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Elevated nitrate from human activity causes ecosystem and economic harm globally.
The factors that control the spatiotemporal dynamics of riverine nitrate concentration
remain difficult to describe and predict. We analyzed nitrate concentration from 4450
sites throughout France to group sites that exhibit similar trend and seasonal behaviors
during 2010-2017 and relate these dynamics to catchment characteristics. We employed
a latent-variable, Bayesian mixture of harmonic regressions model to infer site clustering
based on multi-year trend and annual cycle amplitude and phase. We examined clustering
patterns and relationships among nitrate level, trend, and seasonality parameters. Clus-
ter membership probabilities were governed by continuous, latent variables that were
informed with seven classes of covariates encompassing geology, hydrology, and land
use. To relate interpretable parameters to the covariates, we modeled amplitude and phase
separately in a novel framework employing a bivariate phase regression with the pro-
jected normal distribution. The analysis identified regional regimes of nitrate dynamics,
including trend classifications. This approach can reveal general patterns that transcend
small-scale heterogeneity, complementing site-level assessments to inform regional- to
national-level progress in water quality.
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1. INTRODUCTION

1.1. PROBLEM BACKGROUND

Excess nutrients from agriculture, wastewater, and fossil fuel use have caused harmful
algal blooms and hypoxic dead zones in two-thirds of aquatic ecosystems worldwide (Diaz
and Rosenberg 2008; Frei et al. 2020). This process of nutrient enrichment, referred to in
the scientific literature as eutrophication (Le Moal et al. 2019), degrades health and water
security globally, causing trillions in USD of economic damage annually (Dupas et al. 2019;
Cheng et al. 2020). Despite substantial investments in nutrient monitoring and mitigation
by governments since the mid-20th century, eutrophication has proven extremely persistent
in developed and developing countries (Conley et al. 2009; Stoddard et al. 2016; Osgood
2017; Le Moal et al. 2019; Hannah et al. 2022).

One of the challenges to solving eutrophication is that nutrient concentrations show high
levels of spatiotemporal variation in both surface and groundwater environments (Bochet
et al. 2020; Kolbe et al. 2019; Abbott et al. 2018b). Changes in water flow, nutrient source,
and biological activity can trigger large shifts in nutrient concentration on hourly to centen-
nial timescales (Moatar et al. 2017; Messer et al. 2019; Ascott et al. 2021). This complicates
finding nutrient sources and quantifying long-term trends such as improvement or degrada-
tion following changes in management or environmental conditions (Minaudo et al. 2019;
Smits et al. 2019; Ehrhardt et al. 2019). To characterize this variability, researchers and reg-
ulatory agencies measure nutrient concentrations throughout the year at multiple locations
(Abbott et al. 2018a; Moatar et al. 2020). This time- and resource-intensive monitoring is
necessary to assess overall ecological status and demonstrate compliance with environmen-
tal legislation (Zhang et al. 2021).

The growing global database of spatially extensive and long-term water quality monitor-
ing presents a challenge and opportunity for the mathematical and statistical sciences. New
approaches are needed to generate understanding of ecological processes and to develop
ideal monitoring frameworks from large, multi-dimensional water databases (Hartmann et al.
2014; Zarnetske et al. 2018). For example, consider Fig. 1, which displays nitrate (NO3)
concentration at five river monitoring sites in France from January 1, 2010, to December
31, 2016. Just among these several rivers, there are large differences in sampling frequency,
seasonal variability, and overall NO3 concentration. These irregularities are created by eco-
logical diversity of the systems as well as inconsistency in monitoring approaches, where
field access and funding may themselves vary on seasonal to decadal timescales (Burt and
McDonnell 2015; Jiang et al. 2020). Considering that similar data are collected at more
than 5000 stations in France alone (Dupas et al. 2019), developing tools to characterize and
interpret nutrient variability and central tendency are greatly needed.

Various statistical tools have been applied to characterize complex hydrochemical time
series, including self-organizing maps, fractal scaling methods, and frequency decomposi-
tion (Chiverton et al. 2015; Kirchner and Neal 2013; Lloyd et al. 2014; Underwood et al.
2017). While each of these families of methods has pros and cons, irregularities in data
sources and difficulty interpreting model outputs have been perennial problems. Without
accounting for interrelated variation on seasonal to inter-annual timescales, short- and long-
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Figure 1. Time series of nitrate (NO3) concentrations (in mg/L, reported on a logarithmic scale) for five stations
in France.

term metrics of nutrient status could be obscured. Even simple parameters such as the linear
trend, amplitude, phase, and (residual) standard deviation of time series can vary widely at
regional to national scales in non-independent ways (Fig. 2). Adequately describing tempo-
ral variability of diverse nutrient time series is necessary to identify what spatial differences
(e.g., land management, climate, topography, or vegetation) account for nutrient release or
retention (Frei et al. 2020; Minaudo et al. 2019).

In this article, we focus on two of the most policy-relevant parameters in NO3 time series:
seasonality and long-term trend. The amplitude of seasonal change in NO3 can influence
whether a site surpasses regulatory limits and indicate whether a watershed is still being
overloaded with nutrients (Abbott et al. 2018b; Newcomer et al. 2021; Ebeling et al. 2021).
Seasonal phase is indicative of possible coupling with hydrological variations and timing of
activation of sources and retention processes (Guillemot et al. 2020; Vaughan et al. 2017).
Accurate descriptions of multi-annual trend is particularly important to assess effectiveness
of nutrient mitigation efforts (Dupas et al. 2018; Frei et al. 2020).

