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Abstract

Originally developed to predict the chemical kinetics of hydrocarbon combustion

via automated generation of detailed reaction mechanisms, Reaction Mechanism Gen-

erator (RMG) contains extensive thermokinetic data for C,H,O chemisty, and has more

recently been expanded to nitrogen and sulfur. In this work, we present the addition of

halogen (fluorine, chlorine, and bromine) chemisty to RMG to enable automated gen-

eration of detailed kinetic models for halocarbon combustion. RMG’s existing reaction

templates are updated to include halogens, and 11 new reactions families are created

specific to halogen chemistry. Notably, kinetics for more than 1000 elementary reac-

tions are calculated via ab inito methods and transition state theory, and these kinetic

data are combined with kinetics from literature sources to train rate rule decision tree

estimators. Additionally, halogen groups are added to RMG’s statistical mechanics

database, enabling model generation with RMG’s pressure dependence module and

automated computation of microcanonical rate constants for unimolecular networks.

Halogen groups are also incorporated in RMG’s transport database to provide esti-

mated parameters for the Lennard-Jones potential, important for transport-dependent

1

r.west@northeastern.edu


simulations including laminar flame speeds. To demonstrate RMG’s capability for

predicting halocarbon combustion, RMG is used to build a flame suppression model

for 2-BTP (CH2 ––CBrCF3) in methane flames. The laminar flame speeds of RMG’s

2-BTP model show good agreement with a published model under a variety of reac-

tion conditions. Automating the generation of detailed kinetic models for halocarbon

combustion will facilitate the exploration of previously unexplored reaction pathways,

thereby accelerating the development of greener refrigerants and suppressants, as well

as advancing the field of automated mechanism generation.

Introduction

Halocarbon Combustion

Halocarbons are widely used as refrigerant working fluids and flame suppressants. Chloroflu-

orocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) were among the first generation

of these compounds, but were banned globally under the Montreal Protocol in the 1980s1

due to their high ozone depletion potentials (ODPs). The second generation, mainly hy-

drofluorocarbons (HFCs), have low ODPs, but are currently being phased out due to their

high global warming potentials (GWPs).2 Despite these regulations on HFC production, a

recent study found that HFC-23 (CHF3) emissions reached an all-time high in 2018.3

The high GWPs of today’s refrigerants and fire suppressants motivate the need for a third

generation of environmentally-friendly halocarbon refrigerants and suppressants. However,

the chemical properties that make potential replacement compounds greener also raise their

flammability in very complicated ways.4 For example, when used below their inerting concen-

tration, many proposed fire suppressants (C2HF5, C6F12O, and CH2 ––CBrCF3) were found

to increase overpressure, rather than decrease it in an FAA aerosol can test.5
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The development of new and replacement of current compounds requires the rapid

flammability screening of proposed compounds under different operating conditions. As

the experimental study of all potential replacements is impractical, time-consuming, and

costly, potential compounds are studied using flame simulations employing detailed kinetic

mechanisms, supplemented by quantum chemistry calculations. In order to discover safe

and effective replacements, mechanisms for current compounds, such as CF3Br, have been

thoroughly examined to gain a mechanistic understanding of what makes them effective at

suppressing flames.6 Understanding how current compounds work has led to potential can-

didates, such as 2-bromo-3,3,3-trifluoroprop-1-ene (2-BTP) (CH2 ––CBrCF3), that resemble

current compounds but are more eco-friendly.

In recent years, 2-BTP has been heavily researched as a promising replacement for sup-

pressant CF3Br.
5,7 2-BTP is of particular interest since it is a fluoro-alkene and has a shorter

atmospheric lifetime due to the presence of a double bond, making it more eco-friendly than

current suppressants.8 Also, with a bromine atom and CF3 group, it is predicted to have

a similar fire-suppression performance to CF3Br.
5 Through flame simulations based off the

NIST HFC mechanism,9 2-BTP was found to decrease laminar flame speed for fuel-rich

flames, but increase flame speeds for fuel-lean flames.5,7 Since the combustion behavior of

newly proposed compounds is quite complex, further research is needed to develop and un-

derstand their complex reaction mechanism and how they behave under different conditions.

