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Abstract

We propose a 0.25 x 0.25 x 0.3 mm (~0.02 mm?) optically powered
mote for visual cortex stimulation to restore vision. Up to 1024
implanted motes can be individually addressed. The complete StiMote
system was confirmed fully functional when optically powered and
cortex stimulation was confirmed in-vivo with a live rat brain.

Introduction

Restoring vision is one of the most sought after and impactful
biomedical pursuits. Retinal prostheses stimulate the retina to create
vision. However, the ‘high acuity’ region of the retina is only 0.3 mm
in diameter (0.07 mm?), making high resolution stimulation difficult.
This same high acuity region is magnified by > 3 orders of magnitude
in the human visual cortex to an area of 1 cm? providing sufficient
space for high resolution microstimulation. Cortical stimulation can
also treat optic nerve disease, whereas retinal prostheses require a
healthy optic nerve to send signals to the brain.

A visual cortex prosthesis (VCP) requires a high electrode count
(> 100) to achieve reasonable visual resolution [5]. A number of
miniature wireless brain stimulation systems were proposed [1-4] that
measure between 6 and 500 mm?®. This is sufficiently small for
applications requiring few stimulation channels (e.g., deep brain
stimulation and restoring mobility), but does not allow sufficient
implantation density with sufficient density for vision restoration. In
addition, these methods have not demonstrated multi-access
stimulation control.

A key challenge for VCP is that they must stimulate 100s of distinct
cortical neurons in a cm? region. Each stimulation channel should be
independent and have variable output (minimum 7 levels, or 3 bits)
with a minimum update rate of several Hz and a stimulation rate of
> 50 Hz for flicker fusion in humans. The motes must therefore be
individually addressable, and the mote cluster must support a high
data rate (> 5 kbps). One approach is to use a single cm? sized
electrode array with 100s of electrodes, however, the resulting rigidity
will evoke brain scar tissue formation due to brain micro-motion,
limiting electrode lifetime. Hence, there is an unaddressed need for a
sub-mm?, free-floating stimulation unit that is designed for high-
density placement (> 100s of units in a 1 cm? area), with individual
addressing and stimulation control.

Hence, we propose an optically powered stimulation mote, called
StiMote, which is individually addressable and can support up to 1024
units operating with 7 intensity levels at 50 Hz stimulation rate and
2.5 Hz intensity update rate. StiMote utilizes a custom designed GaAs
PV/LED chip [6] for near-infrared (NIR) power transfer and bi-
directional optical communication. Using a single discrete 100 nF
charge storage capacitor (0.004 mm?®), StiMote generates a balanced,
bi-phasic, switched-capacitor stimulation current. Ultra-low power
design results in 5.5 pW power consumption allowing a system size
0f 0.25 x 0.25 x 0.3 mm (~0.02 mm?). The complete StiMote system
was bench-top tested and is fully functional. Stimulation capability
was confirmed using an in-vivo stimulation test using a live rat brain.

Proposed Design

StiMotes are placed free-floating on the cortex and are controlled
by a cm-sized repeater unit (RU) in the skull that can communicate
wirelessly with an outside interface unit (Fig. 1). Recent stimulation
motes have used inductive coupling [1-2] for power transfer, which
suffers from rapid antenna efficiency degradation or tissue absorption
when scaled below 1 mm dimensions. Ultrasonic transducers [3] have
good tissue transmission properties but suffer from large size. StiMote
uses optical power / data transfer to take advantage of the /linear
scaling of photovoltaic (PV) power with diode area, enabling PV cells
to maintain high efficiency down to sub-mm dimensions.

Up to 1024 StiMotes in a 1 ¢cm? area, can be powered using their
custom GaAs PV chip layers from a single global light source at the

RU (Fig. 1). This PV layer has a dual-purpose photodiode (PD) / LED
for bi-directional data communication, avoiding the extra area
required for two separate structures. The PV and CMOS layers are
thinned to 50 pm and bonded together, as seen in the assembled
dummy device in Fig. 9 (d). A platinum-iridium coated carbon (Ptlr-
CF) electrode [7] decreases electrode tissue impedance by >10x and
is electrically and mechanically anchored to the CMOS chip using a
through-silicon via terminating in metal 1.