1.2. RESEARCH GOALS AND APPROACH

The goals of this work are to (i) estimate the seasonal to inter-annual patterns in log-
NOj3 concentrations for all sites in the French river monitoring network and (ii) investigate
how environmental conditions influence these patterns to understand what factors may drive
nutrient release and associated eutrophication. Regarding the first goal, from a statistical
modeling perspective, we face a few issues. First, the infrequent sampling of concentration
at some sites results in few data points available for statistical inference of temporal char-
acteristics. To accomplish our goal in spite of this challenge, we borrow information across
similar rivers to estimate parameters. This can be done via traditional geostatistical meth-
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Figure 2. Maps of temporal trend (top left), phase (top right) and amplitude (bottom left) of the annual cycle, and
residual standard deviation (bottom right) for independently fitted time series of log-NO3 concentration, reported
by station (Color figure online).

ods (Cressie 2015; Banerjee et al. 2014). However, as discussed by Garreta et al. (2010),
Ver Hoef and Peterson (2010), and Isaak et al. (2014), such methods are not generally suit-
able for modeling river networks due to spatial dependence that is not a function of Euclidean
distance. Alternatively, we could adopt an approach similar to Alvarez-Cabria et al. (2016),
de Lavenne et al. (2016), Zimmerman and Ver Hoef (2017), or O’Donnell et al. (2014)
and build directional spatial dependence based on routing within river networks (Pearse
et al. 2020). However, this information is not always available or reliable at large scales
due to inconsistencies in spatial data formats and subsurface hydrological complexity not
associated with surface topography (Schaller and Fan 2009; Yan et al. 2019).

In this research, we employ clustering to borrow information across rivers in estimating
seasonality and trend. Clustering approaches have been used successfully in the analysis
of river networks, by, among others, Kim and Seo (2015), de Almeida et al. (2019), and
Zubaidah et al. (2018). The advantage of the clustering approach is that clusters need not be
defined spatially and can capture the heterogeneous spatial relationships in temporal char-
acteristics we see in Fig. 2. By inferring latent clusters for the river network, we circumvent
errors in river network delineation to identify hydrochemical differences that create distinct
temporal patterns.

Our second goal is to characterize relationships between the temporal characteristics of
the rivers with information about the contributing watersheds. Specifically, in addition to the
NOs; time series, we have external covariates for each river monitoring site that describe local
geography, hydrology, and land use. The challenge is that these covariates are temporally
static, as is typical for large-scale spatial data. Further, because cluster-specific parameters
are not identifiable due to label switching (Stephens 2000; Jasra et al. 2005; Sperrin et al.
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2010; Rodriguez and Walker 2014), we cannot directly relate the available covariates to
such parameters. As a solution to these issues, we devise a modeling strategy by enforcing
ordering constraints on the cluster labels. Under such ordering constraints, we show that
relating the covariates to the parameters is equivalent to a linear regression with an ordinal
categorical response.

An additional challenge associated with our second goal is the fact that one of the temporal
parameters (phase) is a circular parameter. Strategies for doing regression with a circular
response typically involve wrapped distributions (Ravindran and Ghosh 2011), the projected
normal distribution (Nufiez-Antonio and Gutiérrez-Pefia 2005; Nuifiez-Antonio et al. 2011),
or the generalized projected normal distribution (Wang and Gelfand 2013). However, again
due to the clustering approach taken above, our situation is slightly different than these
approaches in that we have a discrete set of circular parameters (one for each cluster). In
a novel piece of modeling, we develop a latent variable approach adapted from Albert and
Chib (1993), Higgs and Hoeting (2010), Berrett and Calder (2012), Schliep and Hoeting
(2013), and Berrett and Calder (2016), that uses the projected normal distribution to model
a discrete, ordinal, circular parameter as a function of covariates.

The French monitoring network data used in this research are provided by water authori-
ties and are publicly available (Naiades; http://www.naiades.eaufrance.fr/france-entiere#/).
These data are used for regulatory purposes (per the European Union Water Framework
Directive), with common laboratory protocols and standards throughout Europe, and are
therefore meant to be comparable in space and time.

Our analysis integrates 246,189 observations from 4450 monitoring sites, referred to as
stations, throughout 2010-2016. Station-specific time series generally contain between 30
and 80 (median 54) observations, with only 79 of 4450 stations exceeding 80. This amount
of data, combined with the fact that observations within a station are temporally correlated,
presents a computational challenge. In performing estimation of model parameters, we need
to ensure that such estimation is done efficiently. For our modeling framework, we augment
the parameter space with latent variables and show that the subsequent complete conditional
distributions of most parameters are conjugate with respect to their prior distribution, thereby
facilitating estimation via Gibbs sampling. For those parameters that are not conjugate, we
employ other efficient techniques described in Sect. 2 and the Supplementary Materials.

The remainder of this paper is outlined as follows: In Sect. 2, we describe our modeling
approach along with the computational strategy for parameter estimation. Section 3 fits the
proposed model to the France river data, and Sect. 4 draws conclusions and highlights areas
for future statistical and ecological research.

2. A CLUSTERED RIVER MODEL

Let y,(¢) denote the NO3 concentration at time ¢ € [0, 7] in river stationr = 1,..., R,
where time ¢ has been scaled to units of years, with # = 0 corresponding to January 1, 2010,
andr = T corresponding to December 31, 2016. The natural logarithm of NO3 concentration
is amenable to a simpler representation of the annual cycle and admits far more convenient
modeling and computation than the nonnegative, positive-skewed raw concentration. The
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basic model for each time series is

1og(yr (1)) = 8r + Bzg(rt + oz, €Os (271 — ¢7,(r)) + €- (1) (1)

where 8, is a station-specific intercept, 8 € R! corresponds to a linear temporal trend,
a > 0 corresponds to a temporal amplitude, ¢ € (—m, ) corresponds to a temporal
phase shift and (¢,(¢)) is model error. The Zg(r), Zy(r) and Zy(r) are latent indicator
mappings where, for example, Zg(r) : {1,..., R} — {l,..., Kg} maps a station r onto
a latent cluster membership {1, ..., Kg} for annual temporal trend and Kg corresponds to
the number of latent clusters. We define Z () and Z,(r) similarly for the amplitude and
phase clusters with K, and K corresponding to the number of latent amplitude and phase
clusters, respectively.