As these mechanisms are currently constructed by hand, progress is slow due to the vast

number of pathways and unknown thermokinetic parameters that need to be considered. To

expedite and advance this research, expanding automated mechanism generation to halocar-

bon combustion is a promising avenue for future development.

Reaction Mechanism Generation

In recent decades, detailed kinetic models have become ubiquitous in combustion research,

enabling prediction of combustion properties that are difficult to determine experimen-
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tally.10,11 Predictive kinetic modeling of gas-phase hydrocarbon combustion is aided by au-

tomated kinetic model generation tools.12 One such tool is Reaction Mechanism Generator

(RMG), an open-source software package, written in Python, that automatically generates

detailed kinetic models by proposing elementary reactions and predicting chemical properties

(thermochemical, kinetic, transport, solvation, etc.) using a database of reaction templates,

thermokinetic data, and estimation routines.13,14

Given user-defined initial species and conditions, RMG generates a model using a core-

edge rate-based algorithm, by iteratively applying “reaction families” to generate all possible

reactions among a set of “core” species, and evaluating the reaction flux to each core and

“edge” species during a set of isothermal, isobaric simulations. If an edge species’ flux

exceeds a user-defined tolerance, the simulation is interrupted in order to move that species

to the core, where it is reacted with other core species using the reaction families. The newly

generated species are added to the edge, then RMG runs another simulation to determine

if any more edge species with sufficient flux should be moved to the core. When no more

edge species can be moved to the core for each user-specified simulation condition, the final

model is contained within RMG’s core.

Representing a particular reaction class, each reaction family has a recipe for mutating

molecular graphs to create products from reactants, and has a depository of training reactions

with kinetic parameters used to train the family’s rate rules. The rate rules are arranged in

a hierarchical decision tree, with the most general template at the trunk and increasingly

specific templates descending each branch.

Molecules in RMG are represented as 2D graphs, with atoms as nodes and bonds as

edges. Graph-theory methods are used to identify isomorphic structures and recognize func-

tional groups when applying reaction family templates and estimating properties. During

model generation, chemical properties for proposed species and reactions are first sought

in libraries of known parameters, but are usually estimated on-the-fly using decision trees.

Thermochemical parameters (∆fH
◦
298K , S

◦
298K , C

T
p ) are typically estimated using Benson’s
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group additivity method15 for closed-shell singlet species and the Hydrogen Bond Incre-

ment (HBI) scheme16 for open-shell radicals. There are similar methods to estimate other

properties, including solvation parameters, gas-phase transport parameters, and vibrational

frequencies to calculate densities of state for pressure-dependence calculations.13,14

The success of RMG’s rate-based algorithm in generating accurate kinetic models that

capture the essential chemistry in complicated reactive systems depends on the generaliz-

ability of its reaction families and the accuracy of its thermokinetic parameters estimates.

Originally developed to study the kinetics of hydrocarbon combustion, RMG contains many

important reaction families for the pyrolysis and oxidation of hydrocarbon fuels, and its

databases contain extensive, although not exhaustive, thermokinetic data for CHO chem-

istry. Since many short-lived intermediates and elementary reactions are difficult to iso-

late and determine experimentally, quantum chemistry methods are often used to calculate

thermokinetic parameters. Recent progress on expanding RMG to model nitrogen, 17 sul-

fur,18 and silicon19 has shown that quantum chemistry calculations are a viable approach

to expand RMG’s databases and estimation methods to new chemical systems. The recent

addition of extensive halocarbon thermochemistry to RMG, including seventeen thousand

electronic structure calculations and new group additivity values, is documented in Farina et

al.20 This work describes RMG’s expansion to halogen chemistry with the incorporation of

halocarbon kinetics, as well as transport and pressure-dependence estimates. Adding halo-

gens to RMG provides a much-needed flammability screening tool to facilitate the discovery

and implementation of the next-generation of eco-friendly halocarbon refrigerants and flame

suppressants.

