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In this paper we study the perturbation theory of �4
2 model on the whole

plane via stochastic quantization. We use integration by parts formula (i.e.,
Dyson–Schwinger equations) to generate the perturbative expansion for the
k-point correlation functions, and prove bounds on the remainder of the trun-
cated expansion using PDE estimates; this in particular proves that the ex-
pansion is asymptotic. Furthermore, we derive short distance behaviors of the
2-point function and the connected 4-point function, also via suitable Dyson–
Schwinger equations combined with PDE arguments.

1. Introduction. Physicists’ approach to quantum field theory often relies on perturba-
tion theory, which is a formal series expansion in terms of a certain coupling constant; see,
for instance the standard book [40], Chapter 7. The first goal of this paper is to discuss this
perturbative approach and provide some estimates on the expansion using SPDE methods.
We will focus on the λ�4 model in two space dimensions, formally given by

dν ∝ exp
(
−

λ

4

∫

R2
:�(x)4:dx

)
dμ,(1.1)

where dμ is the Gaussian free field with mean zero and variance 1
2(m − �)−1 for m > 0. In

physics, interesting quantities such as correlations are calculated by formally Taylor expand-
ing the exponential density in the coupling constant λ, and then applying the Wick theorem
for Gaussian measures (which yields Feynman diagrams). Jaffe [28] proved that this formal
expansion is a divergent series for any fixed λ > 0.

A toy model to illustrate this divergent perturbation theory is a �4 model in “zero dimen-
sion”: consider the following function (“partition function”):

Z(λ) =
∫

R

e−x2
e−λx4

dx.

One has Z(0) =
√

π . For λ > 0, one can formally calculate it by the expansion e−λx4 =∑∞
n=0

(−λ)n

n! x4n, since there is exact formula for Gaussian moments, that is,

(1.2) Z(λ) =
∞∑

n=0

∫

R

(−λ)n

n!
x4ne−x2

dx =
∞∑

n=0

(−λ)n

n!
(4n − 1)!!

√
π

22n
.

This series is divergent for any fixed λ > 0. However, despite its divergence, this perturbative
approach is widely used for other quantum field theories, such as quantum electrodynam-
ics (QED), gauge theory, or the so-called “standard model” in general that comprises these
models; and these perturbative calculations yield numerical values which agree with the ex-
periments at extremely high accuracy; see, for example, [5], equation (4), for calculation of
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the electron’s magnetic moment in QED which agrees with the experiment to eleven decimal
places.

This means that practically it is still often useful to calculate physical quantities by trun-
cating this series. For instance in the above toy model, Z(0.01) ≈ 1.7597, and the first two
terms on the RHS of (1.2) are approximately 1.7725 − 0.0133 = 1.7592 which is close to the
exact value.1 We also refer to another interesting example along this line with illuminating
discussion in [18], Section 6.1.2

We remark that the model (1.1) we consider here is a type of bosonic models, whereas the
perturbation series for some of the ferminoic models actually converge, see [19] (and more
recently [1], Sections B,D, in the setting of stochastic quantization).

The above discussion indicates that asymptoticity is a more relevant notion than conver-
gence in perturbation theory. Asymptoticity means that truncating the series after a fixed

finite number of terms provides a good approximation to Z(λ) as λ tends towards zero. For
the �4

2 model Dimock [14] proved that the perturbative expansion of correlation functions
(Schwinger functions) is asymptotic. His proof crucially relies on the constructive field theory
results and methods by Glimm, Jaffe, Spencer [21]. The asymptoticity of �4

3 was also proved
in [17], Theorem 3, see also [30], Section IV.2. We remark that a key input to the proof in
[14] is a uniform exponential cluster property proven in [21], from which Dimock managed
to deduce that correlation functions are smooth in λ ∈ [0, λ0] where λ0 > 0 is sufficiently
small, and asymptoticity essentially follows from the Taylor remainder theorem. The small-
ness of λ is mainly due to requirement for the cluster property to hold. This is also the case for
d = 3. In fact [17] proved cluster property in 3d in detail, and only mentioned that smooth-
ness in λ and asymptoticity follow analogously as in 2d [14]. [30], Section IV.2, provided
more details but the basic mechanism is also similar to [14]. The relation between smooth-
ness of correlations in coupling constants and cluster properties was observed in statistical
mechanics, see [29]. Using the results of [14], Eckmann–Epstein–Fröhlich [16] proved that
in weakly coupled P(�)2 theories, perturbation theory in the coupling constant is asymptotic
to the S-matrix elements; and the result was extended to �4

3 in [15] where it was shown that
the time-ordered functions and S-matrix elements admit the standard perturbation series as
asymptotic expansions.

Another approach to asymptotic perturbation theory for the (one and two-component) �4

model in 2d and 3d was developed by Bovier and Felder in [6], using an infinite family
of skeleton inequalities. The leading orders of these skeleton inequalities were proved by
Brydges–Fröhlich–Sokal in [8, 10] and applied to construct �4

2,3 in [9].

In this paper we give a new proof of asymptoticity for �4
2 based on SPDE methods. More

precisely, we consider the stochastic quantization of the �4
2 model (i.e., the dynamical �4

2
model) on R

+ ×R
2:

(∂t − � + m)� = −
1

2
λ:�3: + ξ,(1.3)

with ξ space–time white noise on R
+ × R

2 and :�3: is the Wick product defined in Sec-
tion 2. The solution theory of equation (1.3) is now well developed: see [4] where martingale
solutions are constructed and [12] where strong solutions are addressed, as well as the more

1Of course since the series is divergent, for the fixed λ = 0.01 the partial sum of (1.2) will not be infinitely close
to the exact value of Z(0.01); indeed the n = 70th term on the RHS is approximately equal to 0.9 and a truncation
up to such a high order certainly loses accuracy.

