
Distributed MIS in 𝑂 (log log𝑛) Awake Complexity
Fabien Dufoulon

fabien.dufoulon.cs@gmail.com

University of Houston

Houston, USA

William K. Moses Jr.
∗

wkmjr3@gmail.com

Durham University

Durham, UK

Gopal Pandurangan

gopalpandurangan@gmail.com

University of Houston

Houston, USA

ABSTRACT

Maximal Independent Set (MIS) is one of the fundamental and most

well-studied problems in distributed graph algorithms. Even after

four decades of intensive research, the best known (randomized)

MIS algorithms have 𝑂 (log𝑛) round complexity on general graphs

[Luby, STOC 1986] (where 𝑛 is the number of nodes), while the

best known lower bound is Ω(
√︁
log𝑛/log log𝑛) [Kuhn, Moscibroda,

Wattenhofer, JACM 2016]. Breaking past the 𝑂 (log𝑛) round com-

plexity upper bound or showing stronger lower bounds have been

longstanding open problems.

Energy is a premium resource in various settings such as battery-

powered wireless networks and sensor networks. The bulk of the

energy is used by nodes when they are awake, i.e., when they are

sending, receiving, and even just listening for messages. On the

other hand, when a node is sleeping, it does not perform any com-

munication and thus spends very little energy. Several recent works

have addressed the problem of designing energy-efficient distributed

algorithms for various fundamental problems. These algorithms

operate by minimizing the number of rounds in which any node is

awake, also called the (worst-case) awake complexity. An intriguing

open question is whether one can design a distributed MIS algo-

rithm that has significantly smaller awake complexity compared

to existing algorithms. In particular, the question of obtaining a

distributed MIS algorithm with 𝑜 (log𝑛) awake complexity was left

open in [Chatterjee, Gmyr, Pandurangan, PODC 2020].

Our main contribution is to show that MIS can be computed

in awake complexity that is exponentially better compared to the

best known round complexity of 𝑂 (log𝑛) and also bypassing its

fundamental Ω(
√︁
log𝑛/log log𝑛) round complexity lower bound

exponentially. Specifically, we show that MIS can be computed by

a randomized distributed (Monte Carlo) algorithm in 𝑂 (log log𝑛)
awake complexity with high probability.

1
However, this algorithm

has a round complexity that is 𝑂 (poly(𝑛)). We then show how to

drastically improve the round complexity at the cost of a slight

∗
Part of this work was done while the author was a Post Doctoral Fellow at the

University of Houston.

1
Throughout, we use “with high probability (w.h.p.)” to mean with probability at least

1 − 𝑛−1
.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’23, June 19–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0121-4/23/06. . . $15.00

https://doi.org/10.1145/3583668.3594574

increase in awake complexity by presenting a randomized dis-

tributed (Monte Carlo) algorithm for MIS that, with high prob-

ability computes an MIS in 𝑂 ((log log𝑛) log∗ 𝑛) awake complexity

and𝑂 ((log3 𝑛) (log log𝑛) log∗ 𝑛) round complexity. Our algorithms

work in the CONGEST model where messages of size𝑂 (log𝑛) bits
can be sent per edge per round.

CCS CONCEPTS

• Theory of computation → Distributed algorithms; •Math-

ematics of computing → Probabilistic algorithms; Discrete

mathematics.

KEYWORDS

Maximal Independent Set, Sleeping model, energy-efficient, awake

complexity, round complexity, trade-offs

ACM Reference Format:

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan. 2023. Dis-

tributed MIS in 𝑂 (log log𝑛) Awake Complexity. In ACM Symposium on

Principles of Distributed Computing (PODC ’23), June 19–23, 2023, Orlando, FL,

USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3583668.

3594574

1 INTRODUCTION

1.1 Maximal Independent Set Problem

Computing the maximal independent set (MIS) is one of the funda-

mental and most well-studied problems in distributed graph algo-

rithms. Given a graph with 𝑛 nodes, each node must (irrevocably)

commit to being in a subset 𝑀 ⊆ 𝑉 (called the MIS) or not such

that (i) every node is either in𝑀 or has a neighbor in𝑀 and (ii) no

two nodes in𝑀 are adjacent to each other.

Because of the importance of MIS, distributed algorithms for MIS

have been studied extensively for the last four decadesmainlywith a

focus on improving the time complexity (i.e., the number of rounds).

In 1986, Alon, Babai, and Itai [1] and Luby [33] presented a random-

ized distributed MIS algorithm that takes 𝑂 (log𝑛) rounds (𝑛 is the

number of nodes in the graph) with high probability. Since these

seminal results, there has been a lot of significant progress in recent

years in designing progressively faster distributed MIS algorithms.

For𝑛-node graphs with maximum degree Δ, Ghaffari [20] presented

a randomized MIS algorithm running in 𝑂 (logΔ) + 2
𝑂 (

√
log log𝑛)

rounds, improving over the algorithm of Barenboim, Elkin, Pettie

and Schneider [6] that runs in 𝑂 (log2 Δ) + 2
𝑂 (

√
log log𝑛)

rounds.

We note that these two results assume the LOCAL model. The run

time was further improved by Rozhon and Ghaffari [39, Corollary

3.2] to 𝑂 (logΔ + poly(log log𝑛)) rounds, which is currently the

best known bound for randomized algorithms in the LOCALmodel.

The currently best known randomized algorithm in the CONGEST

model takes 𝑂 (logΔ log log𝑛 + poly(log log𝑛)) rounds [21]. Thus,

135

https://orcid.org/0000-0003-2977-4109
https://orcid.org/0000-0002-4533-7593
https://orcid.org/0000-0001-5833-6592
https://doi.org/10.1145/3583668.3594574
https://doi.org/10.1145/3583668.3594574
https://doi.org/10.1145/3583668.3594574
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583668.3594574&domain=pdf&date_stamp=2023-06-16

PODC ’23, June 19–23, 2023, Orlando, FL, USA Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

the currently known best algorithms of MIS ([20, 21, 39]) are de-

pendent on Δ (the maximum degree), and hence still take 𝑂 (log𝑛)
rounds (even in the LOCAL model) for graphs with 𝑂 (poly(𝑛))
degree. As far as deterministic algorithms are concerned, the best

known algorithms take 𝑂 (poly(log𝑛)) rounds in the LOCAL as

well as CONGEST models [21, 39].

There are faster distributed algorithms known for special classes

of graphs such as trees [20, 32] and Erdos-Renyi random graphs [20,

30], but they still take Ω(
√︁
log𝑛/log log𝑛) rounds. There are also

MIS algorithms that run faster on graphs with low arboricity, but

they nevertheless take𝑂 (log𝑛) rounds on high arboricity graphs [5,
20].

While the above results make significant progress in the round

complexity of the MIS problem for some specific graphs, how-

ever, in general graphs, the best known running time is still

𝑂 (log𝑛) (even for randomized algorithms and even in the LOCAL

model). Furthermore, there is a fundamental lower bound of

Ω

(
min

{
logΔ

log logΔ ,

√︂
log𝑛

log log𝑛

})
rounds due to Kuhn, Moscibroda,

and Wattenhofer [31] that also applies to randomized algorithms

and holds even in the LOCAL model. Thus, for example, say, when

Δ = 2
Ω (
√
log𝑛 log log𝑛)

, it follows that one cannot hope for algo-

rithms faster than

√︁
log𝑛/log log𝑛 rounds. Balliu, Brandt, Hirvo-

nen, Olivetti, Rabie, and Suomela [3] showed that one cannot hope

for algorithms that run within 𝑜 (Δ) + 𝑂 (log∗ 𝑛) rounds for the
regimes where Δ ≪ log log𝑛 (for randomized algorithms) [3, Corol-

lary 5] and Δ ≪ log𝑛 (for deterministic algorithms) [3, Corollary

6]. (See also results on an improved lower bound [4].)

1.2 Awake Complexity

Energy is a premium resource in various settings such as battery-

powered wireless networks and sensor networks. The bulk of the

energy is used by the nodes (devices) when they are “awake”, i.e.,

when they are sending, receiving, and even just listening for mes-

sages. It is well-known that the energy used by a node when it is

idle and just listening (waiting to hear from a neighbor) is only

slightly smaller than the energy used in a transmitting or receiving

state [18, 42]. On the other hand, the energy used in the “sleeping”

state, i.e., when a node has switched off its communication devices

and is not sending, receiving or listening, is significantly less than

in the transmitting/receiving/idle (listening) state [18, 28, 40–42]. A

node may choose to enter and exit this sleeping mode in a judicious

way to save energy during the course of an algorithm.
2

There has been a lot of recent theoretical interest in designing

energy-efficient distributed algorithms for various fundamental

problems such as maximal independent set, maximal matching, col-

oring, broadcasting, spanning tree construction, breadth-first tree

construction, etc. (see e.g., [2, 7, 10–13, 15, 22]). These algorithms

operate by minimizing the number of rounds in which any node is

awake, also called the awake complexity. An intriguing question is

whether one can design distributed algorithms for various problems

that have significantly smaller awake complexity compared to exist-

ing algorithms. However, this is challenging, since a node can only

2
This has been exploited by protocols to save power in ad hoc wireless networks

by switching between two states — sleeping and awake — as needed (the MAC layer

provides support for switching between these states [36, 41, 42]).

communicate with a neighboring node that is awake (note that a

sleeping node does not send or receive messages and also messages

sent to it are lost). As a result, coordinating (or scheduling) such

communication in an efficient manner (without keeping any node

awake for a long time) becomes non-trivial.

1.3 Model and Complexity Measures

Distributed Computing Model. We are given an anonymous

distributed network of𝑛 nodes, modeled as an undirected graph𝐺 =

(𝑉 , 𝐸). Each node hosts a processor with limited initial knowledge.

We assume that each node has ports (each port having a unique

port number); each incident edge is connected to one distinct port.

We assume that each node knows a common value 𝑁 , a polynomial

upper bound on 𝑛.

Nodes are allowed to communicate through the edges of the

graph 𝐺 and it is assumed that communication is synchronous and

occurs in rounds. In particular, we assume that each node knows the

current round number (starting from round 0). In each round, each

node can perform some local computation (which finishes in the

same round) including accessing a private source of randomness,

and can exchange messages of size 𝑂 (log𝑛) bits with each of its

neighboring nodes.

This standard model of distributed computation is called the

CONGESTmodel [38]. We note that our algorithms also, obviously,

apply to the LOCAL model, another standard model [38] where

there is no restriction on the size of the messages sent per edge per

round. Though the CONGEST and LOCAL models do not put any

constraint on the computational power of the nodes, our algorithms

perform only light-weight computations (each node processes only

poly(log𝑛) bits per round and takes computation time essentially

linear in the number of bits processed).

