynamic time warping estimates when the time series was
truncated to remove the majority of zero values (x-axis) compared to when the entire epidemic
time series was used (y-axis). Small variations do exist, but this does not affect our overall
findings.

4



R0, population size, and epidemic similarity344

While we can consider epidemics in US counties as being quasi-isolated, with travel restrictions345

and differing epidemic timing, it is not possible to control for the inherent link between R0346

(which is estimated from epidemic time series themselves) and population size (Figure S4) and347

the resulting epidemic trajectory similarity values obtained from the t-SNE decomposition of348

the pairwise dynamic time warping matrix of epidemic similarity.349
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Figure S3: The relationship between geographic distance and age structure dissimilarity.
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Figure S4: The relationship between epidemic dissimilarity (t-SNE axes as y-axes) and pop-
ularion size (first column) and estimated R0 (second column). Blue lines are linear fits (with
associated β and p-values in each panel), where significant lines are solid.
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Epidemic similarity as a function of geopolitical boundaries350

Epidemic similarity, when compressed to the two t-SNE axes, showed clear US state-level rela-351

tionships. There are numerous potential reasons for this, including state-level implementations352

of lockdown orders, variation in state-level testing efforts, and variability in reporting. These353

are beyond the scope of the current work, but it seems prudent to highlight this variation in354

t-SNE space (Figure S5).355
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Figure S5: Epidemic similarity in t-SNE space shows clear state-level clustering, suggesting
that epidemic similarity was related to some aspect of this geopolitical scale, such as variable
mitigation, testing, and reporting efforts.
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Mantel Tests356

Here, we explore how the pairwise epidemic similarity is related to the distance (or dissim-357

ilarity) matrices related to demography and spatial processes. If we claim that z-score as a358

measure of association between epidemic trajectory similarity and geographic distance, age359

structure dissimilarity, population size difference, and R0 difference, then we would conclude360

that geographic distance and R0 difference between US counties are the most related to epi-361

demic similarity. Each of the distance or dissimilarity matrices were significantly related to the362

pairwise epidemic dissimilarity matrix. Taking the estimated z-score from the Mantel tests as a363

measure of association would lead us to conclude that geographic distance was far less impor-364

tant than other matrices. Considering the inherent collinearity between many of these variables,365

the most salient aspect of this becomes that all of these demographic and spatial factors were366

significantly related to epidemic similarity.367

Table S2: Mantel tests – permutation tests relating two pair-wise dissimilarities to one another
– found that geographic distance, age structure dissimilarity, difference in population size, and
difference in R0 were all related to epidemic trajectory dissimilarity.

covariate z p
geography 3111220 < 0.001
age structure 11354792 < 0.001
population size 11218853 < 0.001
R0 12819318 < 0.001
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