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ABSTRACT

We train graph neural networks on halo catalogues from Gadget N-body simulations to perform
field-level likelihood-free inference of cosmological parameters. The catalogues contain <5,000 halos
with masses > 10 h=1Mg in a periodic volume of (25 h~!Mpc)?; every halo in the catalogue is
characterized by several properties such as position, mass, velocity, concentration, and maximum
circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant,
do not impose a minimum scale on which to extract information and are able to infer the values of
Qm and og with a mean relative error of ~ 6%, when using positions plus velocities and positions
plus masses, respectively. More importantly, we find that our models are very robust: they can infer
the value of ,,, and og when tested using halo catalogues from thousands of N-body simulations run
with five different N-body codes: Abacus, CUBEP?M, Enzo, PKDGrav3, and Ramses. Surprisingly,
the model trained to infer ,, also works when tested on thousands of state-of-the-art CAMELS
hydrodynamic simulations run with four different codes and subgrid physics implementations. Using
halo properties such as concentration and maximum circular velocity allow our models to extract more
information, at the expense of breaking the robustness of the models. This may happen because the
different N-body codes are not converged on the relevant scales corresponding to these parameters.

Keywords: N-body simulations — cosmology: cosmological parameters — methods: statistical
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ters characterizing the composition and properties of the
Universe. This can be accomplished by measuring the
spatial distribution of matter and galaxies, that is sen-
sitive to the values of the cosmological parameters. Be-
cause of this, multi-billion dollar cosmological missions
such as DESI (DESI Collaboration et al. 2016), eRosita
(Predehl et al. 2021), Euclid (Laureijs et al. 2011), PFS
(Takada et al. 2014), SKA (Taylor & Braun 1999), Ro-
man (Spergel et al. 2015), and Rubin (LSST Science
Collaboration et al. 2009) will be sampling the Universe
at different wavelengths over gigantic cosmological vol-
umes.

Historically, the information from cosmological obser-
vations, such as galaxy catalogues, has been compressed
into a low dimensional, more manageable, data vector
by using summary statistics. Theory was then used
to predict the dependence of the considered summary
statistics on the value of the cosmological parameters,
compute the covariance matrix, and write down the like-
lihood of the data. Within this formalism, inference can
be performed and constraints on the value of the cosmo-
logical parameters can be derived.

The above procedure is well understood and have been
extensively tested. Unfortunately, it can only extract all
available information if the optimal summary statistic is
employed. While for Gaussian density fields this statis-
tic is known (the power spectrum), this is not the case
for non-Gaussian fields (like the spatial distribution of
matter and galaxies on non-linear scales). As a result, a
significant fraction of the cosmological information em-
bedded in the data is not extracted, since the employed
summary statistics are suboptimal and therefore non-
lossless.

Recent advances in deep learning have enabled the
possibility of using neural networks to find the opti-
mal summary statistics for generic fields. For instance,
significant work has been done on weak lensing maps
from N-body simulations (see e.g. Schmelzle et al. 2017;
Gupta et al. 2018; Ribli et al. 2019; Fluri et al. 2019;
Zorrilla Matilla et al. 2020; Jeffrey et al. 2020). Further-
more, it has been shown that neural networks can also
extract information, while marginalizing over baryonic
effects, on 2D maps from state-of-the-art hydrodynamic
simulations (Villaescusa-Navarro et al. 2021a,b). These
methods not only work for 2D /3D grids but can also be
applied to galaxy and halo catalogues (Ntampaka et al.
2019; Villanueva-Domingo & Villaescusa-Navarro 2022;
Makinen et al. 2022).

In particular, Villanueva-Domingo & Villaescusa-
Navarro (2022) showed that neural networks were able to
infer the value of Q, with a ~ 10% accuracy from cata-
logues that contain ~ 1,000 galaxies in a (25 h~!Mpc)?

volume without imposing a minimum scale. Unfortu-
nately, their network could not be deployed with real
galaxy catalogues as the model is not robust: it will
only work on galaxy catalogues produced with the same
simulation code that was used during training. Similar
conclusions were reached by Villaescusa-Navarro et al.
(2021a) when using 2D maps from fields related to gas
properties.

There could be multiple reasons behind the lack of ro-
bustness of the models: 1) galaxies/maps from different
simulations may be very distinct, 2) the network may
be learning unique features associated to each subgrid
model (including numerical artifacts), 3) data from the
different models do not overlap due to intrinsic differ-
ences in their representations. These are complex ques-
tions that require careful attention in order to develop
models that work across simulations.

In this work, we simplify the setup to quantify the
impact of numerical errors intrinsic to cosmological sim-
ulations. This will allow us to quantify how much the
differences in numerical approximations can propagate
throughout the network and affect its robustness. For
this, we will use halo catalogues from N-body simula-
tions. We would naively expect that a network trained
on halo catalogues generated from a particular N-body
code would work on halo catalogues from other sim-
ulations since the different N-body codes are solving
the same equations. However, different N-body codes
employ different numerical schemes to solve the equa-
tions and make use of different approximations, which
already lead to differences in summary statistics (Heit-
mann et al. 2005, 2008; Schneider et al. 2016; Euclid
Collaboration et al. 2022). Thus, it is not clear whether
a field-level inference will be robust to these intrinsic
differences among various codes.

We first create thousands of halo catalogues from N-
body simulations run with the Gadget code (Springel
2005) and quantify how well we can infer the value of the
cosmological parameters, 2, and og, from them. Next,
we test the robustness of the model on thousands of halo
catalogues generated with five different N-body codes —
Abacus, CUBEP3M, Enzo (Bryan et al. 2014), Gadget,
PKDGrav (Potter et al. 2017), and Ramses (Teyssier
2002)— and also thousands of halo catalogues from hy-
drodynamic simulations, run with four different codes
that employ distinct subgrid physics — Astrid (Ni et al.
2022; Bird et al. 2022), IllustrisTNG (Pillepich et al.
2018), Magneticum (Hirschmann et al. 2014), SIMBA
(Davé et al. 2019). We note that the hydrodynamic
simulations not only vary the cosmology, but also the
value of the astrophysical parameters that control the
strength of supernova and active galactic nuclei (AGN)
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feedback. Finally, we also investigate the robustness of
the model when several internal properties, expected to
be affected by numerical errors, are used to train the
model.

Our models are constructed using Graph Neural Net-
works (GNNs), that are trained to perform field-level
likelihood-free inference. GNNs are powerful machine
learning tools built to work with mathematical graphs.
They are distinct in their ability to synthesize knowl-
edge pertaining to the graph’s structure and inter-node
connections which allows them to leverage both global
and local relations in the data. Moreover, GNNs offer
many advantages such as the capability to handle irreg-
ular data structures that are built on arbitrary relations
(Bronstein et al. 2021; Battaglia et al. 2018; Hamilton
2020), like the spatial distribution of halos. They can
also be designed to exploit physical symmetries present
in the data, such as the statistical isotropy and homo-
geneity of the Universe, without the use of data augmen-
tation. Moreover, in contrast to convolutional neural
networks, whose inputs are grid-like data that possess
resolutions limited to the scales of the pixel or voxel,
GNNs take in graphs which do not impose any such cut-
off. This is due to the construction of the graph data in
which halo clustering can be arbitrarily dense, allowing
the GNNs to learn from all scales. As a result, these
models can exploit the relations shared by the halos
and their neighbors. In this work we follow closely the
model developed by Villanueva-Domingo & Villaescusa-
Navarro (2022), who pioneered the usage of GNNs for
extracting cosmological information from galaxy cata-
logues.

While GNNs have been previously used on halo
catalogues from the Quijote simulations (Villaescusa-
Navarro et al. 2020) in Makinen et al. (2022), there
are several differences with that work. First, we con-
centrate on much smaller scales than Makinen et al.
(2022) (25 h~*Mpc boxes versus 1000 h~'Mpc). Sec-
ond, our main goal in this work is to study robustness,
and therefore we concentrate our analysis on evaluating
the performance of the models on halo catalogues gener-
ated from different codes. Third, we quantify the accu-
racy and precision of our models, trained on halo cata-
logues from N-body simulations, on halo catalogues from
state-of-the-art hydrodynamic simulations, enabling us
to quantify the robustness of the network to hydrody-
namics and astrophysical processes.

This paper is structured as follows. We first describe
the data used for this project in Section 2. In Section
3, we describe the architecture of our GNN models and
the methods used to train and test them. In Section 4,
we present the results of our models. Finally, we discuss

our analysis of the results in Section 5 and summarize
the main findings.