Sleeping Model. We assume the sleeping model [13], where a

node can be in either of the two states — sleeping or awake. (At the

beginning, we assume that all nodes are awake.) This is a simple

generalization of the standard distributed computing model, where

nodes are always assumed to be awake. In the sleeping model, each

node decides to be either awake or asleep in each round (till it ter-

minates), corresponding to whether the node can receive/send mes-

sages and perform computations in that round or not, respectively.

That is, any node 𝑣 can decide to sleep starting at any (specified)

round of its choice. We assume that all nodes know the correct

round number whenever they are awake. A node can wake up again

later at any specified round and enter the awake state. We note that

the model allows a node to cycle through the process of sleeping

in some round and waking up at a later round as many times as

it wants. To summarize, distributed computation in the sleeping

model proceeds in synchronous rounds and each round consists of

the following steps: (1) Each awake node can perform local com-

putation. (2) Each awake node can send a message to its adjacent

nodes. (3) Each awake node can receive messages sent to it in this

round (in the previous step) by other awake nodes.

In the sleeping model, let𝐴𝑣 denote the number of awake rounds

for a node 𝑣 before it terminates (i.e., finishes the execution of the

algorithm, locally). We define the (worst-case) awake complexity as

max𝑣∈𝑉 𝐴𝑣 . For a randomized algorithm, 𝐴𝑣 will be a random vari-

able and our goal is to obtain high probability bounds on the awake

136

Distributed MIS in𝑂 (log log𝑛) Awake Complexity PODC ’23, June 19–23, 2023, Orlando, FL, USA

complexity. While the main goal is to reduce awake complexity, we

also strive to minimize the round complexity, where both, sleeping

and awake rounds, are counted.

Several recent works (see Section 1.5) have designed distributed

algorithms in the sleeping model for fundamental problems such

as MIS, approximate matching and vertex cover, spanning tree,

minimum spanning tree, coloring, and other problems [2, 7, 13, 22].

1.4 Our Contributions

In light of the difficulty in breaking the𝑜 (log𝑛) round barrier ofMIS

and the lower bound of Ω(
√︁
log𝑛/log log𝑛) rounds in the standard

model (that applies even for LOCAL algorithms), as well as moti-

vated by resource considerations discussed above, a fundamental

question that we address in this paper is:

Can we design a distributed MIS algorithm with 𝑜 (log𝑛) awake
complexity?

We answer the above question in the affirmative and actually

show a much stronger bound. Our main contribution is that we

show that MIS can be computed in (worst-case) awake complexity

of 𝑂 (log log𝑛) rounds, bypassing the Ω(
√︁
log𝑛/log log𝑛) lower

bound on the round complexity in an exponentially better fashion.

Specifically, we present the following results.

(1) We first present a randomized distributed (Monte Carlo)

algorithm for MIS that with high probability computes an

MIS and has 𝑂 (log log𝑛) awake complexity.

This algorithm has round complexity that is polynomial in

𝑛. Our bounds hold even in the CONGEST model where

messages of 𝑂 (log𝑛) bits can be sent per edge per round.

(2) We then show that we can drastically reduce the

round complexity at the cost of a slight increase in

awake complexity by presenting a randomized MIS

algorithm with 𝑂 ((log log𝑛) log∗ 𝑛) awake complexity

and 𝑂 ((log3 𝑛) (log log𝑛) log∗ 𝑛) round complexity in the

CONGEST model.

Our work answers a key question left open in [13], namely

whether one can design MIS algorithms with (even) 𝑜 (log𝑛) (worst-
case) awake complexity. We note that prior results [13, 22] pre-

sented algorithms in the sleeping model with 𝑂 (log𝑛) awake com-

plexity (see Section 1.5). Our results show that we can compute

an MIS in an awake complexity that is exponentially better com-

pared to the best known round complexity of𝑂 (log𝑛). Since a node
spends a significant amount of energy only in its awake rounds,

our algorithms are highly energy-efficient compared to the existing

algorithms.

1.5 Related Work and Comparison

Chatterjee, Gmyr, and Pandurangan [13] posit the sleeping model

and showed that MIS in general graphs can be solved in 𝑂 (1)
node-averaged awake complexity. Node-averaged awake complexity

is measured by the average number of rounds a node is awake.

They also defined worst-case awake complexity (used in this paper)

which is the worst-case number of rounds a node is awake until it

finishes the algorithm. The worst-case awake complexity of their

MIS algorithm is 𝑂 (log𝑛), while the worst-case complexity (that

includes all rounds, sleeping and awake) is𝑂 (log3.41 𝑛) rounds. An

important question left open in [13] is whether one can design an

MIS algorithm with 𝑜 (log𝑛) worst-case awake complexity (even in

the LOCAL model).
3

Subsequently Ghaffari and Portmann [22] developed a random-

izedMIS algorithm that hasworst-case awake complexity of𝑂 (log𝑛),
round complexity of 𝑂 (log𝑛), while having 𝑂 (1) node-averaged
awake complexity (all bounds hold with high probability). They also

present algorithms for (1+𝜀) approximation of maximummatching

and (2 + 𝜀) approximation of minimum vertex cover with the same

bounds on round complexity and node-averaged awake complexity.

Hourani, Pandurangan, and Robinson [25] presented randomized

MIS algorithms that have 𝑂 (poly(log log𝑛)) awake complexity for

certain special classes of random graphs, including random geomet-

ric graphs (of arbitrary dimension). These algorithms work only in

the LOCAL model as linear (in 𝑛) sized messages need to be sent

per edge per round. This result is subsumed by the results of the

current paper.

Barenboim and Maimon [7] showed that many problems, includ-

ing broadcast, construction of a spanning tree, and leader election

can be solved deterministically in𝑂 (log𝑛) awake complexity in the

sleeping model. They construct a spanning tree called Distributed

Layered Tree (DLT) in𝑂 (log𝑛) awake complexity deterministically.

In this tree, broadcast and convergecast can be accomplished in

𝑂 (1) awake rounds. They also showed that fundamental symme-

try breaking problems such as MIS and (Δ + 1)-coloring can be

solved deterministically in 𝑂 (logΔ + log
∗ 𝑛) awake rounds in the

LOCAL model, where Δ is the maximum degree. (Note that, in gen-

eral, this can take 𝑂 (log𝑛) awake rounds when Δ = Ω(poly𝑛).)
Their algorithm only works in the LOCAL model (as opposed to

the CONGEST model), as it needs large-sized (polynomial number

of bits) messages to be sent over an edge. They also define the

class of O-LOCAL problems (that includes MIS and coloring), where

such a problem is one that can be solved sequentially according

to some acyclic orientation of the edges of the input graph where

the decision of a node depends on the decisions of the nodes in the

subtree rooted at it. They showed that problems in this class admit

a deterministic algorithm that runs in 𝑂 (logΔ) awake time and

𝑂 (Δ2) round complexity. Maimon [34] presents trade-offs between

awake and round complexity for O-LOCAL problems.

Augustine, Moses Jr., and Pandurangan [2] give an 𝑂 (log𝑛)
awake complexity algorithm for the minimum spanning tree (MST)

problem (in the CONGEST model). They use a spanning tree con-

struction called the Labelled Distance Tree (LDT) which we also

use in our algorithm.

There is a lot of other work on energy-efficient algorithms over

the years which is too vast to survey here, and we restrict ourselves

to those that are most relevant. A relevant recent line of work is

that of Chang, Kopelowitz, Pettie, Wang, and Zhan [12] on radio

networks (see also the references therein and its follow up papers

[10, 11, 15, 16] and also much earlier work on energy efficient algo-

rithms in radio networks e.g., [26, 27, 37]). This work defines the

measure of energy complexity which is the same as (worst-case)

3
In this paper, we do not focus on the node-averaged awake complexity measure, and

only focus on the (worst-case) awake complexity. However, it is fairly straightforward

to augment the algorithms of this paper so that they also give an𝑂 (1)-node averaged
complexity in addition to their (worst-case) awake complexity guarantees by using

the approach of [13].

137

PODC ’23, June 19–23, 2023, Orlando, FL, USA Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

awake complexity (i.e., both measures count only the rounds that

a node is awake). While the awake complexity used here and sev-

eral other papers [2, 7, 13, 22] assumes the usual CONGEST (or

LOCAL) communication model (and hence the model can be called

SLEEPING-CONGEST (or SLEEPING-LOCAL)), the energy complex-

ity measure used in [12] (and also papers mentioned above) has

some additional communication restrictions that pertain to radio

networks (and can be called SLEEPING-RADIO model). One impor-

tant restriction in the radio model is that nodes can only broadcast

messages (hence the same message is sent to all neighbors). Also,

collisions can occur at a listening node if two neighboring nodes

transmit simultaneously in the same round. There are a few vari-

ants depending on how collisions are handled. Energy-efficient

algorithms for several problems such as broadcast, leader election,

breadth-first search, andmaximalmatching have been studied in the

radio network model [10–12, 15, 16]. An interesting open problem

is whether our sub-logarithmic bounds on MIS awake complexity

can be obtained in the SLEEPING-RADIO model.

King, Phillips, Saia, and Young [28] also study a similar model

where nodes can be in two states: sleeping or awake (listening

and/or sending). They present an energy-efficient algorithm in this

model to solve a reliable broadcast problem. We also refer to the

literature on resource competitive algorithms where there is limited

energy available both to the algorithm and the (jamming) adversary

(e.g., [8, 23, 24]).

2 HIGH-LEVEL OVERVIEW AND

TECHNIQUES

The best known distributed MIS algorithms ([20, 21, 39]) in the

traditional setting suffer from a logΔ dependency in the round

complexity, where Δ is the maximum degree (see Section 1). Prior

to this work, that was also the case in the sleeping model as well.
4

Rather than improve these algorithms to remove this dependency

(which appears very difficult), we improve a different algorithm: the

well-known randomized greedy MIS algorithm [9, 14, 19], a variant

of Luby’s algorithm [33].

The (sequential) randomized greedy MIS algorithm considers

nodes (of some graph 𝐺 = (𝑉 , 𝐸)) in random order and adds them

to the output set unless one of their neighbors is already in it. If

𝑣1, . . . , 𝑣𝑛 is the random node ordering considered by the algorithm,

then it is well-known that the output is the lexicographically first

MIS (LFMIS) [14] with respect to that (random) ordering.
5
Fischer

and Noever [19] showed that the randomized greedy MIS can be

implemented in the (traditional) distributed computing model in

𝑂 (log𝑛) rounds with high probability and also that this bound is

tight. On the other hand, we show that randomized greedy MIS can

be implemented in𝑂 (log log𝑛) awake complexity. We build to this

result in three steps.