Intuitively, (1) defines three sets of station clusters: one based on each of temporal trend,
amplitude, and phase. That is, two stations can be clustered together based on one char-
acteristic of the NOs time series while not clustered based on other characteristics. This
three-set approach to clustering is important because such clustering allows for strong bor-
rowing of information to estimate the temporal trends, amplitudes, and phases while adding
flexibility for one station to borrow information from different sets of stations that most
closely resemble its own temporal characteristics. Note also that (1) employs a less conve-
nient (nonlinear) parameterization of the annual cycle in order to preserve both separate and
interpretable clustering of the amplitude and phase.

Although (1) is unrealistically simple as a model for complex dynamics of NO3 con-
centration, it successfully discriminates along four primary modes of variation in the time
series. With data from 4450 sites across France, we prioritize both interpretability and com-
putational scalability. Together with three-way clustering, the model in (1) balances our
inferential goals and these criteria.

As discussed in the introduction, spatial correlation in river systems is not driven
by spatial proximity (Euclidean distance) but rather by the network topology (Pearse
et al. 2020). Additionally, explicit use of geostatistical models can greatly add com-
putation time and cost. Because network topology information is not available for this
research and the additional model details below are already computationally demand-
ing, we assume spatial independence among stations conditional on cluster parameters.
While we make the simplifying assumption of spatial independence, we do assume tem-
poral correlations within a station. Specifically, we assume €, () have temporal covariance
Cov(e (1), e (t))) = 0,2 exp{—d, |t —t'|} where d, is a decay parameter for station r and 0,2
is the marginal variance.

To prevent arbitrary label switching, we require ordering within the trend and amplitude
parameter vectors,i.e., 81 < B2 < --- < ,BKﬁ ando| < ap < -+ < ag,.Asaconsequence,
the latent indicators Zg(r) and Z, (r) are ordered multinomial random variables. Under this
ordering, we can further employ latent Gaussian models of Albert and Chib (1993) for Zg
and Z,. That is, for j € {8, «}, we can set

K

Zi(r) = Zk]l{cj(k—l) < Uj, <cji} )
k=1
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where 1{-} is an indicator variable, cjo = —00 < ¢j; < -+ < cjk; = oo are cut points and
Ujr ~ N (x,.0, 1) are latent Gaussian random variables, x, = (1, x,1, ..., x,p)’isa vector
of covariates specific to station r with corresponding coefficients 8; = (9o, ...,6;p)".

Under this model specification, the variables in x, explain the probability that each station
belongs to a certain cluster. For example, if 6, > 0, then as x,, increases, station r is
more likely to belong to a cluster with a larger linear time trend (if j = §) or amplitude (if
Jj = a). Importantly, this allows us to infer how characteristics of the river (such as location,
elevation or other explanatory variables) influence the temporal traits of NOs3 at the station.
The covariates in x, are discussed in Sect. 3.3.

While the above latent, Gaussian framework is effective for Zg and Z,, the phase vari-
ables ¢ < -+ < ¢k, are ordered circular random variables. That is, a phase shift of ¢ ~ 7
is effectively the same as a phase shift of ¢ ~ —m. To account for the circular nature of
phase, we model

Ky
Zy(r) =Y _k{cpu—1) < Upr < cor} 3)
k=1
where cpo = —7 < cy1 < -+ < cgk, = 7 are cut points that partition the interval (-, )

and Ug, ~ PN (g, I) where PN (e, I) is the projected normal distribution with mean
direction p and covariance matrix I. That is, if we define a bivariate latent vector Dy, =
(Dgr1, Dgr2)' ~ N(py(r), I, then Uy, = atan2(Dg2, Dgr1) ~ PN (py(r), I) so that
Uy, is the angle between the origin and the vector Dy, . Importantly, the projected normal
distribution with identity covariance is rotationally symmetric about the mean direction
. Practically, this allows circular probabilities for Z,(r) in that both Prob(Zy(r) = 1)
and Prob(Zy4(r) = Ky) can be large simultaneously, which would not be possible under a
standard Gaussian distribution. The concept of wrapped probabilities is illustrated in Fig. 3,
which shows the PN (u, I) distribution with equally spaced cut points on [—7, 7] with
two different choices for u.

In a similar model setup as above, we wish to explain phase cluster membership
with station-specific covariates. Following Nufiez-Antonio and Gutiérrez-Pefia (2005) and
Nuifiez-Antonio etal. (2011), to explain phase cluster membership we can set 4 (r) = Opx;
where @y = {0ip}ip is a2 x (P + 1) matrix of coefficients associated with the station-
specific covariate vector x,. Due to the circular nature of phase, the interpretation of each
Opip s not as straightforward as 0g, and 0, so we impose additional constraints. Specif-
ically, we set Ky = 12 and a priori constrain cy—1) < ¢r < cyr where the 12 phase cut
points are fixed at equally spaced intervals that align with the (D1, D») axes. This endows
the four quadrants of the unconstrained R? space for D to correspond with (approximate)
three-month seasons and each ¢; with an associated month. The mapping from R? to the
interval (—m, ) is depicted in the left panel of Fig. 3, with two bivariate normal den-
sity contours for illustration. The resulting projected normal densities for Uy determining
cluster membership probabilities are shown on the right. Although cluster representative
¢r parameters may vary within their respective intervals, the cardinal directions maintain a
general interpretation. That is, positive values of 641, indicate that a positive covariate value
pushes p to the right (positive D; direction) and approximately coincides with increased
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0.0

Figure3. Tllustration of mapping probability density in the unconstrained D space (left) to wrapped probabilities
for phase cluster membership (right). Two example values of gy = ©@yx are shown: py = (7,5) and up =
(—1, —1), together with contours tracing the corresponding bivariate densities. The angle from the positive D
axis is superimposed, indicating angular cut points and approximate month labels. The probability densities for
Ug1 and Uy, corresponding to 1 and p;, are on top and bottom, respectively. Shading indicates the probabilities
of falling within the four primary seasonal divisions (Color figure online).

probability of falling into a cluster represented after the autumnal equinox and before the
vernal equinox (in France). Positive values of 6>, with positive covariate values increase
the probability of falling into clusters represented approximately after the winter solstice
and before the summer solstice. Thus, if both 41, and 845, are positive, a positive covariate
value would push the corresponding p toward the first quadrant, as with g in Fig. 3.