2. DATA

We train our models using halo catalogues from high-
resolution cosmological simulations that contain the fol-
lowing information:

e Position, p. This is the Cartesian coordinates of
the halo center in comoving-space.

e Mass, M. This quantity represents the total
mass' of the halo.

e Velocity, V. This quantity represents the modu-
lus of the 3D peculiar velocity vector.

e Concentration, c. The NFW halo concentration
is defined as ratio between the virial radius and
the scale radius of the halo: ¢ = R/R;.

e Maximum circular velocity, Vi .x. This quan-
tity is the maximum of the spherically-averaged

rotation curve, defined as \/GM(< R)/R.

The halo catalogues are generated by running ROCK-
STAR (Behroozi et al. 2013) on snapshots from the nu-
merical simulations described below. Different cata-
logues will contain different halo properties. For in-
stance, in some cases we may only want to use halo
positions, while in others we employ positions, concen-
trations, and maximum circular velocities. We empha-
size that each catalogue has a different number of halos.
In this work we focus on halo catalogues at z = 0.

We note that each catalogue contain less ~ 5,000 ha-
los and the minimum halo mass is around 1019 h=1 M.
However, the particular number of halos and minimum
mass of a given halos depends on the way the halos are
chosen together with cosmology of the parent simula-
tion.

2.1. Simulations

We made use of thousands of N-body and hydrody-
namic simulations of volume (25 h~'Mpc)? which have
been run with 10 different codes that we briefly describe
below (see Table 1). All simulations follow the evolution
of 2563 dark matter particles, plus 2563 gas particles in
the case of the hydrodynamic simulations, from z = 127
down to z = 0. The initial conditions have been gener-
ated at z = 127 using second order Lagrangian pertur-
bation theory except for the CUBEP3M simulations.

I In hydrodynamic simulations we include the contributions of dark

matter, gas, stars, and black-holes.
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The different N-body codes follow the evolution of
dark matter particles (that represent the cold dark mat-
ter plus baryonic fluid) under the effect of self-gravity us-
ing different numerical techniques and approximations.
The hydrodynamic simulations solve the hydrodynamic
equations using different methods but use distinct mod-
els to account for astrophysical processes such as star
formation and feedback from supernova and AGN.

The setup is the following. We have run 6 N-body
simulations that have the same initial random seed and
value of the cosmological parameters (2, = 0.3175,
og = 0.834) with the six different N-body codes. The
rest of the N-body simulations, for each code, are orga-
nized into latin-hypercubes where the value of Qy,, os,
and the initial random seed are different and vary in the
range:

<O, <05 (1)
0.6 <o0g<1.0. (2)

A similar setup is used for the hydrodynamic simu-
lations. We have run four simulations that have the
same cosmology (2, = 0.3, g = 0.8), initial random
seed, and employ their fiducial subgrid physics model
using four different codes. The rest of the hydrody-
namic simulations, for each code, are organized into
latin-hypercubes where the value of €, and og vary in
the same range as the N-body simulations, but also vary
four astrophysical parameters controlling the efficiency
of supernova and AGN feedback. These simulations are
part of the CAMELS project and we refer the reader
to Villaescusa-Navarro et al. (2021¢, 2022a) for further
details.

The simulations run with the same seed and cosmol-
ogy are used to provide a qualitative measurement of the
robustness of the model under a control setup, while the
other simulations are used to further quantify the accu-
racy and precision of the models.

The six codes we use to run the N-body simulations
are:

1. Abacus. An N-body code which makes use of
an exact near-field/far-field force decomposition.
Particles pairs in the near field interact via direct
pairwise evaluation, while those in the far field
use a high-order multipole approximation. The
resulting force errors are tiny, with median frac-
tional error O(10~°). Leap frog integration is per-
formed with an global time step whose size is de-
termined at each time step. The time step pa-
rameter, TimeStepAccel, was chosen to be 0.15

instead of the usual 0.25 for increased accuracy.
The resulting time step is very small compared
to dynamical times outside of cluster cores, as the
simulations take about 2,000 steps to z = 0. Spline
softening was used, with a softening length fixed
in proper coordinates to a Plummer-equivalent
length of £/40, capped at 0.3¢ in comoving co-
ordinates. The code is described in described in
Garrison et al. (2021a); the mathematical method
in Metchnik (2009); and the softening scheme is
validated in Garrison et al. (2021b). We have run
51 simulations with Abacus: 1 simulation with a
shared cosmology and initial random seed among
codes and 50 simulations in a latin-hypercube with
varying values of €, and og.

. CUBEP3M A particle-particle particle-mesh

(P3M) code described in Harnois-Déraps et al.
(2013) where the gravitational force over large dis-
tances is obtained using a two-level particle mesh
calculation, while subgrid resolution is obtained
via direct particle-particle calculations. We used
the high accuracy parameters for the force calcu-
lation tested in Inman & Ali-Haimoud (2019), but
furthermore found that the code ran faster and
yielded better results when using a higher ratio
of grid cells to particles (64:1 instead of 8:1) at
fixed softening length (4.9 kpc/h). We have run
51 simulations with CUBEP3M: 1 simulation with
shared cosmology and initial random seed among
codes and 50 simulations in a latin-hypercube. For
the simulation sharing the cosmology and initial
random seed we used the exact same initial parti-
cles as in the other codes, whereas the CUBEP3M
initial conditions, generated using the Zeldovich
approximation, was used for the 50 simulations in
the latin-hypercube.

. Enzo. An Adaptative Mesh Refinement (AMR)

code described in Bryan et al. (2014) that uses
a fast Fourier technique (Hockney & Eastwood
1988) to solve Poisson’s equation on the root grid
and a multigrid technique on the subgrids. The
dark matter particles are evolved using a kick-
drift algorithm that provides second order accu-
racy. We refine a cell when the dark matter den-
sity in it reaches above 3 x 23 times the back-
ground density on the root grid where [ is the
refinement level. In our simulation we include 7
refinement levels. We also set the CourantSafe-
tyNumber and ParticleCourantSafetyNumber pa-
rameters to 0.15 and 0.125 respectively to ensure
smaller time steps and that the particle displace-
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Name Type Method Realizations Usage Reference
Abacus PP + multipole 51 Testing Garrison et al. (2021a)
CUBEP*M P3M 51 Testing Harnois-Déraps et al. (2013)
Enzo N-body AMR 1 Testing Bryan et al. (2014)
Gadget TreePM 1,001 Training & Testing Springel (2005)
PKDGrav3 Tree 1,001 Testing Potter et al. (2017)
Ramses AMR 1,001 Testing Teyssier (2002)
Astrid TreePM+SPH 1,001 Testing Ni et al. (2022); Bird et al. (2022)
IustrisTNG . | TreePM+MMFV 1,001 Testing Pillepich et al. (2018)
Hydrodynamic
Magneticum TreePM+SPH 1 Testing Hirschmann et al. (2014)
SIMBA TreePM+MFM 1,001 Testing Davé et al. (2019)

Table 1. Characteristics of the numerical simulations used in this work. We have run 6 N-body simulations using the same
initial random seed but different codes. The rest of the N-body simulations are organized into latin-hypercubes (for each code)
where we vary the value of (,, os and the initial random seed. Similarly, we have run 4 hydrodynamic simulations with
the same cosmology and the fiducial astrophysics model using four different codes. The rest of the hydrodynamic simulations
are organized into latin-hypercubes where the value of Q.,, og, four astrophysical parameters controlling supernova and AGN
feedback, and the initial random seed is different.

ments are smaller relative to the size of the most
refined cell, so as to have particle evolution accu-
rate and converged. We only have one simulation
for this code, whose cosmology and initial random
seed is shared among codes.

. Gadget. A TreePM code described in Springel
(2005). We have used Gadget-IIT for these sim-
ulations, and these simulations are also part
of the CAMELS project. The PM grid con-
tains 5123 voxels, and the FFT are com-
puted using double precision. We set the
value of the relevant parameters to ErrTollntAc-
curacy=0.025, MaxSizeTimestep=0.005, ErrTol-
Theta=0.5, ErrTolForceAcc=0.005, TreeDomain-
UpdateFrequency=0.01. The value of the soften-
ing length is set to 1/40 of the mean inter-particle
distance. We have 1,001 of these simulations: 1
simulation with shared cosmology and initial ran-
dom seed among codes and 1,000 simulations that
have different values of ,, og, and initial ran-
dom seed. We use the halo catalogues from these
simulations to train the models.

. PKDGrav3. Described in Potter et al. (2017),
it computes the forces between particles using
a highly performing and memory efficient ver-
sion of the Fast Multipole Method (FMM, Green-
gard & Rokhlin 1987), with typical run-times that
scale linearly with the number of particles. The
FMM algorithm is implemented using a binary
tree structure, which reduces the number of terms
of the multipole expansion needed to evaluate
the force on the particles. PKDGRAV3 run-time
can be further improved by using GPU acceler-

ated nodes. GPU acceleration is used to evaluate
particles-particles, particles-cells interactions and
periodic boundary conditions (implemented using
the Ewald summation method), whereas standard
CPUs are used to build and walk the trees. We
have run 1,001 N-body simulations with PKD-
Grav3: 1 simulation with shared cosmology and
initial random seed among codes and 1,000 sim-
ulations with different values of €,,, og and ini-
tial random seed that are organized in a latin-
hypercube.