AlgorithmVT-MIS. First, we give a simple awake-efficient variant

(Algorithm VT-MIS in Subsection 4.3) of the naive distributed im-

plementation of the above (sequential) algorithm. Let 𝐼 be an upper

bound on the randomly chosen IDs. Then, the naive distributed

4
In particular, the algorithms of [13, 22] which had optimal𝑂 (1) rounds node-averaged
awake complexity, however, had𝑂 (log𝑛) (worst-case) awake complexity.

5
Given two (MIS) subsets𝑋 ≠ 𝑌 of𝑉 , such that𝑋 ⊈ 𝑌 and 𝑌 ⊈ 𝑋 ,𝑋 is lexicograph-

ically smaller (with respect to that ordering) than𝑌 if and only if the smallest differing

element between 𝑋 and 𝑌 is in 𝑋 .

implementation works as follows. In each round 𝑖 ∈ [1, 𝐼], all nodes
transmit whether they have joined the MIS or not to their neighbors.

After which, the node with ID 𝑖 (if it exists) enters the MIS if none

of its neighbors already have. Clearly, the naive implementation

has an excessive 𝑂 (𝐼) awake complexity. However, we can reduce

the awake complexity exponentially, that is, to 𝑂 (log 𝐼).
To reduce the awake complexity, we use a virtual binary tree

structure (see Subsection 4.1), similar to that of [7], to carefully

coordinate the communication between the nodes. More precisely, a

(virtual) tree with 𝑡 leaves (where the same tree is locally determined

by each node using the parameter 𝑡 = 2
⌈log 𝐼 ⌉

) tells each node

in which round to be awake and communicate to its neighbors

whether it is in the MIS or not. This virtual tree ensures that for

any two neighboring nodes 𝑣, 𝑣 ′ with 𝑖𝑑𝑣 < 𝑖𝑑𝑣′ , 𝑣 and 𝑣
′
are both

awake in some round 𝑖 that satisfies 𝑖𝑑𝑣 < 𝑖 ⩽ 𝑖𝑑𝑣′ . As a result,

a node needs to be awake in only 𝑂 (log 𝐼) well-chosen rounds

(where log 𝑡 = 𝑂 (log 𝐼) is the depth of the virtual tree) to correctly

implement randomized greedy MIS. This virtual tree coordination

framework is reused in our third algorithm, Awake-MIS, and we

believe it can be useful in general for designing awake-efficient

algorithms.

Algorithm LDT-MIS. Second, we give a more awake-efficient

variant (Algorithm LDT-MIS in Subsection 4.3) with an improved

dependency on the ID upper bound 𝐼 . This improved dependency

comes into play when 𝐼 is super-polynomial (or even worse) in

the number of nodes 𝑛. Having good awake complexity in this

particular scenario, which happens in Awake-MIS, is crucial for

our 𝑂 (log log𝑛) awake complexity main result.

To obtain an improved dependency on 𝐼 , we use a spanning

tree structure, called a labeled distance tree (LDT), introduced in

[2] (an improvement on a similar structure, introduced previously

in [7]). Crucially, these trees can be used to broadcast and rank

nodes (i.e, assign IDs in [1, 𝑛]) in 𝑂 (1) awake complexity, while

the LDT itself can be constructed in 𝑂 (log𝑛) awake complexity

deterministically [2]. Hence, one can first build a LDT and rank

the nodes in 𝑂 (log𝑛) awake complexity. Since nodes are ranked

arbitrarily, we can then have the root broadcast a uniformly random

permutation of [1, 𝑛] in 𝑂 ((𝑛 log𝑛)/log 𝐼) consecutive broadcasts
(recall that messages can be of size 𝑂 (log 𝐼) = 𝑂 (log𝑛) bits, and
thus can be sent in CONGEST). Consequently, nodes obtain new

IDs in [1, 𝑛] that correspond to a uniformly random ordering. It

remains only to run Algorithm VT-MIS, which now takes 𝑂 (log𝑛)
awake complexity (due to the smaller IDs).

Algorithm Awake-MIS. For our main result, we use the previ-

ously described techniques as well as the following two key proper-

ties of the randomized greedy MIS algorithm. The first is the compos-

ability property. One can run the randomized greedy MIS algorithm

on the first 𝑘 > 0 nodes, then run that algorithm again but on

the remaining nodes, that is, those which are not neighbors of the

first computed MIS. The union of the two computed MIS’s is the

output of the randomized greedy MIS algorithm on 𝐺 . The second

is the residual sparsity property — stated formally in Lemma 2 in

Subsection 3.3 — which shows that after processing the first 𝑘 nodes

in the random ordering, the degree of the residual graph (i.e., the

subgraph induced by the rest of the nodes minus the neighbors

138

Distributed MIS in𝑂 (log log𝑛) Awake Complexity PODC ’23, June 19–23, 2023, Orlando, FL, USA

of MIS nodes among the first 𝑘 nodes) is reduced (essentially) to

𝑂 (𝑛/𝑘) with high probability.

In Algorithm Awake-MIS (described in Section 5), nodes are

partitioned into𝑂 (log2 𝑛) batches. More precisely, each node picks

a pair (𝑖, 𝑗) ∈ [1, ℓ] × [1, 2Δ′] with some well-chosen probabilities,

where ℓ = 𝑂 (log𝑛) and Δ′ = 𝑂 (log𝑛) are two parameters. To com-

pute the MIS, we consider batches sequentially in phases (according

to the lexicographical ordering). During the first “communication”

round of each phase, nodes inform their neighbors whether they

are already in the MIS or not. Moreover, just as in VT-MIS, nodes

use a virtual binary tree structure to coordinate in which of these

rounds to be awake or to sleep. (Hence, any given node is awake

for at most𝑂 (log log𝑛) communication rounds.) For the remaining

rounds of some phase (𝑖, 𝑗), nodes of batch (𝑖, 𝑗) with no neighbors

already in the MIS run Algorithm LDT-MIS to compute an MIS over

the batch’s nodes. Crucially, we show that the subgraph induced

by the nodes running Algorithm LDT-MIS is shattered: that is, it

consists only of 𝑂 (log𝑛)-sized components with high probability.

Hence, nodes run LDT-MIS using 𝑂 (log log𝑛) awake complexity

only. (Here, it is important that the second term of LDT-MIS, caused

by the CONGEST bandwidth, adds up to 𝑂 (log log𝑛).) From this,

it is easy to see that Algorithm Awake-MIS has𝑂 (log log𝑛) awake
complexity.

However, how do we ensure that the subgraph induced by the

nodes running Algorithm LDT-MIS is shattered? First, we adjust

the probabilities that nodes choose a given (batch) pair to ensure

that the first 2Δ′
batches contain with high probability half as

many nodes as the next 2Δ′
, and so on. Hence, by the residual

sparsity property, the subgraph induced by the nodes (with no

MIS neighbors) within any of these collections of 2Δ′
batches has

small 𝑂 (log𝑛) degree. (In fact, we must first use the composability

property to show that the MIS computed throughout all previous

phases is the output of randomized greedy MIS on the nodes in all

previous batches.) Furthermore, nodes within any such collection

independently and uniformly chose any of the 2Δ′
batches. Hence,

for each node, the expected number of neighbors (themselves with

no MIS neighbors) is less than 1/2. In this case, a simple branching

process argument — stated formally in Lemma 3 in Subsection 3.4

— shows that the subgraph induced by a given batch’s nodes (with

no MIS neighbors) is shattered.

3 PRELIMINARIES: NOTATION AND

RANDOMIZED TECHNIQUES

3.1 Notation

For any subset𝑉 ′ ⊆ 𝑉 , let𝐺 [𝑉 ′] denote the subgraph of𝐺 induced

by𝑉 ′
. For any node 𝑣 , let 𝑁 (𝑣) denote the union of 𝑣 and the set of

its neighbors. Similarly, for any set of vertices 𝑉 ′ ⊆ 𝑉 , let 𝑁 (𝑉 ′)
denote the union of 𝑉 ′

and the set of neighbors of any node in

𝑉 ′
. For any two integers 𝑖 and 𝑗 , [𝑖, 𝑗] is used to denote the set

{𝑖, . . . , 𝑗}.

3.2 Chernoff Bounds

The following Chernoff bounds [35] are used in the later sections,

where the second bound is obtained by applying the inequality

ln(1 + 𝛿) ⩾ (2𝛿)/(2 + 𝛿) to Theorem 4.4 (Inequality 1) in [35].

Lemma 1. Let𝑋1, . . . , 𝑋𝑘 be independent Bernoulli random variables

with parameter 𝑝 . Then,

• For any 0 ⩽ 𝛿 ⩽ 1, Pr[∑𝑘
𝑖=1 𝑋𝑖 ⩽ (1 − 𝛿)𝑝𝑘] ⩽ 𝑒−

𝛿2𝑘𝑝

2 ,

• For any 𝛿 ⩾ 0, Pr[∑𝑘
𝑖=1 𝑋𝑖 ⩾ (1 + 𝛿)𝑝𝑘] ⩽ 𝑒−

𝛿2𝑘𝑝

2+𝛿 .

3.3 Sequential Randomized Greedy MIS

The sequential randomized greedy MIS algorithm processes each

node in a sequential but random order. Each node is added to the

output set if it is not a neighbor of a node already in that set. It is

well-known that this algorithm outputs the lexicographically first

MIS (LFMIS), with respect to the random node ordering.

Given a random node ordering 𝑣1, 𝑣2, . . . , 𝑣𝑛 , Lemma 2 — a slight

generalization of Lemma 1 in [29]— shows that after the first 𝑡 nodes

(according to the node ordering) are processed by the sequential

randomized greedy orderMIS, themaximum degree of the subgraph

induced by the remaining nodes among the first 𝑡 ′ > 𝑡 nodes (those

which have not been added, nor are neighbors of an already added

node) has decreased (almost) linearly in 𝑡 . In fact, the lemma is

more general. For example, it applies to distributed algorithms that

compute the LFMIS over the subgraph induced by the first 𝑡 nodes,

according to the random node ordering mentioned above.

Lemma 2. Let 𝑡, 𝑡 ′ be two integers such that 1 ⩽ 𝑡 < 𝑡 ′ ⩽ 𝑛.

Let 𝑉𝑡 denote the (set of the) first 𝑡 nodes, 𝑉𝑡 ′ the (set of the) first

𝑡 ′ nodes and 𝑀𝑡 the LFMIS over 𝐺 [𝑉𝑡]. Then, for any constant 𝜀 >

0, 𝐺 [𝑉𝑡 ′ \ 𝑁 (𝑀𝑡)] has maximum degree at most
𝑡 ′
𝑡 ln(𝑛/𝜀) with

probability at least 1 − 𝜀.

