Check for
Updates

Distributed MIS in O(loglogn) Awake Complexity

Fabien Dufoulon
fabien.dufoulon.cs@gmail.com
University of Houston
Houston, USA

ABSTRACT

Maximal Independent Set (MIS) is one of the fundamental and most
well-studied problems in distributed graph algorithms. Even after
four decades of intensive research, the best known (randomized)
MIS algorithms have O(log n) round complexity on general graphs
[Luby, STOC 1986] (where n is the number of nodes), while the
best known lower bound is Q(+4/log n/loglog n) [Kuhn, Moscibroda,
Wattenhofer, JACM 2016]. Breaking past the O(log n) round com-
plexity upper bound or showing stronger lower bounds have been
longstanding open problems.

Energy is a premium resource in various settings such as battery-
powered wireless networks and sensor networks. The bulk of the
energy is used by nodes when they are awake, i.e., when they are
sending, receiving, and even just listening for messages. On the
other hand, when a node is sleeping, it does not perform any com-
munication and thus spends very little energy. Several recent works
have addressed the problem of designing energy-efficient distributed
algorithms for various fundamental problems. These algorithms
operate by minimizing the number of rounds in which any node is
awake, also called the (worst-case) awake complexity. An intriguing
open question is whether one can design a distributed MIS algo-
rithm that has significantly smaller awake complexity compared
to existing algorithms. In particular, the question of obtaining a
distributed MIS algorithm with o(log n) awake complexity was left
open in [Chatterjee, Gmyr, Pandurangan, PODC 2020].

Our main contribution is to show that MIS can be computed
in awake complexity that is exponentially better compared to the
best known round complexity of O(logn) and also bypassing its
fundamental Q(+/logn/loglogn) round complexity lower bound
exponentially. Specifically, we show that MIS can be computed by
a randomized distributed (Monte Carlo) algorithm in O(loglog n)
awake complexity with high probability.! However, this algorithm
has a round complexity that is O(poly(n)). We then show how to
drastically improve the round complexity at the cost of a slight

“Part of this work was done while the author was a Post Doctoral Fellow at the
University of Houston.

IThroughout, we use “with high probability (w.h.p.)” to mean with probability at least
1-n"l

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC °23, June 19-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0121-4/23/06...$15.00
https://doi.org/10.1145/3583668.3594574

William K. Moses Jr.*
wkmjr3@gmail.com
Durham University
Durham, UK

135

Gopal Pandurangan
gopalpandurangan@gmail.com
University of Houston
Houston, USA

increase in awake complexity by presenting a randomized dis-
tributed (Monte Carlo) algorithm for MIS that, with high prob-
ability computes an MIS in O((log log n) log* n) awake complexity
and O((log® n) (log log n) log* n) round complexity. Our algorithms
work in the CONGEST model where messages of size O(log n) bits
can be sent per edge per round.

CCS CONCEPTS

» Theory of computation — Distributed algorithms; - Math-
ematics of computing — Probabilistic algorithms; Discrete
mathematics.

KEYWORDS

Maximal Independent Set, Sleeping model, energy-efficient, awake
complexity, round complexity, trade-offs

ACM Reference Format:

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan. 2023. Dis-
tributed MIS in O(loglogn) Awake Complexity. In ACM Symposium on
Principles of Distributed Computing (PODC °23), June 19-23, 2023, Orlando, FL,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3583668.
3594574

1 INTRODUCTION

1.1 Maximal Independent Set Problem

Computing the maximal independent set (MIS) is one of the funda-
mental and most well-studied problems in distributed graph algo-
rithms. Given a graph with n nodes, each node must (irrevocably)
commit to being in a subset M C V (called the MIS) or not such
that (i) every node is either in M or has a neighbor in M and (ii) no
two nodes in M are adjacent to each other.

Because of the importance of MIS, distributed algorithms for MIS
have been studied extensively for the last four decades mainly with a
focus on improving the time complexity (i.e., the number of rounds).
In 1986, Alon, Babai, and Itai [1] and Luby [33] presented a random-
ized distributed MIS algorithm that takes O(log n) rounds (n is the
number of nodes in the graph) with high probability. Since these
seminal results, there has been a lot of significant progress in recent
years in designing progressively faster distributed MIS algorithms.
For n-node graphs with maximum degree A, Ghaffari [20] presented

a randomized MIS algorithm running in O(log A) + 20 (Vloglogn)
rounds, improving over the algorithm of Barenboim, Elkin, Pettie

and Schneider [6] that runs in O(log? A) + 20 (Vleglogn) roynds.
We note that these two results assume the LOCAL model. The run
time was further improved by Rozhon and Ghaffari [39, Corollary
3.2] to O(log A + poly(loglogn)) rounds, which is currently the
best known bound for randomized algorithms in the LOCAL model.
The currently best known randomized algorithm in the CONGEST
model takes O(log Aloglogn + poly(loglog n)) rounds [21]. Thus,

https://orcid.org/0000-0003-2977-4109
https://orcid.org/0000-0002-4533-7593
https://orcid.org/0000-0001-5833-6592
https://doi.org/10.1145/3583668.3594574
https://doi.org/10.1145/3583668.3594574
https://doi.org/10.1145/3583668.3594574
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583668.3594574&domain=pdf&date_stamp=2023-06-16

PODC ’23, June 19-23, 2023, Orlando, FL, USA

the currently known best algorithms of MIS ([20, 21, 39]) are de-
pendent on A (the maximum degree), and hence still take O(log n)
rounds (even in the LOCAL model) for graphs with O(poly(n))
degree. As far as deterministic algorithms are concerned, the best
known algorithms take O(poly(logn)) rounds in the LOCAL as
well as CONGEST models [21, 39].

There are faster distributed algorithms known for special classes
of graphs such as trees [20, 32] and Erdos-Renyi random graphs [20,
30], but they still take Q(+/log n/loglogn) rounds. There are also
MIS algorithms that run faster on graphs with low arboricity, but
they nevertheless take O(log n) rounds on high arboricity graphs [5,
20].

While the above results make significant progress in the round
complexity of the MIS problem for some specific graphs, how-
ever, in general graphs, the best known running time is still
O(log n) (even for randomized algorithms and even in the LOCAL
model). Furthermore, there is a fundamental lower bound of

(. log A
Q | min

logn
loglog A**\/ loglogn
and Wattenhofer [31] that also applies to randomized algorithms

and holds even in the LOCAL model. Thus, for example, say, when
A = 2@Wlognloglogn) it follows that one cannot hope for algo-
rithms faster than +/log n/loglog n rounds. Balliu, Brandt, Hirvo-
nen, Olivetti, Rabie, and Suomela [3] showed that one cannot hope
for algorithms that run within o(A) + O(log* n) rounds for the
regimes where A < loglog n (for randomized algorithms) [3, Corol-
lary 5] and A < log n (for deterministic algorithms) [3, Corollary
6]. (See also results on an improved lower bound [4].)

) rounds due to Kuhn, Moscibroda,

1.2 Awake Complexity

Energy is a premium resource in various settings such as battery-
powered wireless networks and sensor networks. The bulk of the
energy is used by the nodes (devices) when they are “‘awake”, i.e.,
when they are sending, receiving, and even just listening for mes-
sages. It is well-known that the energy used by a node when it is
idle and just listening (waiting to hear from a neighbor) is only
slightly smaller than the energy used in a transmitting or receiving
state [18, 42]. On the other hand, the energy used in the “sleeping”
state, i.e., when a node has switched off its communication devices
and is not sending, receiving or listening, is significantly less than
in the transmitting/receiving/idle (listening) state [18, 28, 40-42]. A
node may choose to enter and exit this sleeping mode in a judicious
way to save energy during the course of an algorithm.?

There has been a lot of recent theoretical interest in designing
energy-efficient distributed algorithms for various fundamental
problems such as maximal independent set, maximal matching, col-
oring, broadcasting, spanning tree construction, breadth-first tree
construction, etc. (see e.g., [2, 7, 10-13, 15, 22]). These algorithms
operate by minimizing the number of rounds in which any node is
awake, also called the awake complexity. An intriguing question is
whether one can design distributed algorithms for various problems
that have significantly smaller awake complexity compared to exist-
ing algorithms. However, this is challenging, since a node can only

2This has been exploited by protocols to save power in ad hoc wireless networks
by switching between two states — sleeping and awake — as needed (the MAC layer
provides support for switching between these states [36, 41, 42]).

136

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

communicate with a neighboring node that is awake (note that a
sleeping node does not send or receive messages and also messages
sent to it are lost). As a result, coordinating (or scheduling) such
communication in an efficient manner (without keeping any node
awake for a long time) becomes non-trivial.