. Ramses. An N-body code based on the Adap-

tive Particle Mesh technique described in Teyssier
(2002). The Adaptive Mesh Refinement (AMR)
framework is based on a graded octree for which
cells are individually refined when the mass ex-
ceeds 8 times the particle mass. Mass deposi-
tion is performed using the Cloud-In-Cell scheme.
Poisson’s equation is solved level by level using
Dirichlet boundary conditions from the coarser
level and a Multigrid relaxation solver. Time in-
tegration is performed using the Verlet algorithm
(aka adaptive leap frog). The minimum level of
refinement was set to /i, = 8, corresponding to
2563 base grid cells (one per particle on average).
The maximum level of refinement was found to be
limax = 15, corresponding to a minimum cell size of
roughly 1 h™'kpc. We have run 1,001 simulations
with Ramses: 1 simulation with shared cosmology
and initial random seed among codes, and 1,000
simulations with different values of Q,,, og, and
initial random seed that are organized in a latin-
hypercube.
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The hydrodynamic simulations have been run with
the codes MP-Gadget, Arepo, OpenGadget, and Gizmo.
Each of codes employs a different subgrid model. In
these simulations, that are part of the CAMELS project
(Villaescusa-Navarro et al. 2021c), we vary the value of
Qum, og, the initial random seed, and four astrophysi-
cal parameters that control the efficiency of supernova
and AGN feedback. Instead of referring to these simula-
tions by the name of the code used to run them, we will
call them by name of the flagship simulations associated
to them and their subgrid model, i.e. ASTRID, Illus-
trisTNG, Magneticum, and SIMBA, respectively. We
now briefly describe the simulations from the different
codes:

7. ASTRID. These simulations have been run with
MP-Gadget simulation code, a massively scalable
version of the code P-Gadget3 (Springel 2005), to
solve the gravity (with TreePM), hydrodynamics
(with pressure-entropy formulation of SPH), and
astrophysical processes with a series of subgrid
models as employed in the ASTRID simulation (Ni
et al. 2022; Bird et al. 2022). We made use of 1,001
simulations. One simulation was run with shared
cosmology and initial random seed among hydro-
dynamic codes (and a fiducial value of the astro-
physical parameters). The other 1,000 simulations
have different values of ,;,, o, four astrophysical
parameters and the initial random seed, that are
organized in a latin-hypercube.

8. INlustrisTNG. These simulations have been run
with the AREPO code Springel (2010); Wein-
berger et al. (2020), making use of a TreePM
plus moving-mesh finite volume (MMFV) method,
and employing the same subgrid model as the II-
lustrisTNG simulation (Weinberger et al. 2017;
Pillepich et al. 2018). We made use of 1,001 simu-
lations. One simulation was run with shared cos-
mology and initial random seed among hydrody-
namic codes (and a fiducial value of the astrophysi-
cal parameters). The other 1,000 simulations have
different values of Q,,, og, four astrophysical pa-
rameters and the initial random seed, that are or-
ganized in a latin-hypercube.

9. Magneticum. We have one simulation in this
category, that has been run with the code Open-
Gadget3, which is an advanced version of the code
P-Gadget3, the developers version of P-Gadget2
(Springel 2005). The code adopts a modern state
of the art SPH-scheme following the implementa-
tion of Beck et al. (2016) with a Wendland C4

kernel that adopts 200 neighbours as well as an
physical treatment for thermal conduction follow-
ing (Dolag et al. 2004; Jubelgas et al. 2004). Fur-
thermore, we adopted the models for star forma-
tion and feedback used in the MAGNETICUM sim-
ulations as outlined by Hirschmann et al. (2014).
The simulation has the same value of y,, og, and
the initial random seed than their Astrid, Illus-
trisTNG, and SIMBA counterpart. The value of
the astrophysical parameters is set to its fiducial
value.

10. SIMBA. These simulations have been run with
the GIZMO code (Hopkins 2015) with a TreePM
plus mesh-free finite mass method (MFM), em-
ploying the same subgrid model as the SIMBA
simulation (Davé et al. 2019). We made use of
1,001 simulations. One simulation was run with
shared cosmology and initial random seed among
hydrodynamic codes (and a fiducial value of the
astrophysical parameters). The other 1,000 simu-
lations have different values of §2,,, og, four astro-
physical parameters and the initial random seed,
that are organized in a latin-hypercube.

3. METHODS

In this section we describe 1) how we create the input
to the mode (cosmic graphs), 2) the architecture of the
GNN;, 3) the training procedure, and 4) the metrics we
use to evaluate the accuracy and precision of the model.

3.1. Model input: Halo Graphs

The input of our models is a mathematical graph, de-
fined by the tuple G = (V, £), where V is the set of nodes
and & is the set of edges that connect the nodes. We re-
fer the reader to Battaglia et al. (2018) for more details
on these mathematical definitions in the context of deep
learning.

Following Villanueva-Domingo & Villaescusa-Navarro
(2022), we construct graphs from the halo catalogues as
follows. The nodes represent the halos and an edge is es-
tablished between two nodes if their distance is smaller
than the linking radius, r, a hyperparameter of our
model that is optimized during training (as explained
later). Thus, two nodes i,j € V are referred to as neigh-
bors if they are connected via an edge, (i,j) € £. Note
that we do not consider self-loops, i.e. a node is not
connected to itself. Moreover, we account for periodic
boundary conditions when computing distances between
nodes.

The nodes and the edges can have different properties

associated to them, that we denote as hl(-") and eE;),
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respectively. As explained in the later sections, the ar-
chitecture of the GNNs consists of multiple layers that
take a graph as the input and outputs an updated graph.
For this reason, we denote the node and edge features
at the nt" layer with the superscript n.

We train different models that make use of graphs
with different node properties to infer ), og or both
parameters. The initial node features, represented by
hgo), that we use are:

e the halo velocity modulus, V', when inferring 2,

e the halo mass, M, when inferring og

e the halo concentration, ¢, and maximum circular
velocity, Vinax, when inferring both €2, and og.

We explain the reasoning for the choice of input node
features in Section 4.

The edge features between nodes i and j at the n*
layer are represented by el(.;»l) and they contain informa-
tion about the spatial distribution of halos. We build
our models to be translational and rotational invariant.
These symmetries can be imposed by requiring that the
output graph is invariant under this rigid transforma-
tion of p;: p; — Rp; + T. Here, p; is the position of the
halo at node ¢, and R and T are rotation and translation
matrices, respectively. We follow Villanueva-Domingo &
Villaescusa-Navarro (2022) and impose rotational and
translation symmetry by using as initial edge features
the vector eg-)) = [aj, Bij,Vij], where [...] denotes a con-
catenation along the features axis and the three edge
features are defined as:

Pi—D DD
Qi = — i — 3
9= 158 15 =Bl ®)
Pi —D  dij
Bii = — . 4
9= 1=l dy] @
_ ldij]

ij .

with d;; = p; — P being the relative distance between
the nodes i and j and p is the centroid? of the halo dis-
tribution. These edge features arise from taking scalar
products between the different vectors involved p; — p,
p; — D, and P; — Pj. «u; describes the angle between
the vectors defining the position of node i and its neigh-
bor node j, while 3;; describes the angle between the
vectors defining the position of node ¢ and the separa-
tion between nodes ¢ and j. Note that we have normal-
ized the distance, d;;, by dividing it with the linking

2 Note that other choices of reference position vector would also
work, like the center of mass, as long as translational invariance
is preserved.

radius, r, to have dimensionless edge features. These
three scalars contain the same information as the vec-
tor with the relative position of two nodes, that could
be used as edge features. Since translations and rota-
tions will not affect the values of these edge features, our
model will automatically satisfy these symmetries. We
refer the reader to Villanueva-Domingo & Villaescusa-
Navarro (2022) for more details on this construction.

3.2. Architecture

For the construction of our GNNs, we follow
closely the CoOSMOGRAPHNET? model architecture
(Villanueva-Domingo 2022), presented in Villanueva-
Domingo & Villaescusa-Navarro (2022). The predom-
inant structure underlying the GNN is a composition
of N message passing layers with a final aggregation
layer. The messages are constructed by encoding the in-
put node and edge features with multilayer perceptrons
(MLP). The message passing scheme is a recursive pro-
cess of exchanging and aggregating messages between
each node’s neighbors and edges, and iteratively updat-
ing them. This creates hidden feature vectors that are
ultimately used to make the prediction of the graph’s
global property, which is the desired target parameter.