Proof. Note that (𝑉𝑡 ′ \𝑁 (𝑀𝑡)) ⊆ {𝑣𝑡+1, . . . , 𝑣𝑡 ′ }. We show that,

with probability at least 1− 𝜀/𝑛, for any 𝑗 ∈ [𝑡 + 1, 𝑡 ′], either 𝑣 𝑗 has
degree at most

𝑡 ′
𝑡 ln(𝑛/𝜀) in 𝐺 [𝑉𝑡 ′ \ 𝑁 (𝑀𝑡)] or 𝑣 𝑗 ∈ 𝑁 (𝑀𝑡). The

lemma statement holds by a union bound (over 𝑗).

Let 𝑗 ∈ [𝑡 + 1, 𝑡 ′]. We apply the principle of deferred decisions

[35]. More precisely, we first fix (the random choice of) which node

is in position 𝑗 — that is, 𝑣 𝑗 . After which, we fix (the random choices

of) which nodes are in position 1 to 𝑡 sequentially — that is, 𝑣1 to

𝑣𝑡 . For any integer 𝑖 ∈ [1, 𝑡], let 𝑉𝑖 denote the first 𝑖 (fixed) nodes
and 𝑀𝑖 be the LFMIS over 𝐺 [𝑉𝑖]. Additionally, let 𝑈𝑖 = (𝑁 (𝑣 𝑗) ∩
𝑉𝑡 ′) \ 𝑁 (𝑀𝑖−1) and 𝑑𝑖 = |𝑈𝑖 |. Then, Pr[𝑣𝑖 ∈ 𝑈𝑖 | 𝑣 𝑗 , 𝑣1, . . . , 𝑣𝑖−1] ⩾

𝑑𝑖
𝑡 ′−1−(𝑖−1) ⩾

𝑑𝑖
𝑡 ′ .

The sequence (𝑑𝑖)𝑖∈[1,𝑡] is decreasing. If 𝑑𝑡 ⩽ 𝑡 ′
𝑡 ln(𝑛/𝜀), then

𝑣 𝑗 has degree at most
𝑡 ′
𝑡 ln(𝑛/𝜀) in 𝐺 [𝑉𝑡 ′ \ 𝑁 (𝑀𝑡)]. Otherwise,

𝑑𝑡 > 𝑡 ′
𝑡 ln(𝑛/𝜀). Then, Pr[∀𝑖 ⩽ 𝑡, 𝑣𝑖 ∉ 𝑈𝑖 | 𝑣 𝑗] ⩽

∏𝑡
𝑖=1 Pr[𝑣𝑖 ∉

𝑈𝑖 | 𝑣 𝑗 , 𝑣1, . . . , 𝑣𝑖−1] ⩽
∏𝑡

𝑖=1 (1 − 𝑑𝑖
𝑡 ′) ⩽ (1 − 𝑑𝑡

𝑡 ′)
𝑡 ⩽ 𝑒−

𝑑𝑡
𝑡 ′ 𝑡 ⩽

𝑒− ln(𝑛/𝜀) ⩽ 𝜀/𝑛. In other words, there exists 𝑖 ∈ [1, 𝑡] such that

𝑣𝑖 ∈ 𝑈𝑖 with probability at least 1 − 𝜀/𝑛. In which case, since 𝑀𝑖

is the LFMIS over 𝐺 [𝑉𝑖], 𝑣𝑖 ∈ 𝑀𝑖 . Thus, 𝑣𝑖 ∈ 𝑀𝑡 and 𝑣 𝑗 ∈ 𝑁 (𝑀𝑡)
(with probability at least 1 − 𝜀/𝑛). □

3.4 Simple Graph Shattering

Consider some 𝑛-node graph 𝐻 with maximum degree Δ and parti-

tion the nodes into 2Δ sets uniformly at random. More precisely,

each node is in set 𝑈 𝑗 , for any 𝑗 ∈ [1, 2Δ], with probability 1/(2Δ).
Then, a simple branching process argument implies that the cor-

responding induced subgraphs 𝐻 [𝑈 𝑗] are “shattered”: that is, they

139

PODC ’23, June 19–23, 2023, Orlando, FL, USA Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

are composed of small 𝑂 (log𝑛)-sized connected components with

high probability.

Lemma 3. For any 𝑗 ∈ [1, 2Δ], the connected components of 𝐻 [𝑈 𝑗]
are of size at most 6 ln(𝑛/𝜀) with probability at least 1 − 𝜀.

Proof. For any 𝑗 ∈ [1, 2Δ], consider some node 𝑣 ∈ 𝑈 𝑗 . (If

|𝑈 𝑗 | = 0, the lemma statement obviously holds.) We assume, by the

principle of deferred decisions, that 𝑣 is the only initially revealed

node of𝑈 𝑗 (and for all other nodes, we do not know whether they

are in 𝑈 𝑗 or not) and we find out which nodes are in 𝑈 𝑗 through a

BFS search (over 𝐻 [𝑈 𝑗] only) starting at 𝑣 . In more detail, the BFS

queue initially consists only of 𝑣 . In the first step, 𝑣 is dequeued

and for each unrevealed neighbor 𝑤 ∈ 𝑁 (𝑣), we reveal whether
𝑤 is in 𝑈 𝑗 . For each such 𝑤 ∈ 𝑁 (𝑣), if 𝑤 ∈ 𝑈 𝑗 then 𝑤 is added to

the queue. Once all neighbors have been revealed, the first step is

done. Subsequent steps are executed similarly, but with that step’s

dequeued node, until the queue is empty. Importantly, the number

of steps executed before the queue is empty is the size 𝐶 (𝑣) of
the connected component of 𝐻 [𝑈 𝑗] containing 𝑣 . Moreover, it is

a random variable that depends on each revealed node — that is,

whether that revealed node is in𝑈 𝑗 or not. Finally, each unrevealed

node𝑤 , once revealed, is in 𝑈 𝑗 with probability at most
1

2Δ .

The above (BFS search) randomized process is hard to analyze

since a node dequeued in some step 𝑘 might have neighbors that

were revealed in previous steps. Instead, we consider an easier-

to-analyze but related randomized process: BFS on a branching

process. Let the number of nodes in the queue at the start of step

𝑘 ⩾ 0 be denoted by 𝐴𝑡 . Initially, there is a single node in the

queue — that is, 𝐴0 = 1. Subsequently, for any step 𝑘 ⩾ 1, 𝐴𝑘 =

𝐴𝑘−1−1+𝑌𝑘 , where the random variables (𝑌𝑘)𝑘⩾1 are independent
and binomially distributed with parameters Δ, the total number

of events, and
1

2Δ , the probability of each event being successful.

Then, the size of this randomized process is 𝐶′ = min{𝑘 ⩾ 0 | 𝐴𝑡 =

0}. Importantly, 𝐶′
dominates the random variable 𝐶 (𝑣) — that

is, Pr[𝐶 (𝑣) ⩾ 𝑘] ⩽ Pr[𝐶′ ⩾ 𝑘] for any positive integer 𝑘 . By the

definition of 𝐶′
, Pr[𝐶′ > 𝑘] = Pr[𝐴1 > 0, . . . , 𝐴𝑘 > 0] ⩽ Pr[𝐴𝑘 >

0] ⩽ Pr[𝐴0 +
∑𝑘
𝑖=1 𝑌𝑖 > 𝑘] = Pr[∑𝑘

𝑖=1 𝑌𝑖 ⩾ 𝑘]. Note that since the
𝑌𝑖 are independent binomially distributed random variables (with

parameters Δ and
1

2Δ),
∑𝑘
𝑖=1 𝑌𝑖 is the sum of 𝑘Δ Bernoulli random

variables with parameter
1

2Δ and thus E[∑𝑘
𝑖=1 𝑌𝑖] = 𝑘/2. Hence,

by the Chernoff bound (see Lemma 1), Pr[∑𝑘
𝑖=1 𝑌𝑖 ⩾ 𝑘)] ⩽ 𝑒−𝑘/6.

Consequently, Pr[𝐶′ ⩾ 6 ln(𝑛/𝜀)] ⩽ 𝜀/𝑛 for any constant 𝜀 > 0.

Since 𝐶′
dominates 𝐶 (𝑣), Pr[𝐶 (𝑣) ⩾ 6 ln(𝑛/𝜀)] ⩽ 𝜀/𝑛. By union

bound over all connected components of 𝐻 [𝑈 𝑗] (of which there are

at most 𝑛), the lemma statement holds. □

4 AUXILIARY PROCEDURES

4.1 The Virtual Binary Tree Technique

We provide a virtual binary tree construction similar to that in

[7]. Let 𝑖 be an integer, provided as a parameter. The virtual (full)

binary tree B([1, 𝑖]) has depth 𝑑 = ⌈log 𝑖⌉ and thus 𝑦 = 2
𝑑+1 − 1

nodes. These nodes are labeled with integers in [1, 𝑦] according
to an in-order tree traversal. See Figure 1 (left). Given B([1, 𝑖]),
we can define the more convenient node-labeled (full) binary tree

B∗ ([1, 𝑖]) as follows. The tree structure is the same, but the node

labels of B∗ ([1, 𝑖]) are obtained by applying 𝑔(𝑥) = ⌊𝑥/2⌋ +1 to the
node labels of B([1, 𝑖]). Using B∗ ([1, 𝑖]), we define, for any integer
𝑘 ∈ [1, 𝑖], a communication set 𝑆𝑘 ([1, 𝑖]) of 𝑑 integers in [1, 𝑖], as
follows: 𝑆𝑘 ([1, 𝑖]) consists of the labels of all ancestors of the leaf
node labeled 𝑘 in B∗ ([1, 𝑖]). See Figure 1 (right).

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

5

3

2

1 2

4

3 4

7

6

5 6

8

7 8

Figure 1: Binary tree B([1, 6]) on the left and binary tree

B∗ ([1, 6]) on the right. 𝑆3 ([1, 6]) consists of the dotted circle

and rectangle nodes’ labels and 𝑆5 ([1, 6]) of the (non-dotted)
circle and rectangle nodes’ labels. Note that 5 ∈ 𝑆3 ([1, 6]) ∩
𝑆5 ([1, 6]) and 3 < 5 ⩽ 6.

These sets have the following property (see Observation 2 below):

for any integers 𝑘, 𝑘′ ∈ [1, 𝑖] such that 𝑘 < 𝑘′, there exists an

integer 𝑟 in both 𝑆𝑘 ([1, 𝑖]) and 𝑆𝑘 ′ ([1, 𝑖]) such that 𝑘 < 𝑟 ⩽ 𝑘′.
Informally, we later use the sets 𝑆𝑘 ([1, 𝑖]) to decide when nodes

with IDs in [1, 𝑖] are awake or asleep. The above property allows

us to decide, for any two nodes, on a common round in which they

are guaranteed to be awake simultaneously (and thus communicate

with each other). Remember that in rounds in which nodes are not

awake simultaneously, any message sent between two neighboring

nodes is lost if any one of them is asleep.

