
Developing Distributed High-performance
Computing Capabilities of an Open Science

Platform for Robust Epidemic Analysis
Nicholson Collier

Decision and Infrastructure Sciences
Argonne National Laboratory

Lemont, IL, U.S.A.
https://orcid.org/0000-0002-2376-4156

Justin M. Wozniak
Data Science and Learning

Argonne National Laboratory
Lemont, IL, U.S.A.

https://orcid.org/0000-0002-2441-2048

Abby Stevens
Decision and Infrastructure Sciences

Argonne National Laboratory
Lemont, IL, U.S.A.

https://orcid.org/0000-0003-1976-1806

Yadu Babuji
Computer Science

University of Chicago
Chicago, IL, U.S.A.

https://orcid.org/0000-0002-9162-6003

Mickaël Binois
Acumes project-team

Inria centre at Université Côte d’Azur
Sophia Antipolis, France

https://orcid.org/0000-0002-7225-1680

Arindam Fadikar
Decision and Infrastructure Sciences

Argonne National Laboratory
Lemont, IL, U.S.A.

https://orcid.org/0000-0001-7396-0350

Alexandra Würth
Acumes project-team

Inria centre at Université Côte d’Azur
Sophia Antipolis, France

https://orcid.org/0000-0002-6099-0531

Kyle Chard
Computer Science

University of Chicago
Chicago, IL, U.S.A.

https://orcid.org/0000-0002-7370-4805

Jonathan Ozik
Decision and Infrastructure Sciences

Argonne National Laboratory
Lemont, IL, U.S.A.

https://orcid.org/0000-0002-3495-6735

Abstract—COVID-19 had an unprecedented impact on scien-
tific collaboration. The pandemic and its broad response from
the scientific community has forged new relationships among
domain experts, mathematical modelers, and scientific computing
specialists. Computationally, however, it also revealed critical
gaps in the ability of researchers to exploit advanced computing
systems. These challenging areas include gaining access to scal-
able computing systems, porting models and workflows to new
systems, sharing data of varying sizes, and producing results that
can be reproduced and validated by others. Informed by our
team’s work in supporting public health decision makers during
the COVID-19 pandemic and by the identified capability gaps
in applying high-performance computing (HPC) to the modeling
of complex social systems, we present the goals, requirements,
and initial implementation of OSPREY, an open science platform
for robust epidemic analysis. The prototype implementation
demonstrates an integrated, algorithm-driven HPC workflow
architecture, coordinating tasks across federated HPC resources,
with robust, secure and automated access to each of the resources.
We demonstrate scalable and fault-tolerant task execution, an
asynchronous API to support fast time-to-solution algorithms, an
inclusive, multi-language approach, and efficient wide-area data
management. The example OSPREY code is made available on
a public repository.

This material is based upon work supported by the National Science
Foundation under Grant No. 2200234, the National Institutes of Health under
grant R01DA055502, the U.S. Department of Energy, Office of Science,
under contract number DE-AC02-06CH11357, and the DOE Office of Sci-
ence through the Bio-preparedness Research Virtual Environment (BRaVE)
initiative.

Index Terms—high-performance computing, computational
epidemiology, HPC workflows, open science platform

I. INTRODUCTION

The societal importance of simulating social systems has
been brought into sharper focus as a result of the COVID-
19 pandemic. The pandemic has shown how epidemiologic
modeling can inform decision-making in times of crisis and
uncertainty, while also highlighting areas that must be ad-
dressed to create sustainable, efficient, and more effective
approaches to understanding the relevant and complex social
processes for biopreparedness and response. An area of par-
ticular interest has been in using high-performance computing
(HPC) to calibrate and apply epidemiologic models for pro-
ducing outputs such as forecasts of cases, resource needs, and
disease outcomes, to gain insight into the evolving nature of
the pandemic [1] and to provide quick turnaround decision
support for public health stakeholders [2].

However, despite the unprecedented production [3], [4] and
co-production of scientific work [5], [6], in the form of large
ensemble forecasts and scenario modeling, individual research
groups have generally worked independently, as they’ve sought
to exploit [2] (or attempt to exploit) advances in HPC, data
management, machine learning (ML), artificial intelligence
(AI), and automation methods when developing, calibrating,
modifying, verifying, and validating the epidemiologic models.
This has necessitated a large amount of heroic, overlapping

https://orcid.org/0000-0002-2376-4156
https://orcid.org/0000-0002-2441-2048
https://orcid.org/0000-0003-1976-1806
https://orcid.org/0000-0002-9162-6003
https://orcid.org/0000-0002-7225-1680
https://orcid.org/0000-0001-7396-0350
https://orcid.org/0000-0002-6099-0531
https://orcid.org/0000-0002-7370-4805
https://orcid.org/0000-0002-3495-6735

work, with results that risk lacking robustness, security, scala-
bility, or efficiency. Further, differences across HPC resources
can result in one-off workflows, developed to meet the require-
ments of a specific HPC environment.

To add to the complexity, the data upon which modelers
have relied is heterogeneous, changing, and incomplete, requir-
ing complex integration across diverse and novel surveillance
signals. These features present significant challenges for use in
calibrating epidemiologic models. At the COVID-19 pandemic
onset, data were generally limited to diagnosed cases, deaths,
and sometimes hospitalizations favoring simpler models that
did not require estimation of many parameters. As the pan-
demic evolved, multiple new high-resolution data streams
emerged at the local level allowing the models to capture
dynamic features of the epidemic and adapt towards better
realism. Anticipating the evolution of data streams would help
develop flexible models that could be quickly scaled up in
complexity and ingest dynamically changing data that vary
between locations; however, data management infrastructure
is needed to efficiently support this.

Further, research groups have often focused on a single
modeling scope, with one modeling method (compartmen-
tal, meta-population, agent-based), geographical extent (city,
county, state, national), and temporal scale (short-term fore-
cast, medium/long-term planning). Even when multiple scopes
are considered, they are rarely integrated into multi-resolution
ensembles that can mutually inform, and which could be
combined to rapidly support decision making during different
stages of an unfolding public health emergency.

To begin addressing these issues, we present the design
and initial implementation of the Open Science Platform for
Robust Epidemic analYsis, or OSPREY, which seeks to lower
the barriers to and automate epidemiologic model analyses,
monitoring, and rapid response on HPC resources. We begin
by describing OSPREY’s goals and requirements in section
II, and then discuss related work in section III. Section IV
presents our prototype OSPREY HPC architecture and section
V describes the programming model and application pro-
gramming interfaces (APIs) for working with the architecture
components. Section VI provides results from an example
optimization workflow built using the prototype architecture
and APIs. We summarize our contributions and discuss future
work directions in section VII.