Inference for the above model was carried out via Bayesian methodology (Reich and
Ghosh 2019). Details of the posterior sampling algorithm are found in Supplementary
Materials, but we highlight a few pieces of the computation here. First, using principles
of parameter expansion, we can sample the 6 parameters directly from their complete con-
ditional distribution. Second, when considering a sampling approach for the station-specific
cluster indicators, note that (2) and (3) provide a non-stochastic relationship between U
and Z. We sample both U and Z via composition, as detailed in Cowles (1996). Third, we
employ slice sampling on phase parameters (¢y) and cut points ({c,gk},if3 2_ ! and {cak}f;; l;
Neal, 2003). Finally, to help maintain cluster identity and ensure all clusters are populated,
two stations are assigned fixed membership in each trend and amplitude cluster, and are not
updated (Kunkel and Peruggia 2020). These sites are selected during model initialization
as those whose preliminary estimates are closest to initial cluster-center values.

3. APPLICATION TO RIVERS IN FRANCE

We fit the proposed model at two resolutions by varying the number of trend and amplitude
clusters while holding Ky = 12 fixed. The (Kg, K) pairs used were (5,7) and (7,11). In
both models, we fixed the center trend parameter (the third in the Kg = 5 model and the
fourth in the Kg = 7 model) at zero to furnish a testable hypothesis of no trend. Although
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Figure 4. Histogram (left) and spatial distribution (right) of posterior mean R-squared values from the (5,7) model
fit. Negative values of R-squared are excluded (Color figure online).

we inspect goodness-of-fit metrics to aid in selecting among the three models, our primary
objective is to achieve balance between flexibility and interpretability.

The MCMC sampler for the (5,7) model was run for 66,000 iterations, with the first 42,000
discarded as burn-in, and the remaining iterations thinned to 2400 inference samples (88,000
total iterations were used for the (7,11) model). Four such chains were initialized with
parameter values near those found by warm-up runs initialized with a K-means algorithm.
Parameters of inferential interest indicate adequate mixing and stable results in the (5,7)
model, with exception of a few trend coefficients (and associated cluster memberships),
which exhibit drift and vary on long timescales. We believe this is due to some estimated
trends being small and statistically indistinguishable. While there is evidence for fewer
trend clusters, we elected to leave Kg = 5 to allow for a cluster with 8 = 0 fixed and
two levels each of positive and negative departures. We explore MCMC diagnostics in the
Supplementary Materials.

3.1. MODEL ASSESSMENT AND SELECTION

The mixture modeling literature is rich with methods for selecting the number of com-
ponents/clusters; perhaps most notable are predictive criteria , in or out of sample. We
approach the problem from multiple angles, attempting to balance model goodness of fit,
interpretability, and cluster similarity. Additional details for each of the approaches are given
in the Supplementary Materials.

Pareto-smoothed leave-one-out cross-validation and WAIC (Vehtari et al. 2017) tenta-
tively favor the (5,7) model over the (7,11) alternative, although the information criterion
values are well within one standard error of each another. While only a small fraction, 1%
of the 240,000+ total observations are extreme or influential enough to render these stan-
dard errors unreliable. Genuine cross-validation using five test observations held out at each
station yields no clear preference between the models.

Next, we compare goodness of fit between the two models. Figure 4 shows the distribution
(across stations) of R-squared values, along with a map of these values, indicating spatial
patterns in model fitness for the (5,7) model. For our purposes, we define R-squared as
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1 —SSE/SST, where SSE is calculated as the posterior mean of the sum of squared residuals
for the station’s time series, and SST is the usual total sum of squared deviations from the
station’s mean log-NO3 (null model). It measures the reduction in variability attributable to
the model in (1). Because this is not the standard coefficient of determination from least-
squares regression, it is possible for the “reduction” to exceed the null variability (causing
R-squared to be negative).

Most stations report a modest fit, though many stations with low R-squared values exhibit
discernible trends and cycles; see the Supplementary Materials for examples of fits to time
series. We note that the high R-squared values are scattered throughout the study area,
although two pockets of consistently strong annual cycles along the upper west coast (Pays
de la Loire) and central-eastern (Burgundy) regions are evident on the map (right panel of
Fig. 4). Poor fits include extreme outliers and series whose dynamics undergo changes during
the observation window. The 418 stations with negative R-squared values are scattered across
France with no clear spatial pattern (not shown). Corresponding plots from the (7,11) model
(not shown) are nearly indistinguishable from the (5,7) fit.

The distribution, across stations, of the percentage change in R-squared between the
baseline (5,7) model and the (7,11) alternative provides a direct comparison between model
fits. The median improvement offered by the (7,11) fit is less than 1%, with quartiles at
—1.1% and +1.5%, and 87% of the stations show less than 10% change.

Posterior mean point estimates of cluster-representative trends and amplitudes split in a
logical fashion progressing from Kg = 5to Kg = 7 and K, = 7 to K, = 11, as each
estimated value has clear descendants when the number of clusters increases. Amplitude
values appear not to exhibit truly discrete (clustering) behavior, but rather a refinement
of continuously distributed values. The extreme clusters exhibit estimated trends that are
somewhat attenuated for several stations, which we consider a feature of the model. The
extreme trends and large amplitudes are often genuine, though several stations contain
unreliable data, causing them to erroneously join the extreme clusters.

Another approach to assessing the appropriate number of clusters is to examine posterior
uncertainty in how the 4450 stations are partitioned, and the degree to which these partitions
coincide with model-specified clusters. Using MCMC samples of cluster membership in
each of the three clustering characteristics (trend, amplitude, phase), we found optimal
partitions by minimizing the variation-of-information loss with the SALSO algorithm of
Dahl et al. (2021, 2022).

Co-clustering tendencies among the zero and low positive trends suggest that these could
be combined into a single cluster, leaving only four effective trend clusters. The estimated
partition of stations on amplitudes maintains excellent agreement with model-specified
clusters in both models. Co-clustering patterns among phases lead to five main phase clusters
that are associated with peak NO3 occurring primarily in late fall through winter and early
spring. Overall, posterior analysis of partitions appears to favor using fewer clusters (with
exception of amplitude).