Observation 1. For any positive integers 𝑘, 𝑖 such that 1 ⩽ 𝑘 ⩽ 𝑖 ,

|𝑆𝑘 ([1, 𝑖]) | ⩽ ⌈log 𝑖⌉.

Observation 2. For any positive integers 𝑘, 𝑘′, 𝑖 such that 1 ⩽ 𝑘 <

𝑘′ ⩽ 𝑖 , there exists an integer 𝑟 ∈ 𝑆𝑘 ([1, 𝑖]) ∩ 𝑆𝑘 ′ ([1, 𝑖]) such that

𝑘 < 𝑟 ⩽ 𝑘′.

Proof. Let the lowest common ancestor node in B∗ ([1, 𝑖]) of
the leaves labeled 𝑘 and 𝑘′ be labeled with 𝑟 ′. Then, according to
the definition of a communication set, 𝑟 ′ is in both 𝑆𝑘 ([1, 𝑖]) and
𝑆𝑘 ′ ([1, 𝑖]). Moreover, note that the corresponding nodes inB([1, 𝑖])
are the internal (lowest common ancestor) node labeled 2(𝑟 ′ − 1)
and the leaf nodes labeled 2𝑘 − 1 and 2𝑘′ − 1. By the property of

the in-order tree traversal, 2𝑘 − 1 < 2(𝑟 ′ − 1) < 2𝑘′ − 1. Hence,

𝑘 < 𝑟 ′ − 1/2 < 𝑘′. Since 𝑟 ′ and 𝑘′ are integers, 𝑘 < 𝑟 ′ ⩽ 𝑘′. □

4.2 Labeled Distance Trees

For any 𝑉 ′ ⊆ 𝑉 where 𝐺 [𝑉 ′] is connected, a labeled distance tree
(introduced in [2]) is an oriented node labeled spanning tree over

𝐺 [𝑉 ′] rooted at some node 𝑟 ∈ 𝑉 ′
. Each node’s label is its distance

to 𝑟 in the spanning tree. (Note that the distance to 𝑟 in the span-

ning tree may be much larger than that in 𝐺 .) In the distributed

implementation, the LDT satisfies the following properties: (i) all

nodes in the tree know the ID of 𝑟 , called the ID of the LDT, (ii) each

node knows its depth in the tree (i.e., the hop-distance from itself

to the root of the tree via tree edges), and (iii) each node knows the

140

Distributed MIS in𝑂 (log log𝑛) Awake Complexity PODC ’23, June 19–23, 2023, Orlando, FL, USA

IDs of its parent and children, if any, in the LDT. If a given graph

is disconnected, one can compute a disjoint set of such LDTs, one

per connected component, which we refer to as a forest of labeled

distance trees (FLDT).

Multiple distributed LDT construction algorithms (both random-

ized and deterministic) are presented in [2]. We are interested in

their two deterministic construction algorithms, which give dif-

ferent guarantees. The first lemma below captures the worst-case

awake and round complexities of their first construction algorithm:

Algorithm LDT-Construct-Awake. On the other hand, the second

lemma captures the properties of a distributed LDT construction

algorithm (Algorithm LDT-Construct-Round) with faster round

complexity but larger awake complexity; Corollary 1 of [2] states

such an algorithm exists, and we give a full construction procedure

in the full version of this paper [17].

Lemma 4 (Theorem 2, [2]). For any connected 𝑉 ′ ⊆ 𝑉 of at most

𝑛′ nodes with unique IDs in [1, 𝐼], where 𝑛′ and 𝐼 are known to all

nodes, LDT-Construct-Awake deterministically constructs an LDT

over 𝐺 [𝑉 ′] with 𝑂 (log𝑛′) awake complexity, 𝑂 (𝑛′𝐼 log𝑛′) round
complexity and 𝑂 (log 𝐼) bit messages.

Lemma 5. For any connected𝑉 ′ ⊆ 𝑉 of at most 𝑛′ nodes, where 𝑛′ is
known to all nodes, with unique IDs in [1, 𝐼], LDT-Construct-Round
deterministically constructs an LDT over𝐺 [𝑉 ′] with𝑂 ((log𝑛′) log∗ 𝐼)
awake complexity,𝑂 (𝑛′ (log𝑛′) log∗ 𝐼) round complexity and𝑂 (log 𝐼)
bit messages.

Next, we define two operations over a labeled distance tree.

Definition 1. For any connected 𝑉 ′ ⊆ 𝑉 and an LDT spanning

𝑉 ′ ⊆ 𝑉 :

• The broadcast operation consists of sending the root’s (input)

message, denoted by𝑚𝑟 , to all of the LDT’s nodes.

• The ranking operation consists of having the nodes of 𝑉 ′
com-

pute a total ordering — more precisely, each node knows its

rank in the ordering — as well as the size |𝑉 ′ |.
[2] provides a distributed algorithm for broadcasting over an

LDT (see Observation 2 in [2]). A distributed algorithm for ranking

over an LDT is presented in the full version of this paper [17]. The

properties of these two algorithms are captured by the following

lemma.

Lemma 6. For any LDT over at most 𝑛′ nodes, where 𝑛′ is known
to all nodes, with unique IDs in [1, 𝐼], broadcast and ranking can be

executed deterministically with𝑂 (1) awake complexity,𝑂 (𝑛′) round
complexity and the size of the messages are𝑂 (|𝑚𝑟 |) bits and𝑂 (log 𝐼)
bits respectively.

4.3 Simple Awake-Efficient MIS Algorithms

We provide two simple deterministic distributed lexicographically

first MIS (LFMIS) algorithms with good awake complexity. Note

that it is important for our main result (see Section 5) that these

algorithms compute the LFMIS rather than any arbitrary MIS.

The first algorithm (VT-MIS) runs in𝑂 (log 𝐼) awake time, where

𝐼 is an upper bound on the nodes’ IDs, and illustrates how to use

the virtual binary tree technique (see Section 4.1). At a high-level,

VT-MIS is an awake-efficient version of the naive distributed imple-

mentation of sequential greedy MIS. Recall that the naive algorithm

runs in 𝐼 rounds, and in the 𝑖th round, the node with ID 𝑖 (if it exists)

communicates with all neighbors to check if any neighbor with

smaller ID is already in the MIS. If not, it joins the MIS. Although

VT-MIS also has poor 𝑂 (𝐼) round complexity, its 𝑂 (log 𝐼) awake
complexity is exponentially smaller.

The second algorithm (LDT-MIS) runs in 𝑂 (log𝑛′) awake time,

where 𝑛′ is the number of nodes. Of particular interest to us is when

log𝑛′ may be much smaller than the length of the node’s IDs. This

naturally happens if LDT-MIS is run on a subgraph obtained after

shattering a much larger graph (e.g., with exponentially more nodes

𝑛) whose nodes had unique IDs. At a high-level, we compute labeled

distance trees, then the root computes 𝑛′ and assigns uniformly

random and small enough 𝑂 (log𝑛′)-length IDs to each node, all

in 𝑂 (log𝑛′) awake time. All nodes then compute the LFMIS using

VT-MIS and these new IDs in 𝑂 (log𝑛′) awake time.

VT-MIS: MIS in𝑂 (log 𝐼) awake time.We assume nodes are given

unique IDs in [1, 𝐼], for some known value 𝐼 . Initially, each node

starts in the undecided state and computes the virtual binary tree

B∗ ([1, 𝐼]) locally (for the description, see Subsection 4.1). Then,

nodes compute the LFMIS in 𝐼 rounds. In round 𝑟 , the node that

has ID 𝑟 as well as all nodes 𝑢 for which 𝑟 ∈ 𝑆𝑖𝑑𝑢 ([1, 𝐼]) wake up —

where 𝑆𝑖𝑑𝑢 ([1, 𝐼]) is the communication set defined usingB∗ ([1, 𝐼]),
see Figure 2 for an example. Intuitively, the additional nodes wake

up to communicate information on their state (i.e., undecided, in

MIS or not in MIS), and the use of communication sets results in

low awake time. All awake nodes send their state to all neighbors.

Any awake undecided node that learns one of its neighbors is in

the MIS sets its state to “not in MIS”. If the node with ID 𝑟 remains

undecided despite the received messages, then it joins the MIS and

sets its state to “in MIS”.

Lemma 7. VT-MIS computes the LFMIS with 𝑂 (log 𝐼) awake com-

plexity, 𝑂 (𝐼) round complexity and 𝑂 (log 𝐼) bit messages.

Proof. We first prove the correctness. The main difference with

the naive distributed implementation of sequential greedy MIS is

that here, in any round 𝑟 ∈ [1, 𝐼], not all nodes may be awake and

thus the node 𝑣 with ID 𝑟 may be unaware that one of its neighbors

is already in the MIS. However, by Observation 2, there exists for

any node 𝑢 with ID 𝑟 ′ < 𝑟 , a round 𝑟∗ such that 𝑟 ′ < 𝑟∗ ⩽ 𝑟

and both 𝑢 and 𝑣 are awake in 𝑟∗. Since 𝑢 can only decide to join

the MIS in round 𝑟 ′ by the algorithm’s definition, 𝑢 successfully

communicates whether it joins the MIS or not to 𝑣 in round 𝑟∗. It
follows that VT-MIS implements sequential greedy MIS, and thus

correctly computes an LFMIS.

As for the awake complexity, note that by Observation 1, each

communication set of B∗ ([1, 𝐼]) is of size𝑂 (log 𝐼). Since each node

𝑢 is only awake in rounds 𝑟 ∈ 𝑆𝑖𝑑𝑢 ([1, 𝐼]), each node is awake for

𝑂 (log 𝐼) rounds. □

LDT-MIS: MIS in 𝑂 (log𝑛′) awake time. We assume that each

node knows the value 𝑛′, an upper bound on the number of nodes

of the connected subgraph to which the node belongs. We also

assume that the (at most) 𝑛′ nodes are given unique IDs in [1, 𝐼],
for some known value 𝐼 (where 𝐼 may be exponentially larger than

𝑛′), and that messages can contain up to 𝑂 (log 𝐼) bits. First, all
nodes participate in the construction of an LDT. (The correctness

is guaranteed by the fact that all nodes know the same bound 𝑛′.)

141

PODC ’23, June 19–23, 2023, Orlando, FL, USA Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

5

3

2

1 2

4

3 4

7

6

5 6

8

7 8

(a) 𝑆3 ([1, 6]) consists of the circle nodes’ labels.
5

3

2

1 2

4

3 4

7

6

5 6

8

7 8

(b) 𝑆5 ([1, 6]) consists of the circle nodes’ labels.