Each message passing layer takes a graph as an input
and outputs another graph with updated node and edge
features. To achieve this, each layer consists of both
edge and node models that update the respective fea-
tures of the input graph. At the n'* layer, the input to
the edge model are the features of the node 7, the neigh-
boring node j, and their shared edge. This information
is passed through a MLP, denoted by ¢¢ and the output
are the updated edge features:

e = ot ([nf” n ] ). (6)

Meanwhile, the input to the node model are the fea-
ture node ¢ and the updated edge feature, which are
propogated through another MLP, denoted by ¢", to
output the updated node features

h§n+1) _ ¢h hg"), @ eg-LH) . (7)

JEN;

Here, we use a permutationally invariant aggregation
function denoted by € to aggregate the node features
of the neighbor nodes j € N; which are connected
via an edge to node i. As in Villanueva-Domingo &

3 https://github.com/PabloVD/CosmoGraphNet
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Villaescusa-Navarro (2022), this function is a concate-
nation of the maximum, sum, and mean operators:

(n+1)
0 e — [t 3 o, Do o™
i = |maxe; i
JEN: JEN: JEN; ZjENj

(8)

In cases where we exclude the internal properties of

halos in the construction of our graphs and only work

with their relative positions, we do not input initial node

features. As a result, we include an initial layer of edge
and node models to update the respective features:

o)) =o° (e) (9)
hV=¢" | Pell | . (10)
JEN;

and the subsequent layers follow Equations 6 and 7.

For all models, the final layer in the architecture ag-
gregates the node features output by the N** message
passing layer to construct the prediction y,

y=¢" (lEB hEN)D ; (11)
1€G

where B, operates over all nodes in the graph and
¢" is another MLP that extracts the target information.
To emphasize, the model architecture imposes permuta-
tion invariance in the use of the aggregation function
P so that the ordering of the nodes do not affect the
output of the model (Bronstein et al. 2021). This is in
addition to the translational and rotational symmetries
imposed by the definition of the edge features.

3.2.1. Loss Function

To perform likelihood-free inference we train the
GNNs to predict the posterior mean u; and standard de-
viation ¢; for the considered cosmological parameter 6;
(note that this can also represent several parameters, not
just one). Thus, the output of the model is y = [u;, 04],
where

Ni(g):/ p(0:]G)0;db; (12)

o2(G) = / p(019)6; — pi)?d6; . (13)
0

i

Here, G represents the graph and p(6;|G) is the
marginal posterior over the parameter 6;

p(0:]G) = / (01,05, ..00|G)d0vdb>..d6,  (14)

i

These predictions can be achieved by optimizing the
loss function of the form discussed in Jeffrey & Wandelt
(2020)

EZIOg( > (i —Mm‘)>2+

j€Ebatch

log ( > (Ong — i)’ - 0’2;‘))2

j€Ebatch

(15)

where the sums are performed over the halo catalogues
in the batch. Note that we take the log of the sums
over the batches to ensure that both terms in the loss
function have the same order of magnitude. Further
details on this can be found in Villaescusa-Navarro et al.
(2022D).

3.3. Training procedure

We train and test the models using graphs constructed
from halo catalogues of the different simulations. The
networks are trained using halo catalogues from Gadget
simulations and tested using catalogues from all simula-
tions. For Gadget, we split the simulations into training
(80%), validation (10%), and testing (10%) data sets
before creating halo catalogues for each simulation. For
the other codes we use the entirety of the dataset for
testing. Note that the simulations that share the same
initial random seed and cosmology are always used for
testing only.

For each simulation we generate 20 catalogues by tak-
ing all halos with masses larger than My, where My is a
randomly chosen number between between 100 m, and
700my,. Here, m, is the mass of a single dark matter
particle*. We note that the resulting catalogues contain
less than ~ 5,000 halos.

We follow this procedure so that the network learns to
make predictions independently of the number density
of halos a particular catalogue contains. We find this
procedure to be crucial to make our models robust®.

We standardize the values of input node features as

T— [

5 b
where p and ¢ denote the mean and standard deviation
of the feature z. In catalogues containing halo mass, we

j:

(16)

4 Note that while m,, is well-defined in the case of N-body simu-

lations, for hydrodynamic simulations we consider it to be the
effective particle mass, defined as my = NLCQH,V/)C, where V is
the volume of the simulation, p. is the Universe’s critical density
today, and N. = 2563 is the effective number of particles.

5 We initially trained the networks using a single catalogue per
simulation chosen with a given criterion and find that our model
was not robust.
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use M — log, (M) to accommodate the large dynam-
ical range involved. We also normalize the values of the
target cosmological parameters using:

01' - emzn
0; = ——7—, (17)

emaw - szn

where 0,,;, and 0,,,, are the minimum and maximum
values of the ranges of the cosmological parameter, 6;,
as listed in Eq. 1, 2.

Our model is implemented in PyTorch (Paszke et al.
2019) and PyTorch Geometric (Fey & Lenssen 2019).
We use the AdamW optimizer (Loshchilov & Hutter
2017) with beta values equal to 0.9 and 0.999. We train
the network using a batch size of 8 for 500 epochs. The
hyperparameters for our model are 1) the learning rate,
2) the weight decay, 3) the linking radius, 4) the number
of message passing layers, and 5) the number of hidden
features per layer. We use the OPTUNA code (Akiba
et al. 2019) to perform Bayesian optimization and find
the best-value of these hyper-parameters for each model.
For each model we run 100 trials, where each trial con-
sists of training the model using selected values of the
hyper-parameters. We perform the optimization of the
hyper-parameters requiring to achieve the lowest valida-
tion loss possible.

Once trained, we test the models on halo catalogues
from all N-body and hydrodynamic, simulations.

3.4. Accuracy Metrics

For the graph 4, with true value of the considered pa-
rameter Yeruth,i, our models output the posterior mean,
Yinfer,i, and standard deviation o;. To evaluate the per-
formance of our models, we follow Villanueva-Domingo
& Villaescusa-Navarro (2022) and adopt four different
metrics:

1. Mean relative error, ¢, defined as

1y Yinfer,i|
truth,i — Yinfer,:
€= — E : —, 18
N B Ytruth,i ( )

where NN is the number of halo catalogues in the
test set.

2. Coefficient of determination, R?, defined as

N
Zi (ytruth,i - yinfer,i)2

R*=1- N —
Zi (ytruth,i - ytruth)2

3. Root mean squared error, RMSE, defined as:

N
1
RMSE = ﬁ Zl (ytruth,i - yinfcr)2 (20)

4. Chi squared, x?, defined as:

2
0;

N
1 (ytr th,i — Yinfer i)2
2 u e
= — : : . 21
=% ;:1 (21)

Note that a value of x? is close to 1 suggests that
the standard deviations are accurately predicted.
On the other hand, a larger or lower value indi-
cates that the uncertainties are under- or overes-
timated, respectively.

Note that the sums in all expressions above run over
the graphs in the test set. When doing multiparameter
inference (i.e. when the model predicts both Q,, and
og), the above expressions are used for each parameter.

4. RESULTS

In this section we show the results we obtain from
training our networks. We have trained different models
that use catalogues containing different halo properties
to infer either €, og, or both. Table 2 summarizes the
results of the different networks trained.

We note that the performance metrics that we report
in this section measure the aleatoric errors of the models
which quantify the uncertainty of the predictions due to
the variability in the data (i.e. due to cosmic variance).
This is because we find the epistemic errors (the ones
quantifying the errors associated to the network itself,
not the data) to be much smaller than the aleatoric ones.
We provide further details in the Appendix A.

4.1. Inferring QO

We start by training and testing a GNN to infer the
parameter €2, using catalogues that only contain the
positions of the halos. In this case, the nodes do not
contain any information and only the edges do. When
we evaluate this model on the test set of the Gadget
simulations, we find that the GNN is able to infer the
value of €, with a mean relative error of ¢ = 10.1 % and
a coefficient of determination of R? = 0.91. Addition-
ally, the Chi-squared value is x2 = 1.14 which indicates
that the posterior standard deviations are predicted ac-
curately. To investigate whether our field-level inference
is extracting more information than traditional sum-
mary statistics we train a MLP to perform likelihood-
free inference for €2, from the halo power spectrum for
k < 30 hMpc™!, computed from catalogues of the Gad-
get simulations. We find that the model obtains a mean
relative error of € = 18.3 %, with x? = 2.30, indicating
that the GNN is able to extract much more information
at the field level.