5



(a) F Abstraction (b) Cl Abstraction

(c) Br Abstraction (d) 1,2 XY Interchange

(e) XY Add MultipleBond (f) XY Elim. Hydroxyl

(g) Halocarbene Recombination (h) Halocarbene Recombination Double

(i) Halocarbene CO Dimerization (j) Disproportionation-Y

(k) Intra Halogen Migration

Figure 1: New Reaction Families
AutoTST was used to calculate kinetics for 

RMG’s Hydrogen and Halogen Abstraction Trees

Estimate 
Distances

Create 
TS 

Vibrational 
Analysis

Optimize 
Shell

Optimize 
Entire TS

Generate 
Conformers

M062X-D3

jun-cc-pVTZ

github.com/ReactionMechanismGenerator/AutoTST 28

Reaction 
String

IRC
INVALID

VALID

Determine 
Kinetics

VALID
INVALID

Single 
Point

< 13 heavy 
atoms

CCSD(T)-F12 / cc-pVDZ-F12

(CCSD(T) / ma-def2-tzvpp


For Br Abstraction)

Figure 2: AutoTST workflow for optimizing transition states for abstraction reactions

6



Methods

New Reaction Families

To generate reactions with halogenated hydrocarbons, several of RMG’s existing default

reaction families such as H-abstraction and disproportionation were updated and 11 new re-

action families, shown in Fig. 1, were created. Most of the families were created by examining

reactions of halogenated species in literature mechanisms, and determining whether common

reaction templates could be created to generate these reactions automatically. Other fami-

lies were created based on suggested pathways in the literature and identifying transitions

states in our own calculations. These new reaction families cover many essential pathways

for halocarbon combustion including halogen abstractions (Fig. 1a-1c), halogen interchanges

(1d), additions and eliminations (1e-1f), carbene chemistry (1g-1i), disproportionations (1j),

and halogen migrations (1k). The halocarbene families were created to generate important

reactions in halogen combustion such as the self-recombination of CF2
21 and CCl2

22 as well

recombination reactions including carbenes such as CF2 with radicals F, OH, and CH3.
23

To provide initial rate estimates for reactions generated with these new families, sev-

eral halocarbon combustion mechanisms were imported into RMG from the literature, and

reactions that matched a family template were added to the corresponding family’s train-

ing reactions depository. Imported models include the NIST hydrofluorocarbon (HFC)

mechanism9,24 as well as kinetic models for CF2BrCl,
25 2-BTP and CF3Br,

7 HFO-1234yf

(CH2 ––CFCF3),
26 and CH3Cl.

27

The 1,2 XY Interchange family is based on the work of Kim et al.,28 and RMG rate

rules were created from their calculations. Several 1,1 and 1,2 HF/HCl/HBr eliminations

from Brown et al.29,30 and Smith et al.31 were added as training to the 1,2 Insertion car-

bene and XY Addition Multiplebond families, respectively. Kinetics data from Yu et al.32

and Srinivasan et al.23 were added to the halocarbene recombination training set. The

self-recombinations of CF2
21 and CCl2

22 were added as training data for the Halocarbene
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recombination double family.

For several new families and default reaction families with new halogen kinetics training

data, including hydrogen abstraction, decision trees were generated using RMG’s automated

tree generation algorithm.14 Starting with the most general template at the root, the algo-

rithm generates extensions based on the molecular graphs of the training reactions, chosen

to maximize information gain at each level of the tree. For each node, a rate rule is created

by fitting a Blowers Masel Arrhenius (ArrheniusBM) expression33 to the training reactions’

kinetics. During model generation, reaction rates are estimated by descending the tree as

far as possible then using the enthalpy of reaction to evaluate the ArrheniusBM rate rule.

Since the rates for many reactions in the imported literature models are estimates, reac-

tion family kinetic estimators trained on these data are sometimes quite inaccurate. There-

fore, kinetics for all imported literature training reactions for halogen and hydrogen abstrac-

tion reactions were recalculated using AutoTST,34,35 and the literature rates in the training

set were replaced with calculated rates. To further improve rate rule estimates, sample re-

actions were generated at nodes with high uncertainties, and these reactions were calculated

and added to the training set, and the trees regenerated. The predicted uncertainties at each

node in the kinetics tree are calculated assuming a lognormal rate distribution at 1000 K.

We sampled reactions at nodes with standard deviations in ln(k) greater than 3.

Automated Transition State Theory Calculations

The AutoTST workflow used to calculate kinetic parameters (A, n, and Ea) for halogen and

hydrogen abstraction reactions is shown in Fig. 2.34,35 First, a reaction string is used to gen-

erate an AutoTST Reaction object, and the reaction is matched to its RMG reaction family.