1.3 Model and Complexity Measures

Distributed Computing Model. We are given an anonymous
distributed network of n nodes, modeled as an undirected graph G =
(V,E). Each node hosts a processor with limited initial knowledge.
We assume that each node has ports (each port having a unique
port number); each incident edge is connected to one distinct port.
We assume that each node knows a common value N, a polynomial
upper bound on n.

Nodes are allowed to communicate through the edges of the
graph G and it is assumed that communication is synchronous and
occurs in rounds. In particular, we assume that each node knows the
current round number (starting from round 0). In each round, each
node can perform some local computation (which finishes in the
same round) including accessing a private source of randomness,
and can exchange messages of size O(log n) bits with each of its
neighboring nodes.

This standard model of distributed computation is called the
CONGEST model [38]. We note that our algorithms also, obviously,
apply to the LOCAL model, another standard model [38] where
there is no restriction on the size of the messages sent per edge per
round. Though the CONGEST and LOCAL models do not put any
constraint on the computational power of the nodes, our algorithms
perform only light-weight computations (each node processes only
poly(log n) bits per round and takes computation time essentially
linear in the number of bits processed).

Sleeping Model. We assume the sleeping model [13], where a
node can be in either of the two states — sleeping or awake. (At the
beginning, we assume that all nodes are awake.) This is a simple
generalization of the standard distributed computing model, where
nodes are always assumed to be awake. In the sleeping model, each
node decides to be either awake or asleep in each round (till it ter-
minates), corresponding to whether the node can receive/send mes-
sages and perform computations in that round or not, respectively.
That is, any node v can decide to sleep starting at any (specified)
round of its choice. We assume that all nodes know the correct
round number whenever they are awake. A node can wake up again
later at any specified round and enter the awake state. We note that
the model allows a node to cycle through the process of sleeping
in some round and waking up at a later round as many times as
it wants. To summarize, distributed computation in the sleeping
model proceeds in synchronous rounds and each round consists of
the following steps: (1) Each awake node can perform local com-
putation. (2) Each awake node can send a message to its adjacent
nodes. (3) Each awake node can receive messages sent to it in this
round (in the previous step) by other awake nodes.

In the sleeping model, let A, denote the number of awake rounds
for a node v before it terminates (i.e., finishes the execution of the
algorithm, locally). We define the (worst-case) awake complexity as
maxycy Ay. For a randomized algorithm, A, will be a random vari-
able and our goal is to obtain high probability bounds on the awake

Distributed MIS in O(loglogn) Awake Complexity

complexity. While the main goal is to reduce awake complexity, we
also strive to minimize the round complexity, where both, sleeping
and awake rounds, are counted.

Several recent works (see Section 1.5) have designed distributed
algorithms in the sleeping model for fundamental problems such
as MIS, approximate matching and vertex cover, spanning tree,
minimum spanning tree, coloring, and other problems [2, 7, 13, 22].

1.4 Our Contributions

In light of the difficulty in breaking the o(log n) round barrier of MIS
and the lower bound of Q(+/log n/loglog n) rounds in the standard
model (that applies even for LOCAL algorithms), as well as moti-
vated by resource considerations discussed above, a fundamental
question that we address in this paper is:

Can we design a distributed MIS algorithm with o(log n) awake
complexity?

We answer the above question in the affirmative and actually
show a much stronger bound. Our main contribution is that we
show that MIS can be computed in (worst-case) awake complexity
of O(loglogn) rounds, bypassing the Q(+/logn/loglogn) lower
bound on the round complexity in an exponentially better fashion.
Specifically, we present the following results.

(1) We first present a randomized distributed (Monte Carlo)
algorithm for MIS that with high probability computes an
MIS and has O(log log n) awake complexity.
This algorithm has round complexity that is polynomial in
n. Our bounds hold even in the CONGEST model where
messages of O(log n) bits can be sent per edge per round.

(2) We then show that we can drastically reduce the

round complexity at the cost of a slight increase in
awake complexity by presenting a randomized MIS
algorithm with O((loglogn)log*n) awake complexity
and O((log? n)(loglog n) log* n) round complexity in the
CONGEST model.

Our work answers a key question left open in [13], namely
whether one can design MIS algorithms with (even) o(log n) (worst-
case) awake complexity. We note that prior results [13, 22] pre-
sented algorithms in the sleeping model with O(log n) awake com-
plexity (see Section 1.5). Our results show that we can compute
an MIS in an awake complexity that is exponentially better com-
pared to the best known round complexity of O(log n). Since a node
spends a significant amount of energy only in its awake rounds,
our algorithms are highly energy-efficient compared to the existing
algorithms.

1.5 Related Work and Comparison

Chatterjee, Gmyr, and Pandurangan [13] posit the sleeping model
and showed that MIS in general graphs can be solved in O(1)
node-averaged awake complexity. Node-averaged awake complexity
is measured by the average number of rounds a node is awake.
They also defined worst-case awake complexity (used in this paper)
which is the worst-case number of rounds a node is awake until it
finishes the algorithm. The worst-case awake complexity of their
MIS algorithm is O(log n), while the worst-case complexity (that
includes all rounds, sleeping and awake) is O(log>*! n) rounds. An

137

PODC ’23, June 19-23, 2023, Orlando, FL, USA

important question left open in [13] is whether one can design an
MIS algorithm with o(log n) worst-case awake complexity (even in
the LOCAL model).?

Subsequently Ghaffari and Portmann [22] developed a random-
ized MIS algorithm that has worst-case awake complexity of O(log n),
round complexity of O(log n), while having O(1) node-averaged
awake complexity (all bounds hold with high probability). They also
present algorithms for (1+¢) approximation of maximum matching
and (2 + ¢) approximation of minimum vertex cover with the same
bounds on round complexity and node-averaged awake complexity.
Hourani, Pandurangan, and Robinson [25] presented randomized
MIS algorithms that have O(poly(loglogn)) awake complexity for
certain special classes of random graphs, including random geomet-
ric graphs (of arbitrary dimension). These algorithms work only in
the LOCAL model as linear (in n) sized messages need to be sent
per edge per round. This result is subsumed by the results of the
current paper.

Barenboim and Maimon [7] showed that many problems, includ-
ing broadcast, construction of a spanning tree, and leader election
can be solved deterministically in O(log n) awake complexity in the
sleeping model. They construct a spanning tree called Distributed
Layered Tree (DLT) in O(log n) awake complexity deterministically.
In this tree, broadcast and convergecast can be accomplished in
O(1) awake rounds. They also showed that fundamental symme-
try breaking problems such as MIS and (A + 1)-coloring can be
solved deterministically in O(log A + log* n) awake rounds in the
LOCAL model, where A is the maximum degree. (Note that, in gen-
eral, this can take O(logn) awake rounds when A = Q(polyn).)
Their algorithm only works in the LOCAL model (as opposed to
the CONGEST model), as it needs large-sized (polynomial number
of bits) messages to be sent over an edge. They also define the
class of O-LOCAL problems (that includes MIS and coloring), where
such a problem is one that can be solved sequentially according
to some acyclic orientation of the edges of the input graph where
the decision of a node depends on the decisions of the nodes in the
subtree rooted at it. They showed that problems in this class admit
a deterministic algorithm that runs in O(log A) awake time and
O(A?) round complexity. Maimon [34] presents trade-offs between
awake and round complexity for O-LOCAL problems.

Augustine, Moses Jr., and Pandurangan [2] give an O(logn)
awake complexity algorithm for the minimum spanning tree (MST)
problem (in the CONGEST model). They use a spanning tree con-
struction called the Labelled Distance Tree (LDT) which we also
use in our algorithm.

There is a lot of other work on energy-efficient algorithms over
the years which is too vast to survey here, and we restrict ourselves
to those that are most relevant. A relevant recent line of work is
that of Chang, Kopelowitz, Pettie, Wang, and Zhan [12] on radio
networks (see also the references therein and its follow up papers
[10, 11, 15, 16] and also much earlier work on energy efficient algo-
rithms in radio networks e.g., [26, 27, 37]). This work defines the
measure of energy complexity which is the same as (worst-case)

3In this paper, we do not focus on the node-averaged awake complexity measure, and
only focus on the (worst-case) awake complexity. However, it is fairly straightforward
to augment the algorithms of this paper so that they also give an O(1)-node averaged
complexity in addition to their (worst-case) awake complexity guarantees by using
the approach of [13].