Next, we train models using catalogues that not only
contain halo positions but also the modulus of their pe-
culiar velocities, V. We do this because we expect that
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Figure 1. We train two GNNs to perform likelihood-free inference for the cosmological parameters Qn, (left) and os (right),
respectively. To infer Qm (03), the halo catalogues contain the velocity modulus, V' (halo mass, M), as node feature. For both
models, we use the relative halo positions as the initial edge features, defined in Equations 3, 4, 5. The models are trained using
halo catalogues from the Gadget simulations. For each simulation, we generate 20 graphs by taken all halos with masses above
a random threshold (see text for details). Once the networks are trained we evaluate them on halo catalogues from the Gadget
test set. As can be seen, the models are able to infer the correct value of the cosmological parameters with a ~ 6% accuracy.

including other halo properties will increase the amount
of information available. For simplicity and to preserve
the symmetries that we impose in the graphs, we take
the modulus of the 3D velocity vector. Note that we
do not include the halo mass, M, as an input feature
because there is an underlying linear relationship be-
tween Q, and the minimum M of each catalogue, via
Min = Npm,,, where N, is the number of dark mat-
ter particles. Should we have trained the model using a
single threshold, we would have gotten artificially tight
constraints on §2,. To avoid the existence of any leakage
of information from Mx to 2, we simply not include
halo mass as a node feature.

We show the results of testing the model on Gadget
catalogues in Fig. 1. As can be seen, the constraints are
significantly better: the mean relative error decreases to
5.6 % while the coefficient of determination increased to
R? = 0.97. The Chi squared value is y? = 1.32.

4.1.1. Clustering

We ask ourselves whether the information the network
is extracting comes from the clustering of halos or per-
haps just from the velocities themselves. To address
this, we train a DeepSet model (Zaheer et al. 2017) to
perform likelihood-free inference on the value of Q,. In
contrast to GNNs, DeepSets take as the input a set of
nodes that are not connected via edges and do not em-
ploy the message passing scheme to leverage the rela-
tions between elements of the set. Moreover, this model

does not receive any information about the halo posi-
tions and thus cannot extract any information from the
clustering of the halos. However, in order to make the
prediction, the DeepSet model still follows the permu-
tationally invariant operation seen in Eq. 11 for aggre-
gating the node features, which are the halo velocity
moduli.

When evaluated on the test set, this model performs
with a relative error of € = 17.4 %, which is a noticeable
increase from the models trained using catalogues that
include positions and positions plus velocities. This im-
plies that the halo velocity modulus alone does not pro-
vide sufficient information and most of the information
used by the GNNs to predict 2, comes from the clus-
tering of the halos. Hence, going forward, we will only
report the results of the GNNs trained using both the
halo positions and velocity moduli.

4.1.2. Robustness

Next, we study the robustness of our model by test-
ing it on halo catalogues produced by different N-body
codes. We emphasize the importance of this test, as
field-level inference is expected to work under this con-
trol setup where different codes are solving the same
equations using just different numerical techniques. If
this is not the case, that would mean that numerical er-
rors from the simulations are propagating into the net-
work and perhaps the network is learning unique fea-
tures associated to each simulation.
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Figure 2. Top: We train a rotationally, translationally, and permutationally invariant GNN to perform likelihood-free inference
for the cosmological parameter €2,,,. The input to the model are halo catalogues from Gadget that only carry information about
halo positions and peculiar velocity moduli. Once trained, we test the model on halo catalogues from different N-body and
hydrodynamic simulations as indicated in the legend. We note that simulations of the same type, either N-body or hydrodynamic,
are run with the same initial conditions, cosmology (and fiducial astrophysics for the hydrodynamic simulations). For each
simulation we generate 7 catalogues. Each halo catalogue contains all halos with masses above Nm,, where m,, is the particle
mass and N can be 100, 200, 300, 400, 500, 600, or 700 (see legend). The y-axis represents the difference between the truth and
the inference. As it can be seen, this model exhibits surprising extrapolation properties and is robust to all simulation codes.
Bottom: Same as above but for a network trained to infer os from catalogues that contain halo positions and masses. As it
can be seen, this model is robust only for N-body halos that contain at least 300 particles. Moreover, the predictions exhibit
poor accuracy for all hydrodynamic simulations, suggesting that this model is more sensitive to the additional astrophysical and

baryonic effects than the one for Q,,.

To check this, we test the models trained on halo cat-
alogues from Gadget on halo catalogues from Abacus,
Ramses, PKDGrav3, Enzo, and CUBEP?>M. We find
that the model is able to accurately infer the value of
Q, on all halo catalogues from the different simulations.
In Fig. 2 we show the constraints derived by the model
from halo catalogues obtained from the simulations that
share the same cosmology and initial conditions, but dif-
ferent N-body codes. As it can be seen, the model per-
forms with similar accuracy for all simulations, demon-
strating its robustness. We present more detailed results
of this test in Appendix B, where the figures depict the
accuracies of the model when tested on 50 catalogues of
different cosmologies from each simulation code.

We emphasize that this is not a trivial test. The cata-
logues from the different simulations, even if having the
same initial conditions, will have different number of ha-
los and the halos in common will have slightly different
positions, and other properties, due to the numerical ap-
proximations of the different codes. It is important to

remark that a key ingredient to achieve this robustness
was to generate many catalogues with different number
densities from the same simulation. In that case, the
network was trained to make predictions independently
of the number density®.

Next, we test the model on halo catalogues from dif-
ferent hydrodynamic simulations: Astrid, llustrisTNG,
Magneticum, and SIMBA. Surprisingly, we find that the
model works also when tested on these halo catalogues.
In Fig. 2 we show the results when the model is tested
on the simulations that share the same cosmology and
initial random seed (these simulations have a fiducial
value of the astrophysical parameters). As can be seen,
the precision and accuracy of the model remains compa-
rable to the one obtained from the catalogues from the
N-body codes, indicating that the model is robust even

6 This is particularly important for the Enzo and Ramses simu-
lations, where the abundance of low mass halos is significantly

lower than that from the other codes.
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to hydrodynamics, changes in astrophysical parameters,
and subgrid physics models. We emphasize that this is a
not trivial result at all, since the positions and properties
of halos are expected to be affected by hydrodynamics
and astrophysical processes. This result may suggest
that the model is exploiting a fundamental relation be-
tween the clustering of the halos, the halo velocities, and
Q. that is robust to cosmology and astrophysics.

Finally, we perform further tests to gauge the extent
of the robustness of the model:

e Robustness to resolution. We test the model on
N-body simulations run at higher resolution —5123
particles in a (25 h~'Mpc)? volume-, finding that
the model is still robust. We show the results in
Fig. 7 of Appendix C.

e Robustness to redshift. We evaluate the model,
which was trained at redshift z = 0, on halo cata-
logues generated at redshifts z > 0. We find that
the model is not able to infer the correct cosmology
in this case, as expected, since clustering changes
with redshift. We show the results in Fig. 8 in
Appendix D.

e Robustness to halo finder. We test the model,
which was trained using halo catalogues generated
with ROCKSTAR, on catalogues generated with a
different halo finder, namely SUBFIND. We find
that the model is also not robust. Results are re-
ported in Appendix E. Note that in Euclid Collab-
oration et al. (2022) authors studied in detail the
abundance and clustering of halos from different
halo finders, finding differences between Rockstar
and SUBFIND, that could explain our results.

4.2. Inferring og

We now focus our attention into the models trained
to infer og. When training using catalogues that only
contain halo positions we obtain very weak constraints,
with a relative error of € = 11.8% and R? = 0.27. We
have also trained a MLP to predict og from the halo
power spectrum and found that the model is is unable
to extract much information, performing with a mean
relative error of 11.9% and R? = 0.28, similar to the
results from the GNN.

In order to improve our constraint, we include addi-
tional halo properties. We find that using positions and
velocities does not improve constraints significantly, so

we train models using catalogues that contain halo po-
sitions and masses’.

Our model performs well and is able to achieve a mean
relative error of € = 5.9% and a Chi squared value of
x? = 1.54. We show the results of testing the model on
halo catalogues from Gadget in the right panel of Fig. 1.
As it can be seen, the model is able to infer the correct

value of og with a relatively high precision and accuracy.

4.2.1. Robustness

To investigate the robustness of the model we test it
on halo catalogues from different N-body simulations. In
Fig. 2 we show the results of testing the model on sim-
ulations run with different codes but sharing the same
cosmology and initial random seed. We find that while
the model can infer the correct value of og on all dif-
ferent halo catalogues from Abacus, CUBEP3M, and
PKDGrav3, it fails on halo catalogues from Enzo and
Ramses that contain less than 300 particles. We reach
similar conclusions when testing the models on all the
other N-body simulations from the other codes that have
different cosmologies and values of the initial random
seed. Thus, from this test we conclude that the network
is still robust to differences among N-body codes but re-
quirements are more strict and halos with more particles
(larger than 300) are needed in some codes to achieve
robustness.