II. OSPREY GOALS AND REQUIREMENTS

A. OSPREY Goals
Here we describe the three key OSPREY capabilities that

drive its design.
1) Integrated, algorithm-driven HPC workflows: OSPREY

needs to facilitate access to HPC resources for epidemiologic
model developers and for developers of model exploration al-
gorithms (e.g., calibration, data assimilation, uncertainty quan-
tification, optimization algorithms). HPC workflow software
will connect data, simulation, and algorithmic tasks, and pro-
vision heterogeneous resources (CPU, GPU, and other special-
ized accelerators) matched to task types, such as simulation-

intensive (CPU) or machine learning model-intensive (GPU).
Workflows driven by complex, iterating, and asynchronous
algorithms must be executable at scales ranging from HPC
clusters to the largest supercomputers [2], [7], while enabling
modeling groups with different computing allocations and
resource requirements to transparently utilize and build upon
the complete suite of OSPREY capabilities by plugging code
into an automated, scalable, and reusable framework.

2) Data ingestion, curation, and management: OSPREY
will need to enable continuously running data assimilation
analyses for melding data streams with up-to-date model
forecasts. The platform will ingest real-time and near real-
time data streams; curate, store, and index data; and manage
epidemiologic models and model outputs. Data pipelines will
quantify and adjust for data limitations and track data prove-
nance.

3) Shared Development Environment (SDE) for rapid re-
sponse and collaboration: The OSPREY design is a response
to our experiences in utilizing HPC resources in support of
public health decision-making during the COVID-19 pan-
demic. Computational experimentation, verification, and val-
idation are collaborative activities that require rapid coop-
erative development as public health crises evolve. Quickly
and correctly porting various modeling and analysis codes
to HPC resources is also an important activity that requires
a range of expertise. Thus, the OSPREY design will make
available shared, flexible, automated, and scalable approaches
to support rapid model exploration in a Shared Development
Environment (SDE).

B. OSPREY Requirements
Next we describe the requirements needed for OSPREY to

address the goals outlined above. First we present the main
focus for this paper: requirements for integrated, algorithm-
driven HPC workflows. The final two sections (II-B2,II-B3)
describe other requirements related to “Data ingestion, cura-
tion, and management” and “Shared Development Environ-
ment (SDE) for rapid response and collaboration” that are not
the focus of this work, but we include for completeness.

1) Integrated, algorithm-driven HPC workflows:
a) Coordinated multi-resource task execution: The

breadth of model, simulation, and analyses employed in
OSPREY necessitates a flexible approach to computation in
which a range of computational tasks can be executed across
a distributed ecosystem of heterogeneous remote resources.
Such tasks are varied and may include single-core tasks to
multi-node MPI tasks, running on CPUs to AI accelerators,
and requiring different performance guarantees (e.g., response
time) to coordinate execution of complex workflows.

b) Robust, secure, and automated access to federated
HPC resources: HPC and supercomputing resources have a
wide range of access, authentication, and security protocols.
OSPREY will need to allow for robust, secure, and automated
access to computational resources.

c) Scalable, fault-tolerant task execution: Computational
demand in epidemiologic workflows can vary dramatically

2

over time. Furthermore, computational availability can fluc-
tuate due to demand, resource priorities, and site specific
preemption protocols. Being able to dynamically scale up
(or down) the resources available for task execution, while
retaining the integrity of the overall workflows is critical.

d) Fast time-to-solution workflows: Epidemiologic mod-
els have become essential tools for understanding and charac-
terizing disease evolution. However, for them to be useful as
decision support tools, they need to provide actionable insights
quickly. There is, therefore, a need to develop and apply
algorithms focused on fast time-to-solution, whether for model
calibration, optimization, or other exploration. These include
efficient, surrogate-based multi-objective optimization algo-
rithms that can exploit the concurrency of HPC resources [2],
[8], and asynchronous algorithms that can incrementally learn
and adjust as new information is obtained. Being able to
leverage the latest advances in data analytic and statistical
libraries is desirable. OSPREY needs to provide the ability
to effectively integrate and exploit such algorithms.

e) Multi-language workflows: Computational epidemiol-
ogy is inherently cross disciplinary, bringing together a wide
array of expertise from many domains. There is, therefore,
not a single lingua franca that can be assumed for developing
the model exploration algorithms that drive the workflows.
OSPREY will need to be inclusive and provide multi-language
APIs for workflows.

f) Efficient wide-area data staging: Data is fundamental
to epidemiologic analyses, whether in the form of tradi-
tional data structures or ML/AI/mechanistic model artifacts.
Workflow computations require efficient staging of these data
elements and need to provide uniform access to them across
the heterogeneous computing infrastructure.

2) Data ingestion, curation, and management: OSPREY
will need to provide reusable services to make it possible to
quickly develop and deploy workflows based on real-world
data streams and model artifacts on HPC resources.

a) Data stream ingestion: Incoming data streams rele-
vant to OSPREY workflows vary widely in type and size.
OSPREY will need to develop flexible techniques to move
and track data sets from their origin of publication, such as a
city or health department portals, to their site of use, such as
a HPC cluster or supercomputer, to the models they are used
in.

b) Automated data curation: To address the heteroge-
neous, changing, and incomplete data typical of surveillance
and other public health data that OSPREY workflows will
utilize, there is a need to develop capabilities for creating data
analysis pipelines, such as for data de-biasing, data integration,
uncertainty quantification, and more general metadata and
provenance tracking.

c) Managing algorithm and model artifacts: Algorithm
and model artifacts, such as model exploration state or
calibrated model checkpoints, can be complex, large, and
numerous and not local to a specific resource. OSPREY
needs to manage these artifacts, and their associated metadata.
Capabilities should allow model exploration algorithms to

be easily rerun or continued, either on the original set of
computing resources or different ones. Model checkpoints
should be easily selected, staged for execution, and run.

3) SDE for rapid response and collaboration: OSPREY
will make available a Shared Development Environment
(SDE) to make it possible to quickly share, validate, and
scale models and workflows on HPC resources. A notable
feature of the OSPREY SDE is that it is not based on
hardware or Infrastructure-As-A-Service (IaaS) products, but
rather on portable workflows that run on the federated HPC
systems (§II-B1b) to which the user already has access.

a) Model and workflow sharing: Sharing scientific work-
flows is known to be difficult due to the typical intricacies of
interactions with complex HPC systems components including
shared filesystems, schedulers, and various environmental set-
tings. The standardized OSPREY workflow structure and its
use of portable tools will make it more likely that “works for
me” also means it will “work for you,” at least at the systems
level.

b) Model validation and publishing: At the scientific
level, models must be calibrated, validated, and published
using well-defined data sets. We will employ best practices
from the DevOps ecosystem [9] to make it easier for modelers
to post complete models with the data used to validate them
for reproduction, extension, or scaling by others, with the
capability to detect correctness regressions.