The ability to distinguish between groups with the most extreme trends/amplitudes is one
reason to use the (7,11) model. However, adding trend and amplitude clusters notably fails to
substantially improve the overall fit and yields materially equivalent inferences. Consistent
with our objective to cluster trend and cyclical behaviors of rivers in an interpretable way,
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we select the (5,7) model for all inferences reported hereafter. Corresponding results from
the alternate model are consistent with those reported here.

3.2. CLUSTERING RESULTS

The fit with Kg = 5, K, = 7, and Ky = 12 separates stations into groups that are gen-
erally identified by the model. Stations tend to co-cluster across zero and positive trends,
while amplitude clusters are clearly separated, and membership often straddles across adja-
cent phase clusters. In this section, we focus on station-specific estimates of the clustered
time-series characteristics and defer analysis of the posterior distribution over partitions
of stations to the Supplementary Materials. How well the model fits the data is positively
correlated with posterior classification probabilities for amplitude and phase, as expected
for any discretization of a continuously varying quantity.

Figure 5 shows posterior mean point estimates of station-specific intercepts, trends and
amplitudes (averaged over cluster membership), and maximum a posteriori (MAP) point
estimates of phase, across the study area. Point opacity indicates R-squared values. Several
distinct river networks are discernible on the plots as veins with similar color (e.g., along the
northern tip of the northeastern border, in the Hauts-de-France region), which are identified
solely by information in their NO3 series, geographic, and catchment characteristics.

Intercepts are the only parameters in Fig. 5 that are not clustered by the model. They
represent the mean level (i.e., the midpoint between peak and trough) of log-NOs at the
beginning of the observation window: January 1, 2010. The spatial distribution of intercepts
positively correlates with arable land, as higher levels are generally seen in the north and
northwest parts of France.

Multi-year trends appear to be absent or weak at most locations, as seen in the upper-right
panel of Fig. 5. Although the trends are given for log-NO3, estimates have small magnitudes,
easing interpretation. For example, a trend coefficient of 0.05 roughly corresponds with a
5% annual increase in mean NOs3 concentration (in mg/L). Approximately 12% of stations
have posterior probability (PP) greater than 0.95 of clustering outside the central cluster, for
which the trend value is fixed at zero, and the lowest positive cluster; 11.3% and 0.4% of
stations have high PP of belonging to other clusters with negative (decreasing NO3) and high
positive trends, respectively. Note that the MCMC chains of trends and associated cluster
membership have low effective sample sizes and that the low positive trend is essentially
indistinguishable from zero. While trends appear to be sustained for many of these stations,
they are based on a short window of at most seven years, which makes them somewhat
sensitive to decadal-scale climatic variability (Mellander et al. 2018; Dupas et al. 2016).

Prominent clusters of negative trends appear in the southwestern (Occitanie) and south-
eastern (Provence-Alpes-Cote d’ Azur) regions. Weak negative trends are also common along
the eastern section of the country. Positive trends appear primarily along the central-western
(Pays de la Loire) and northern regions. While several of the sites with extreme trend esti-
mates contain unreliable data, many represent genuine trends over some sub-interval of the
seven-year window.

Clusters with high amplitudes (of log-NO3), indicating large fluctuations, concentrate
primarily in the southwestern (Occitanie) and central-western (Pays de la Loire) regions,
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Figure 5. Model estimates representing the intercept (top left, with mean &~ 10 mg/L), trend (top right), ampli-
tude (bottom left), and phase (bottom right), for each station. Reported parameter values are transformed, for
interpretability, from point estimates. Estimates are station-specific posterior means, except for phase, which gives
the cluster-specific mean for the most likely cluster of each station. Point opacity reflects the value of R-squared
for the corresponding series (Color figure online).

as seen in the amplitude panel of Fig. 5. Stations with high amplitudes tend also to feature
the best-fitting series, with clear and prominent annual cycles. The two prominent high-
amplitude clusters were previously noted for opposing multi-year trends and also have
differing times of peak NO3 concentration. The Pays de la Loire cluster straddles multiple
watersheds, indicating a regional pattern likely associated with climate, surficial geology,
or land use, which all extend beyond watershed boundaries.

The majority of locations see NO3 peaks occurring between December and April (lower-
right panel of Fig. 5). The western section of France tends to be dominated by cycles that peak
in winter and early spring, while the inland, central section often peaks in late fall and early
winter. Rivers in highland regions, along the Alps in the east, and particularly in the Pyrenees
to the southwest, often peak in late fall, likely because NOs is diluted during snowmelt in
late spring. The northern coast of the western peninsula (Brittany) uniquely clusters stations
that see peak NOs in the early summer months. While this timing is consistent with animal
husbandry and intensive row-crop production common in the region (Guillemot et al. 2020),
it is distinct from the phase of similar areas in western France. The specific cause remains
unknown, but the difference could be due to differences in residence time associated with
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Figure 6. Scatter plots depicting relationships among parameters, by station. The left column compares the
(transformed) posterior mean intercept to (transformed) point estimates of trend (a), amplitude (b), and phase (c).
Horizontal lines on intercept axes indicate recommended NO3 thresholds (World Health Organization, dashed;
eutrophication-reduction range, solid), with accompanying hypothesis test results indicated by color. The right
column compares estimates among the three clustered quantities: trend against amplitude (phase indicated by
color) (d), trend against phase (e), and amplitude against phase (f). Box plots for each phase cluster indicate the
distribution of points along the vertical axis. Histograms bordering the scatter plots show marginal distributions.
Coloring in the remaining plots give percentage of land dedicated to agriculture in each catchment (Color figure
online).

climate, soil, and geology, which may differentially delay and convolve NO3 dynamics
(Margais et al. 2018).