PODC ’23, June 19-23, 2023, Orlando, FL, USA

awake complexity (i.e., both measures count only the rounds that
a node is awake). While the awake complexity used here and sev-
eral other papers [2, 7, 13, 22] assumes the usual CONGEST (or
LOCAL) communication model (and hence the model can be called
SLEEPING-CONGEST (or SLEEPING-LOCAL)), the energy complex-
ity measure used in [12] (and also papers mentioned above) has
some additional communication restrictions that pertain to radio
networks (and can be called SLEEPING-RADIO model). One impor-
tant restriction in the radio model is that nodes can only broadcast
messages (hence the same message is sent to all neighbors). Also,
collisions can occur at a listening node if two neighboring nodes
transmit simultaneously in the same round. There are a few vari-
ants depending on how collisions are handled. Energy-efficient
algorithms for several problems such as broadcast, leader election,
breadth-first search, and maximal matching have been studied in the
radio network model [10-12, 15, 16]. An interesting open problem
is whether our sub-logarithmic bounds on MIS awake complexity
can be obtained in the SLEEPING-RADIO model.

King, Phillips, Saia, and Young [28] also study a similar model
where nodes can be in two states: sleeping or awake (listening
and/or sending). They present an energy-efficient algorithm in this
model to solve a reliable broadcast problem. We also refer to the
literature on resource competitive algorithms where there is limited
energy available both to the algorithm and the (jamming) adversary
(e.g., [8, 23, 24]).

2 HIGH-LEVEL OVERVIEW AND
TECHNIQUES

The best known distributed MIS algorithms ([20, 21, 39]) in the
traditional setting suffer from a log A dependency in the round
complexity, where A is the maximum degree (see Section 1). Prior
to this work, that was also the case in the sleeping model as well.*
Rather than improve these algorithms to remove this dependency
(which appears very difficult), we improve a different algorithm: the
well-known randomized greedy MIS algorithm [9, 14, 19], a variant
of Luby’s algorithm [33].

The (sequential) randomized greedy MIS algorithm considers
nodes (of some graph G = (V, E)) in random order and adds them
to the output set unless one of their neighbors is already in it. If
01,...,0p is the random node ordering considered by the algorithm,
then it is well-known that the output is the lexicographically first
MIS (LFMIS) [14] with respect to that (random) ordering.” Fischer
and Noever [19] showed that the randomized greedy MIS can be
implemented in the (traditional) distributed computing model in
O(log n) rounds with high probability and also that this bound is
tight. On the other hand, we show that randomized greedy MIS can
be implemented in O(log log n) awake complexity. We build to this
result in three steps.

Algorithm VT-MIS. First, we give a simple awake-efficient variant
(Algorithm VT-MIS in Subsection 4.3) of the naive distributed im-
plementation of the above (sequential) algorithm. Let I be an upper
bound on the randomly chosen IDs. Then, the naive distributed

“4In particular, the algorithms of [13, 22] which had optimal O(1) rounds node-averaged
awake complexity, however, had O(log n) (worst-case) awake complexity.

5Given two (MIS) subsets X # Y of V, such that X ¢ Y and Y ¢ X, X is lexicograph-
ically smaller (with respect to that ordering) than Y if and only if the smallest differing
element between X and Y is in X.

138

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

implementation works as follows. In each round i € [1,I], all nodes
transmit whether they have joined the MIS or not to their neighbors.
After which, the node with ID i (if it exists) enters the MIS if none
of its neighbors already have. Clearly, the naive implementation
has an excessive O(I) awake complexity. However, we can reduce
the awake complexity exponentially, that is, to O(logI).

To reduce the awake complexity, we use a virtual binary tree
structure (see Subsection 4.1), similar to that of [7], to carefully
coordinate the communication between the nodes. More precisely, a
(virtual) tree with t leaves (where the same tree is locally determined
by each node using the parameter t = 21811y tells each node
in which round to be awake and communicate to its neighbors
whether it is in the MIS or not. This virtual tree ensures that for
any two neighboring nodes v, v” with id, < idy, v and v’ are both
awake in some round i that satisfies id, < i < idy. As a result,
a node needs to be awake in only O(logI) well-chosen rounds
(where logt = O(logI) is the depth of the virtual tree) to correctly
implement randomized greedy MIS. This virtual tree coordination
framework is reused in our third algorithm, AwAke-MIS, and we
believe it can be useful in general for designing awake-efficient
algorithms.

Algorithm LDT-MIS. Second, we give a more awake-efficient
variant (Algorithm LDT-MIS in Subsection 4.3) with an improved
dependency on the ID upper bound I. This improved dependency
comes into play when I is super-polynomial (or even worse) in
the number of nodes n. Having good awake complexity in this
particular scenario, which happens in AwWAKE-MIS, is crucial for
our O(loglog n) awake complexity main result.

To obtain an improved dependency on I, we use a spanning
tree structure, called a labeled distance tree (LDT), introduced in
[2] (an improvement on a similar structure, introduced previously
in [7]). Crucially, these trees can be used to broadcast and rank
nodes (i.e, assign IDs in [1,n]) in O(1) awake complexity, while
the LDT itself can be constructed in O(log n) awake complexity
deterministically [2]. Hence, one can first build a LDT and rank
the nodes in O(log n) awake complexity. Since nodes are ranked
arbitrarily, we can then have the root broadcast a uniformly random
permutation of [1,n] in O((nlogn)/logI) consecutive broadcasts
(recall that messages can be of size O(logI) = O(logn) bits, and
thus can be sent in CONGEST). Consequently, nodes obtain new
IDs in [1, n] that correspond to a uniformly random ordering. It
remains only to run Algorithm VT-MIS, which now takes O(log n)
awake complexity (due to the smaller IDs).

Algorithm AwakEe-MIS. For our main result, we use the previ-
ously described techniques as well as the following two key proper-
ties of the randomized greedy MIS algorithm. The first is the compos-
ability property. One can run the randomized greedy MIS algorithm
on the first k > 0 nodes, then run that algorithm again but on
the remaining nodes, that is, those which are not neighbors of the
first computed MIS. The union of the two computed MIS’s is the
output of the randomized greedy MIS algorithm on G. The second
is the residual sparsity property — stated formally in Lemma 2 in
Subsection 3.3 — which shows that after processing the first k nodes
in the random ordering, the degree of the residual graph (i.e., the
subgraph induced by the rest of the nodes minus the neighbors

Distributed MIS in O(loglogn) Awake Complexity

of MIS nodes among the first k nodes) is reduced (essentially) to
O(n/k) with high probability.

In Algorithm AwAKE-MIS (described in Section 5), nodes are
partitioned into O(log? n) batches. More precisely, each node picks
a pair (i, j) € [1,£] x [1,2A”] with some well-chosen probabilities,
where £ = O(logn) and A’ = O(log n) are two parameters. To com-
pute the MIS, we consider batches sequentially in phases (according
to the lexicographical ordering). During the first “communication”
round of each phase, nodes inform their neighbors whether they
are already in the MIS or not. Moreover, just as in VI-MIS, nodes
use a virtual binary tree structure to coordinate in which of these
rounds to be awake or to sleep. (Hence, any given node is awake
for at most O(log log n) communication rounds.) For the remaining
rounds of some phase (i, j), nodes of batch (i, j) with no neighbors
already in the MIS run Algorithm LDT-MIS to compute an MIS over
the batch’s nodes. Crucially, we show that the subgraph induced
by the nodes running Algorithm LDT-MIS is shattered: that is, it
consists only of O(log n)-sized components with high probability.
Hence, nodes run LDT-MIS using O(loglog n) awake complexity
only. (Here, it is important that the second term of LDT-MIS, caused
by the CONGEST bandwidth, adds up to O(loglogn).) From this,
it is easy to see that Algorithm Awake-MIS has O(loglog n) awake
complexity.

However, how do we ensure that the subgraph induced by the
nodes running Algorithm LDT-MIS is shattered? First, we adjust
the probabilities that nodes choose a given (batch) pair to ensure
that the first 2A’ batches contain with high probability half as
many nodes as the next 2A’, and so on. Hence, by the residual
sparsity property, the subgraph induced by the nodes (with no
MIS neighbors) within any of these collections of 2A” batches has
small O(log n) degree. (In fact, we must first use the composability
property to show that the MIS computed throughout all previous
phases is the output of randomized greedy MIS on the nodes in all
previous batches.) Furthermore, nodes within any such collection
independently and uniformly chose any of the 2A” batches. Hence,
for each node, the expected number of neighbors (themselves with
no MIS neighbors) is less than 1/2. In this case, a simple branching
process argument — stated formally in Lemma 3 in Subsection 3.4
— shows that the subgraph induced by a given batch’s nodes (with
no MIS neighbors) is shattered.