Figure 2: For the example, consider 𝐼 = 6 and two nodes 𝑢, 𝑣

with IDs 3 and 5 respectively. Node 𝑢 is awake in rounds 3, 4

and 5 and 𝑣 is awake in rounds 5 and 6 (but not in round 7,

since there are only 𝐼 rounds). It can be seen that 𝑢 commu-

nicates whether it has joined the MIS to 𝑣 in round 5.

Second, all nodes participate in an operation to (i) compute the exact

number of nodes 𝑛′′ in the LDT, and (ii) allow each node to know its

rank in a given total ordering of the nodes. Third, the root of the LDT

locally computes a uniformly random permutation of [1, 𝑛′′] and
broadcasts it in 𝑂 ((𝑛′ log𝑛′)/log 𝐼) consecutive broadcasts over

the LDT. (In each broadcast, we can transmit 𝑂 (log 𝐼) bits of the
total𝑂 (𝑛′′ log𝑛′′) bits. Once all of these bits have been transmitted,

“null” messages are sent for the remaining broadcasts, if any.) Each

node uses its previously computed rank to retrieve its ID in the

permutation. Finally, all nodes run VT-MIS using these smaller IDs.

Lemma 8. LDT-MIS computes an LFMIS with respect to some uni-

formly random node ordering, and not to the ID-based ordering,

with 𝑂 (log𝑛′ + (𝑛′ log𝑛′)/log 𝐼) awake complexity, 𝑂 (𝑛′𝐼 log𝑛′ +
((𝑛′)2 log𝑛′)/log 𝐼) round complexity and 𝑂 (log 𝐼) bit messages.

Proof. First, note that LDT-MIS implements (sequential) ran-

domized greedy MIS. Indeed, constructing the LDT, computing 𝑛′

and sending down smaller IDs is simply equivalent to computing

a uniformly random node ordering on the 𝑛′ nodes. After which,
VT-MIS implements sequential greedy MIS with respect to that

order by Lemma 7.

Now we prove the rest of the lemma statement. Constructing

the LDT takes 𝑂 (log𝑛′) awake complexity, 𝑂 (𝑛′𝐼 log𝑛′) round
complexity and 𝑂 (log 𝐼) bit messages (by Lemma 4). The ranking

operation takes 𝑂 (1) awake complexity, 𝑂 (𝑛′) round complexity,

and 𝑂 (log 𝐼) bit messages (by Lemma 6). The 𝑂 ((𝑛′ log𝑛′)/log 𝐼)
consecutive broadcasts used to transmit the permutation chosen

by the root (at most 𝑂 (𝑛′ log𝑛′) bits), via messages of 𝑂 (log 𝐼)
bits, take altogether 𝑂 ((𝑛′ log𝑛′)/log 𝐼) awake complexity and

𝑂 (((𝑛′)2 log𝑛′)/log 𝐼) round complexity (by Lemma 6). Finally,

computing the LFMIS (via VT-MIS) with respect to the new node

ordering (from the new IDs in [1, 𝑛′]) takes 𝑂 (log𝑛′) awake com-

plexity, 𝑂 (𝑛′) round complexity, and 𝑂 (log𝑛′) = 𝑂 (log 𝐼) bit mes-

sages. □

By replacing the awake efficient LDT construction (Algorithm

LDT-Construct-Awake) with the round efficient one (Algorithm

LDT-Construct-Round, whose properties are described in Lemma

5), we obtain a round efficient version of LDT-MIS, which we call

LDT-MIS-ROUND. Its properties — a faster round complexity but

larger awake complexity than LDT-MIS — are formally stated in

the following corollary.

Corollary 1. LDT-MIS-ROUND computes an LFMIS with respect

to some uniformly random node ordering with 𝑂 ((log𝑛′) log∗ 𝐼 +
(𝑛′ log𝑛′)/log 𝐼) awake complexity,𝑂 ((𝑛′ log𝑛′) log∗ 𝐼+((𝑛′)2 log𝑛′)/log 𝐼)
round complexity and 𝑂 (log 𝐼) bit messages.

5 RANDOMIZED GREEDY MIS IN 𝑂 (log log𝑛)
AWAKE ROUNDS

We present our main result: an 𝑂 (log log𝑛) awake complexity ran-

domized MIS algorithm. We first give a high-level description. Al-

gorithm Awake-MIS computes the lexicographically first MIS, with

respect to some uniformly random ordering, in “batches”. More pre-

cisely, the LFMIS is computed over the first 𝑡 nodes, then over the

next 𝑡 ′ nodes, and so on. To (energy efficiently) ensure all batches

know which nodes (of prior batches) are in the MIS, we coordinate

communication using the virtual binary tree technique with only

𝑂 (log log𝑛) awake complexity. Moreover, by batching nodes we

can leverage the following “graph shattering” property: the sub-

graph induced by the yet undecided nodes within each batch can

be decomposed into small 𝑂 (log𝑛)-sized connected components.

Finally, for each such component, it suffices to run LDT-MIS from

Section 4 to compute the LFMIS with respect to a uniformly random

ordering (of the component’s nodes) in 𝑂 (log log𝑛) awake time.

Description of Awake-MIS. Let ℓ = ⌈log𝑛 − log log𝑛⌉ and Δ′ =
𝑂 (log𝑛) be some parameters decided in the analysis. The output

variable 𝑠𝑡𝑎𝑡𝑒 takes value in {𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑, 𝑖𝑛𝑀𝐼𝑆, 𝑛𝑜𝑡𝑖𝑛𝑀𝐼𝑆}. The
MIS problem is said to be solved if all nodes have chosen a state in

{𝑖𝑛𝑀𝐼𝑆, 𝑛𝑜𝑡𝑖𝑛𝑀𝐼𝑆} and the set of all nodes with the 𝑖𝑛𝑀𝐼𝑆 output

forms an MIS.

Initially, each node starts in the “undecided” state.Moreover, each

node 𝑣 ∈ 𝑉 picks a pair 𝑝 (𝑣) = (𝑖, 𝑗) ∈ [1, ℓ] × [1, 2Δ′] at random
(but not uniformly) which decides what batch the node falls in—that

batch is denoted by 𝐵𝑖, 𝑗 . Batches are ordered via lexicographical

order (of the pairs). Next, we describe precisely how nodes choose

a batch. Each node chooses 𝑖 ∈ [1, ℓ − 1] with probability (10 ·
2
𝑖
log𝑛)/𝑛 and 𝑖 = ℓ with the remaining probability. Moreover,

each node chooses 𝑗 ∈ [1, 2Δ′] uniformly at random, that is, with

probability 1/(2Δ′).
After the batches have been decided, there are 2ℓΔ′ = 𝑂 (log2 𝑛)

phases. (The number of rounds per phase is determined in the

analysis, allowing some nodes to sleep through the phase.) In each

phase (𝑖, 𝑗) ∈ [1, ℓ] × [1, 2Δ′], the first communication round is

used to update which of the batch’s nodes have a neighbor in the

MIS. (Let 𝑔 : [1, ℓ] × [1, 2Δ′] ↦→ [1, 2ℓΔ′] be the natural bijection
that preserves lexicographic order.) In more detail, node 𝑣 ∈ 𝑉 is

awake if 𝑔(𝑖, 𝑗) ∈ 𝑆𝑔 (𝑝 (𝑣)) ([1, 2ℓΔ′]), and is asleep otherwise—see

142

Distributed MIS in𝑂 (log log𝑛) Awake Complexity PODC ’23, June 19–23, 2023, Orlando, FL, USA

Subsection 4.1 for the formal definition of the communication set

𝑆𝑔 (𝑝 (𝑣)) ([1, 2ℓΔ′]) and Subsection 4.3 for an example. Awake nodes

send their state to their neighbors. At the end of the round, awake

nodes that received a 𝑖𝑛𝑀𝐼𝑆 message from a neighboring node

set their state to 𝑛𝑜𝑡𝐼𝑛𝑀𝐼𝑆 (thus becoming decided). After which,

the remaining rounds are used by all undecided batch nodes (i.e.,

with 𝑝 (𝑣) = (𝑖, 𝑗) and in the “undecided” state) to execute LDT-MIS

described in Subsection 4.3. (In the analysis, we show that w.h.p.,

the remaining rounds are sufficient for this algorithm to terminate.)

Algorithm 1 Awake-MIS for node 𝑣

1: Input: 𝑛

2: 𝑣 chooses 𝑖 ∈ [1, ℓ] with probability (10 · 2𝑖 log𝑛)/𝑛 and 𝑗 ∈ [1, 2Δ′] with
probability 1/(2Δ′)

3: 𝑝 (𝑣) := (𝑖, 𝑗) , 𝑠𝑡𝑎𝑡𝑒𝑣 := 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑

4: for phase 𝑝 = 1 to 2ℓΔ′
do

// For the first (communication) round:

5: if 𝑝 ∈ 𝑆𝑔 (𝑝 (𝑣)) ([1, 2ℓΔ′]) then // Nodes with 𝑔 (𝑝 (𝑣)) ≠ 𝑝 can also

participate

6: if 𝑠𝑡𝑎𝑡𝑒𝑣 = 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 then

7: Listen for one round

8: if 𝑣 receives an “in MIS” message then 𝑠𝑡𝑎𝑡𝑒𝑣 := 𝑛𝑜𝑡𝑖𝑛𝑀𝐼𝑆

9: else Send 𝑠𝑡𝑎𝑡𝑒𝑣 to all neighbors

10: else Sleep for one round

// For the next𝑂 (poly(𝑛) (log𝑛) log log𝑛) rounds:
11: if 𝑝 ≠ 𝑔 (𝑝 (𝑣)) or 𝑠𝑡𝑎𝑡𝑒𝑣 ≠ 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 then Sleep for the remainder of

the phase

12: else 𝑠𝑡𝑎𝑡𝑒𝑣 = LDT-MIS()

Analysis of Awake-MIS. Next, we show correctness and com-

plexity bounds of Awake-MIS. Note that we assume nodes know

𝑛 exactly (or at least some constant factor approximation) in the

above description and below analysis for clarity. This assumption

can be removed through straightforward changes, so that nodes

can use instead a polynomial upper bound 𝑁 on 𝑛.

Theorem 1. MIS can be solved (w.h.p.) in 𝑂 (log log𝑛) awake com-

plexity and 𝑂 (poly(𝑛)) round complexity in CONGEST.

