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Epidemic time series similarity is related to geographic distance and age struc-
ture

Abstract

More similar locations may have similar infectious disease dynamics. There is clear overlap in
putative causes for epidemic similarity, such as geographic distance, age structure, and popu-
lation size. We compare the effects of these potential drivers on epidemic similarity compared
to a baseline assumption that differences in the basic reproductive number () will translate to
differences in epidemic trajectories. Using COVID-19 case counts from United States counties,
we explore the importance of geographic distance, population size differences, and age struc-
ture dissimilarity on resulting epidemic similarity. We find clear effects of geographic space,
age structure, population size, and R, on epidemic similarity, but notably the effect of age struc-
ture was stronger than the baseline assumption that differences in iy would be most related to
epidemic similarity. Together, this highlights the role of spatial and demographic processes on
SARS-CoV2 epidemics in the United States.
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Introduction

The most recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV?2)
has highlighted the pressing need to understand how epidemics emerge and spread, and how epi-
demic models may be used for control and mitigation efforts. Models are used to estimate pa-
rameters of interest, which are then used to calculate composite properties (e.g., basic reproduc-
tion number Ry; Brauner et al. (2021); Ives & Bozzuto (2021)) and to simulate epidemics under
different mitigation scenarios (e.g., Baker et al. (2020); Hinch et al. (2021); Sun et al. (2020)).
However, these composite pathogen properties are not properties of the pathogen alone, but are
conditional on the host population. Differences in susceptibility and contact patterns among
individuals is critical to pathogen transmission and epidemic trajectories (Yin et al., 2017).
Measures of Ry — quantifying the approximated number of secondary cases from a single case
in a wholly susceptible host population — based on temporal case counts can hint at these dif-
ferences in individual contact and transmission, but could also suggest differences in pathogen
strain diversity and numerous other factors contributing to epidemic dynamics (Corcoran et al.,
2020; Ives & Bozzuto, 2021). Understanding the processes that lead to differing epidemic dy-
namics is a pressing research need, as many of these underlying drivers of estimated Ry may

potentially change over time or with different intervention strategies (Islam et al., 2021).

The SARS-CoV-2 pandemic has created a situation where it may be possible to start to dis-
entangle the role of different factors on resulting epidemic trajectories. For one, county-level
data on infectious case counts provide a means to compare how epidemics progressed at the
county scale, and to compare epidemic trajectories between counties. At a basic level, this al-
lows for the comparison of epidemic trajectories to differences in Ry, as the larger difference
in Ry would suggest that the epidemics should be quite dissimilar in their trajectories. For one,
Ry may be estimated from the epidemic time series itself, such that epidemics with similar 7
would naturally have similar dynamics. However, Ry is a simple composite measure estimated
from a time series that may belie the influence of mitigation efforts and fluctuating epidemic
dynamics (e.g., COVID-19 case counts appeared in distinct waves, while I, estimates do not
use all waves; Ives & Bozzuto (2021)). Apart from similarity in Ry leading to similar epi-
demics, differences in epidemic trajectories may be driven simply by geographic space between

two epidemics. That is, epidemics should be more similar in nearby counties than in distant
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counties. This could be driven by several interwoven drivers, which may not be reflected in
differences in estimated Ry, including spatial autocorrelation in demographics, climatic effects

on transmission, differences in mitigation efforts, or the movement of infectious individuals.

But there is an inherent circularity here, in that estimates of R, are based on the epidemic
trajectories, such that pairwise differences in R, between counties should inherently be related
to differences in epidemic trajectories. This creates an interesting baseline for comparison. That
is, differences in 7, should hypothetically relate to differences in epidemic trajectory — barring
time-varying Ry and assuming 1, can be estimated accurately — simply because R, is estimated
from a portion of the epidemic time series. Here, we explore how epidemic trajectories are re-
lated to differences in Ry, and how other important differences between counties may further
influence epidemic trajectories. Specifically, epidemic trajectories may differ as a function of
geographic distance between counties, and differences in age structure and population size. We
find that there is a clear signal of geographic distance and demographic (population size and
age structure) dissimilarity on resulting epidemic trajectory differences for a set of 3139 US
counties. We compare the strength of these relationships to the potentially circular relation-
ship between epidemic trajectory differences and differences in Ry, finding that age structure
dissimilarity is more strongly related to epidemic trajectory similarity compared to differences
in Ry. Together, this suggests an important role for age structure to epidemic emergence and
progression, and highlights the importance of considering the spatial landscape of infectious

disease.