Next, the key distances in the reaction center are estimated using AutoTST’s database for

the corresponding RMG reaction family. With these estimated distances, a “guess” of the

transition state (TS) for the reaction is embedded with RDKit36 to create a 3D geometry.

After embedding, conformers are systematically explored using the algorithm implemented
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in AutoTST,34,35 which rotates dihedrals in 120◦ increments, alternates cis/trans isomerism

of double bonds, and varies R/S stereochemistry for chiral centers (RMG does not cur-

rently track or preserve stereochemistry). Transition state conformers are minimized with

the dftb+ calculator37 and the halorg-0-1 parameter set38 in ASE39 while fixing the reaction

center distances to keep the TS intact and avoid descending to the reactants or products.

A unique set of low-energy transition state “guesses” is assembled (usually about 5–10) by

discarding structurally similar molecules with a root-mean-square deviation below 0.1 Å of

another TS in the set, then discarding TSs with electronic energies more than 5 kcal/mol

above the lowest energy TS in the ensemble.

Each initial TS undergoes two DFT optimizations: a “shell” minimization where the

reaction center distances are fixed, followed by a saddle point search of the entire TS. These

optimizations are performed in Gaussian 1640 using M06-2X-D3/jun-cc-pvtz (the M06-2X

functional with Grimme’s D3 empirical dispersion41 and the jun-cc-pvtz basis set42) with the

“UltraFine” pruned (99,590) grid. The M06-2X functional was chosen because it is accurate

for barrier height calculations43 and halocarbon geometries and energies.44,45

After all TSs have been optimized, the lowest energy TS is identified and AutoTST’s

vibrational analysis method is used to validate that the correct TS has been located. This

method displaces the atoms in the TS using the negative frequency from the TS optimization.

The TS is validated if the average change in the reaction center bonds is more than an order

of magnitude greater than the average change in the “shell” bonds. If the TS can not be

validated via vibrational analysis (about 1 time in 8), an intrinsic reaction coordinate (IRC)

calculation is run in Gaussian 16 to determine if the TS connects the expected reactant and

product structures. If the TS is still invalid, it is discarded, and the next lowest energy TS

undergoes the validation procedure until a valid TS is found.

If a TS is validated and it has 12 or fewer heavy atoms, a more rigorous single-point

calculation is performed in ORCA46 to obtain more accurate barrier heights. Bromine ab-

stractions are calculated with CCSD(T)/ma-def2-tzvpp (because there are no F12 basis sets
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for Br), and CCSD(T)-F12/cc-pVDZ-F12 is used for all other abstraction reactions. Lastly,

RMG’s statistical mechanics calculator Arkane47 is used to obtain elementary high pressure

kinetics in modified Arrhenius form.

Reaction Mechanism Generation

To assess RMG’s ability to generate detailed kinetic models for halocarbon combustion,

RMG was used to construct a model for C3H2F3Br (2-BTP) and CF3Br in methane flames.

This model was built using the Foundational Fuel Chemistry Model Version 1.0 48 as a

seed mechanism providing thermochemistry, reactions, and kinetics for small hydrocarbon

combustion, and halogenated hydrocarbon thermochemistry libraries from Farina et al. 20

Reactions involving halogenated species were added from the reaction families described in

this work. An RMG library of transport properties was created from the imported NIST

mechanism, so for all of the halogen species the two models have in common, the NIST

transport library was used. If a species is not in the library, the transport properties are

estimated using RMG’s algorithm13 which uses critical properties estimated using Joback’s

Group Additivity method; the latter needed updating for halogenated hydrocarbons using

the method of Devotta et al.49 This, and the extended ability to estimate densities of states

for pressure-dependent and fall-off reaction calculations, is detailed in the PhD dissertation

by Farina.50

Flame Speed Simulations

The RMG 2-BTP model of 504 species and 9,515 reactions was compared to a literature

mechanism7 of 188 species and 1,610 reactions by calculating 1D laminar flame speeds in

Cantera.51 The flame speeds were evaluated at 300 K, 1 atm, and a wide range of methane/air

equivalence ratios (ϕ = 0.5–1.2) and suppressant volume fractions (0 – 0.05). Since there is

a large discrepancy in the uninhibited methane burning velocity between the two models,
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Figure 3: Number of halogen training reactions per reaction family. TST: calculated in this
work, LIT: imported from literature

the normalized flame speeds were compared by dividing the velocity of the suppressed flame

by the velocity of the uninhibited flame.