III. RELATED WORK

The desire to perform secure remote computation, partic-
ularly for scientific computations, is not new, with methods
such as SSH commonly used to securely execute commands
over insecure network connections. Recent paradigms, such as
Grid computing and cloud computing, have introduced more
seamless methods for remote computing via common APIs,
authentication frameworks, and infrastructure abstractions.

The Globus Grid Resource Allocation Manager
(GRAM) [10] defined a common, web-accessible API
for interacting with various batch schedulers. Computing
facilities, such as NERSC and TACC, are developing REST
APIs to, amongst other things, submit and manage batch jobs
(e.g., SuperFacility [11] and Tapis [12]).

Science gateways [13] provide web-based interfaces to
various science tools, resources, and data. They have become
popular as they abstract the complexity of dealing with remote
environments, consolidate the tools and resources needed for
a specific application, and remove the need to use several
interfaces. Gateways are typically developed to support a
specific domain or application; however, many build upon
general-purpose frameworks, such as Apache Airavata [14],
Tapis, and Globus [15] that provide a range of data and
compute management services.

Workflow management systems, such as Pegasus [16],
Parsl [17], Swift [18], and Balsam [19], are designed to
simplify the development and execution of sophisticated
workflows—tasks defined and specified to be performed in

3

a partial order with concurrent semantics. Workflow man-
agement systems enable workflows to be executed on vari-
ous computing resources including clouds, grids, and HPC
clusters. These systems typically are deployed locally on a
compute resource, and use pilot jobs to manage execution
of many tasks within a batch scheduler job. Some workflow
management systems support multi-site execution; however,
this typically relies on establishing (and maintaining) SSH
connections or opening ports to shared databases or con-
trollers.

There is growing interest in remote computation as part of
AI-based workflows. For example, Colmena [20] is a Python-
based framework designed to steer computational campaigns
by enabling developers to wrap various fidelity tasks (e.g.,
simulations) and define functions to select which tasks to be
executed next. Colmena supports the use of both Parsl and
funcX [21] (§IV-B) to manage execution of tasks on HPC
resources.

IV. PROTOTYPE OSPREY HPC ARCHITECTURE

In this section, we describe the prototype OSPREY HPC
architecture, which we generalize from the EMEWS frame-
work [22]. The architecture is depicted in Figure 1. The
architecture consists of the algorithm that controls the over-
all workflow (§IV-A), a control and task distribution sys-
tem (§IV-B), a distributed task execution service (§IV-C),
worker pools (§IV-D), and a data sharing service (§IV-E).

Fig. 1. Overview diagram of OSPREY prototype functionality.

A. The Model Exploration Algorithm Module

The central control of the OSPREY workflow is in the logic
of the Model Exploration (ME) algorithm 1 . This is the main

user interface to the system. The users deploy scientifically-
oriented algorithms here, using a wide range of supported
languages, including Python and R. This allows users to draw
from the extensive set of community-developed data science
and analysis tools available. Such algorithms typical provide
a pluggable interface in which to provide user functions to
sample the scientific problem space. This is where the user
connects the algorithm to the OSPREY task API.

The API for task submission, result reporting, and querying
the queues is implemented in both Python and R, although
the Python API has additional code that enables asynchronous
ME algorithms (§V-B). A task is submitted with the following
arguments: an experiment id; the task work type; the task
payload; an optional priority that defaults to 0; and an optional
metadata tag string. The payload contains sufficient informa-
tion for a worker pool to execute the task and is typically a
JSON formatted string, either a JSON dictionary or in less
complex cases a simple JSON list. On submission, the API
creates a unique task identifier (an integer) for the task and
inserts that identifier, the experiment identifier, the work type,
and the payload into the EMEWS DB (§IV-C) tasks table,
together with a task creation timestamp. That task identifier,
priority and work type are then inserted into the EMEWS DB
output queue table.

B. Task Distribution
Tasks produced by the ME algorithm are distributed over the

wide area network via a configurable network, with funcX [21]
or SSH as the transport mechanism 2 . Overall, the task
distribution system decouples the tasks produced by the ME
algorithm, and the status of those tasks (queued, running, etc.)
from the ME execution such that tasks and their results are
not lost when a resource fails, but rather are described in the
system in enough detail so that they can be executed if not
yet running or restarted if necessary.

We have built the OSPREY computational fabric upon
the Argonne-developed funcX platform [21]. FuncX imple-
ments a federated function as a service (FaaS) model via
which arbitrary Python functions can be reliably executed
on remote computers. Users first deploy specialized funcX
endpoint software on a computer to make it accessible for
remote computation. The hosted funcX cloud service acts as an
interface for users to submit tasks. The service is responsible
for managing secure communication with an endpoint, authen-
ticating and authorizing users (via OAuth 2.0), providing fire-
and-forget execution by storing and retrying tasks in the event
an endpoint is offline or fails, and storing results (or failures)
until retrieved by a user. The funcX endpoint is responsible
for provisioning resources via various supported systems (e.g.,
local fork, Slurm, PBS), managing execution of tasks using a
pilot job model, optionally deploying tasks within containers,
monitoring execution, and returning task results to users via
the cloud service.

In our prototype, we use funcX to start and stop the
EMEWS service, the EMEWS DB database (§IV-C), and
remote worker pools on HPC resources (§IV-D) 3 . The

4

EMEWS service is a Python application and can thus be
started directly from within a Python function executed on
a remote funcX endpoint. The database and worker pools are
non-Python applications, and those are started using funcX and
the Python subprocess library to start the relevant executables.
Due to the flexibility of funcX, we can also use it to execute
simple, standalone tasks on remote resources as need, such as
for initiating large data transfers, or, as we show in §VI, for
an optimization phase in a Python ME algorithm that is best
executed on a specific HPC resource.

C. EMEWS Task Database
Tasks arrive at HPC sites at the EMEWS Service 4 ,

which abstracts task caching and queuing operations in an
efficient manner. The Service stores the tasks in the EMEWS
DB, a resource-local SQL database. The Service mediates
between model exploration algorithms and worker pools and
exposes data about tasks for queries.

The EMEWS DB consists of five tables, a tasks table, a
table each for an input and output queue, an experiments table
that links tasks with experiments, and a tag table that links
individual tasks to a metadata tag or tags. The tasks table
contains the data for each task: a unique task identifier; current
status (queued, running, complete, or canceled); a task work
type; the input payload (e.g., simulation input parameters);
the result payload; the identifier of the worker pool running
the task; the time the task was created; the task execution start
time; and the task execution stop time. The output queue table,
from which tasks are popped for execution, consists of a task
identifier, a task work type, and a priority that determines the
order in which the tasks should be executed. The input queue
table consists of a task identifier and a task type. The rows
in the tables are linked through the task identifier such that
tasks in the input and output queue and in other tables link
to those in the tasks table via the shared task identifier. This
schema provides the foundation for a fault tolerant and robust
task queuing and execution workflow.