Methods

COVID-19 epidemic time series data Time series case data for SARS-CoV-2 were compiled
by the Center for Systems Science and Engineering at Johns Hopkins University Dong, Du &
Gardner (2020) for a set of 3139 United States counties, with recorded case counts every day
for the period between January 22, 2020, and May 9, 2022. These data were then rescaled
to cases per 100,000 residents based on county population estimates from the United States
Census Bureau from 2019 Loftin (2019). County age structure data was also obtained from the
US Census Bureau Loftin (2019), and standardized to sum to one within a given county. Age

structure dissimilarity was estimated as the Euclidean distance between two counties in their
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age structure distributions. Estimates of R, were obtained from Ives & Bozzuto (2021), which

were estimated from the epidemic time series directly.

Dynamic time warping Dynamic time warping (DTW) is an approach to measure the sim-
ilarity between two time series based on the notion that there is not an inherent 1:1 matching
between values in each time series (Berndt & Clifford, 1994), largely applied to problems in
speech (Amin & Mahmood, 2008) and gait (Boulgouris, Plataniotis & Hatzinakos, 2004) recog-
nition and comparison. The underlying idea is that the speed of speech or gait could be different,
while the actual underlying pattern is the same (e.g., the same words can be spoken more quickly
or with differing amounts of pauses). In our application to infectious disease, there is no reason
to believe that the pairwise difference in Covid-19 case counts between two counties is actu-
ally a measure of how similar the epidemics are, given that the epidemics may have started at
different times. This fundamental disconnect means that perhaps it is more suitable to attempt
to match the time series data based on the start of the epidemic or to use an approach which is
flexible to different epidemic start times, as we do here. By allowing an elastic transformation
of the time series, DTW attempts to minimize the difference between the two trajectories while

accounting for phase shifts in epidemic dynamics (Figure 1).

1/q
DTW (x,y) = minzcaxy) Z d(zi,y;)? (1)
(i,)em

Here, we want to compare two epidemic time series (x and y), considering an alignment
path 7 of all possible paths (A, ,), where i and j correspond to the position in the time series
mapping onto the potential alignments, where ¢ is a normalization constant. The goal is to find
an alignment which minimizes the overall dissimilarity between the two time series. We use
the dtw R package (Giorgino, 2009), and consider the dissimilarity between the time series to
be the normalized cumulative dissimilarity between the two time series. There is a possibility
that the results could be sensitive to the inclusion of many leading or trailing zero counts, where
epidemics were on a fundamentally different timescale across US counties. While this approach
should account for this, we explore the effect of truncating the epidemic time series to include 5
leading and 5 trailing zero values before the calculation of the DTW values. Trimming the time

series to remove these zero-values did not affect our findings (see Supplementary Material).
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What is related to epidemic similarity? Epidemic similarity was measured by comparing
epidemic time series for every pair of US counties. This creates a pairwise dissimilarity ma-
trix. To project this high-dimensional matrix into lower dimensions for analysis, we used t-
distributed stochastic neighbor embedding (t-SNE), a method that offers a low-dimensional
projection of high-dimensional data (Gisbrecht, Schulz & Hammer, 2015). The result of this
embedding is the production of two t-SNE axes, in which each axis contains one value per US
county, and the distance along each axis relates to epidemic dissimilarity, mapping counties out
along the two axes. This allows us to relate these low-dimensional axes representing epidemic
trajectory similarity to differences between counties in terms of spatial distance, demograph-
ics (e.g., age structure and population size), and estimated epidemic properties (2 (Ives &
Bozzuto, 2021)).