3 PRELIMINARIES: NOTATION AND
RANDOMIZED TECHNIQUES

3.1 Notation

For any subset V/ C V,let G[V’] denote the subgraph of G induced
by V’. For any node v, let N(v) denote the union of v and the set of
its neighbors. Similarly, for any set of vertices V/ C V, let N(V”)
denote the union of V’ and the set of neighbors of any node in
V’. For any two integers i and j, [i, j] is used to denote the set

{i,.. ik
3.2 Chernoff Bounds

The following Chernoff bounds [35] are used in the later sections,
where the second bound is obtained by applying the inequality
In(1+6) > (26)/(2 + 8) to Theorem 4.4 (Inequality 1) in [35].

139

PODC ’23, June 19-23, 2023, Orlando, FL, USA

Lemma 1. LetXj,..., X} be independent Bernoulli random variables

with parameter p. Then,
2

5%k

e Forany0 < < 1,Pr[2f:1Xi < (1-98)pk] < e_Tp,
8%k

e Foranyé > 0, Pr[Zi.(:1 Xi = (1+6)pk] < e T

3.3 Sequential Randomized Greedy MIS

The sequential randomized greedy MIS algorithm processes each
node in a sequential but random order. Each node is added to the
output set if it is not a neighbor of a node already in that set. It is
well-known that this algorithm outputs the lexicographically first
MIS (LFMIS), with respect to the random node ordering.

Given a random node ordering v;, vy, . . ., v, Lemma 2 — a slight
generalization of Lemma 1 in [29] — shows that after the first t nodes
(according to the node ordering) are processed by the sequential
randomized greedy order MIS, the maximum degree of the subgraph
induced by the remaining nodes among the first t’ > t nodes (those
which have not been added, nor are neighbors of an already added
node) has decreased (almost) linearly in ¢. In fact, the lemma is
more general. For example, it applies to distributed algorithms that
compute the LFMIS over the subgraph induced by the first ¢ nodes,
according to the random node ordering mentioned above.

Lemma 2. Let t,t’ be two integers such that 1 < t < t’ < n.
Let V; denote the (set of the) first t nodes, Vy the (set of the) first
' nodes and My the LEMIS over G[V;]. Then, for any constant ¢ >
0, G[Vy \ N(M;)] has maximum degree at most %’ln(n/s) with
probability at least 1 — «.

Proor. Note that (Vi \ N(M;)) C {vt41,...,0r }. We show that,
with probability at least 1 —¢/n, for any j € [t +1,#’], either v; has
degree at most % In(n/e) in G[Vy \ N(M;)] or vj € N(M;). The
lemma statement holds by a union bound (over j).

Let j € [t + 1,t’]. We apply the principle of deferred decisions
[35]. More precisely, we first fix (the random choice of) which node
is in position j — that is, vj. After which, we fix (the random choices
of) which nodes are in position 1 to ¢ sequentially — that is, v; to
v. For any integer i € [1,t], let V; denote the first i (fixed) nodes
and M; be the LFMIS over G[V;]. Additionally, let U; = (N(vj) N
Vi) \ N(Mj—1) and d; = |Uj|. Then, Pr[v; € U; | vj,01,...,0i-1] >

ey e

The sequence (d;)je[1,] is decreasing. If d; < t—t' In(n/¢), then
0 has degree at most t—t/ln(n/e) in G[Vp \ N(M;)]. Otherwise,
d; > éln(n/s). Then, Pr[Vi < t,o; ¢ U; | vj] < [—[f:1 Prlv; ¢
Ui | ojo1,..,0i-1] < [T, (1 - %) < (1- %)’ < e Ft o<
e~ n(n/€) < ¢/n. In other words, there exists i € [1,] such that
v; € U; with probability at least 1 — ¢/n. In which case, since M;
is the LEMIS over G[V;], v; € M;. Thus, v; € M; and v; € N(M;)
(with probability at least 1 — ¢/n). O

3.4 Simple Graph Shattering

Consider some n-node graph H with maximum degree A and parti-
tion the nodes into 2A sets uniformly at random. More precisely,
each node is in set Uj, for any j € [1, 2A], with probability 1/(2A).
Then, a simple branching process argument implies that the cor-
responding induced subgraphs H[U;] are “shattered”: that is, they

PODC ’23, June 19-23, 2023, Orlando, FL, USA

are composed of small O(log n)-sized connected components with
high probability.

Lemma 3. Forany j € [1,2A], the connected components of H[Uj]
are of size at most 6 In(n/¢) with probability at least 1 — ¢.

Proor. For any j € [1,2A], consider some node v € Uj. (If
|Uj| = 0, the lemma statement obviously holds.) We assume, by the
principle of deferred decisions, that v is the only initially revealed
node of U; (and for all other nodes, we do not know whether they
are in U; or not) and we find out which nodes are in U; through a
BFS search (over H[Uj] only) starting at 0. In more detail, the BFS
queue initially consists only of v. In the first step, v is dequeued
and for each unrevealed neighbor w € N(v), we reveal whether
w is in Uj. For each such w € N(v), if w € U; then w is added to
the queue. Once all neighbors have been revealed, the first step is
done. Subsequent steps are executed similarly, but with that step’s
dequeued node, until the queue is empty. Importantly, the number
of steps executed before the queue is empty is the size C(v) of
the connected component of H[Uj;] containing v. Moreover, it is
a random variable that depends on each revealed node — that is,
whether that revealed node is in U; or not. Finally, each unrevealed
node w, once revealed, is in U; with probability at most ﬁ.

The above (BFS search) randomized process is hard to analyze
since a node dequeued in some step k might have neighbors that
were revealed in previous steps. Instead, we consider an easier-
to-analyze but related randomized process: BFS on a branching
process. Let the number of nodes in the queue at the start of step
k > 0 be denoted by A;. Initially, there is a single node in the
queue — that is, Ag = 1. Subsequently, for any step k > 1, Ay =
Aj_1—1+4Y), where the random variables (Y) are independent
and binomially distributed with parameters A, the total number
of events, and ﬁ, the probability of each event being successful.
Then, the size of this randomized process is C’ = min{k > 0 | A; =
0}. Importantly, C’ dominates the random variable C(v) — that
is, Pr[C(v) > k] < Pr[C’ > k] for any positive integer k. By the
definition of C’, Pr[C’ > k] = Pr[A; > 0,...,Ax > 0] < Pr[A >
0] < Pr[Ap + Z{.Czl Y; > k] = Pr[Z{le Y; > k]. Note that since the
Y; are independent binomially distributed random variables (with
parameters A and ﬁ), Z{f:l Y; is the sum of kA Bernoulli random
variables with parameter i and thus E[Z{le Y;] = k/2. Hence,
by the Chernoff bound (see Lemma 1), Pr[Z]lF:1 Y; 2 k)] < ek,
Consequently, Pr[C’ > 6In(n/¢)] < ¢/n for any constant ¢ > 0.
Since C’ dominates C(v), Pr[C(v) > 6In(n/¢)] < ¢/n. By union
bound over all connected components of H[Uj] (of which there are
at most n), the lemma statement holds. o

4 AUXILIARY PROCEDURES
4.1 The Virtual Binary Tree Technique

We provide a virtual binary tree construction similar to that in
[7]. Let i be an integer, provided as a parameter. The virtual (full)
binary tree B([1,i]) has depth d = [logi] and thus y = 24+l _
nodes. These nodes are labeled with integers in [1,y] according
to an in-order tree traversal. See Figure 1 (left). Given B([1,1i]),
we can define the more convenient node-labeled (full) binary tree
B*([1,1i]) as follows. The tree structure is the same, but the node

140

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

labels of B*([1, i]) are obtained by applying g(x) = |x/2] +1 to the
node labels of B([1,i]). Using B8*([1, i]), we define, for any integer
k € [1,i], a communication set Si.([1,i]) of d integers in [1,i], as
follows: S ([1,1]) consists of the labels of all ancestors of the leaf
node labeled k in 8*([1, i]). See Figure 1 (right).

8
/\
4 12
/ \ / N\
2 6 10 14
JANVAN 9/\ /\

1 3 5 7 9 11 13 15 1 2 3

Figure 1: Binary tree $([1,6]) on the left and binary tree
B*([1,6]) on the right. S3([1, 6]) consists of the dotted circle
and rectangle nodes’ labels and S5([1, 6]) of the (non-dotted)
circle and rectangle nodes’ labels. Note that 5 € S3([1,6]) N
S5([1,6]) and 3 <5 < 6.