Proof. Let us start with some notations. For any (𝑖, 𝑗) ∈ [1, ℓ] ×
[1, 2Δ′], denote by 𝑉𝑖, 𝑗 the union of all batches up to, and includ-

ing, batch (𝑖, 𝑗), and for any 𝑖 ∈ [1, ℓ], let 𝑉𝑖 = 𝑉𝑖,2Δ′ . Then, we

bound the size of 𝑉𝑖 for any 𝑖 ∈ [1, ℓ]. Recall that each node is

in 𝑉𝑖 independently and with probability

∑𝑖
𝑘=1

(10 · 2𝑘 log𝑛)/𝑛 =

(10(2𝑖+1 − 1) log𝑛)/𝑛. Hence, by linearity of expectation, E[|𝑉𝑖 |] =
10(2𝑖+1 − 1) log𝑛. After which, we apply the Chernoff bound (for

the two tails, see Lemma 1) with 𝛿 = 1/2: Pr[|𝑉𝑖 | ⩾ 15(2𝑖+1 −
1) log𝑛] ⩽ exp(−(10(2𝑖+1 − 1) log𝑛)/10) and Pr[|𝑉𝑖 | ⩽ 5(2𝑖+1 −
1) log𝑛] ⩽ exp(−(10(2𝑖+1 − 1) log𝑛)/8). Thus, by union bound,

5(2𝑖+1 − 1) log𝑛 ⩽ |𝑉𝑖 | ⩽ 15(2𝑖+1 − 1) log𝑛 holds with probability

at least 1 − 1/𝑛3.
Second, we show by induction that by the end of phase (𝑖, 𝑗) ∈

[1, ℓ]× [1, 2Δ′], the algorithm has computed the LFMIS over𝐺 [𝑉𝑖, 𝑗]
with respect to a uniformly random ordering of 𝑉𝑖, 𝑗 and with prob-

ability at least 1 − 1/𝑛. Consider the base case. During the first

phase, different connected components 𝐶1, . . . ,𝐶𝑘 of 𝐺 [𝑉1,1] run
independent LDT-MIS executions. Given the upper bound on 𝑉1
shown above, these components are of size 𝑂 (log𝑛) with probabil-

ity at least 1 − 1/𝑛3. By setting the number of rounds within the

first phase accordingly — to 𝑂 (poly(𝑛) (log𝑛) log log𝑛) rounds —
all LDT-MIS executions terminate. Thus, by Lemma 8, the output

of LDT-MIS for each component 𝐶ℎ is an LFMIS with respect to

a uniformly random node ordering (of 𝐶ℎ), which we denote 𝑀ℎ .

Note that𝑀 =
⋃𝑘

ℎ=1
𝑀ℎ is exactly the set of nodes with state 𝑖𝑛𝑀𝐼𝑆

when the first phase ends. Clearly, 𝑀 is an MIS since two nodes

from different connected components are non-adjacent. It remains

to show that𝑀 is also a LFMIS with respect to a uniformly random

ordering of 𝑉1,1. Consider the following node ordering. First, pick

some node𝑤 uniformly at random among all |𝑉1,1 | nodes and then

choose the first node of the ordering uniformly at random among

all nodes of the component𝑤 belongs to. Next, pick some node𝑤 ′

uniformly at random among the remaining |𝑉1,1 | −1 nodes and then
choose the second node of the ordering uniformly at random among

all nodes in the component𝑤 ′
belongs to (excluding the first node

in the ordering). Repeat this process until all nodes in 𝑉1,1 have

been ordered. It is straightforward to show that this node ordering

is a uniformly random ordering of 𝑉1,1. Moreover, two nodes 𝑢, 𝑣

from different components are not connected in 𝐺 [𝑉1,1] and thus

whether 𝑢 is ordered before 𝑣 (or inversely) does not influence the

resulting LFMIS over 𝐺 [𝑉1,1]. Hence,𝑀 is the LFMIS over𝐺 [𝑉1,1]
with respect to that uniformly random ordering of 𝑉1,1, concluding

the base case.

Now, consider some phase (𝑖, 𝑗) ≠ (1, 1) and assume that the in-

duction hypothesis holds for the (lexicographically) previous phase

(𝑖′, 𝑗 ′). By the induction hypothesis, the algorithm has computed

the LFMIS𝑀′
over𝐺 [𝑉𝑖′, 𝑗 ′] with respect to some uniformly random

order of 𝑉𝑖′, 𝑗 ′ by the end of phase (𝑖′, 𝑗 ′). Since 𝑉𝑖′, 𝑗 ′ = 𝑉𝑖, 𝑗 \ 𝐵𝑖, 𝑗 ,
the induction step follows if we show that the algorithm computes

a LFMIS over 𝐺 [𝐵∗
𝑖, 𝑗
] with respect to a uniformly random ordering

of 𝐵∗
𝑖, 𝑗
, where 𝐵∗

𝑖, 𝑗
are the nodes of 𝐵𝑖, 𝑗 with no neighbors in𝑀′

. To

do so, we first note that nodes know whether they are in 𝐵∗
𝑖, 𝑗

or not

by the end of the communication round of phase (𝑖, 𝑗). This can be

shown using properties of the communication sets (as in the proof

of Lemma 7). In the remainder of the phase, different connected

components 𝐶1, . . . ,𝐶𝑘 ′ of 𝐺 [𝐵∗
𝑖, 𝑗
] run independent LDT-MIS ex-

ecutions. If 𝑖 = 1, then just as in the base case, these connected

components have size 𝑂 (log𝑛) with probability at least 1 − 1/𝑛3,
and thus 𝑂 (poly(𝑛) (log𝑛) log log𝑛) rounds are sufficient for the

LDT-MIS executions to terminate with probability at least 1 − 1/𝑛3.
Otherwise, if 𝑖 > 1, let 𝑀𝑖−1 be the MIS computed by the end of

phase (𝑖 − 1, 2Δ′). Due to the induction hypothesis, we can apply

Lemma 2 and thus 𝐺 [𝑉𝑖 \ 𝑁 (𝑀𝑖−1)] has maximum degree upper

bounded by
|𝑉𝑖 |
|𝑉𝑖−1 | ln(𝑛

4) with probability at least 1−1/𝑛3. Using the
above bounds on 𝑉𝑖 and 𝑉𝑖−1, this is at most 9 ln(𝑛4). By choosing

Δ′ = 9 ln(𝑛4) (and using the principle of deferred decisions), Lemma

3 implies that 𝐺 [𝐵𝑖 𝑗 \ 𝑁 (𝑀𝑖−1)] consists of small 𝑂 (log𝑛)-sized
connected components with probability at least 1−1/𝑛3. Given that

𝐵∗
𝑖, 𝑗

⊆ 𝐵𝑖 𝑗 \ 𝑁 (𝑀𝑖−1), 𝐺 [𝐵∗
𝑖 𝑗
] also consists of small 𝑂 (log𝑛)-sized

connected components with probability at least 1− 1/𝑛3. And thus,
𝑂 (poly(𝑛) (log𝑛) log log𝑛) rounds are sufficient for the LDT-MIS

executions to terminate with probability at least 1 − 1/𝑛3. Next, we
point out that one can show, using an argument similar to that of

the base case, that the union 𝑀′′
of the computed MIS—which is

exactly the set of nodes whose state becomes 𝑖𝑛𝑀𝐼𝑆 during phase

(𝑖, 𝑗)—is a LFMIS with respect to a uniformly random order of 𝐵∗
𝑖, 𝑗
.

Moreover, it is straightforward to extend this ordering of 𝐵∗
𝑖, 𝑗

to

143

PODC ’23, June 19–23, 2023, Orlando, FL, USA Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan

a uniformly random order of 𝑉𝑖, 𝑗 , as long as all nodes in 𝐵𝑖, 𝑗 are

ordered after those in 𝑉𝑖′, 𝑗 ′ . (In which case, no matter how some

node 𝑧 ∈ 𝐵𝑖, 𝑗 \ 𝐵∗𝑖, 𝑗 is ordered, 𝑧 is not in the LFMIS.) Consequently,

when phase (𝑖, 𝑗) ends, the set𝑀′∪𝑀′′
is a LFMIS over𝐺 [𝑉𝑖, 𝑗] with

respect to some uniformly random order of 𝑉𝑖, 𝑗 with probability at

least 1 − 1/𝑛2 and the induction step follows. (Note that the error

probability of all induction steps added together is at most 1/𝑛.)
To conclude, we note that all communication is done through

𝑂 (log𝑛) bit messages, and in particular the communication within

the LDT-MIS calls. Next, we upper bound the awake complexity.

Each node 𝑣 ∈ 𝑉 is awake for at most 𝑂 (log log𝑛) communica-

tion rounds over all 𝑂 (log2 𝑛) phases. Moreover, within 𝑣 ’s chosen

phase 𝑝 (𝑣), recall that the subgraph induced by the awake nodes

is composed of 𝑂 (log𝑛)-sized connected components with high

probability. Then, by Lemma 8, 𝑣 is awake for at most𝑂 (log log𝑛 +
((log𝑛) log log𝑛)/log𝑛) = 𝑂 (log log𝑛) rounds (w.h.p.) during the
LDT-MIS execution. Finally, a simple modification of LDT-MIS lim-

iting the number of rounds a node can be awake to 𝑂 (log log𝑛)
(where the precise value can be obtained from the analysis and the

desired error probability) implies any failure affects correctness

rather than the awake complexity. Therefore, the awake complexity

of Awake-MIS is (deterministically) upper bounded by𝑂 (log log𝑛).
As for the round complexity, the above analysis implies that each

phase takes 𝑂 (poly(𝑛) (log𝑛) log log𝑛) rounds. Hence, the algo-

rithm’s round complexity is 𝑂 (poly(𝑛)). □

By using the more round efficient LDT-MIS-ROUND (see Corol-

lary 1) instead of LDT-MIS, an MIS can be computed with a signifi-

cantly better round complexity, but at the cost of a small 𝑂 (log∗ 𝑛)
overhead to the awake complexity.

Corollary 2. MIS can be solved (w.h.p.) in 𝑂 ((log log𝑛) log∗ 𝑛)
awake complexity and

𝑂 ((log3 𝑛) (log log𝑛) log∗ 𝑛) round complexity in CONGEST.

Proof. When using LDT-MIS-ROUND instead of LDT-MIS, phases

of 𝑂 ((log𝑛) (log log𝑛) log∗ 𝑛) rounds suffice (see Corollary 1). □

6 CONCLUSION

In this paper, we show that the fundamental MIS problem on gen-

eral graphs can be solved in 𝑂 (log log𝑛) awake complexity, i.e.,

the worst-case number of awake (non-sleeping) rounds taken by

all nodes is 𝑂 (log log𝑛). This is the first such result that we are

aware of where we can obtain even a 𝑜 (log𝑛) bound on the awake

complexity for MIS. A long-standing open question is whether a

similar bound (i.e., 𝑜 (log𝑛)) can be shown for the round complexity.