‘We next analyze associations among the time-series characteristics by with scatter plots
of the estimates (calculated as in Fig. 5)in Fig. 6. Cluster-representative parameter values are
discernible, as points tend to concentrate near these values. Trend or amplitude estimates that
are not close to the representative values accompany stations whose membership straddles
more than one cluster, resulting in a mixture posterior for the station’s parameter.
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Relationships of trend, amplitude, and phase with the intercept are shown in the three
left plots in Fig. 6. Panel (a) shows a weak positive overall association between intercepts
and time trends (polyserial correlation of .147 with 95% interval (.121, .172)). However,
subsetting to stations below the median elevation, where most agricultural and urban activity
occurs (Thomas et al. 2016), eliminates most points in the lower-left section of the plot,
weakening the correlation to 0.015 (—0.021, 0.052). This agrees with regional studies of
lower-elevation catchments that found little or no relationship between initial NO3 and trend
following reduction in nutrient loading (Abbott et al. 2018b; Dupas et al. 2018).

To provide context about whether the decreases in NOj3 are sufficient to attain regulatory
targets rapidly (i.e., within six years), red points in panel (a) indicate stations where median
NOs (intercept and trend only) in 2016 exceeds the boundary of 19 mg/L (higher solid
horizontal line), which is an upper limit of when reductions of eutrophication may begin
(Dodds et al. 1998; Perrot et al. 2014; Abbott et al. 2018b), with posterior probability above
0.9. Blue points indicate stations below 4.3 mg/L, a lower limit for eutrophication reduction,
with 0.9 posterior probability. Coloring in panel (b) indicates whether annual peaks of NO3
are outside these thresholds with high posterior probability.

The negative relationship between intercept and amplitude (polyserial correlation —.158
(—.169, —.149) that becomes stronger when subset to low-elevation stations) is consistent
with nutrient saturation syndrome (Earl et al. 2006), where overloaded watersheds show
little seasonal variation, and lower nutrient watersheds show annual and diel fluctuations
associated with source limitation and biological uptake (e.g., stream metabolism; Woll-
heim et al. 2018). Alternatively or additionally, agricultural regions with low topographical
slope could have more diversity in hydrological transport time from soil to stream (Sebilo
et al. 2013; Margais et al. 2018), and greater vertical nutrient gradients (Ebeling et al. 2021)
resulting in destructive interference of temporally discrete nutrient delivery signals (e.g., fer-
tilizer application or crop harvesting) and attenuated nutrient variability in the river (Abbott
et al. 2018a). The negative correlation among intercept and amplitude is particularly evident
along northwest Atlantic coast (see Fig. 5), where amplitudes in Brittany might more closely
resemble those further down the coast except for consistently high NO3. As noted, patterns
in this region could also result from geological variation, wherein distinct formations cre-
ate hydrological compartments with distinct flow and denitrification patterns (Ben Maamar
et al. 2015; Bochet et al. 2020; Kolbe et al. 2019).

There is a nonlinear relationship between intercept and phase. Sites with lowest NO3
intercepts are much more likely to experience peak concentration in the winter, while some
high-intercept sites have peaks throughout the year (Fig. 6¢). Some of these sites that peak
in winter also show the highest seasonal amplitude (Fig. 6f). This is again consistent with
nutrient saturation syndrome, though it could also be associated with negative correlations
between agricultural activity (indicated with color in panels (c), (e), and (f)) and topograph-
ical slope (i.e., it is less common to find extensive nutrient loading in mountainous regions
with snowmelt-dominated NO3 seasonality). Because agricultural coverage and type are
distributed based on local climate conditions, these types of collinearities are common at
regional to continental scales (Thomas et al. 2016).

The three plots on the right side of Fig. 6 elucidate co-clustering behaviors among trend,
amplitude, and phase. Little-to-no global association exists between amplitude and trend
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(polychoric correlation —.007 (—.038, .024), and at low-elevation —0.005 (—.051, .040)).
Note, however, that locations with positive trends are over-represented in the high-amplitude
group, potentially indicating the pollution of low-nutrient sites with previously high seasonal
fluctuations in concentration. More pronounced relationships are evident among trend phase
and amplitude phase. In both cases, extremes are more common at locations that peak in
the winter and early spring.

While the vast majority of stations cluster in groups with negligible trends and low
amplitudes, we are interested in groupings with extreme parameter values, which could
indicate successes or failures in recent management. Three such clusters correspond to
areas already mentioned: the Occitanie (southwestern) region, with negative trends, high
amplitudes, and peaks in late spring; the Brittany (northwestern peninsula) region, with
weak negative trends, typical amplitudes, and summer peaks along the coast; and the Pays
de la Loire (central-western) region, with some weak positive trends, high amplitudes, and
winter peaks.

3.3. COVARIATE EFFECTS ON CLUSTER ASSIGNMENT

We next investigate whether the static, site-specific catchment covariates described in
Table 1 systematically correlate with the patterns observed in the cluster analysis. Modeling
these relationships through the probability of cluster membership (as described in Sect. 2)
establishes rank-type correlations, accommodating potentially nonlinear, monotonic effects.
Analysis using station-specific posterior means of the clustering parameters suggests the
possibility of nonlinear relationships that appear monotonic.

Three percent of sites (153 total) were missing one or two covariate values among
bedrock, IDRP, and runoff. With few missing values, we opted to impute from complete
cases using random forests trained on the other covariates. The tuning parameters for the
random forest imputers were determined using 10-fold cross validation.

All non-binary covariates were centered and scaled in x . Some correlation exists among
these covariates, but not enough for concern (see the Supplementary Materials). Station ele-
vation and the percent of catchment covered by water (% water body) were log-transformed
prior to scaling. Because the land-use percentages are compositional, they were preprocessed
via transformation along the first three principal components. The three estimated effects
were then transformed back for each MCMC draw to obtain four estimated coefficients,
interpretable as effects from the original land-use variables.