Client code can query for tasks in the output queue by
passing an integer specifying the type of work, the number
of tasks to retrieve, an optional string identifying the specific
worker pool consuming the tasks, and an optional timeout
and delay value. The query executes by polling the output
queue table for tasks of the specified work type, using the
specified delay and timeout value. On success, the highest
priority task (or tasks if multiple tasks are requested) is deleted
and returned from the output table, effectively popping the
task off the output queue. The task’s payload is retrieved
from the task table which is updated, setting the task status
to running, recording the start time, and setting the worker
pool identifier to that passed in by the query. The payload
and the task identifier are returned as a Python dictionary or
a R named list: {'type': 'work', 'eq_task_id':

task_id, 'payload': payload}. If the polling fails,
a dictionary or named list with a 'type' of 'status'

and a 'payload' describing the reason for the failure (e.g.,
'TIMEOUT') is returned.

When the work defined by the 'payload' has been
completed, the result, typically in JSON format, is reported
and inserted into the input queue by passing the task identifier,
the work type, and the result JSON payload. The result
payload is inserted into the tasks table where the task status is
marked as completed, and the stop time is recorded. The task
identifier and work type are inserted into the input queue table,
effectively pushing the task into the input queue. Client code,
such as an ME algorithm, queries for results by polling the
input queue table for completed tasks, passing a task identifier
together with timeout and delay values that work identically to
those in the output queue query. On success, the task is popped
off the input queue by deleting it from the input queue table,
and the corresponding result from the tasks table is returned.
On failure, an appropriate message is returned.

D. Heterogeneous Worker Pools

In the previous section (§IV-B) we described how tasks
can be submitted to, and how results are retrieved from
the EMEWS DB. Worker pools 5 are responsible for
querying the database via the output queue for those submitted
tasks, executing them, and then reporting the results of those
tasks back to the database where the ME algorithm can then
retrieve them via the input queue. Our canonical worker pool
implementation is a Swift/T [23] application written using the
Swift language and Python, running on a HPC resource as
a pilot job. The ability to manage an extreme quantity of
tasks is a main design feature of the Swift/T implementation,
which essentially distributes work among previously launched
workers using MPI messages. Swift/T is a dataflow language
with built-in concurrency designed for execution on large-scale
supercomputers. Our worker pool implementation leverages
these features to execute as many submitted tasks in parallel
as possible. For performance results of epidemiologic models
running on Swift/T workflows see [2].

Swift/T also provides high-level, easy to use interfaces for
Python, R, Julia and Tcl, allowing the user to pass a string of
code into the language interpreter for execution. This feature
enables us to integrate Swift’s concurrent capability with the
Python EMEWS DB API for querying the output queue for
tasks to execute, and for pushing the results of executed tasks
on to the input queue. We have also implemented an enhanced
version for querying the output queue, customized for worker
pools. These queries allow a worker pool to request up to
n number of tasks (a query batch size) to consume at a time,
while accounting for the number of tasks a worker pool already
has obtained but have not completed. So, for example, if a
worker pool is configured to possess 33 tasks at a time, if it
owns 30 uncompleted tasks when querying the output queue, it
will only obtain 3 additional tasks. This can be tweaked using
a threshold value that specifies how large the deficit between
requested tasks and owned tasks must be before more tasks
are obtained. Querying for tasks in this way allows a worker
pool to tune its query to the number of available workers such
that all its workers are busy while equitably sharing work
among multiple worker pools. This prevents any one worker

5

pool from obtaining more tasks than it can reasonably execute
while potentially leaving other pools starved of work.

Each worker pool has a user specified work type associated
with it when it is initialized. A pool will only query for and
execute tasks of that type. Consequently, worker pools can
be matched to HPC resources configured to most efficiently
execute their work type. For example, an ME algorithm may
have two types of tasks that need to be executed: 1) a multi-
process MPI-based simulation model; and 2) an optimization
component that most efficiently runs on a GPU. Two worker
pools can be launched and configured on resources appropriate
for these two different work types. Worker pools also need
not be started and stopped when the ME algorithm starts and
stops. They can be started and stopped as needed in response
to changing ME algorithm requirements.

Worker pools can run a variety of task application types. In
addition to the Python, R, Julia, and Tcl interfaces which can
be used to run code written in those languages, Swift/T can run
executables as command line programs via its app function
type. MPI executables can also be run via an app function
or internally as parallel Swift/T library extensions using the
@par keyword.

E. Data Sharing Service

One of the challenges with our approach is efficiently mov-
ing data to/from the HPC resources. Staging data (including
models) via, e.g., SCP requires authentication (often two-
factor authentication on HPC resources), while using funcX
is not possible as funcX limits input/output sizes to 10MB.
To address the need for out-of-band transfer of potentially
large data, we use ProxyStore [24] and Globus [15]. This
communication is shown in Figure 1 6 and allows for
seamless access to remotely-hosted large data sets across HPC
sites, with no changes to code.

ProxyStore is a data management fabric that exposes a
simple (and common) Python interface to data irrespective
of where it resides. Specifically, it passes “Proxy” object
references between participating entities (e.g., ME algorithms,
EMEWS DB, remote workers) and implements a lazy eval-
uation approach in which Proxies are resolved only when
needed. Thus, users are presented with a pure Python interface
which can be easily integrated with various models and client
software. ProxyStore implements a common data access/move-
ment interface with plugins to support storage and movement
via different methods, including shared file systems, Redis
databases, or Globus.

Globus provides high-performance and reliable third-party
data transfer and is available on HPC systems in national
laboratories, national cyberinfrastructure, and in research insti-
tutions. It can also be easily deployed on laptops and clouds.
The third-party nature of Globus transfers, allows OSPREY
(via ProxyStore) to easily move data between locations without
needing to maintain open connections to those locations.

The capabilities of the OSPREY prototype architecture
described, including the ME algorithm (§IV-A), the control

and task distribution system (§IV-B), the distributed task
execution service (§IV-C), the worker pools (§IV-D), and the
data sharing service (§IV-E), provide the ability to robustly and
securely coordinate workflows across a distributed ecosystem
of heterogeneous remote resources 7 .

V. PROGRAMMING MODEL AND APIS

A. Task model

Examples of the base API for submitting tasks, querying
for tasks to execute, reporting results, and querying for results
in both Python and R can been seen in Listing 1. The Python
version currently has some additional functionality, the ability
to query for multiple tasks to execute, for example, which
accounts for differences in the method and function signatures.
Further, the Python API is class based in which instances
of an EQSQL Python class provides methods for submission,
querying and reporting.