These sets have the following property (see Observation 2 below):
for any integers k,k’ € [1,i] such that k < k’, there exists an
integer r in both S ([1,i]) and S/ ([1,i]) such that k < r < k’.
Informally, we later use the sets S ([1,i]) to decide when nodes
with IDs in [1, i] are awake or asleep. The above property allows
us to decide, for any two nodes, on a common round in which they
are guaranteed to be awake simultaneously (and thus communicate
with each other). Remember that in rounds in which nodes are not
awake simultaneously, any message sent between two neighboring
nodes is lost if any one of them is asleep.

Observation 1. For any positive integers k, i such that1 < k < i,
ISk ([1,1D] < [log].

Observation 2. For any positive integers k,k’, i such that 1 < k <
k’ < i, there exists an integer r € Si.([1,i]) N Sk ([1,1]) such that
k<r<k.

Proor. Let the lowest common ancestor node in 8%([1,i]) of
the leaves labeled k and k’ be labeled with r’. Then, according to
the definition of a communication set, r’ is in both S ([1,i]) and
Sgr ([1, i]). Moreover, note that the corresponding nodes in 8([1, i])
are the internal (lowest common ancestor) node labeled 2(r" — 1)
and the leaf nodes labeled 2k — 1 and 2k’ — 1. By the property of
the in-order tree traversal, 2k — 1 < 2(r’ — 1) < 2k’ — 1. Hence,
k <r’—1/2 <k’.Since r’ and k’ are integers, k < r’ < k’. o

4.2 Labeled Distance Trees

For any V/ C V where G[V’] is connected, a labeled distance iree
(introduced in [2]) is an oriented node labeled spanning tree over
G[V’] rooted at some node r € V’. Each node’s label is its distance
to r in the spanning tree. (Note that the distance to r in the span-
ning tree may be much larger than that in G.) In the distributed
implementation, the LDT satisfies the following properties: (i) all
nodes in the tree know the ID of r, called the ID of the LDT, (ii) each
node knows its depth in the tree (i.e., the hop-distance from itself
to the root of the tree via tree edges), and (iii) each node knows the

Distributed MIS in O(loglogn) Awake Complexity

IDs of its parent and children, if any, in the LDT. If a given graph
is disconnected, one can compute a disjoint set of such LDTs, one
per connected component, which we refer to as a forest of labeled
distance trees (FLDT).

Multiple distributed LDT construction algorithms (both random-
ized and deterministic) are presented in [2]. We are interested in
their two deterministic construction algorithms, which give dif-
ferent guarantees. The first lemma below captures the worst-case
awake and round complexities of their first construction algorithm:
Algorithm LDT-CoNSTRUCT-AWAKE. On the other hand, the second
lemma captures the properties of a distributed LDT construction
algorithm (Algorithm LDT-ConsTRUCT-ROUND) with faster round
complexity but larger awake complexity; Corollary 1 of [2] states
such an algorithm exists, and we give a full construction procedure
in the full version of this paper [17].

Lemma 4 (Theorem 2, [2]). For any connected V' C V of at most
n’ nodes with unique IDs in [1,1], where n’ and I are known to all
nodes, LDT-CONSTRUCT-AWAKE deterministically constructs an LDT
over G[V'] with O(logn’) awake complexity, O(n’Ilogn’) round
complexity and O(logI) bit messages.

Lemma 5. For any connected V' C V of at mostn’ nodes, wheren’ is
known to all nodes, with unique IDs in [1, I|, LDT-CONSTRUCT-ROUND
deterministically constructs an LDT over G[V’] withO((logn”) log* I)
awake complexity, O(n’ (log n’) log™ I) round complexity and O(log I)
bit messages.

Next, we define two operations over a labeled distance tree.

DEFINITION 1. For any connected V' C V and an LDT spanning
V' CV:
o The broadcast operation consists of sending the root’s (input)
message, denoted by my, to all of the LDT’s nodes.
o The ranking operation consists of having the nodes of V' com-
pute a total ordering — more precisely, each node knows its
rank in the ordering — as well as the size |V’|.

[2] provides a distributed algorithm for broadcasting over an
LDT (see Observation 2 in [2]). A distributed algorithm for ranking
over an LDT is presented in the full version of this paper [17]. The
properties of these two algorithms are captured by the following
lemma.

Lemma 6. For any LDT over at most n’ nodes, wheren’ is known
to all nodes, with unique IDs in [1,I], broadcast and ranking can be
executed deterministically with O(1) awake complexity, O(n") round
complexity and the size of the messages are O(|m,|) bits and O(logI)
bits respectively.

4.3 Simple Awake-Efficient MIS Algorithms

We provide two simple deterministic distributed lexicographically
first MIS (LFMIS) algorithms with good awake complexity. Note
that it is important for our main result (see Section 5) that these
algorithms compute the LFMIS rather than any arbitrary MIS.
The first algorithm (VT-MIS) runs in O(log I) awake time, where
I is an upper bound on the nodes’ IDs, and illustrates how to use
the virtual binary tree technique (see Section 4.1). At a high-level,
VT-MIS is an awake-efficient version of the naive distributed imple-
mentation of sequential greedy MIS. Recall that the naive algorithm

141

PODC ’23, June 19-23, 2023, Orlando, FL, USA

runs in I rounds, and in the ith round, the node with ID i (if it exists)
communicates with all neighbors to check if any neighbor with
smaller ID is already in the MIS. If not, it joins the MIS. Although
VT-MIS also has poor O(I) round complexity, its O(logI) awake
complexity is exponentially smaller.

The second algorithm (LDT-MIS) runs in O(log n’) awake time,
where n’ is the number of nodes. Of particular interest to us is when
log n’ may be much smaller than the length of the node’s IDs. This
naturally happens if LDT-MIS is run on a subgraph obtained after
shattering a much larger graph (e.g., with exponentially more nodes
n) whose nodes had unique IDs. At a high-level, we compute labeled
distance trees, then the root computes n’ and assigns uniformly
random and small enough O(log n’)-length IDs to each node, all
in O(logn”) awake time. All nodes then compute the LEFMIS using
VT-MIS and these new IDs in O(log n’) awake time.

VT-MIS: MIS in O(log I) awake time. We assume nodes are given
unique IDs in [1,I], for some known value I. Initially, each node
starts in the undecided state and computes the virtual binary tree
B*([1,1]) locally (for the description, see Subsection 4.1). Then,
nodes compute the LFMIS in I rounds. In round r, the node that
has ID r as well as all nodes u for which r € S;g ([1,1]) wake up —
where S;4 ([1,1]) is the communication set defined using 8*([1,1]),
see Figure 2 for an example. Intuitively, the additional nodes wake
up to communicate information on their state (i.e., undecided, in
MIS or not in MIS), and the use of communication sets results in
low awake time. All awake nodes send their state to all neighbors.
Any awake undecided node that learns one of its neighbors is in
the MIS sets its state to “not in MIS”. If the node with ID r remains
undecided despite the received messages, then it joins the MIS and
sets its state to “in MIS”.

Lemma 7. VT-MIS computes the LFMIS with O(logI) awake com-
plexity, O(I) round complexity and O(log I) bit messages.

Proor. We first prove the correctness. The main difference with
the naive distributed implementation of sequential greedy MIS is
that here, in any round r € [1,I], not all nodes may be awake and
thus the node v with ID r may be unaware that one of its neighbors
is already in the MIS. However, by Observation 2, there exists for
any node u with ID r’ < r, a round r* such that r’ < r* < r
and both u and v are awake in r*. Since u can only decide to join
the MIS in round r’ by the algorithm’s definition, u successfully
communicates whether it joins the MIS or not to v in round r*. It
follows that VT-MIS implements sequential greedy MIS, and thus
correctly computes an LFMIS.

As for the awake complexity, note that by Observation 1, each
communication set of 8*([1,I]) is of size O(log I). Since each node
u is only awake in rounds r € S;g ([1,I]), each node is awake for
O(logI) rounds. O

LDT-MIS: MIS in O(logn’) awake time. We assume that each
node knows the value n’, an upper bound on the number of nodes
of the connected subgraph to which the node belongs. We also
assume that the (at most) n’ nodes are given unique IDs in [1,I],
for some known value I (where I may be exponentially larger than
n’), and that messages can contain up to O(logI) bits. First, all
nodes participate in the construction of an LDT. (The correctness
is guaranteed by the fact that all nodes know the same bound n’.)

PODC ’23, June 19-23, 2023, Orlando, FL, USA

(b) S5([1,6]) consists of the circle nodes’ labels.

Figure 2: For the example, consider I = 6 and two nodes u,v
with IDs 3 and 5 respectively. Node u is awake in rounds 3, 4
and 5 and v is awake in rounds 5 and 6 (but not in round 7,
since there are only I rounds). It can be seen that u commu-
nicates whether it has joined the MIS to v in round 5.