Table 2 reports point estimates and credible intervals for coefficients on each of the
trend, amplitude, and phase clustering regressions. We define an effect as significant if its
credible interval does not cover zero. Effects from departments (geographical administrative
divisions of France) are omitted from the table. However, many such effects are significant
(see the Supplementary Materials for maps with the estimates), as the spatial patterns in
parameter estimates often roughly coincide with these geopolitical boundaries. The left
panel of Fig. 7 demonstrates how department provides a useful instrument for capturing
spatial information. It is also clear that beyond these block effects, heterogeneity also exists
within departments, and clusters often span across multiple departments.
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Table 2. Posterior median estimates and 95% credible intervals for coefficients relating station-specific covariates
to cluster membership probability, for each of trend, amplitude, and both directions of phase

Trend () Amplitude ()

Intercept 1.83 (1.12, 2.57) 0.15 (—0.34, 0.64)
In elevation —0.18 (=0.30, —0.07) —0.12 (=0.19, —0.05)
% sedimentary bedrock 0.02 (—0.05, 0.10) 0.03 (—0.02, 0.07)
IDPR —0.27 (—=0.36, —0.19) 0.17 (0.12, 0.22)
Annual specific runoff 0.15 (0.05, 0.25) —0.14 (—0.20, —0.08)
In % water body —0.04 (=0.11, 0.03) 0.24 (0.20, 0.27)

In % wetland 0.05 (—0.04, 0.14) 0.18 (0.12, 0.23)

% agriculture 0.05 (0.00, 0.10) 0.03 (0.00, 0.06)

% forest —0.08 (—0.14, —0.03) —0.04 (—=0.06, —0.01)
% urban 0.05 (—=0.02, 0.12) 0.02 (—=0.02, 0.06)
% other land use 0.04 (—0.04,0.11) —0.02 (—0.07, 0.03)
Bioregion: Atlantic —0.87 (—1.38, —0.37) —0.21 (—0.55,0.13)
Bioregion: continental —0.82 (—1.34, -0.32) —0.30 (—0.65, 0.05)
Bioregion: Mediterranean —0.52 (—1.09, 0.06) —0.42 (—0.80, —0.02)

Phase (Dy; é¢]) Phase (D5; é¢2)

Intercept 2.98 (2.06, 3.96) 1.79 (1.05, 2.53)

In elevation —0.08 (—0.20, 0.05) —0.02 (—0.14, 0.09)
% sedimentary bedrock 0.18 (0.10, 0.26) 0.14 (0.06, 0.22)
IDPR —0.06 (—0.15, 0.03) —0.09 (—0.18, 0.00)
Annual specific runoff 0.35 (0.22,0.48) —0.16 (—0.26, 0.05)
In % water body 0.15 (0.08, 0.24) 0.36 (0.29, 0.44)

In % wetland 0.27 (0.18, 0.37) 0.02 (—=0.07,0.11)
% agriculture -0.19 (—=0.25, —0.14) 0.20 (0.15, 0.25)

% forest 0.06 (0.00, 0.13) —0.24 (—=0.29, —0.18)
% urban 0.21 (0.12,0.31) 0.05 (—0.02, 0.13)
% other land use 0.32 (0.11, 0.59) 0.00 (—0.08, 0.10)
Bioregion: Atlantic —0.62 (—1.34, 0.06) —0.82 (—1.33,0.31)
Bioregion: continental 0.02 (—0.72, 0.74) —-0.92 (—1.49, —0.34)
Bioregion: Mediterranean —0.49 (—1.30, 0.30) —-1.18 (—1.86, —0.53)

Movement in the positive D direction (x-axis) pushes a phase (peak NO3) toward January 1. Movement in the
positive D5 direction (y-axis) pushes a phase toward April 1. Significant effects are bold and italic

Although coarser, biogeographical regions provide alternate, complementary spatial clas-
sifications to the less ecologically defined department boundaries. Biogeographical region
classification appears to influence both NO3 trends and phases. Negative coefficients for the
D» (vertical) axis on phase suggest that non-alpine region indicators push peaks toward the
autumnal equinox. This is somewhat surprising, given that Fig. 7 suggests high-elevation
stations tend to peak in fall. These maps, however, view the relationships marginally and do
not control for the other, more geographically precise covariates.

When we view clustering of time trends as the response, significant effects appear con-
sistent with prevailing thought that lowland rivers (negative elevation effect) surrounded by
agricultural activity (positive agriculture land-use effect) are among the most impacted by
excess nutrients. These lowland rivers also tend to have low river density, as measured by
IDPR (negative effect). The agriculture-trend relationship is not universal, as high intercepts
and negative trends on the western peninsula (Brittany) indicate rapid recovery. On the other
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Figure 7. Estimated values of phase with department boundaries for reference (left), and biogeographical region
classification (right), by station. Phase values range from —x to 4+, with O indicating January 1, and positive
values progressing through spring to early summer (Color figure online).

hand, low-lying rivers near the northern border with Belgium exhibit high NO3 levels and
positive trends, indicating continued overloading or nutrient legacy time lags (Ebeling et al.
2021; Newcomer et al. 2021; Van Meter et al. 2018).

As with trends, amplitudes tend to be greater at lower elevations. They also exhibit
positive association with the proportion of the associated catchment that is covered in water.
Significant effects on amplitude associated with IDPR (positive) and runoff (negative) are
reversed from their effects on trend. Land use has a less pronounced effect on amplitude
than on trend.

Phase is more challenging, both from modeling and from hydrological standpoints. Inter-
pretation of the effects coincides with the directions in Fig. 3, where positive effects along
the x-axis (labeled D) push the phase (peak) toward the winter solstice, and positive effects
along the y-axis push the phase toward spring equinox. Covariate effects on phase are likely
modulated by river flow volume, which has direct relationships with NO3 concentration and
export (Frei et al. 2020; Ebeling et al. 2021), but is not included in this analysis.

The significant effects of agriculture on both axes, negative in x and positive in y, mean
that catchments that are more dedicated to agriculture tend to peak in late spring. This
may coincide with fertilizer application prior to maximum plant demand, which occurs in
spring, although its effect on NO3 concentration can be delayed in some regions (Aquilina
et al. 2012; Dupas et al. 2020). The runoff effects oppose those of % agriculture for both
axes, nudging phase probabilities for high-runoff catchments to favor late fall, potentially
associated with the release of nutrients following harvesting in these catchments with greater
hydrological connectivity between land and water (Zarnetske et al. 2018; Covino 2017).
Other notable effects include bedrock composition and percent water cover, which appear
to help account for the unique phase-clustering behavior on the northern coast of Brittany.