We used Moran’s I to quantify the effects of geographic distance and age structure dissimi-
larity on resulting epidemic similarity. That is, how similar are epidemics in different counties
as a function of geographic distance between counties or differences in age structure between
counties? Originally designed as a measure of spatial autocorrelation, Moran’s [ is essentially
a distance-weighted Pearson’s correlation, allowing the relationship between a distance ma-
trix (e.g., pairwise geographic distance between all US counties) and a county-level trait (e.g.,
t-SNE axis values). We related each t-SNE axis — representing the projected epidemic dissim-
ilarity between two US counties — to pairwise matrices of 1) geographic distance between US
counties, 2) age structure dissimilarity, 3) absolute difference in population size, and 4) abso-
lute difference in Ry. The underlying idea being that counties that are closer to one another,
with similar age structure, and not differing greatly in population size or estimated Ry (Ives &
Bozzuto, 2021) would also be closer together along t-SNE axes. All distance and dissimilarity
matrices — describing the relative difference in geographic distance, age structure, population
size, and Ry among US county pairs — were standardized to be bound between 0 and 1, and
inverted, such that the largest distances corresponded to the smallest values. This allows us
to calculate z-scores based on the null distributions, and to compare these scores across the

different distance/dissimilarity matrices.

However, we are fundamentally limited by the almost inherent collinearity between some of

these measures. For instance, geographic distance and age structure dissimilarity were posi-
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tively related, based on a Mantel test (z = 247, p = 0.001), suggesting that more distant counties
also have more dissimilar age structure. We explore this further in the Supplemental Materials,
where we use Mantel tests on the pairwise epidemic dissimilarity matrix directly, instead of
attempting to project the dissimilarity into two axes using t-SNE. However, regressions of dis-
tance matrices are notoriously error-prone (Legendre, Fortin & Borcard, 2015), which is why
we present the analyses of the t-SNE axes here. By compressing epidemic similarity into a
low-dimensional space, more traditional regression techniques can be used. The results of both

analyses are qualitatively similar (see Supplementary Materials for further discussion).

Reproducibility R code and data to reproduce the analyses is provided at
https://doi.org/10.6084/m9.figshare.19782406.v1

Results

Pairwise epidemic time series similarity was calculated using dynamic time warping (DTW),
which was weakly related to Euclidean distance in epidemic time series, suggesting that this
approach was able to capture additional information relative to a more simple distance measure
(see Supplemental Materials). The matrix of pairwise DTW values were reduced to two axes
using t-SNE (Gisbrecht, Schulz & Hammer, 2015). This low-dimensional representation of
site-level epidemic similarity showed clear spatial patterns for the first two t-SNE axes (Figure
2). Interestingly, the spatial patterns adhere to geopolitical (i.e., US state) boundaries in some
instances, a phenomenon which may be due to differences between states in case reporting
standards and practices (Sen-Crowe et al., 2021), but is worthy of future investigation. The
extent to which geographic distance is related to epidemic similarity is difficult to discern, as
we observed spatial structure in population age structure differences (Figure S3), as well as

clear relationships between Ry and population size (Figure 3).

What is related to epidemic dissimilarity? Despite these difficulties, we find a clear rela-
tionship between epidemic similarity and geographic distance, age structure dissimilarity, and
differences in population size and 7y between counties (Table 1). These relationships were
estimated using Moran’s /, relating the two axes of epidemic similarity to pairwise matrices de-

scribing differences in age structure, geographic distance, Ry, and population size. Moran’s [ is
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scaled between -1 and 1, where a value of 0 represents a lack of distance-based (or dissimilarity-
based) autocorrelation (either negative or positive). All estimated Moran’s / values in the cur-
rent analysis were positive, suggesting positive spatial autocorrelation for all dissimilarity and
distance matrices examined here. Both t-SNE axes — representing epidemic dissimilarity — were
positively related to 1) geographic distance between US counties, 2) age structure dissimilarity,
3) absolute difference in population size, and 4) absolute difference in R (Table 1). Geographic
distance was more related to both t-SNE axes relative to age structure, population size, and R
based on both the raw observed value and the corresponding standardized z-score (Table 1).
Differences in Ry between counties showed the next strongest signal in the t-SNE axes, fol-

lowed by age structure dissimilarity (Table 1).