Python API

def submit_task(self, exp_id: str,

eq_type: int, payload: str,

priority: int = 0,

tag: str = None)

def query_task(self, eq_type: int, n: int = 1,

worker_pool: str = ’default’,

delay: float = 0.5,

timeout: float = 2.0)

def report_task(self, eq_task_id: int,

eq_type: int, result: str)

def query_result(self, eq_task_id: int,

delay: float = 0.5,

timeout: float = 2.0)

R API

eq_submit_task <- function(exp_id, eq_type,

payload, priority=0)

eq_query_task <- function(eq_type, delay = 0.5,

timeout=2.0)

eq_report_task <- function(eq_task_id,

eq_type, result)

eq_query_result <- function(eq_task_id,

delay = 0.5, timeout = 2.0)

Listing 1. Core EMEWS DB API in Python and R.

B. Asynchronous Tasks

In section II-B1d, we discussed the importance of asyn-
chronous algorithms for fast time to solution, and for pro-
viding better utilization of HPC resources when compared
with batch synchronous workflows. Here we describe the
OSPREY asynchronous API that enables these algorithms.
The asynchronous API is designed using the future abstrac-
tion. A future encapsulates the asynchronous execution of a
task, and is implemented as a Python class. Future instances
are created and returned when tasks are submitted with
EQSQL.submit_task. Leveraging the EMEWS DB API,
Future class methods allow ME algorithm code to query

6

1: for each initial sample do
2: Submit the sample for evaluation
3: end for
4: while stopping condition not reached do
5: Wait for n number of evaluation results
6: Re-sample, reorder, re-submit based on results
7: end while

Fig. 2. Pseudo-code for an asynchronous algorithm.

the status (running, finished, etc.) and check for a result of
the encapsulated task without waiting for it to finish. Other
methods provide the ability to cancel and reprioritize the task
with respect to other tasks in the output queue.

The asynchronous API also includes functions for working
with collections of Futures. Given a list of Futures, the
as_completed function creates a Python generator that
will yield a specified number of Futures as they complete.
pop_completed returns the first completed Future from
a list of Futures, removing that Future from the list,
and update_priority will update the priorities of a list
of Futures to a new set of priorities. For efficiency, these
functions typically perform batch operations on the EWEWS
DB rather than iterating through the collection of Futures
and performing the operations individually. Taken together,
these functions and the Future class methods enable the
implementation of various asynchronous algorithms.

The pseudo-code in Figure 2 illustrates a typical asyn-
chronous algorithm. A number of initial samples are submit-
ted for evaluation. After some number of evaluations have
completed and their results are available, the ME algorithm,
using these results, can generate new samples for evaluation,
reorder existing evaluations, cancel less promising evaluations,
and so on, until some stopping condition is reached. The code
in Listing 2 is a possible implementation of the pseudo-code
using our asynchronous API. Lines 4 through 9 create JSON
payloads for each sample in a list of samples, submitting those
for evaluation using the EQSQL class instance created on line
2. The Futures returned by the submission are added to a
futures list in line 9. In line 13, the pop_completed

function pops a completed future from the list. In this case,
and by default, pop_completed will poll for a completed
result until one is found. However, a maximum wait time can
also be specified using a timeout argument. In line 15, an
update function takes the result of the completed future, and
generates new tasks to be submitted, and new priorities for the
existing tasks. Line 16 updates the existing tasks encapsulated
by the futures list to the new priorities, and lines 17-20
submit the new tasks, producing new futures, which are then
added to the futures list where they can be popped off as
they complete.

1 from eqsql import eq

2 eqsql_db = init_esql(...)

3 futures = []

4 for s in samples:

5 payload = json.dumps({'sample': sample})

6 ft = eqsql_db.submit_task(

7 'exp1', sim_work_type, payload,

8 priority=0)

9 futures.append(ft)

10
11 tasks_completed = 0

12 while tasks_completed < 1000:

13 ft = eq.pop_completed(futures)

14 tasks_completed += 1

15 tasks, new_priority = update(ft.result())

16 eq.update_priority(futures, new_priority)

17 for t in tasks:

18 ft = eqsql_db.submit_task(

19 'exp1', sim_work_type, task)

20 futures.append(ft)

Listing 2. Sample asynchronous algorithm implementation.

VI. RESULTS

To exercise our prototype OSPREY HPC architecture, we
have implemented an example optimization workflow that
attempts to find the minimum of the Ackley function [25]
using a Gaussian process regression model (GPR). Our
implementation, which can be found at https://github.com/
NSF-RESUME/2023 ParSocial OSPREY example, is based
on a similar example problem provided as part of the Colmena
documentation [26]. We begin with a sample set containing a
number of randomly generated n-dimensional points. Each of
these points is submitted as a task to the Ackley function for
evaluation. When a specified number of tasks have completed
(i.e., that number of Ackley function evaluation results are
available), we train a GPR using the results, and reorder the
evaluation of the remaining tasks, increasing the priority of
those more likely to find an optimal result according to the
GPR. This repeats until all the evaluations complete.

Our example workflow was executed locally on an M1 Mac-
Book Pro in conjunction with the University of Chicago’s Mid-
way2 HPC cluster, the Laboratory Computing Resource Cen-
ter’s Bebop HPC cluster at Argonne National Laboratory, and
the Argonne Leadership Computing Facility (ALCF) Theta
supercomputer. The EMEWS DB components and worker
pools were run on Bebop, and the GPR training was done
on Midway2 or Theta depending on the run configuration.

The ME algorithm is a Python script running locally that
begins by initializing a funcX client, and then starting the
EMEWS DB, an initial worker pool, and the EMEWS service
remotely on Bebop using funcX as described in section IV-B.
After initializing an SSH tunnel through which we commu-
nicate with the EMEWS service, we create an initial sample
set of 750 4-dimensional points, which are submitted as tasks
using the submit_task API function. The worker pool,
running on Bebop, pops these tasks off the database output
queue, and executes the Ackley function using the point data
in the tasks’ payload. (We have added a lognormally dis-
tributed “sleep” delay to the Ackley function implementation
to increase the otherwise millisecond runtime and to add
task runtime heterogeneity for demonstration purposes.) On
completion, the task results are pushed onto the database’s
input queue. While the worker pool on Bebop is executing

7

https://github.com/NSF-RESUME/2023_ParSocial_OSPREY_example
https://github.com/NSF-RESUME/2023_ParSocial_OSPREY_example

the tasks, the local Python script, waits for the next 50 tasks
to complete at which time we perform the reprioritization. The
completed tasks are popped off the list of futures returned by
the submission using the as_completed API function.