From Fig. 2 we can also see that the models is not
robust to hydrodynamics and astrophysical effects, as
it fails to recover the true value of og from the halo
catalogues of the hydrodynamic simulations. This in-
dicates that the estimator used by the network is more
affected by baryonic effects than the one used to infer
Qm. There could be several reasons for this. For in-
stance, this network employs the halo mass as an input
node feature which can be heavily affected by galaxy
formation feedback processes present in hydrodynamic
simulations. Interestingly, the model becomes more ac-
curate for more massive halos. We speculate that this
could be explained with the consideration that baryonic
effects might less severely affect the properties and/or
abundance of more massive halos.

Similar to Q,, we test the model on higher resolution
N-body simulations and find that the predictions are
robust across the different simulation codes. We report
the results of this test in Fig. 7 of Appendix C. We also
test this model on catalogues at higher redshift (z = 1)
than the one used for training (z = 0), finding that the

7 Note that a model trained on catalogues that contain halo posi-
tions, velocities, and masses achieves a similar accuracy than the
model trained on halo positions and masses.
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Parameter(s) Inferred | Accuracy (e) ‘ Node Features | Edge Features Robust
Qm 10.1 % - I N-body & Hydrodynamic
Qm 17.4 % 14 - N-body & Hydrodynamic
Qm 5.6 % \%4 I N-body & Hydrodynamic
os 11.8 % - 17 N-body (halos = 300 particles)
o3 5.9 % M 1 N-body (halos 2 300 particles)
os and Qm 2.7, 2.2% V, ¢, Vinax I Not Robust

Table 2. This table lists the mean relative error, robustness, and input node features for each model that we discuss in Section

4.

model does not work in this case. We show the details in
Appendix D. Finally, we test the model with catalogues
generated with a different halo finder. In this case that
the model is not robust; we show the results in Appendix
E.

4.3. Dependence on halo properties

We have seen that our models are robust to numer-
ical differences across N-body codes when halo cata-
logues contain positions plus velocities and positions
plus masses. We expect that adding more properties to
the halo catalogues will make our models more precise,
but will they be robust?

To test this we train a GNN using Gadget catalogues
that contain halo positions, velocity moduli (V'), concen-
trations (c), and maximum circular velocities (Vipax) to
infer both ., and og. We find that our model achieves a
higher accuracy and is able to infer the value of €, and
og simultaneously, when tested on Gadget catalogues,
with a mean relative error of 2.7% and 2.2% respectively.

Unfortunately, the model is no longer robust, and
when tested on halo catalogues from other simulations
it fails. We show the results and further details on this
in the Appendix G. We note that halo properties such
as masses or velocities receive large contributions from
the halo outskirts, where a large number of particles are.
On the other hand, properties such as concentration and
Vimax weight more heavily the distribution of particles
near the halo center. That region, well inside the 1-halo
term, is where the differences among codes will appear
more clearly. We believe that this is the reason for the
failure of our model.

This exercise raises an important point that marks the
line between accuracy and precision. While it is possi-
ble to make models more precise by considering more
properties, the accuracy may be severely affected as the
model will be learning more features and properties that
are not shared across codes. Therefore, it is important
to build models that are both precise and accurate.

5. CONCLUSIONS

In this work we have addressed the question of how
much robust information can be extracted from halo cat-
alogues. This question was motivated by Villanueva-
Domingo & Villaescusa-Navarro (2022), who found that
their models were not robust when using galaxy cata-
logues from hydrodynamic simulations. Since the opti-
mal estimator to extract cosmological information from
non-linear scales is unknown, we have trained graph
neural networks to perform field-level likelihood-free in-
ference. As already outlined in Villanueva-Domingo &
Villaescusa-Navarro (2022), the advantage of working
with GNNs is that they are, by construction, permuta-
tionally invariant and are designed to handle sparse and
irregular data without impose a minimum scale. Fur-
thermore, we build our models to fulfill translationally
and rotationally symmetries.

The input to our models are thousands of halo cat-
alogues generated from Gadget N-body simulations.
Each catalogue contains less than ~ 5,000 halos in a
periodic volume of (25 h~1Mpc)? that are characterized
by several properties such as position, mass, velocity,
concentration, and maximum circular velocity. We sum-
marize the main takeaways of this work below:

e We find that our field-level inference using cata-
logues that only have halo positions achieve much
tighter constraints than the ones obtained using
the traditional power spectrum.

e The GNNs trained using catalogues that contain
the halo positions and velocity moduli are able to
infer the value of Q, with a mean relative error
of 5.5%. We find that most of the information is
coming from the clustering of halos, not from the
velocity distribution of the catalogue.

e The model is surprisingly robust, and is able to
infer the value of €, from thousands of halo cata-
logues generated from five different N-body codes
—~Abacus, CUBEP?M, Enzo, PKDGrav3, Ramses—
and four different hydrodynamic codes with dif-
ferent galaxy formation implementations —Astrid,
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MustrisTNG, Magneticum, SIMBA—-. We empha-
size that this is not a trivial result since the differ-
ent N-body codes solve the equations using differ-
ent methods and approximations and the hydrody-
namic simulations implement completely different
recipes for astrophysical processes such as super-
nova and AGN feedback, that are expected to af-
fect the abundance and properties of dark matter
halos.

e The GNNs trained using catalogues that contain
the halo positions and masses are able to infer the
value of og with a mean relative error of 5.7%.
The model is robust across different N-body simu-
lations only for catalogues that contain halos with
more than ~ 300 particles. However, this model
is not robust when tested on catalogues from hy-
drodynamic simulations. On the other hand, the
model becomes more accurate for catalogues with
more massive halos. We thus conclude that the
requirements for robust inference of og are more
stringent than for Q.

e The GNNs trained using catalogues that contain
halo positions, velocity moduli, concentrations,
and maximum circular velocities (Vinax) are able
to extract more information, and they can infer
the value of Q,, and og with mean relative errors
of € ~ 2.7% and € ~ 2.2%, respectively. However,
the use of these properties decreases the robust-
ness of the model: the model is not longer robust
across N-body codes.

The surprising robustness of the model trained to infer
Q. may be due to the existence of an underlying fun-
damental relation between halo positions and velocities
and ), that is not largely affected by numerical errors
from different N-body codes or baryonic effects. In fu-
ture work we plan to use interpretation tools to try to
understand how the network is performing the inference.

It has to be emphasized the difficulties of obtaining ro-
bust models across different N-body and hydrodynamic
codes. For instance, already with summary statistics
different codes exhibits different levels of discrepancies
(Heitmann et al. 2008; Schneider et al. 2016; Garrison
et al. 2019). Nevertheless, having robust predictors is
essential in order to apply them to observational data.
Only models which are proven to be robust over differ-
ent simulation methods could offer trustworthy results
when tested on observational catalogues.

In this paper we have studied the regime where halo
catalogues will enable the construction of robust models.
However, dark matter halos are not directly observable,

but galaxies are. Villanueva-Domingo & Villaescusa-
Navarro (2022) studied how much information can be
extracted from galaxy catalogues through GNNs, but
found that the models are not robust. However, they
trained their models using both centrals and satellite
galaxies. In future work we plan to investigate whether
the constraints from galaxy catalogues will be more ro-
bust if only central galaxies are included in the cata-
logues. The idea behind this is be that the positions
and velocities of the central galaxies should be similar
to those of the halo they reside in.

We note that all the analysis performed in this work
has been carried out in real-space. In future work we
plan to repeat this analysis but using halos in redshift-
space and investigate whether the accuracy and robust-
ness of the models are affected by considering redshift-
space distortions.

In this work we have used relatively small cosmologi-
cal boxes of (25 h~!Mpc)? volume. The reason for this
was because we could take advantage of the thousands
of N-body and hydrodynamic simulations publicly avail-
able from the CAMELS project. While it would have
been desirable to use large boxes that sample more mas-
sive halos, we could not carried out the same analysis
we have done here with hydrodynamic simulations. On
the other hand, given the small volume of our simu-
lations, the effects of super-sample covariance can be
pretty important. It would be important to redo the
analysis performed in this work but with larger boxes,
even if limited to N-body simulations, to investigate the
impact of large-scale modes on our results. We note
that training our models on larger volume catalogues,
at similar number density, will naturally increase the
precision of the models. Thus, it will be important to
quantify whether the models still remain accurate.

Finally, this work emphasizes the trade-off between
accuracy and robustness. While more information can
be extracted from catalogues that contain halo prop-
erties such as concentration and V.., that informa-
tion is not robust, and different N-body codes produce
slightly different answers that break down the robust-
ness of the prediction. While using the information from
those properties should not be disregarded, its inclusion
in the model may require higher demands; e.g. only con-
sidering halos with more than 1,000 particles where all
codes yield similar predictions.

On the other hand, the use of properties that are very
sensitive to the code used may never yield robust con-
straints. For instance, information from scales close to
the softening length may always be very different in dif-
ferent N-body codes.
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This work represent the first attempt to build robust
models when performing field-level likelihood-free infer-
ence. Our goal is to develop models that work across
galaxy catalogues from different hydrodynamic simu-
lations, semi-analytic models, and other methods (e.g.
Halo Occupation Distribution).