Second, all nodes participate in an operation to (i) compute the exact
number of nodes n’” in the LDT, and (ii) allow each node to know its
rank in a given total ordering of the nodes. Third, the root of the LDT
locally computes a uniformly random permutation of [1,n”’] and
broadcasts it in O((n’ logn’)/logI) consecutive broadcasts over
the LDT. (In each broadcast, we can transmit O(logI) bits of the
total O(n’’ log n’’) bits. Once all of these bits have been transmitted,
“null” messages are sent for the remaining broadcasts, if any.) Each
node uses its previously computed rank to retrieve its ID in the
permutation. Finally, all nodes run VI-MIS using these smaller IDs.

Lemma 8. LDT-MIS computes an LFMIS with respect to some uni-
formly random node ordering, and not to the ID-based ordering,
with O(logn’ + (n’ logn”) /log I) awake complexity, O(n'Ilogn’ +
((n")?logn’)/logI) round complexity and O(logI) bit messages.

Proor. First, note that LDT-MIS implements (sequential) ran-
domized greedy MIS. Indeed, constructing the LDT, computing n’
and sending down smaller IDs is simply equivalent to computing
a uniformly random node ordering on the n’ nodes. After which,
VT-MIS implements sequential greedy MIS with respect to that
order by Lemma 7.

Now we prove the rest of the lemma statement. Constructing
the LDT takes O(logn’) awake complexity, O(n’Ilogn’) round
complexity and O(logI) bit messages (by Lemma 4). The ranking
operation takes O(1) awake complexity, O(n’) round complexity,
and O(log I) bit messages (by Lemma 6). The O((n’ logn’)/logI)
consecutive broadcasts used to transmit the permutation chosen
by the root (at most O(n’ logn’) bits), via messages of O(logI)
bits, take altogether O((n’logn’)/logI) awake complexity and
O(((n")?logn’)/logI) round complexity (by Lemma 6). Finally,
computing the LFMIS (via VI-MIS) with respect to the new node

142

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

ordering (from the new IDs in [1, n’]) takes O(log n’) awake com-
plexity, O(n’) round complexity, and O(logn’) = O(log I) bit mes-
sages. i

By replacing the awake efficient LDT construction (Algorithm
LDT-CoNSTRUCT-AWAKE) with the round efficient one (Algorithm
LDT-ConsTRUCT-ROUND, whose properties are described in Lemma
5), we obtain a round efficient version of LDT-MIS, which we call
LDT-MIS-ROUND. Its properties — a faster round complexity but
larger awake complexity than LDT-MIS — are formally stated in
the following corollary.

Corollary 1. LDT-MIS-ROUND computes an LFMIS with respect
to some uniformly random node ordering with O((logn’) log* I +

(n" log n") [log I) awake complexity, O((n’ log n’) log* I+((n’)?log n’) /logI)

round complexity and O(logI) bit messages.

5 RANDOMIZED GREEDY MIS IN O(loglogn)
AWAKE ROUNDS

We present our main result: an O(log log n) awake complexity ran-
domized MIS algorithm. We first give a high-level description. Al-
gorithm AwAKE-MIS computes the lexicographically first MIS, with
respect to some uniformly random ordering, in “batches”. More pre-
cisely, the LFMIS is computed over the first ¢ nodes, then over the
next t’ nodes, and so on. To (energy efficiently) ensure all batches
know which nodes (of prior batches) are in the MIS, we coordinate
communication using the virtual binary tree technique with only
O(loglog n) awake complexity. Moreover, by batching nodes we
can leverage the following “graph shattering” property: the sub-
graph induced by the yet undecided nodes within each batch can
be decomposed into small O(log n)-sized connected components.
Finally, for each such component, it suffices to run LDT-MIS from
Section 4 to compute the LEMIS with respect to a uniformly random
ordering (of the component’s nodes) in O(loglog n) awake time.

Description of AWAKE-MIS. Let £ = [logn — loglogn] and A’ =
O(log n) be some parameters decided in the analysis. The output
variable state takes value in {undecided, inMIS, notinMIS}. The
MIS problem is said to be solved if all nodes have chosen a state in
{inMIS, notinMIS} and the set of all nodes with the inMIS output
forms an MIS.

Initially, each node starts in the “undecided” state. Moreover, each
node v € V picks a pair p(v) = (i, j) € [1,£] X [1,2A’] at random
(but not uniformly) which decides what batch the node falls in—that
batch is denoted by B; j. Batches are ordered via lexicographical
order (of the pairs). Next, we describe precisely how nodes choose
a batch. Each node chooses i € [1,¢ — 1] with probability (10 -
2'logn)/n and i = ¢ with the remaining probability. Moreover,
each node chooses j € [1,2A’] uniformly at random, that is, with
probability 1/(2A%).

After the batches have been decided, there are 2¢A” = O(log? n)
phases. (The number of rounds per phase is determined in the
analysis, allowing some nodes to sleep through the phase.) In each
phase (i, j) € [1,£] X [1,2A’], the first communication round is
used to update which of the batch’s nodes have a neighbor in the
MIS. (Let g : [1,£] X [1,2A] + [1,2£A’] be the natural bijection
that preserves lexicographic order.) In more detail, node v € V is
awake if g(i, j) € Sy(p(0)) ([1, 2¢A’]), and is asleep otherwise—see

Distributed MIS in O(loglogn) Awake Complexity

Subsection 4.1 for the formal definition of the communication set
Sg(p(v)) (11, 2¢A\’]) and Subsection 4.3 for an example. Awake nodes
send their state to their neighbors. At the end of the round, awake
nodes that received a inMIS message from a neighboring node
set their state to notInMIS (thus becoming decided). After which,
the remaining rounds are used by all undecided batch nodes (i.e.,
with p(v) = (i, j) and in the “undecided” state) to execute LDT-MIS
described in Subsection 4.3. (In the analysis, we show that w.h.p.,
the remaining rounds are sufficient for this algorithm to terminate.)

Algorithm 1 Awake-MIS for node v

1: Input: n
2: v chooses i € [1,£] with probability (10 - 2/ logn)/n and j € [1,2A’] with
probability 1/(2A”)
3: p(v) := (i,), state, := undecided
: for phase p = 1to 2¢A’ do
/ For the first (communication) round:
5: if p e Sg(P(,,))([l,zt’A’]) then
participate

'S

/ Nodes with g(p(v)) # p can also

6: if state, = undecided then
7: Listen for one round
8: if v receives an “in MIS” message then state, := notinMIS
9: else Send state, to all neighbors
10: else Sleep for one round

// For the next O(poly(n) (log n) loglog n) rounds:
11: if p # g(p(v)) or state, # undecided then Sleep for the remainder of
the phase
else

12: state, = LDT-MIS()

Analysis of AWAKE-MIS. Next, we show correctness and com-
plexity bounds of AwAKE-MIS. Note that we assume nodes know
n exactly (or at least some constant factor approximation) in the
above description and below analysis for clarity. This assumption
can be removed through straightforward changes, so that nodes
can use instead a polynomial upper bound N on n.

Theorem 1. MIS can be solved (w.h.p.) in O(loglog n) awake com-
plexity and O(poly(n)) round complexity in CONGEST.

PRrOOF. Let us start with some notations. For any (i, j) € [1,£] X
[1,2A’], denote by V; ; the union of all batches up to, and includ-
ing, batch (i, j), and for any i € [1,¢], let V; = V;oas. Then, we
bound the size of V; for any i € [1,¢]. Recall that each node is
in V; independently and with probability Z;{Zl (10 -2k logn)/n =
(10(2™*! — 1) log n) /n. Hence, by linearity of expectation, E[|V;|] =
10(25*1 — 1) log n. After which, we apply the Chernoff bound (for
the two tails, see Lemma 1) with § = 1/2: Pr[|V;] > 15(2/*! —
1) logn] < exp(—(10(2*1 — 1) logn)/10) and Pr[|V;] < 5(2%*1 —
1)logn] < exp(—(10(2*1 - 1) logn)/8). Thus, by union bound,
5(21 — 1) logn < |Vi| < 15(28*1 = 1) log n holds with probability
at least 1 — 1/n3.