The reprioritization consists of retraining the GPR with the
completed results and then updating the evaluation priorities
of the uncompleted tasks using the GPR predictions. The
retraining of the GPR was performed on Midway2 or Theta
using funcX to directly evaluate the Python function that
retrains the GPR and returns the updated evaluation order.
The GPR itself was passed as a ProxyStore proxy object,
using ProxyStore’s Globus functionality, to the reprioritization
function and resolved into the actual GPR during remote
function evaluation. Using the updated order returned from
the function, the uncompleted tasks are reprioritized using
the update_priorities API function. The reprioritiza-
tion repeats for every new 50 completed tasks, and start
an additional worker pool on Bebop after the 2nd and 4th

reprioritizations, for a final total of 3 worker pools. Connecting
to the same database as the initial worker pool, these worker
pools perform the same type of work, popping tasks off the
same output queue, and executing the Ackley function using
those tasks’ payload. When there are no more tasks left to
complete, the workflow terminates, stopping the database, and
shutting down funcX.

To illustrate the workflow’s execution, we have created two
figures. The first, Figure 3, illustrates the effect of query batch
size and threshold on worker pool utilization when querying
for tasks. As mentioned in section IV-D batch size controls
the maximum number of tasks a worker pool can own and
the threshold determines when additional tasks are requested.
The top plot in the figure shows the number of concurrently
running tasks with a query batch size of 50 and a threshold of
1 for a worker pool with 33 workers. The middle plot shows a
batch size of 33 with a threshold of 1 for the same size worker
pool, and the bottom plot a batch size of 33 with a threshold
15, again for the same size worker pool. The top plot clearly
shows the best utilization of the HPC resource, in this case,
a single 36 core compute node on Bebop. A batch size of
50 with 33 workers oversubscribes the pool, and effectively
creates an in-memory task cache from which new tasks can
be quickly pulled without the more costly database query.
Oversubscribing, however, consumes database tasks, making
them ineligible for reprioritization or cancellation, since they
are popped off the output queue. With a batch size of 33
and threshold of 1 (middle plot), there is no such cache, and
each time a task is completed another must be fetched from
the database, during which additional tasks may complete,
leading to lower utilization, but making more tasks eligible
for reprioritization or cancellation. The final plot illustrates the
effect of a large threshold where 15 tasks must finish before
new tasks are added resulting in the saw tooth pattern where
multiple workers remain idle for several seconds at a time.

In Figure 4 we have plotted the number of tasks executed
by each of the three worker pools over time, together with
the GPR reprioritization. The bottom of the figure shows the

Fig. 3. Number of tasks executed by a worker pool for different batch sizes
and thresholds.

total number of concurrently executing tasks by worker pool,
each of which has been allocated 33 workers and thus can
execute up to that many tasks concurrently. In this example,
each worker pool has a batch size of 33 and thus will query
the database for up to 33 tasks at a time, and request more
when the number of owned tasks falls below 33 (threshold of
1). In the figure, we see worker pool 1, in blue, starting at time
0 and begin executing 33 concurrent tasks, indicated by the
first dotted line. When a task finishes, we see the total number
of tasks drop below the maximum of 33 and then rise back
up as more tasks are requested and executed. 57 seconds after
worker pool 1 has started, worker pool 2, in orange, starts,
and executes its maximum of 33 concurrent tasks. At the 80
second mark, worker pool 3 starts and begins to evaluate tasks.
Across all the worker pools, we see a similar utilization to that
in the middle plot in Figure 3. By using the batch API, we
can equitably spread the tasks among the pools.

The top of the figure illustrates the dynamics of the GPR
reprioritization occurring while the worker pools consume
tasks. The intermittent horizontal lines indicates the starting
time and duration of the reprioritization with respect to worker
pool task execution. We can see here how reprioritization
becomes more frequent as the additional worker pools are
added, given that 50 additional tasks complete more frequently
with the additional worker pools. The very top of the figure
shows the reprioritization trajectories of each of the 750
tasks, each line being drawn from a task’s current priority
to its new priority at the time of reprioritization. During
the first reprioritization starting at the 29 second mark, and
triggered by the first 50 tasks completing, 700 uncompleted

8

tasks are reprioritized with new priorities of 1 � 700, at the
next reprioritization 650 uncompleted tasks are reprioritized
from 1 � 650, and so on. During reprioritization, the worker
pools continue to consume tasks, efficiently using the compute
resources, and providing the GPR with additional results to
evaluate. Also of note, is that although worker pool 2 and
worker pool 3 are scheduled to start during the 2nd and 4th

reprioritizations, respectively they do not immediately start
consuming tasks at that time due to delays between submitting
a worker pool job to Bebop and it actually beginning.

Fig. 4. Illustration of the combined example workflow across the ALCF
Theta and LCRC Bebop resources. Top: GPR reprioritization of tasks over
time, run on ALCF Theta. Vertical lines represent the new prioritization at
the end of the reprioritization process, and connecting lines show task priority
reassignments (higher means higher priority). As tasks are consumed, the tasks
that are subject to reprioritization are reduced. The horizontal lines below the
vertical lines show the time extent of each reprioritization call. Bottom: Total
number of concurrently executing tasks by worker pool, run on LCRC Bebop.

VII. CONCLUSION AND FUTURE WORK

We have provided the goals and requirements for OS-
PREY, an open science platform for robust epidemic analysis.
We described the prototype HPC OSPREY architecture and
demonstrated an example of its use across federated HPC
resources, providing the implementation code on a public
repository. Our goal is to develop OSPREY into a public
resource for epidemiologic modeling and analysis.

There are multiple directions for future work. To meet ad-
ditional requirements in the integrated, algorithm-driven HPC
workflow topic (see II-B1), we will extend the asynchronous
API to additional ME algorithm languages, starting with R,
and expand the funcX capabilities for more robust interac-
tions with HPC schedulers, including active monitoring and
termination of worker pools, through the PSI/J library [27].

For OSPREY capabilities in data ingestion, curation, and
management (II-B2), we will develop flexible techniques to
provide real time and near-real time data to HPC workflows,
automate the curation of the data, and provide methods for
managing algorithm and model artifacts. Finally, to support
the diffusion of OSPREY capabilities, we will develop the
OSPREY shared development environment (II-B3), to promote
model and workflow sharing, and to support best practices for
model validation and reproducibility. These capabilities will
allow us to expand the applicability of OSPREY to diverse ME
algorithms and integrated HPC workflows, with the purpose
of creating on-demand response and planning capabilities to
support public health decision making.

Finally, while the focus of this work is in the public health
domain, many aspects are relevant to other application areas
where dynamic data and modeling on HPC resources can
inform time-critical decision making.

ACKNOWLEDGMENT

This research was completed with resources provided by
the Research Computing Center at the University of Chicago
(Midway2 cluster), the Laboratory Computing Resource Cen-
ter at Argonne National Laboratory (Bebop cluster), and the
Argonne Leadership Computing Facility (Theta), which is a
DOE Office of Science User Facility.