Because runoff types vary by geography, it would be appealing to estimate an interaction
effect with biogeographical region and runoff. However, many of the predictors co-vary spa-
tially, which limits diversity in the predictor space and introduces multicollinearity when
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considering interactions. Thus, we retain additive models to preserve stability and inter-
pretability of covariate effects.

4. CONCLUSION

We tested a unified, probabilistic framework to summarize NO3 time series from thou-
sands of locations across France. By clustering regression coefficients for each monitor-
ing station, we provided a data-driven discretization of key time-series characteristics to
(1) facilitate interpretation and (2) capture spatial correlation and borrow strength within
river networks when explicit network information is unavailable. The methodology dis-
tilled salient information from a conceptually simple model, extracting general patterns at
regional and national levels. This approach provides insight into hydrochemical behavior
of individual watersheds, including multi-year trends. Furthermore, we have related the key
characteristics of NO3 concentration to several covariates that describe the catchment for
each station. These regressions are applied to an ordered clustering, allowing for monotonic,
nonlinear relationships. This simple and robust approach could aid in the interpretation and
application of large-scale hydrochemical data by characterizing nutrient regimes and pro-
viding several metrics for gauging management successes and failures.

This analysis identified a handful of regional, distinct regimes of NO3 dynamics includ-
ing in the Occitanie (southwest; characterized by negative trends from high initial levels, and
high amplitudes), Brittany (northwestern peninsula; characterized by elevated but decreas-
ing NOj3, with low amplitudes and unique timing of peak concentration), and Pays de la
Loire (central-western; characterized by elevated and increasing NO3 with high ampli-
tudes) regions. Although land use and hydrologic connectivity consistently correlate with
patterns in trends and seasonality and help account for heterogeneity at the national level,
finer-detailed geologic and water-flow covariates would be necessary to untangle complex
seasonal regimes, such as those found in Brittany. Tests revealed clear negative trends in
approximately 11% of stations and high uncertainty associated with positive trends.

Throughout our analysis, we have used a fixed number of clusters to describe the temporal
behavior of NOj3 at spatially distinct stations. While we took great care to estimate an
appropriate number of fixed clusters (see Sect. 3.1 and related Supplementary Materials)
for these particular data, we acknowledge alternative approaches that could treat the number
of clusters as an additional parameter to be estimated from the data. One such example is the
profile regression approaches of Liverani et al. (2015) and Liverani et al. (2016) which use
a latent clustering on response and explanatory variables jointly to infer their relationship.

The emergence of clusters with distinct temporal regimes, which correspond with regional
agricultural practices (Poisvert et al. 2017), demonstrates how this type of national-scale
analysis can aid regulators and policymakers in their efforts to assess and eventually improve
water quality. Because the nutrient retention capacity of different catchments is influenced by
both inherent ecological parameters and human management practices, classifying temporal
trends can inform both the upper limit of sustainable nutrient loading and the effectiveness
of restoration activities.
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While it is highly desirable to encapsulate nutrient dynamics at the national and local
levels simultaneously in reasonable computing time, the chosen model trades precision at
the local level by restricting station-specific parameters to cluster-representative values, to
borrow strength and achieve hard clustering. The observation model for each time series
is indeed simplistic, capturing only a linear trend and an annual cycle, with autocorrelated
error. We note three prominent issues.

First, exploratory work with longer time series confirms the existence of nonlinear long-
term trends. However, most series in the present study cover four to seven years. Admitting
more flexible trends improves local fit at the expense of additional computation and com-
plicating interpretation. For these reasons, we restrict attention to linear trends, which are
straightforward to cluster.

Second, spectral analysis of the raw time series revealed sub-annual signals, contributing
primarily as deformations to the dominant annual cycle. Inclusion of sub-annual cycles
would allow more detailed exploration and more precise modeling at the observation level,
again at the cost of complicating interpretation. A related issue is that signals with a period
of one year are not necessarily captured by a single sine wave. For example, several series
exhibit brief impulse-type behavior wherein otherwise stable nitrate levels abruptly spike at
the same time each year. These behaviors may point to anthropogenic interference, such as
intermittent damming, or could be related to flashy hydrological behaviors in steep alpine
and Mediterranean catchments.

Third, Gaussian errors are inadequate for approximately one-third of the stations. This
is often due to outlier NO3 measurements. The cyclical nature of the data also makes it
difficult to distinguish outliers from evolving amplitudes, which in our model can also be
confounded with trends.

To accommodate such departures from the standard model and to further classify stations,
one appealing direction could be to extend the mixture model to allow clustering over
alternate functional forms and error structures. As an example, one could specify a mixture
component that replaces the trigonometric basis with a wavelet basis. Another mixture
specification could replace Gaussian errors with those from a longer-tailed distribution,
yielding more robust inferences and allowing the model to flag stations with extreme outlying
measurements.

Additional mixture components assign static features to each time series. However, sev-
eral rivers exhibit dynamic shifts in key characteristics. For example, some trends are not
constant for the entire seven-year period, and some rivers experience abrupt changes in the
amplitude of the annual nitrate signal. Capturing such shifts is beyond the scope of this anal-
ysis, particularly due to concerns about computational feasibility and cluster interpretability.
Nevertheless, scalable inference for clustered dynamic models remains an appealing goal.

From an ecological perspective, one major limiting factor in this analysis is the lack of
flow time series at each station. Water flow is known to influence nutrient concentrations
in rivers, and knowledge of the flow volume at a particular location aids with interpretation
of concentration dynamics. Expanding river discharge monitoring and modeling would
enhance our ability to identify key export periods and assess management effectiveness
accordingly.
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SUPPLEMENTARY MATERIALS
APPENDIX

Computing strategy, including complete conditional distributions for the algorithm; MCMC
implementation and diagnostics; further details on model selection and fit; partition analysis;
and additional details on the static covariates. (PDF document)

R Code and Data: River-NOjsclust folder (.zip archive). Also available in GitHub repository
https://github.com/mheiner/River-NO3clust.git
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