Local reaction sensitivity coefficients were computed by increasing the rate of each re-

action i by 1%, one at a time, and calculating the percent change in the flame speed as

follows:

si =
Sui − Su0

Su0 × 0.01
(1)

where si is the sensitivity coefficient of reaction i, Sui is the flame speed with reaction i

accelerated by 1%, and Su0 is the unperturbed base case flame speed. Sensitivities were

computed for lean flames (equivalence ratio of 0.6 for 2-BTP and 0.7 for CF3Br) and fuel

rich flames (equivalence ratio of 1.2 for 2-BTP and CF3Br). A suppressant volume fraction

of 0.01 was used for all sensitivity computations.

11



9 6 3 0 3 6 9
0

20

40

60

80

N
um

be
r o

f R
ea

ct
io

ns

Nrxns = 484
MSD = -0.02
MAD = 0.89
MAX = 8.02

H Abstraction

9 6 3 0 3 6 9
0

2

4

6

8

10 Nrxns = 31
MSD = -0.17
MAD = 1.09
MAX = -4.78

Br Abstraction

9 6 3 0 3 6 9
log10(k lit

1000K/ktst
1000K)

0

1

2

3

4

N
um

be
r o

f R
ea

ct
io

ns

Nrxns = 13
MSD = 3.52
MAD = 3.52
MAX = 8.34

F Abstraction

9 6 3 0 3 6 9
log10(k lit

1000K/ktst
1000K)

0

3

6

9

12

15

18
Nrxns = 80
MSD = -0.23
MAD = 1.12
MAX = -4.08

Cl Abstraction

Figure 4: Comparison of AutoTST rate constants against literature rate constants for ab-
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tions. Green: Literature is ≥ 1 order of magnitude faster, Red: Literature is ≥ 1 order of
magnitude slower.

Results

Kinetics Trees

Figure 3 shows the number of literature and calculated halogen training reactions for each

RMG reaction family. Of the 1,640 training reactions, 1,031 were calculated in this work

and 609 were added from the literature. Most of the calculated rates are for abstraction

reactions (H, F, Cl, Br). Since AutoTST could not yet be used for other reactions families,

non-abstraction rates were calculated “by hand” (using DFT and TST but with the initial

geometries determined by a human) and added to training.

Figure 4 compares AutoTST calculated rates at 1000 K against literature rates for ab-

straction reactions. The majority of hydrogen abstraction reactions are within an order

of magnitude and the mean absolute deviation (MAD) is close to 0; the literature models

estimate these rates quite well. According to our TST calculations, fluorine abstraction re-

actions are relatively slow, and tend to be overestimated in literature models, sometimes by

many orders of magnitude; this makes the decision-tree estimates too fast if the estimator
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with literature rates, new: Training set with literature rates replaced with AutoTST rates

is trained on the literature values. The outliers, where a published rate is very different

from our TST calculated rate, are mostly estimates. They may suffice in the context of the

model they were published in, but they cause problems if estimation algorithms are trained

on them for use elsewhere. For training estimators it is important to have accurate, robust,

and consistent training data, i.e. calculated rates rather than estimates.

This is further demonstrated by the cross-validation results in Fig. 5. These plots show

the predictive ability of the decision trees to estimate the rates of training reactions that have

been excluded from the training set in a leave-one-out cross-validation procedure. The blue

histograms (“old tree”) show the predictions using training data comprising literature values

supplemented with AutoTST rates for reactions sampled from uncertain nodes, where the

mean absolute deviation was about an order of magnitude (0.89 for Cl abstraction, to 1.29 for

F abstraction). The orange histograms (“new tree”) show the improvement by recalculating

the values previously taken from the literature and using only AutoTST rates as training

data; the decision-tree estimators are better able to predict the missing data, with MAD

errors between 0.58 (Br abstraction) and 0.74 (F abstraction) orders of magnitude. Under the

assumption that the TST rates are correct, the decision tree estimators are thus performing

better than current literature models (Fig. 4). These estimators can be further improved by

adding calculated rates for reactions generated from nodes with a high uncertainty.
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Flame Speed Simulations
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Figure 6: Computed burning velocities of methane flames with added suppressant agents
2-BTP or CF3Br for a literature mechanism7 (mech = Literature) and an RMG mechanism
(mech = RMG) as described in Section .