REFERENCES

[1] A. L. Hotton, J. Ozik, C. Kaligotla, N. Collier, A. Stevens, A. S. Khanna,
M. M. MacDonell, C. Wang, D. J. LePoire, Y.-S. Chang, I. J. Martinez-
Moyano, B. Mucenic, H. A. Pollack, J. A. Schneider, and C. Macal,
“Impact of changes in protective behaviors and out-of-household
activities by age on COVID-19 transmission and hospitalization in
Chicago, Illinois,” Annals of Epidemiology, p. S1047279722001053,
6 2022, [Online; accessed 2022-06-23]. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S1047279722001053

[2] J. Ozik, J. M. Wozniak, N. Collier, C. M. Macal, and M. Binois,
“A population data-driven workflow for COVID-19 modeling and
learning,” The International Journal of High Performance Computing
Applications, vol. 35, no. 5, pp. 483–499, 9 2021, [Online; accessed
2021-09-27]. [Online]. Available: http://journals.sagepub.com/doi/10.
1177/10943420211035164

[3] H. Else, “How a torrent of COVID science changed research
publishing — in seven charts,” Nature, vol. 588, no. 7839, pp.
553–553, 12 2020, [Online; accessed 2021-09-28]. [Online]. Available:
http://www.nature.com/articles/d41586-020-03564-y

[4] X. Cai, C. V. Fry, and C. S. Wagner, “International collaboration during
the COVID-19 crisis: Autumn 2020 developments,” Scientometrics,
vol. 126, no. 4, pp. 3683–3692, 4 2021, [Online; accessed
2021-09-28]. [Online]. Available: https://link.springer.com/10.1007/
s11192-021-03873-7

[5] E. L. Ray, N. Wattanachit, J. Niemi, A. H. Kanji, K. House,
E. Y. Cramer, J. Bracher, A. Zheng, T. K. Yamana, X. Xiong,
S. Woody, Y. Wang, L. Wang, R. L. Walraven, V. Tomar, K. Sherratt,
D. Sheldon, R. C. Reiner, B. A. Prakash, D. Osthus, M. L. Li,
E. C. Lee, U. Koyluoglu, P. Keskinocak, Y. Gu, Q. Gu, G. E.
George, G. España, S. Corsetti, J. Chhatwal, S. Cavany, H. Biegel,
M. Ben-Nun, J. Walker, R. Slayton, V. Lopez, M. Biggerstaff,
M. A. Johansson, and N. G. Reich, “Ensemble forecasts of
coronavirus disease 2019 (COVID-19) in the U.S.” [Online]. Available:
http://medrxiv.org/lookup/doi/10.1101/2020.08.19.20177493

[6] R. K. Borchering, C. Viboud, E. Howerton, C. P. Smith, S. Truelove,
M. C. Runge, N. G. Reich, L. Contamin, J. Levander, J. Salerno,
W. van Panhuis, M. Kinsey, K. Tallaksen, R. F. Obrecht, L. Asher,
C. Costello, M. Kelbaugh, S. Wilson, L. Shin, M. E. Gallagher,
L. C. Mullany, K. Rainwater-Lovett, J. C. Lemaitre, J. Dent, K. H.
Grantz, J. Kaminsky, S. A. Lauer, E. C. Lee, H. R. Meredith,

9

https://linkinghub.elsevier.com/retrieve/pii/S1047279722001053
https://linkinghub.elsevier.com/retrieve/pii/S1047279722001053
http://journals.sagepub.com/doi/10.1177/10943420211035164
http://journals.sagepub.com/doi/10.1177/10943420211035164
http://www.nature.com/articles/d41586-020-03564-y
https://link.springer.com/10.1007/s11192-021-03873-7
https://link.springer.com/10.1007/s11192-021-03873-7
http://medrxiv.org/lookup/doi/10.1101/2020.08.19.20177493

J. Perez-Saez, L. T. Keegan, D. Karlen, M. Chinazzi, J. T. Davis,
K. Mu, X. Xiong, A. Pastore y Piontti, A. Vespignani, A. Srivastava,
P. Porebski, S. Venkatramanan, A. Adiga, B. Lewis, B. Klahn,
J. Outten, J. Schlitt, P. Corbett, P. A. Telionis, L. Wang, A. S.
Peddireddy, B. Hurt, J. Chen, A. Vullikanti, M. Marathe, J. M.
Healy, R. B. Slayton, M. Biggerstaff, M. A. Johansson, K. Shea,
and J. Lessler, “Modeling of future COVID-19 cases, hospitalizations,
and deaths, by vaccination rates and nonpharmaceutical intervention
scenarios — United States, April–September 2021,” MMWR. Morbidity
and Mortality Weekly Report, vol. 70, no. 19, pp. 719–724,
2021. [Online]. Available: http://www.cdc.gov/mmwr/volumes/70/wr/
mm7019e3.htm?s cid=mm7019e3 w

[7] Y. Babuji, B. Blaiszik, T. Brettin, K. Chard, R. Chard, A. Clyde,
I. Foster, Z. Hong, S. Jha, Z. Li, X. Liu, A. Ramanathan, Y. Ren,
N. Saint, M. Schwarting, R. Stevens, H. van Dam, and R. Wagner,
“Targeting SARS-CoV-2 with AI- and HPC-enabled lead generation:
A first data release,” arXiv:2006.02431 [cs, q-bio, stat], 5 2020, arXiv:
2006.02431. [Online]. Available: http://arxiv.org/abs/2006.02431

[8] M. Binois, N. Collier, and J. Ozik, “A portfolio approach to massively
parallel Bayesian optimization,” arXiv:2110.09334 [math, stat], 10
2021, arXiv: 2110.09334. [Online]. Available: http://arxiv.org/abs/2110.
09334

[9] M. de Bayser, L. G. Azevedo, and R. Cerqueira, “ResearchOps: The case
for DevOps in scientific applications,” in 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), 2015, pp. 1398–
1404.

[10] M. Feller, I. T. Foster, and S. Martin, “GT4 GRAM: A functionality and
performance study,” 2007.

[11] B. Enders, D. Bard, C. Snavely, L. Gerhardt, J. Lee, B. Totzke, K. An-
typas, S. Byna, R. Cheema, S. Cholia, M. Day, A. Gaur, A. Greiner,
T. Groves, M. Kiran, Q. Koziol, K. Rowland, C. Samuel, A. Selvarajan,
A. Sim, D. Skinner, R. Thomas, and G. Torok, “Cross-facility science
with the Superfacility Project at LBNL,” in 2020 IEEE/ACM 2nd
Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing
(XLOOP), 2020, pp. 1–7.