Second, we show by induction that by the end of phase (i, j) €
[1, £] x[1, 2A"], the algorithm has computed the LEMIS over G[V;]
with respect to a uniformly random ordering of V; ; and with prob-
ability at least 1 — 1/n. Consider the base case. During the first
phase, different connected components Cy, . ..,Cy of G[V71] run
independent LDT-MIS executions. Given the upper bound on V;
shown above, these components are of size O(log n) with probabil-
ity at least 1 — 1/n3. By setting the number of rounds within the
first phase accordingly — to O(poly(n)(log n) loglog n) rounds —
all LDT-MIS executions terminate. Thus, by Lemma 8, the output

143

PODC ’23, June 19-23, 2023, Orlando, FL, USA

of LDT-MIS for each component Cj, is an LFMIS with respect to
a uniformly random node ordering (of Cj,), which we denote My,.
Note that M = U’;l:l My, is exactly the set of nodes with state inMIS
when the first phase ends. Clearly, M is an MIS since two nodes
from different connected components are non-adjacent. It remains
to show that M is also a LFMIS with respect to a uniformly random
ordering of V; 1. Consider the following node ordering. First, pick
some node w uniformly at random among all |V; 1| nodes and then
choose the first node of the ordering uniformly at random among
all nodes of the component w belongs to. Next, pick some node w’
uniformly at random among the remaining |V; 1| — 1 nodes and then
choose the second node of the ordering uniformly at random among
all nodes in the component w” belongs to (excluding the first node
in the ordering). Repeat this process until all nodes in V; 1 have
been ordered. It is straightforward to show that this node ordering
is a uniformly random ordering of V; ;. Moreover, two nodes u, v
from different components are not connected in G[V; 1] and thus
whether u is ordered before v (or inversely) does not influence the
resulting LFMIS over G[V;,1]. Hence, M is the LFMIS over G[V1]
with respect to that uniformly random ordering of V; 1, concluding
the base case.

Now, consider some phase (i, j) # (1,1) and assume that the in-
duction hypothesis holds for the (lexicographically) previous phase
(i’, j/). By the induction hypothesis, the algorithm has computed
the LFMIS M’ over G[Vy j] with respect to some uniformly random
order of Vi j» by the end of phase (i’, j’). Since Vi j» = V; j \ By,
the induction step follows if we show that the algorithm computes
a LEMIS over G[B; j] with respect to a uniformly random ordering
ofB;.“’j, where B:.‘J. are the nodes of B; ; with no neighbors in M”. To
do so, we first note that nodes know whether they are in B;.k’ ; ornot
by the end of the communication round of phase (i, j). This can be
shown using properties of the communication sets (as in the proof
of Lemma 7). In the remainder of the phase, different connected
components Cy, ..., Gy of G[B} j] run independent LDT-MIS ex-
ecutions. If i = 1, then just as in the base case, these connected
components have size O(log n) with probability at least 1 — 1/n3,
and thus O(poly(n)(logn) loglogn) rounds are sufficient for the
LDT-MIS executions to terminate with probability at least 1 — 1/n>.
Otherwise, if i > 1, let M;_1 be the MIS computed by the end of
phase (i — 1,2A’). Due to the induction hypothesis, we can apply
Lemma 2 and thus G[V; \ N(M;-1)] has maximum degree upper

bounded by % In(n*) with probability at least 1—1/n>. Using the
above bounds on V; and V;_1, this is at most 9 In(n*). By choosing
A’ = 91n(n*) (and using the principle of deferred decisions), Lemma
3 implies that G[B;; \ N(M;-1)] consists of small O(log n)-sized
connected components with probability at least 1 —1/n3. Given that
Bij C Bi; \ N(Mi-1), G[B;.:] also consists of small O(log n)-sized
connected components with probability at least 1 — 1/n3. And thus,
O(poly(n)(logn) loglog n) rounds are sufficient for the LDT-MIS
executions to terminate with probability at least 1 — 1/n>. Next, we
point out that one can show, using an argument similar to that of
the base case, that the union M”’ of the computed MIS—which is
exactly the set of nodes whose state becomes inMIS during phase
(i, j)—is a LFMIS with respect to a uniformly random order of B} -

Moreover, it is straightforward to extend this ordering of B} jto

PODC ’23, June 19-23, 2023, Orlando, FL, USA

a uniformly random order of V; ;, as long as all nodes in B; ; are
ordered after those in Vj» j-. (In which case, no matter how some
node z € B j \ BZ]. is ordered, z is not in the LFMIS.) Consequently,
when phase (i, j) ends, the set M’ UM is a LEMIS over G[V; ;] with
respect to some uniformly random order of V; ; with probability at
least 1 — 1/n? and the induction step follows. (Note that the error
probability of all induction steps added together is at most 1/n.)
To conclude, we note that all communication is done through
O(log n) bit messages, and in particular the communication within
the LDT-MIS calls. Next, we upper bound the awake complexity.
Each node v € V is awake for at most O(loglogn) communica-
tion rounds over all O(log? n) phases. Moreover, within s chosen
phase p(v), recall that the subgraph induced by the awake nodes
is composed of O(log n)-sized connected components with high
probability. Then, by Lemma 8, v is awake for at most O(loglogn +
((logn) loglog n)/log n) = O(loglog n) rounds (w.h.p.) during the
LDT-MIS execution. Finally, a simple modification of LDT-MIS lim-
iting the number of rounds a node can be awake to O(loglogn)
(where the precise value can be obtained from the analysis and the
desired error probability) implies any failure affects correctness
rather than the awake complexity. Therefore, the awake complexity
of AWAKE-MIS is (deterministically) upper bounded by O(log log n).
As for the round complexity, the above analysis implies that each
phase takes O(poly(n)(logn) loglog n) rounds. Hence, the algo-
rithm’s round complexity is O(poly(n)). |

By using the more round efficient LDT-MIS-ROUND (see Corol-
lary 1) instead of LDT-MIS, an MIS can be computed with a signifi-
cantly better round complexity, but at the cost of a small O(log* n)
overhead to the awake complexity.

Corollary 2. MIS can be solved (w.h.p.) in O((loglogn)log* n)
awake complexity and
O((log® n)(loglog n) log* n) round complexity in CONGEST.

Proor. When using LDT-MIS-ROUND instead of LDT-MIS, phases
of O((log n)(loglog n) log* n) rounds suffice (see Corollary 1). O

6 CONCLUSION

In this paper, we show that the fundamental MIS problem on gen-
eral graphs can be solved in O(loglogn) awake complexity, i.e.,
the worst-case number of awake (non-sleeping) rounds taken by
all nodes is O(loglogn). This is the first such result that we are
aware of where we can obtain even a o(log n) bound on the awake
complexity for MIS. A long-standing open question is whether a
similar bound (i.e., 0 (log n)) can be shown for the round complexity.

Several open problems arise from our work. An important one
is determining whether one can improve the awake complexity
bound of O(loglogn), or showing that is optimal by showing a
lower bound. Another one is whether one can obtain an O(log log n)
awake complexity MIS algorithm that has O(log n) round complex-
ity. More generally, can one obtain good trade-offs between awake
and round complexity of MIS?

Finally, it would be useful to design algorithms for other sym-
metry breaking problems such as maximal matching, coloring, etc.,
that have better awake complexity compared to the traditional
round complexity.

144

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

ACKNOWLEDGMENTS

F. Dufoulon was supported in part by NSF grants CCF-1540512,
11S-1633720, and CCF-1717075 and BSF grant 2016419. W. K. Moses
Jr. was supported in part by NSF grants CCF-1540512, IIS-1633720,
and CCF-1717075 and BSF grant 2016419. G. Pandurangan was
supported in part by NSF grants CCF-1540512, IIS-1633720, and
CCF-1717075 and BSF grant 2016419.