6. ACKNOWLEDGMENTS

We thank Douglas Potter for his help with the PKD-
Grav3 simulations. We also thank Tom Abel, Simeon
Bird, Shy Genel, and David Spergel for enlightening
discussions. The networks have been trained using the
Tiger cluster at Princeton University. HS thanks the
Flatiron Institute for the support during the preparation
of this work. The work of FVN has been supported by
NSF grant AST-2108078. EV is supported by NSF grant
AST-2009309 and NASA grant SONSSC22K0629. DAA
acknowledges support by NSF grants AST-2009687

and AST-2108944, CXO grant TM2-23006X, and Si-
mons Foundation award CCA-1018464. TC is sup-
ported by the INFN INDARK PD51 grant and by the
FARE MIUR grant ‘ClustersXEuclid” R165SBKTMA.
EHM was supported by the grant agreements ANR-21-
CE31-0019 / 490702358 from the French Agence Na-
tionale de la Recherche / DFG for the LOCALIZA-
TION project. KD acknowledges support through the
COMPLEX project from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation program grant agreement ERC-
2019-AdG 882679 as well as support by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC-
2094 - 390783311. The CAMELS project is supported
by NSF grants AST-2108944, AST-2108678, and AST-
21080784. The Flatiron Institute is supported by the
Simons Foundation. Kavli IPMU is supported by World
Premier International Research Center Initiative (WPI),
MEXT, Japan.

APPENDIX

A. EPISTEMIC ERRORS
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Figure 3. We compute the epistemic errors for each halo catalogue, denoted by the horizontal error bar caps centered around
the epistemic means, for the models trained to infer 2, and os. The vertical error bars denote the aleatoric errors which are the
predicted standard deviations. As it can be seen, the epistemic errors are small compared to the aleatoric errors which indicate
that the trained models do not exhibit large variability in their weights.
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Here, we report the epistemic uncertainties associated with the models trained to predict €, and og, which quantify
the variability in the weights of the neural networks. To calculate these errors, we train five GNNs to predict the
respective cosmological parameter with different initializations of the network weights. For this, we fix the hyperpa-
rameter values that were already optimized, including the linking radius, the number of hidden layers, the number of
hidden features, the learning rate, and the weight decay. We also employ the same training and validation datasets
across the five models. We then test each of the five models on each halo catalogue for the different N-body and
hydrodynamic simulations. We compute the epistemic errors by taking the standard deviations of the predictions
for each halo catalogue. We find that they are small, averaging to be 0.4% and 0.6% for the Q,, and og models,
respectively, across the different particle thresholds of all simulations. Note that the aleatoric errors we estimate are
~ 6% for both Q,, and og. In Fig. 3 we illustrate the epistemic errors with errorbar caps for each halo catalogue
centered around the epistemic means. We thus conclude that that error budget is dominated by the aleatoric error,
rather than the epistemic one.

B. ADDITIONAL PLOTS ON Qy AND oy

In Section 4, we reported the results of our GNNs and their performance on various N-body and hydrodynamic
simulations that were run with the same cosmologies and initial conditions. Here, we present additional plots depicting
the accuracy of the model predictions for both €, and og for different minimum halo particle thresholds. For these
plots, we evaluate the models on 50 simulations containing different cosmologies and initial conditions for four different
N-body codes: Abacus, CUBEP?M, PKDGrav, and Ramses (in Fig. 4 and 5). We also test the models on 1,000
simulations from two hydrodynamic codes: IllustrisTNG and SIMBA, but plot the results for 100 randomly selected
simulations to conserve space (in Fig. 6). As before, we perform these tests using halo catalogues created with different
minimum halo particle thresholds as indicated in the plots. Each of these plots depict the predictions plotted against
the truth minus the inference.

As it can be seen, the GNN is able to infer Q, accurately for all simulations with similar mean relative errors of
~ 6%. However, the GNN trained to predict og is not robust to the hydrodynamic codes and is only robust across
the different N-body simulations at high particle thresholds. This can be clearly observed in the bottom left panel
of Fig. 5 where the predictions exhibit a large offset from the truth for the lower thresholds (~ 100 — 200 particles).
Moreover, note that for the og predictions on N-body codes, there exists a slight increase in the mean relative errors
for the catalogues created with thresholds of 600 or 700 particles due to larger biases in the predictions at the low and
high ends of og values. This is due to the fact that these catalogues contain significantly fewer halos which hinders
the model learning during training and should not suggest that the model fails to be robust across different simulation
codes for these massive halos. A similar trend is seen in the predictions of €2, with the hydrodynamic simulations.
We believe that training with large simulation volumes that contain higher number densities of halos with at least 600
or 700 particles would improve the accuracies of the model predictions.

C. ROBUSTNESS TO SIMULATION RESOLUTION

In Section 4 we trained two GNNs using Gadget N-body simulations that contain a resolution of 256 particles to
infer ., and og. Here, we investigate whether these models are able to extrapolate to higher resolution simulations
that contain 5123 particles. For this test, we use N-body simulations from PKDGrav3, Abacus, Ramses, and Gadget.
It is important to note that due to the eight-fold increase in the number of particles, the tests are carried on halo
catalogues defined with minimum particle thresholds that are eight times larger than the thresholds used for the lower
resolution simulations. This is because higher resolution simulations contain more low-mass halos and this ensures that
the model is being tested on halo mass ranges comparable to catalogues of the low resolution simulations. As it can be
seen in the top panel of Fig. 7 the model is robust across the different higher resolution simulations for all minimum
particle thresholds and is able to predict 2, with comparable accuracy to the simulations with the resolution used
for training. This further demonstrates that this model is utilizing a fundamental relation in the halo clustering that
is present across all simulations. Similarly, the results for og are shown in the bottom plot of Fig. 7. As evidenced,
this model is also able to predict with high accuracy on the higher resolution simulations for halos that contain at
least 3,200 particles, corresponding to low resolution halos that contain at least ~ 300 particles. This agrees with the
previous findings that field-level inference for the parameter og is only robust for massive halos.
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Figure 4. We train a GNN to infer €2,, from catalogues of the Gadget N-body simulations using the halo relative positions and
velocity moduli. We teach the model to marginalize over the number density of halos in each catalogue by training it using halo
catalogues constructed with random minimum particle thresholds ranging from [100, 700]. We then test this model on different
N-body simulations: PKDGrav3, Abacus, Ramses, and CUBEP3M using catalogues created with particle thresholds indicated
next to the plots. As can be seen, the model is able to extrapolate well to different N-body codes and is able to predict with high
accuracy for halos of all masses, suggesting that the model has found a universal relation to predict the cosmological parameter.
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Figure 5. This is the same as Fig. 4 for the parameter og. To train this GNN, we use the halo relative positions and masses,
and train with halo catalogues created from random minimum particle thresholds ranging from [100, 700]. Evidently, the model
is not robust across different N-body codes for catalogues generated with low particle thresholds, as indicated by the significant
bias in the predictions for Ramses catalogues created with particle thresholds of 100 or 200. However, the model is robust
for larger particle thresholds, such as for halos that contain at least ~ 300 particles, where the coefficients of determination
are closer to 1 and the relative errors are ~ 6%. Note that for all simulations, the slight increase in the mean relative errors
and biases in the predictions for the catalogues created with particle thresholds of 600 or 700 particles is due to the fact these
catalogues contain significantly fewer halos which hinders the model training, and should not suggest that the model fails to be
robust across simulation codes for these massive halos.
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Figure 6. Similar to Figures 4 and 5, we test the two models trained to infer {2, and os, respectively, on 1000 hydrodynamic
simulations from IlustrisTNG and SIMBA that are run with different cosmological and astrophysical parameters. To conserve
space, these plots show the results for 100 randomly selected simulations. As it can be seen, while the model that learned Q,
extrapolates well to the hydrodynamic simulations, the model that learned os does not. This can be seen in the plots for os
where the predictions exhibit significant offsets from the truth. While these offsets are mitigated in catalogues of larger halos,
such as those that contain more than 700 particles, the errors in the predictions still remain large and contain noticeable biases.
This may be because os is more sensitive to the additional baryonic and astrophysical effects present in these simulations.
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Figure 7. Top: We train a GNN to infer Q,, using Gadget N-body simulations with resolutions of 256° particles and test it on
different N-body simulations with resolutions of 5123 particles. The model is able to extrapolate well and performs with similar
accuracy seen in Fig. 2. We note that the tests depicted here are evaluated on halo catalogues with minimum particle thresholds
that are eight times larger than the ones used for the low resolution simulations due to the increase in number of particles, and
consequently, the number of low-mass halos. Bottom: This is the same plot as above for testing the GNN trained to infer os.
As can be seen, the model is robust for halos with at least 3,200 particles which agrees with the previously found results seen
in Fig. 2.