[12] J. Stubbs, R. Cardone, M. Packard, A. Jamthe, S. Padhy, S. Terry,
J. Looney, J. Meiring, S. Black, M. Dahan, S. Cleveland, and G. Jacobs,
“Tapis: An API platform for reproducible, distributed computational
research,” in Advances in Information and Communication, K. Arai,
Ed., 2021, pp. 878–900.

[13] Science Gateways Community Institute, “Creating science gateways
success stories,” https://sciencegateways.org/app/site/media/files/SGCI
2018 science highlights booklet spreads FINAL.pdf, 2018.

[14] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler,
A. Slominski, A. Douma, S. Perera, and S. Weerawarana, “Apache
Airavata: A framework for distributed applications and computational
workflows,” in Proceedings of the 2011 ACM Workshop on Gateway
Computing Environments, ser. GCE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 21–28. [Online].
Available: https://doi.org/10.1145/2110486.2110490

[15] K. Chard, S. Tuecke, and I. Foster, “Efficient and secure transfer,
synchronization, and sharing of big data,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 46–55, 9 2014, [Online; accessed 2021-09-28].
[Online]. Available: http://ieeexplore.ieee.org/document/7036262/

[16] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. F. da Silva, G. Pa-
padimitriou, and M. Livny, “The evolution of the Pegasus workflow
management software,” Computing in Science & Engineering, vol. 21,
no. 4, 2019.

[17] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and
K. Chard, “Parsl: Pervasive parallel programming in Python,” ser.
HPDC ’19. Phoenix, AZ, USA: Association for Computing Machinery,
6 2019, p. 25–36, [Online; accessed 2020-07-26]. [Online]. Available:
https://doi.org/10.1145/3307681.3325400

[18] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable,
loosely coupled parallel computation,” in IEEE Congress on Services,
2007, pp. 199–206.

[19] M. A. Salim, T. D. Uram, J. T. Childers, P. Balaprakash, V. Vishwanath,
and M. E. Papka, “Balsam: Automated scheduling and execution of
dynamic, data-intensive HPC workflows,” CoRR, vol. abs/1909.08704,
2019. [Online]. Available: http://arxiv.org/abs/1909.08704

[20] L. Ward, G. Sivaraman, J. Pauloski, Y. Babuji, R. Chard, N. Dandu,
P. C. Redfern, R. S. Assary, K. Chard, L. A. Curtiss, R. Thakur,
and I. Foster, “Colmena: Scalable machine-learning-based steering
of ensemble simulations for high performance computing,” in
IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC). Los Alamitos, CA, USA:
IEEE Computer Society, nov 2021, pp. 9–20. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MLHPC54614.2021.00007

[21] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “funcX: A federated function serving
fabric for science.” Stockholm Sweden: ACM, 6 2020, pp.
65–76, [Online; accessed 2021-09-28]. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3369583.3392683

[22] J. Ozik, N. T. Collier, J. M. Wozniak, and C. Spagnuolo, “From desktop
to large-scale model exploration with Swift/T,” 12 2016, pp. 206–220,
iSSN: 1558-4305.

[23] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk,
and I. T. Foster, “Swift/T: Large-scale application composition via
distributed-memory dataflow processing.” Delft: IEEE, 5 2013,
pp. 95–102, [Online; accessed 2021-09-28]. [Online]. Available:
http://ieeexplore.ieee.org/document/6546066/

[24] G. Pauloski, “ProxyStore: A data fabric for Parsl and FuncX,” 2022.
[25] S. Surjanovic and D. Bingham, “Ackley function,” http://www.sfu.ca/

⇠ssurjano/ackley.html, 2023, accessed 13th February 2023.
[26] L. Ward, “streaming.py,” https://github.com/exalearn/colmena/

blob/bd334e0a582fb79d97652d67d05666f13d178f83/demo apps/
optimizer-examples/streaming.py#L1, 2023, accessed 13th February
2023.

[27] A. Al-Saadi, D. H. Ahn, Y. Babuji, K. Chard, J. Corbett, M. Hategan,
S. Herbein, S. Jha, D. Laney, A. Merzky, T. Munson, M. Salim,
M. Titov, M. Turilli, T. D. Uram, and J. M. Wozniak, “ExaWorks:
Workflows for exascale.” St. Louis, MO, USA: IEEE, 11 2021,
pp. 50–57, [Online; accessed 2022-07-27]. [Online]. Available:
https://ieeexplore.ieee.org/document/9652623/

10

http://www.cdc.gov/mmwr/volumes/70/wr/mm7019e3.htm?s_cid=mm7019e3_w
http://www.cdc.gov/mmwr/volumes/70/wr/mm7019e3.htm?s_cid=mm7019e3_w
http://arxiv.org/abs/2006.02431
http://arxiv.org/abs/2110.09334
http://arxiv.org/abs/2110.09334
https://sciencegateways.org/app/site/media/files/SGCI_2018_science_highlights_booklet_spreads_FINAL.pdf
https://sciencegateways.org/app/site/media/files/SGCI_2018_science_highlights_booklet_spreads_FINAL.pdf
https://doi.org/10.1145/2110486.2110490
http://ieeexplore.ieee.org/document/7036262/
https://doi.org/10.1145/3307681.3325400
http://arxiv.org/abs/1909.08704
https://doi.ieeecomputersociety.org/10.1109/MLHPC54614.2021.00007
https://dl.acm.org/doi/10.1145/3369583.3392683
https://dl.acm.org/doi/10.1145/3369583.3392683
http://ieeexplore.ieee.org/document/6546066/
http://www.sfu.ca/~ssurjano/ackley.html
http://www.sfu.ca/~ssurjano/ackley.html
https://github.com/exalearn/colmena/blob/bd334e0a582fb79d97652d67d05666f13d178f83/demo_apps/optimizer-examples/streaming.py#L1
https://github.com/exalearn/colmena/blob/bd334e0a582fb79d97652d67d05666f13d178f83/demo_apps/optimizer-examples/streaming.py#L1
https://github.com/exalearn/colmena/blob/bd334e0a582fb79d97652d67d05666f13d178f83/demo_apps/optimizer-examples/streaming.py#L1
https://ieeexplore.ieee.org/document/9652623/

	Introduction
	OSPREY Goals and Requirements
	OSPREY Goals
	Integrated, algorithm-driven HPC workflows
	Data ingestion, curation, and management
	Shared Development Environment (SDE) for rapid response and collaboration

	OSPREY Requirements
	Integrated, algorithm-driven HPC workflows
	Data ingestion, curation, and management
	SDE for rapid response and collaboration

	Related Work
	Prototype OSPREY HPC Architecture
	The Model Exploration Algorithm Module
	Task Distribution
	EMEWS Task Database
	Heterogeneous Worker Pools
	Data Sharing Service

	Programming Model and APIs
	Task model
	Asynchronous Tasks

	Results
	Conclusion and future work
	References