Several open problems arise from our work. An important one

is determining whether one can improve the awake complexity

bound of 𝑂 (log log𝑛), or showing that is optimal by showing a

lower bound. Another one is whether one can obtain an𝑂 (log log𝑛)
awake complexity MIS algorithm that has𝑂 (log𝑛) round complex-

ity. More generally, can one obtain good trade-offs between awake

and round complexity of MIS?

Finally, it would be useful to design algorithms for other sym-

metry breaking problems such as maximal matching, coloring, etc.,

that have better awake complexity compared to the traditional

round complexity.

ACKNOWLEDGMENTS

F. Dufoulon was supported in part by NSF grants CCF-1540512,

IIS-1633720, and CCF-1717075 and BSF grant 2016419. W. K. Moses

Jr. was supported in part by NSF grants CCF-1540512, IIS-1633720,

and CCF-1717075 and BSF grant 2016419. G. Pandurangan was

supported in part by NSF grants CCF-1540512, IIS-1633720, and

CCF-1717075 and BSF grant 2016419.

REFERENCES

[1] Noga Alon, László Babai, and Alon Itai. 1986. A fast and simple randomized

parallel algorithm for themaximal independent set problem. Journal of Algorithms

7, 4 (1986), 567–583.

[2] John Augustine, William K. Moses Jr., and Gopal Pandurangan. 2022. Brief

Announcement: Distributed MST Computation in the Sleeping Model: Awake-

Optimal Algorithms and Lower Bounds. Proceedings of the 41st ACM Symposium

on Principles of Distributed Computing (PODC) (2022), 51–53. Full version available

on arXiv: https://arxiv.org/abs/2204.08385.

[3] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie,

and Jukka Suomela. 2019. Lower Bounds for Maximal Matchings and Maximal

Independent Sets. In IEEE FOCS. 481–497.

[4] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2021. Improved

Distributed Lower Bounds for MIS and Bounded (Out-)Degree Dominating Sets

in Trees. In PODC ’21: ACM Symposium on Principles of Distributed Computing.

ACM, 283–293.

[5] Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS

algorithm for sparse graphs using Nash-Williams decomposition. Distributed

Comput. 22, 5-6 (2010), 363–379.

[6] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016. The

Locality of Distributed Symmetry Breaking. Journal of the ACM 63, 3, Article 20

(June 2016), 45 pages. Conference version: IEEE FOCS 2012.

[7] Leonid Barenboim and Tzalik Maimon. 2021. Deterministic Logarithmic Com-

pleteness in the Distributed Sleeping Model. In 35th International Symposium on

Distributed Computing, DISC, Vol. 209. 10:1–10:19.

[8] Michael A. Bender, Jeremy T. Fineman, Mahnush Movahedi, Jared Saia, Varsha

Dani, Seth Gilbert, Seth Pettie, and Maxwell Young. 2015. Resource-Competitive

Algorithms. SIGACT News 46, 3 (2015), 57–71.

[9] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy Sequen-

tial Maximal Independent Set and Matching Are Parallel on Average. In ACM

Symposiumon Parallelism in Algorithms and Architectures (SPAA). 308–317.

[10] Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and

Seth Pettie. 2018. The Energy Complexity of Broadcast. In ACM PODC. 95–104.

[11] Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie. 2020. The Energy

Complexity of BFS in Radio Networks. In ACM PODC. 273–282.

[12] Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. 2019.

Exponential Separations in the Energy Complexity of Leader Election. ACM

Trans. Algorithms 15, 4 (2019), 49:1–49:31. Conference version: ACM STOC 2017..

[13] Soumyottam Chatterjee, Robert Gmyr, and Gopal Pandurangan. 2020. Sleeping

is Efficient: MIS in O(1)-rounds Node-averaged Awake Complexity. In ACM

Symposium on Principles of Distributed Computing, PODC. 99–108.

[14] Don Coppersmith, Prabhakar Raghavan, and Martin Tompa. 1989. Parallel graph

algorithms that are efficient on average. Information and Computation 81, 3 (1989),

318–333.

[15] Varsha Dani, Aayush Gupta, Thomas P. Hayes, and Seth Pettie. 2021. Wake

up and Join Me! an Energy-Efficient Algorithm for Maximal Matching in Radio

Networks. In 35th International Symposium on Distributed Computing (DISC).

19:1–19:14.

[16] Varsha Dani and Thomas P. Hayes. 2022. How to Wake up Your Neighbors: Safe

and Nearly Optimal Generic Energy Conservation in Radio Networks. In 36th

International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022,

Augusta, Georgia, USA (LIPIcs, Vol. 246), Christian Scheideler (Ed.). 16:1–16:22.

[17] Fabien Dufoulon, William K Moses Jr., and Gopal Pandurangan. 2022. Sleeping

is Superefficient: MIS in Exponentially Better Awake Complexity. arXiv preprint

arXiv:2204.08359 (2022).

[18] Laura Marie Feeney and Martin Nilsson. 2001. Investigating the energy consump-

tion of a wireless network interface in an ad hoc networking environment. In

IEEE INFOCOM, Vol. 3. 1548–1557.

[19] Manuela Fischer and Andreas Noever. 2018. Tight Analysis of Parallel Random-

ized Greedy MIS. In SODA. 2152–2160.

[20] Mohsen Ghaffari. 2016. An Improved Distributed Algorithm for Maximal Inde-

pendent Set. In SODA. 270–277.

[21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. 2021. Improved Deter-

ministic Network Decomposition. In Proceedings of the 2021 ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA. 2904–2923.

144

Distributed MIS in𝑂 (log log𝑛) Awake Complexity PODC ’23, June 19–23, 2023, Orlando, FL, USA

[22] Mohsen Ghaffari and Julian Portmann. 2022. Average Awake Complexity of MIS

and Matching. In ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA). 45–55.

[23] Seth Gilbert, Valerie King, Seth Pettie, Ely Porat, Jared Saia, and Maxwell Young.

2014. (Near) optimal resource-competitive broadcast with jamming. In 26th ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, Prague,

Czech Republic - June 23 - 25, 2014, Guy E. Blelloch and Peter Sanders (Eds.). ACM,

257–266.

[24] Seth Gilbert and Maxwell Young. 2012. Making evildoers pay: resource-

competitive broadcast in sensor networks. In ACM Symposium on Principles

of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18, 2012,

Darek Kowalski and Alessandro Panconesi (Eds.). ACM, 145–154.

[25] Khalid Hourani, Gopal Pandurangan, and Peter Robinson. 2022. Awake-Efficient

Distributed Algorithms for Maximal Independent Set. In IEEE Conference on

Distributed Computing Systems (ICDCS). 1338–1339.

[26] Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski. 2002. Efficient

algorithms for leader election in radio networks. In Proceedings of the Twenty-

First Annual ACM Symposium on Principles of Distributed Computing, PODC 2002,

Monterey, California, USA, July 21-24, 2002, Aleta Ricciardi (Ed.). ACM, 51–57.

[27] Marcin Kardas, Marek Klonowski, and Dominik Pajak. 2013. Energy-Efficient

Leader Election Protocols for Single-Hop Radio Networks. In 42nd International

Conference on Parallel Processing, ICPP 2013, Lyon, France, October 1-4, 2013. IEEE

Computer Society, 399–408.

[28] Valerie King, Cynthia A. Phillips, Jared Saia, and Maxwell Young. 2011. Sleeping

on the Job: Energy-Efficient and Robust Broadcast for Radio Networks. Algorith-

mica 61, 3 (2011), 518–554.

[29] Christian Konrad. 2018. MIS in the Congested Clique Model in 𝑂 (log logΔ)
Rounds. arXiv preprint arXiv:1802.07647 (2018).

[30] K. Krzywdziński and K. Rybarczyk. 2015. Distributed algorithms for random

graphs. Theoretical Computer Science 605 (2015), 95–105.

[31] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2016. Local Com-

putation: Lower and Upper Bounds. Journal of the ACM 63, 2, Article 17 (2016),

44 pages.

[32] Christoph Lenzen and Roger Wattenhofer. 2011. MIS on trees. In ACM PODC.

41–48.

[33] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15, 4 (1986), 1036–1053. Conference version: ACM

STOC 1985.

[34] Tzalik Maimon. 2021. Sleeping Model: Local and Dynamic Algorithms.

arXiv:2112.05344

[35] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: random-

ization and probabilistic techniques in algorithms and data analysis. Cambridge

university press.

[36] Chebiyyam Siva Ram Murthy and Balakrishnan Manoj. 2004. Ad Hoc Wireless

Networks: Architectures and Protocols. Prentice Hall PTR, USA.

[37] Koji Nakano and Stephan Olariu. 2000. Randomized Leader Election Protocols in

Radio Networks with No Collision Detection. In Algorithms and Computation,

11th International Conference, ISAAC 2000, Taipei, Taiwan, December 18-20, 2000,

Proceedings (Lecture Notes in Computer Science, Vol. 1969), D. T. Lee and Shang-Hua

Teng (Eds.). Springer, 362–373.

[38] David Peleg. 2000. Distributed Computing: A Locality-sensitive Approach. Society

for Industrial and Applied Mathematics.

[39] Václav Rozhon and Mohsen Ghaffari. 2020. Polylogarithmic-time deterministic

network decomposition and distributed derandomization. In 52nd Annual ACM

SIGACT Symposium on Theory of Computing, STOC. 350–363.

[40] Qin Wang, Mark Hempstead, and Woodward Yang. 2006. A Realistic Power

Consumption Model for Wireless Sensor Network Devices. In The Third Annual

IEEE Communications Society on Sensor and Ad Hoc Communications and Networks

(SECON ’06, Vol. 1). 286–295.

[41] Ou Yang and Wendi Heinzelman. 2013. An Adaptive Sensor Sleeping Solution

Based on Sleeping Multipath Routing and Duty-Cycled MAC Protocols. ACM

Transactions on Sensor Networks 10, 1 (2013).

[42] Rong Zheng and Robin Kravets. 2005. On-demand power management for ad

hoc networks. Ad Hoc Networks 3, 1 (2005), 51–68.

145

https://arxiv.org/abs/2112.05344

	Abstract
	1 Introduction
	1.1 Maximal Independent Set Problem
	1.2 Awake Complexity
	1.3 Model and Complexity Measures
	1.4 Our Contributions
	1.5 Related Work and Comparison

	2 High-level Overview and Techniques
	3 Preliminaries: Notation and Randomized Techniques
	3.1 Notation
	3.2 Chernoff Bounds
	3.3 Sequential Randomized Greedy MIS
	3.4 Simple Graph Shattering

	4 Auxiliary Procedures
	4.1 The Virtual Binary Tree Technique
	4.2 Labeled Distance Trees
	4.3 Simple Awake-Efficient MIS Algorithms

	5 Randomized Greedy MIS in O(log log n) Awake Rounds
	6 Conclusion
	Acknowledgments
	References