Discussion

Here, we explored how geographic space, demographics, and R, influence differences in epi-
demic trajectories for over 3000 United States counties. We expected — and found — that coun-
ties with similar R, values tended to have similar epidemics. Independent of this, we found
clear effects of geographic distance between counties and dissimilarities in county age struc-
ture on resulting epidemic trajectories, suggesting that R, estimated from case or mortality data
(Ives & Bozzuto, 2021) may not capture the full potential of the epidemic in a given location.
Together, we highlight the importance of considering population demographics, age-specific
contact network structure, and geographic distance when attempting to estimate epidemic tra-
jectories. While we approach the problem as one of pairwise dissimilarity in epidemics, it
may be possible to use similar approaches to recreate an expected epidemic time series for an

unsampled location given information on geography and demography.

Spatial structure in both age structure and population sizes precludes the attribution of any
form of causal link between age structure or geographic distance and resulting epidemic trajec-
tories. However, our findings, based on the entire epidemic time, broadly agree with similar
studies which focused on components of the transmission process or summary statistics such
as Ry. Further, the analyses can be updated as the epidemic progresses, or using different
time windows to explore how time series clustering changes temporally. It is recognized that

both parts of the transmission process — encounter and susceptibility — vary with individual age
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(Covid et al., 2020; Jones et al., 2021; Kerr et al., 2021; Magpantay, King & Rohani, 2019), sug-
gesting that for some pathogens including SARS-CoV-2, considering the age structure is quite
important to epidemic forecasting (Kerr et al., 2021). Additionally, geographic patterns in R
(Ives & Bozzuto, 2021), non-pharmaceutical interventions initiation and compliance (Amuedo-
Dorantes, Kaushal & Muchow, 2021; Yang et al., 2021), and vaccine hesitancy (Zuzek, Zipfel
& Bansal, 2022) have emerged as potential drivers for spatial variation in epidemic progression
(Richards et al., 2022). By comparing epidemic trajectories directly, using a flexible framework
which allows epidemics to be sampled at different timescales, we have found that these simi-
larity patterns in summary values, transmission components, and intervention uptake scale up

directly to the similarity between entire epidemics.

One major result is the marked state-level clustering of epidemic similarity (Figure 2). Pre-
vious clustering of US states was observed early in the pandemic at the state-level (Rojas,
Valenzuela & Rojas, 2020), potentially reflecting large scale differences in mitigation proto-
cols (e.g., closing bars and restaurants) or differences in testing regimes across US states. The
consistent clustering at US state level when considering counties as the unit of study suggests
that state-level variation in reporting, testing, or mitigation may manifest to influence epidemic
similarity. Understanding the cause of this clustering may help to inform mitigation efforts, and
help to uncover differences in testing or reporting that may be important to understand spatial

patterns of infectious disease.

It is interesting that epidemic similarity showed clear signals of geographic distance, age
structure, and county-level differences in population size and R, given that counties also varied
in other marked ways. For instance, differences in non-pharmaceutical interventions, vaccina-
tion rate variation, and other demographic factors which we recognize are important to pathogen
spread (Abedi et al., 2021; Ge et al., 2022; Zuzek, Zipfel & Bansal, 2022) did not mask the ef-
fect of age structure. One reason for this may be that age structure is serving as a surrogate for
other measures of population demography not inherently related to age-structured transmission.
That is, differences in vaccination hesitancy (Zuzek, Zipfel & Bansal, 2022) and risk perception
(Bruine de Bruin, 2021) may differ across age groups. One way to parse this out would be to
examine epidemic trajectory similarity in other geopolitical locations and at different spatial

scales, where the relative influence of geographic connectivity, population demographics, and
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pathogen strain diversity may be quite different. The incorporation of temporal information on
mitigation efforts, strain diversity, and availability of health care infrastructure is a clear next
step to understanding and forecasting epidemic time series. This effort is obviously not aimed at
forecasting directly, but could potentially be used to infer approximate epidemic dynamics for
future epidemics or to explore how deviations from epidemic trajectories between neighboring

counties (or those with similar age structure) may be driven by other critical variables.