REFERENCES

[1] Noga Alon, Laszlé Babai, and Alon Itai. 1986. A fast and simple randomized
parallel algorithm for the maximal independent set problem. Journal of Algorithms
7, 4 (1986), 567-583.
[2] John Augustine, William K. Moses Jr., and Gopal Pandurangan. 2022. Brief
Announcement: Distributed MST Computation in the Sleeping Model: Awake-
Optimal Algorithms and Lower Bounds. Proceedings of the 41st ACM Symposium
on Principles of Distributed Computing (PODC) (2022), 51-53. Full version available
on arXiv: https://arxiv.org/abs/2204.08385.
Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaél Rabie,
and Jukka Suomela. 2019. Lower Bounds for Maximal Matchings and Maximal
Independent Sets. In IEEE FOCS. 481-497.
Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2021. Improved
Distributed Lower Bounds for MIS and Bounded (Out-)Degree Dominating Sets
in Trees. In PODC °21: ACM Symposium on Principles of Distributed Computing.
ACM, 283-293.
Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS
algorithm for sparse graphs using Nash-Williams decomposition. Distributed
Comput. 22, 5-6 (2010), 363-379.
Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016. The
Locality of Distributed Symmetry Breaking. Journal of the ACM 63, 3, Article 20
(June 2016), 45 pages. Conference version: IEEE FOCS 2012.
Leonid Barenboim and Tzalik Maimon. 2021. Deterministic Logarithmic Com-
pleteness in the Distributed Sleeping Model. In 35th International Symposium on
Distributed Computing, DISC, Vol. 209. 10:1-10:19.
Michael A. Bender, Jeremy T. Fineman, Mahnush Movahedi, Jared Saia, Varsha
Dani, Seth Gilbert, Seth Pettie, and Maxwell Young. 2015. Resource-Competitive
Algorithms. SIGACT News 46, 3 (2015), 57-71.
Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy Sequen-
tial Maximal Independent Set and Matching Are Parallel on Average. In ACM
Symposiumon Parallelism in Algorithms and Architectures (SPAA). 308-317.
Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and
Seth Pettie. 2018. The Energy Complexity of Broadcast. In ACM PODC. 95-104.
Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie. 2020. The Energy
Complexity of BFS in Radio Networks. In ACM PODC. 273-282.
Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. 2019.
Exponential Separations in the Energy Complexity of Leader Election. ACM
Trans. Algorithms 15, 4 (2019), 49:1-49:31. Conference version: ACM STOC 2017..
Soumyottam Chatterjee, Robert Gmyr, and Gopal Pandurangan. 2020. Sleeping
is Efficient: MIS in O(1)-rounds Node-averaged Awake Complexity. In ACM
Symposium on Principles of Distributed Computing, PODC. 99-108.
Don Coppersmith, Prabhakar Raghavan, and Martin Tompa. 1989. Parallel graph
algorithms that are efficient on average. Information and Computation 81, 3 (1989),
318-333.
Varsha Dani, Aayush Gupta, Thomas P. Hayes, and Seth Pettie. 2021. Wake
up and Join Me! an Energy-Efficient Algorithm for Maximal Matching in Radio
Networks. In 35th International Symposium on Distributed Computing (DISC).
19:1-19:14.
Varsha Dani and Thomas P. Hayes. 2022. How to Wake up Your Neighbors: Safe
and Nearly Optimal Generic Energy Conservation in Radio Networks. In 36th
International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022,
Augusta, Georgia, USA (LIPIcs, Vol. 246), Christian Scheideler (Ed.). 16:1-16:22.
Fabien Dufoulon, William K Moses Jr., and Gopal Pandurangan. 2022. Sleeping
is Superefficient: MIS in Exponentially Better Awake Complexity. arXiv preprint
arXiv:2204.08359 (2022).
Laura Marie Feeney and Martin Nilsson. 2001. Investigating the energy consump-
tion of a wireless network interface in an ad hoc networking environment. In
IEEE INFOCOM, Vol. 3. 1548-1557.
Manuela Fischer and Andreas Noever. 2018. Tight Analysis of Parallel Random-
ized Greedy MIS. In SODA. 2152-2160.
Mohsen Ghaffari. 2016. An Improved Distributed Algorithm for Maximal Inde-
pendent Set. In SODA. 270-277.
Mohsen Ghaffari, Christoph Grunau, and Vaclav Rozhon. 2021. Improved Deter-
ministic Network Decomposition. In Proceedings of the 2021 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA. 2904-2923.

3

4

[10

[11

[12

[13

[15

[16]

[17

(18]

[19

[20

Distributed MIS in O(loglogn) Awake Complexity

[22]

[23]

[24

[26]

[27

[28

[29]
[30]

[31]

Mohsen Ghaffari and Julian Portmann. 2022. Average Awake Complexity of MIS
and Matching. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 45-55.

Seth Gilbert, Valerie King, Seth Pettie, Ely Porat, Jared Saia, and Maxwell Young.
2014. (Near) optimal resource-competitive broadcast with jamming. In 26th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, Prague,
Czech Republic - June 23 - 25, 2014, Guy E. Blelloch and Peter Sanders (Eds.). ACM,
257-266.

Seth Gilbert and Maxwell Young. 2012. Making evildoers pay: resource-
competitive broadcast in sensor networks. In ACM Symposium on Principles
of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18, 2012,
Darek Kowalski and Alessandro Panconesi (Eds.). ACM, 145-154.

Khalid Hourani, Gopal Pandurangan, and Peter Robinson. 2022. Awake-Efficient
Distributed Algorithms for Maximal Independent Set. In IEEE Conference on
Distributed Computing Systems (ICDCS). 1338-1339.

Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski. 2002. Efficient
algorithms for leader election in radio networks. In Proceedings of the Twenty-
First Annual ACM Symposium on Principles of Distributed Computing, PODC 2002,
Monterey, California, USA, July 21-24, 2002, Aleta Ricciardi (Ed.). ACM, 51-57.
Marcin Kardas, Marek Klonowski, and Dominik Pajak. 2013. Energy-Efficient
Leader Election Protocols for Single-Hop Radio Networks. In 42nd International
Conference on Parallel Processing, ICPP 2013, Lyon, France, October 1-4, 2013. IEEE
Computer Society, 399-408.

Valerie King, Cynthia A. Phillips, Jared Saia, and Maxwell Young. 2011. Sleeping
on the Job: Energy-Efficient and Robust Broadcast for Radio Networks. Algorith-
mica 61, 3 (2011), 518-554.

Christian Konrad. 2018. MIS in the Congested Clique Model in O (loglog A)
Rounds. arXiv preprint arXiv:1802.07647 (2018).

K. Krzywdzinski and K. Rybarczyk. 2015. Distributed algorithms for random
graphs. Theoretical Computer Science 605 (2015), 95-105.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2016. Local Com-
putation: Lower and Upper Bounds. Journal of the ACM 63, 2, Article 17 (2016),

PODC ’23, June 19-23, 2023, Orlando, FL, USA

44 pages.

Christoph Lenzen and Roger Wattenhofer. 2011. MIS on trees. In ACM PODC.
41-48.

Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent
Set Problem. SIAM J. Comput. 15, 4 (1986), 1036-1053. Conference version: ACM
STOC 1985.

Tzalik Maimon. 2021. Sleeping Model: Local and Dynamic Algorithms.
arXiv:2112.05344

Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: random-
ization and probabilistic techniques in algorithms and data analysis. Cambridge
university press.

Chebiyyam Siva Ram Murthy and Balakrishnan Manoj. 2004. Ad Hoc Wireless
Networks: Architectures and Protocols. Prentice Hall PTR, USA.

Koji Nakano and Stephan Olariu. 2000. Randomized Leader Election Protocols in
Radio Networks with No Collision Detection. In Algorithms and Computation,
11th International Conference, ISAAC 2000, Taipei, Taiwan, December 18-20, 2000,
Proceedings (Lecture Notes in Computer Science, Vol. 1969), D. T. Lee and Shang-Hua
Teng (Eds.). Springer, 362-373.

David Peleg. 2000. Distributed Computing: A Locality-sensitive Approach. Society
for Industrial and Applied Mathematics.

Vaclav Rozhon and Mohsen Ghaffari. 2020. Polylogarithmic-time deterministic
network decomposition and distributed derandomization. In 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC. 350-363.

Qin Wang, Mark Hempstead, and Woodward Yang. 2006. A Realistic Power
Consumption Model for Wireless Sensor Network Devices. In The Third Annual
IEEE Communications Society on Sensor and Ad Hoc Communications and Networks
(SECON *06, Vol. 1). 286-295.

Ou Yang and Wendi Heinzelman. 2013. An Adaptive Sensor Sleeping Solution
Based on Sleeping Multipath Routing and Duty-Cycled MAC Protocols. ACM
Transactions on Sensor Networks 10, 1 (2013).

Rong Zheng and Robin Kravets. 2005. On-demand power management for ad
hoc networks. Ad Hoc Networks 3, 1 (2005), 51-68.

https://arxiv.org/abs/2112.05344

	Abstract
	1 Introduction
	1.1 Maximal Independent Set Problem
	1.2 Awake Complexity
	1.3 Model and Complexity Measures
	1.4 Our Contributions
	1.5 Related Work and Comparison

	2 High-level Overview and Techniques
	3 Preliminaries: Notation and Randomized Techniques
	3.1 Notation
	3.2 Chernoff Bounds
	3.3 Sequential Randomized Greedy MIS
	3.4 Simple Graph Shattering

	4 Auxiliary Procedures
	4.1 The Virtual Binary Tree Technique
	4.2 Labeled Distance Trees
	4.3 Simple Awake-Efficient MIS Algorithms

	5 Randomized Greedy MIS in O(log log n) Awake Rounds
	6 Conclusion
	Acknowledgments
	References