Figure 6 shows how the premixed methane/air laminar flame speeds change for the lit-

erature and RMG mechanisms when the suppressing agent (2-BTP or CF3Br) is added.

Although there is a large disagreement in the uninhibited methane burning velocities for

the two models (a consequence of the seed mechanism chosen, not the halocarbon chemistry

added in the current work), the RMG model shows remarkably good agreement with the lit-

erature mechanism at higher equivalence ratios (phi ≥ 0.7) over a wide range of suppressant

volume fractions.

Figure 7 shows 18 of the top 20 most sensitive reactions for the RMG CF3Br and 2-BTP
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model under fuel rich and fuel lean conditions. For both suppressants, the 2 most sensitive re-

actions were excluded from the analysis because they are often very sensitive in hydrocarbon

combustion mechanisms:

1. H + O2 −−⇀↽−− O+OH

2. CO +OH −−⇀↽−− CO2 +H

The sensitivity analysis reveals that RMG found many of these essential reaction path-

ways involving Br and HBr. The scavenging of H and OH radicals by HBr both have large

negative sensitivities and inhibit combustion:

• HBr + OH −−→ Br + H2O

• HBr + H −−→ Br + H2

RMG also found important reactions that regenerate HBr which have negative sensitivities:

• Br + HCO −−→ HBr + CO

• Br + H −−→ HBr

Another important reaction pathway RMG found was the trapping of H atoms by CF3, an

inhibiting species in the CF3Br and 2-BTP mechanisms.

• CF3 +H −−→ CH3F

Importantly, RMG is able to automatically discover the important flame inhibition reac-

tions involving halogens that scavenge reactive radicals such as H and OH, thereby suppress-

ing flame propagation. Additionally, the RMG model is able to capture the “fuel effect” of

2-BTP, discussed in,5 which enhances flame speeds for lean methane/air flames.
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Sensitivities for the fuel lean conditions (ϕ = 0.6 for 2-BTP and ϕ = 0.7 for CF3Br) is shown
in blue, and fuel rich conditions is shown in red (ϕ = 1.2 ).

Conclusions

Adding halogens to RMG will provide a much-needed flammability screening tool to facili-

tate the discovery and implementation of the next-generation of eco-friendly refrigerant fluids

and fire suppressants. In this work, halogens are incorporated into RMG’s existing reaction

templates, and 11 new reactions families are created to automatically explore reaction path-

ways essential for halocarbon combustion. To obtain high fidelity reaction rate training data

for decision tree rate rule estimators, kinetics from various literature sources are compiled,

and more than 1000 elementary reactions are computed using ab inito quantum chemistry

methods and transition state theory. Most hydrogen abstraction rates computed in this work

show good agreement with literature rates. However, our calculations reveal a tendency for

the literature to overestimate fluorine abstractions, and there are significant outliers for hy-

drogen and halogen abstractions which are often estimates in literature models. We also

demonstrate how high-throughput calculation of halogen kinetics can improve the quality

of reaction rate training data sets, thereby improving the predictions of decision tree rate

estimators on unseen data.
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To demonstrate RMG’s new ability to generate halocarbon combustion models, RMG

is used to build a 2-BTP kinetic model with 504 species and 9,515 reactions. Predicted

methane/air flame speeds with added suppressant were in close agreement for the literature

and RMG 2-BTP mechanisms, even though the RMG model has 316 more species and

7,905 more reactions. Thus, although flame speeds appear to be insensitive to these newly

discovered species and reactions, a more thorough investigation into RMG’s mechanism is

necessary to determine if these intermediates and pathways are important to halocarbon

flame suppression.

A significant contribution of this work, the ability to generate detailed kinetic models for

the combustion of halogenated hydrocarbons with the fully automated Reaction Mechanism

Generator (RMG) is an important breakthrough for combustion research. This work enables

the investigation of novel halocarbon compounds, their interactions when blended, and their

effects on different fuels. It is also a step towards modeling the incineration of per-and

polyfluoroalkyl substances (PFAS), and the combustion of fluorinated liquid electrolytes in

batteries.
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