The COVID-19 pandemic will not be the last pandemic (Medicine, 2022), and understand-
ing the factors which influence epidemic dynamics are intrinsically important to public health
measures. Perhaps this current pandemic is a special case, as comparisons in R, between SARS-
CoV2 and 1918 pandemic influenza revealed little consensus in heavily impacted cities (Foster
et al., 2022). But it seems relevant to use approaches such as the one we do here to understand
how epidemic trajectories differ, both within the same pandemic and potentially for different
pathogens (e.g., how dissimilar are temporal patterns in seasonal flu epidemics in a given lo-
cation?). The comparison of epidemic trajectories — especially along moving windows as the
epidemic progresses — can provide insight into the relative effects of different mitigation and
control efforts. Finally, while many approaches to forecasting epidemics rely on a single time
series, this work alludes to the possibility of incorporating information on nearby or similar
time series, creating the possibility of joint epidemic forecasts.
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Tables

Table 1: Moran’s I analysis exploring how t-SNE axes are related to geographic distance, age
structure dissimilarity, difference in population size, and difference in Ry. Mantel tests use
a randomization approach to generate null distributions to compare observed (obs) to null
(exp and sd) distributions. Z-scores estimate the divergence of the test statistic from the null

distribution.

covariate t-SNE axis obs exp sd p-value zZ-score
geography 1 0.02963 -0.00032 0.00014 < 0.0001 216.3

2 0.01930 -0.00032 0.00014 < 0.0001 141.7
age structure 1 0.00043 -0.00032 0.00001 < 0.0001 60.5

2 0.00017 -0.00032 0.00001 < 0.0001 39.4
population size 1 0.00002 -0.00032 0.00003 < 0.0001 11.7

2 0.00004 -0.00032 0.00003 < 0.0001 12.3
Ry 1 0.00339 -0.00032 0.00003 < 0.0001 110.7

2 0.00135 -0.00032 0.00003 < 0.0001 49.8
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Figure 1: The similarity of epidemic time series was estimated using dynamic time warping,
where two time series (in blue and black in panel a) are mapped onto one another (indicated by
grey lines in panel a) to estimate epidemic dissimilarity. These time series are pairwise between
every county in the United States (panel b). These pairwise values are then compressed to a
low-dimensional space by using t-SNE (panel ¢), where point color corresponds to estimated
Ry for the given US county.
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t-SNE axis 1
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Figure 2: The spatial distribution of epidemic trajectory similarity (t-SNE decomposition of the
pairwise dynamic time warping matrix). In this geographic projection of the t-SNE values, there
are clearly some states which cluster, suggesting similar mitigation efforts, sampling/reporting
biases, and/or epidemic trajectories.
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Figure 3: The relationship between t-SNE axes and county population size, with point color
corresponding to Ry, highlighting the distribution of t-SNE values, the messy relationship be-
tween epidemic similarity and county population size, and the clear scaling of Ry with county
population size.

18



329

330

331

332

333

334

335

336

337

Supplementary materials

Title: Epidemic time series similarity is related to geographic distance and age structure
Authors: Tad A Dallas, Grant Foster, Robert Richards, & Bret D Elderd

Does time need to warped?

We use dynamic time warping as a flexible way to compare time series similarity. Here, we
explore how much of this signal would be observed if we simply calculated the summed differ-
ence in pairwise epidemic trajectories. We found the two approaches are roughly similar, but
that the dynamic time warping does result in different estimates of epidemic similarity (Figure

S1), highlighting the application of such time series approaches to epidemic trajectory data.
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Figure S1: The sum of the absolute difference between the two time series is related to the
dynamic time warp dissimilarity in this particular application. There are still clear differences
between the two.
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Truncating the epidemic time series

In the main text, we considered the full epidemic time series, including case counts in which

case counts were zero-valued. Here, we explore to what extent this influences the dynamic time

warping estimates, and our overall results. This does not influence our overall results (Table

S1), and the two estimates of epidemic dissimilarity produced by truncating the epidemic time

series versus keeping the entire time series are quite positively related (Figure S2).