D. ROBUSTNESS TO REDSHIFT

We investigate whether the GNNs are able to extrapolate to redshifts higher than the one used in training, which was
z = 0. We find that the models are unable to predict the cosmological parameters at higher redshifts. For instance,
when testing the GNN trained to predict €2, on the Abacus catalogues at z = 1, the predictions are significantly
larger than the true values for all halo masses. This is shown in the left plot of Fig. 8 where each panel is labeled
with the halo particle threshold. This poor performance is expected since the models were not given information that
distinguished the simulations based on redshift so they cannot learn how redshift affects the clustering of the halos.
We also tested the model that was trained to infer og on Abacus simulations at z = 1. Similar to €,,, the model
fails for all particle thresholds. However, the results are under-predicted in this case. We do not attempt to explain
these patterns in this work. Moreover, for both parameters, the predictions improve for catalogues generated with
larger particle thresholds, which can possibly be explained by considering that the number density of halos for these
catalogues are less severely affected by changes in redshift.

E. ROBUSTNESS TO HALO FINDER

Here, we report the results of testing our models on halo catalogues generated by a halo finder that is different from
the one used for training. Namely, we test the model on catalogues created with SUBFIND (Springel et al. 2001) on
snapshots of the Gadget N-body simulations.

SUBFIND works primarily by identifying local peaks in the three-dimensional density field and separating them by
identifying a saddle point between them. Next, the overdensities and their surroundings are checked for gravitational
self-boundness: those that are self-bound are registered as subhalos, and those that are not are attached to their
neighboring overdensities, namely those they share saddle points with. SUBFIND operates on all particle types in
the simulations, dark matter and baryonic alike.
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Figure 8. We evaluate the models trained to infer €2,,, and os on Gadget simulations at redshift z = 1 on halo catalogues from
Abacus at redshift z = 1. As it can be seen, the models are unable to predict {2, and os for halos of all halo particle thresholds
which is expected because the model did not receive any information regarding the redshift of the simulation and clustering
changes with redshift. It is interesting to note that while €2, is consistently over-predicted, the opposite is true for os. However,
for both parameters, the accuracies increase for larger particle thresholds.

To perform these tests, we consider the total mass of the halo contained in a sphere with a mean density that is 200
times the mean density of the Universe at redshift z = 0. We find that our models are unable to accurately predict
Q. for catalogues created with any particle threshold, with relative errors of € ~ 15%. Similarly, for og, the model
predictions exhibit larger error for all particle thresholds. However, in this case, the relative error decreases with the
particle threshold, from € ~ 24% to € ~ 11% as the particle threshold increases from 100 to 1000.

Upon further investigation, we find that the halo catalogues generated with SUBFIND exhibit significant differences
in the halos spatial distribution and velocity fields compared to those generated using ROCKSTAR. Specifically, when
comparing the velocity modulus distribution curve for the 100 most massive halos from the two simulations, the
velocity moduli of the ROCKSTAR halos are noticeably smaller than those of the SUBFIND halos. Moreover, there
are several halos whose positions differed between the two catalogues. These differences may affect the clustering of
the halos and account for the inability of the model to accurately infer the cosmological parameters.

F. INFERRING og FOR LOW MASS HALOS

Here we discuss the motivation behind choosing the range of minimum particle thresholds to be [100,700] for og
as outlined in Section 4.2. When we train the GNN to infer og on halo catalogues that were created using particle
thresholds ranging from [100,500], we find that the model is able to achieve constraints with a mean relative error of
€ = 4.6% and a Chi squared value of x? = 1.14. However, when we evaluate this model on different N-body simulations,
we find that the model performs poorly for halo catalogues constructed with small minimum particle thresholds. For
instance, it can be seen in Fig. 9, when evaluated on Ramses, the model is only able to achieve R? = 0.44 and
R? = 0.67 for halo catalogues created with minimum particle values of 100 and 150, respectively. The predictions also
exhibit a significant offset from the truth. However, the model improves as the minimum particle threshold increases
to 250 or 300, as shown in the figure. This trend suggests that field-level inference for og can be robust across different
N-body simulations only for large halos. Hence, we decide to train the model on a larger interval of particle thresholds.



22 SHAO ET AL.
RAMSES
100 150 200
1.0 } * 1.0 1.0
¥ i i me
0.9 } 0.9 \ Nw H \ 0.9 \ \
: | : : ]
%0.8 H\M’ %0.8 M\H H %o.s ’h}{ |
& & &
Og | \ \ Og \ \ \ Og
0.7 £=9.6 % 0.7 £=73% 0.7 £=6.0 %
“ R2= 0.44 R2= 0.67 } R%= 0.75
RMSE=8.57¢-02 { RMSE=6.56¢-02 + RMSE=5.75¢-02
0.6 x>=7.11 0.6 X?=3.43 0.6 x>=2.42
0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
Truth Truth Truth
250 300
1.0 1.0
0.9 } }HHH 0.9 }H‘H’H
;% 0.8 ’ \ | ’ % 0.8 \ } |
2 } \ . 2 h .
0.7 \ } £=5.7% 0.7 £=6.1%
\ R%= 0.77 R%= 0.74
| RMSE=5.56¢-02 * RMSE=5.84¢-02
0.6 x?>=2.16 0.6 x?=2.28
0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
Truth Truth

Figure 9. We train a GNN to infer os using halo catalogues of the Gadget N-body simulations created using random minimum
particle thresholds ranging from [100, 300]. When we test this model on different N-body codes, such as Ramses, it is not
robust for catalogues created using small particle thresholds. This is demonstrated by the first two plots of the figure, were the
predictions are made for halos that contain at least 100 and 150 particles. An upwards offset from the truth can be seen for the
predictions of these catalogues. Increasing the particle threshold improves the model performance and suggests that robustness
can be found across the N-body simulations for larger halos.

G. ROBUSTNESS ON HALO PROPERTIES

Here we describe in more detail the results of the network trained to infer both Q,, and og from catalogues that
contain halo positions, velocity moduli, concentrations, and maximum circular velocities. We train this model on a
larger interval of minimum halo particle thresholds, [100, 1000], to investigate the full extent of the model robustness.

We show the evaluation of this model on a test set of the Gadget simulations in Fig. 10. As can be seen, the inclusion
of the additional halo properties (¢ and Viyax) significantly increases the accuracy of the predictions for both €, and
og compared to the accuracies of the models used to infer 2, and og individually. This model is able to predict €y,
with a relative error of € = 2.7% and a coefficient of determination of R? = 0.99. For og, the relative error is € = 2.19%
and a coefficient of determination of R = 0.97. Moreover, both predictions exhibit Chi squared values that are close
to one, x? = 0.90 and x? = 1.32, which indicate that the standard deviations of the posteriors are being accurately
inferred as well.

However, this model is not robust across different N-body simulations in predicting both Q, and ogs. When we
test this model on the different N-body simulations, all the predictions for 2, exhibit an overall upward offset from
the truth for all particle thresholds. Similarly, the predictions for og consistently display a large downward offset
from the truth for all simulations and particle thresholds. In Fig. 11, we show these results for a subset of the
simulations, namely Abacus, CUBEP3M, and Ramses. We also only include the plots for the particle thresholds of
100 and 800 to demonstrate the lack of accuracy regardless of the minimum halo particle thresholds, however this
pattern is consistently seen across all other particle thresholds. A possible explanation for this lack of robustness is
that the input properties, ¢ and Viax, are more dependent on the interior of halos which can more easily vary among
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Figure 10. We train a GNN to infer €, and os simultaneously using halo catalogues from the Gadget N-body simulations.
We employ the following halo properties as the initial node features: V, ¢, and Vinax. The plots illustrate the predictions of this
model when evaluated on a test set of the Gadget simulations. As it can be seen, including the additional halo properties, c,
and Vinax, significantly tightens the constraints on both €2, and os compared to the previous accuracies of the models discussed
in Section 4. We emphasize that the test set on which this model is evaluated contains halo catalogues created with random
halo particle thresholds ranging from [100, 1000], indicating that the model has marginalized over the number density of halos
per catalogue.
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Figure 11. We test the model shown in Fig. 10
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on the different N-body simulations: Abacus, CUBEP®*M, and Ramses. The
first row of plots shows the model predictions for the parameter €2, and the second row shows the predictions for og. Clearly,
the model is unable to extrapolate to the different simulations for either parameter. However, it is evident that the predictions
for Q. are closer to the truth than for os.

the different simulation codes as opposed to global halo properties such as their masses and positions. However, it
is evident that the predictions for 2, are closer to the truth than for og, as it can be seen in the plots. While this
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suggests that ,, is a more stable parameter across the different N-body codes, we do not attempt to explain these

results here.
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