Each StiMote has an individually controlled 3b stimulation charge
resolution. The StiMote system uses time-division-multiple access
(TDMA) communication where all motes synchronize to a global
clock continually transmitted by the RU. At initial mote configuration,
each StiMote is individually addressed based on its unique 16b PUF
(physically unclonable function) ID [8] and assigned a unique TDMA
time slot. The RU cycles through all PUF IDs and when a mote
recognizes its ID, it identifies itself to the repeater using its LED and
stores its TDMA time slot. After StiMotes are configured, the RU
communicates images by transmitting an initial 10b synchronization
code followed by 1024 3-bit TDMA data slots. The synchronization
code is guaranteed not to occur in an actual TDMA data stream by
modifying any matching modulation sequence as needed by flipping
one intensity level LSB, which was shown to have negligible impact
on image quality. This TDMA approach reduces the required
bandwidth by 30% compared to individually addressing each mote
with an address followed by its modulation level, thereby reducing
optical receiver power and StiMote size.

The CMOS layer of StiMote contains the optical link and
stimulation control circuits (Fig. 2). The optical receiver uses a
Manchester-encoded current-mode signal, which it amplifies with a
transimpedance amplifier (TIA) and oversamples at a 10-20% rate
(Fig. 3). The processor detects the predefined sync code followed by
an instruction for configuration and stimulation commands (Fig. 4).

The stimulation circuits consist of a phase controller and charge
balance circuit to equalize the bi-phasic charges and avoid electrodes
degradation due to metal-ion diffusion (Fig. 6). A DC-DC upconverter
generates 4.5 V on the 100 nF discrete storage cap which the
stimulation driver draws from using a switched capacitor charge
injection approach. This maximizes the injection efficiency but
complicates the charge balancing since both current and voltage vary
during the injection. To address this, the charge monitoring circuit
(Fig. 6) mirrors the injection current (~10s-100s of pA) to a 0.4 pF on-
chip capacitor (Cm) by dividing it 16.6k times to reduce the on-chip
cap area. When Vm exceeds Vrer, Cm is reset. By counting the reset
pulses the charge is modulated and equated between the two phases.
The optical receiver amplifies a photodiode current-mode signal (10s
of nA) to a voltage-mode signal (10s of mV) (Fig. 4). The TIA is
designed for a gain of 129.1 dBQ and bandwidth of 46.8 kHz. TIA
outputs feed a comparator using the 150 kHz oscillator clock.

Evaluation and Measurements

The proposed StiMote was fully functional when operated
completely wirelessly using harvested light and 7.5 kbps optical data
transmission (Fig. 5). Bench-top measurement results show 0.2 nC
phase charge mismatch and good linearity across 3b modulation
(Fig. 7). 10° pulses (16 nC, 50 Hz) were applied in-vitro. No bubble
formation was observed on the electrodes during stimulation and
impedance measurements verifying electrode integrity. A rat visual
cortex was stimulated with a PtIr-CF electrode wired to the StiMote
chip. Multiple nearby recording electrodes observed evoked neural
signals and demonstrate that stimulation is effective and propagates
across the visual cortex (Fig. 8). Table 1 provides a comparison with
other stimulation systems. The proposed system marks the smallest
wireless system and is the only one that is designed specifically for
vision restoration and that can reach sufficient implant density.
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Fig. 1. Conceptual overview of the proposed free floating stimulation motes,
their communication, and the 3D stack of chip layers with dimensions.
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Fig. 3. TIA structure and its operation for
optical receiver with ambient light cancellation.

Vsrore VDD

ﬁ anodic * )FP cathodic

Cathodic
Phase

Anodic
Phase

o s,

! Electrodes

E Storage Capacitor
Modular Neural Stimulator Mote JE

Fig. 2. Top-level diagram of the StiMote system, with emphasis on CMOS-layer blocks.
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Fig. 5. Optical testing setup and measured waveforms showing 7.5 kbps data rate
when a 40 nA photodiode current is modulated by 850 nm NIR laser.
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Fig. 9. Photos of StiMote components: (a) CMOS chip in 180 nm process, (b) GaAs PV-PD/LED
cell, (c) PtIr-plated CF electrode, and (d) a dummy mote with stacked CMOS and GaAs layers.
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