Table S1: Moran’s [ analysis exploring how t-SNE axes are related to geographic distance,
age structure dissimilarity, difference in population size, and difference in Ry. Mantel tests
use a randomization approach to generate null distributions to compare observed (obs) to null
(exp and sd) distributions. Z-scores estimate the divergence of the test statistic from the null

distribution.

covariate t-SNE axis obs exp sd p-value z-score
geography 1 0.01832 -0.00032 0.00014 < 0.0001 134.7

2 0.02849 -0.00032 0.00014 < 0.0001 208.1
age structure 1 0.00041 -0.00032 0.00001 < 0.0001 58.9

2 0.00024 -0.00032 0.00001 < 0.0001 454
population size 1 0.00001 -0.00032 0.00003 < 0.0001 11.2

2 0.00008 -0.00032 0.00003 < 0.0001 13.7
Ry 1 0.00231 -0.00032 0.00003 < 0.0001 78.6

2 0.00106 -0.00032 0.00003 < 0.0001 41.2
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Figure S2: The relationship between dynamic time warping estimates when the time series was
truncated to remove the majority of zero values (z-axis) compared to when the entire epidemic
time series was used (y-axis). Small variations do exist, but this does not affect our overall
findings.
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Ry, population size, and epidemic similarity

While we can consider epidemics in US counties as being quasi-isolated, with travel restrictions
and differing epidemic timing, it is not possible to control for the inherent link between R,
(which is estimated from epidemic time series themselves) and population size (Figure S4) and
the resulting epidemic trajectory similarity values obtained from the t-SNE decomposition of

the pairwise dynamic time warping matrix of epidemic similarity.
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Figure S3: The relationship between geographic distance and age structure dissimilarity.
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Figure S4: The relationship between epidemic dissimilarity (t-SNE axes as y-axes) and pop-

ularion size (first column) and estimated Ry (second column). Blue lines are linear fits (with
associated (3 and p-values in each panel), where significant lines are solid.
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Epidemic similarity as a function of geopolitical boundaries

Epidemic similarity, when compressed to the two t-SNE axes, showed clear US state-level rela-
tionships. There are numerous potential reasons for this, including state-level implementations
of lockdown orders, variation in state-level testing efforts, and variability in reporting. These
are beyond the scope of the current work, but it seems prudent to highlight this variation in
t-SNE space (Figure S5).
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Figure S5: Epidemic similarity in t-SNE space shows clear state-level clustering, suggesting

that epidemic similarity was related to some aspect of this geopolitical scale, such as variable
mitigation, testing, and reporting efforts.
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Mantel Tests

Here, we explore how the pairwise epidemic similarity is related to the distance (or dissim-
ilarity) matrices related to demography and spatial processes. If we claim that z-score as a
measure of association between epidemic trajectory similarity and geographic distance, age
structure dissimilarity, population size difference, and R difference, then we would conclude
that geographic distance and R, difference between US counties are the most related to epi-
demic similarity. Each of the distance or dissimilarity matrices were significantly related to the
pairwise epidemic dissimilarity matrix. Taking the estimated z-score from the Mantel tests as a
measure of association would lead us to conclude that geographic distance was far less impor-
tant than other matrices. Considering the inherent collinearity between many of these variables,
the most salient aspect of this becomes that all of these demographic and spatial factors were

significantly related to epidemic similarity.

Table S2: Mantel tests — permutation tests relating two pair-wise dissimilarities to one another
— found that geographic distance, age structure dissimilarity, difference in population size, and
difference in Ry were all related to epidemic trajectory dissimilarity.

covariate z P

geography 3111220 < 0.001
age structure 11354792 < 0.001
population size 11218853 < 0.001
Ry 12819318 < 0.001