2The author explains that convergence and effectiveness of approximation are completely different. For ex-

ample,
∑∞

0
(−100)n

n! converges to e−100 ≈ 10−44, but unfortunately its first few partial sums are 1, −99, 4901,

−161,765 2
3 .
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recent approach to global well-posedness in [34]. It is obtained in [35] that the marginal dis-
tribution of the stationary solution to (1.3) is given by �4

2 field. Hence, we could use (1.3) to
study the �4

2 field.
Another ingredient in our approach is the integration by parts (IBP) formula w.r.t. the

�4
2 field, also called Dyson–Schwinger equations. In our SPDE approach it seems not easy to

establish cluster properties or prove smoothness in λ over the entire plane, so we do not follow
the methodology in [14]. Instead, we iteratively apply IBP to generate the perturbation theory
(which is similar to [9] and [6]), which after a certain order yields a remainder represented as
integrals of the field � and Gaussian covariances. Our strategy is then to introduce graphic
representation for such a remainder, and then apply PDE a priori estimates to control the
graphs. To this end we will carry out some manipulations on the graphs, reduce graphs to
trees and design inductive arguments.

As the �4
2 field does not have full support on function space, we consider the following

approximation: we start with Gibbs measures (νM,ε)M,ε on 
M,ε = (ε(Z/MZ))2 given by

dνM,ε ∝ exp
{
−ε2

∑


M,ε

[
λ

4
�4 +

(
−

3

2
λaM,ε + m

)
�2 + |∇ε�|2

]} ∏

x∈
M,ε

d�(x),

where ∇ε denotes the discrete gradient and aM,ε are renormalization constants. We will use
the stochastic quantization equation for νM,ε to prove that {νM,ε}M,ε form a tight set in Sec-
tion 2 (see also [23] for the proof of 3d case). We still use (M,ε) to denote the subsequence
such that νM,ε ◦ (Eε)−1 converge to ν weakly with Eε being the extension operator given in
(A.4). Here ν could be every accumulation point and all the theorems hold for every ν.

The k-point correlations for νM,ε—for which we will expand using integration by parts
formula—are given by

Sk
λ,M,ε(x1, . . . , xk) =

∫ [ k∏

i=1

�(xi)

]
νM,ε(d�).

Letting M → ∞, ε → 0 we obtain the k-point function for ν

〈
S

ν,k
λ , ϕ

〉 def= lim
ε→0,M→∞

∫ ∫

R2k

(
k∏

i=1

�(xi)

)
ϕ(x1, . . . , xk)

k∏

i=1

dxi dνM,ε(�),(1.4)

for ϕ ∈ S(R2k) with compact support Fourier transform, where the existence of the limit will
be discussed in Theorem 2.5. We also give the definition of S

ν,k
λ using the extension operator

in Section 3.1, which coincides with the above definition (1.4). Our first main result gives the
asymptotic expansion of S

ν,k
λ .

THEOREM 1.1. It holds that for ϕ ∈ S(R2k)

(1.5)
〈
S

ν,k
λ , ϕ

〉
=

N∑

n=0

λn

n!
〈
F k

n , ϕ
〉
+ λN+1〈Rν,k

N+1, ϕ
〉
,

with F k
n only depending on the Green function of Gaussian free field and

∣∣〈Rν,k
N+1, ϕ

〉∣∣� 1 + λ4k+12(N+1)

with the proportional constant independent of λ.3

3Here the proportional constant may depend on N . We remark that the terms λ4k+12(N+1), λ27 and λ54 in
these theorems provide controls for large λ, but these exponents may not be optimal (see Remark 2.4).
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The complete version of Theorem 1.1 is given in Theorem 3.9 and Proposition 3.10. Note
that [14] only amounts to λ〈Rk

N+1, ϕ〉 → 0 as λ ↓ 0, and the result in [6] also assumes small
λ regime, whereas we give a more precise bound here which holds for arbitrary λ > 0. More-
over, we obtain (see Theorem 3.9 and Proposition 3.10) that (1.5) holds in C−γ (ρ�) for
γ > 0, some � > 0 and polynomial weight ρ and the same bound holds for ‖Rk

N+1‖C−γ (ρ�).
Here C−γ (ρ�) is the weighted Besov–Hölder space (see the Appendix for definition).

Note that the expansion (1.5) is precisely the Taylor expansion in the coupling constant λ

in the aforementioned perturbation theory. Namely, by taking the nth derivative on the RHS
of (1.5) and evaluating at λ = 0, and invoking the above bound on Rk

N+1, we have

dn

dλn

∣∣∣∣
λ=0

〈
S

ν,k
λ , ϕ

〉
=
〈
F k

n , ϕ
〉

∀n ≤ N.

In physics these derivatives on the LHS result in expectations of Gaussian products and are
typically computed by Wick theorems and Feynman diagrams.

REMARK 1.2. By [28] each F k
n has a lower bound depending on n that is not summable,

which implies the expansion is a divergent series.

As the second goal of the paper, our strategy of combining the integration by parts formula
and SPDE uniform estimates also allow us to find the leading short distance behavior for the
2-point correlation and the connected 4-point correlation. Let CM,ε (resp. Cε) be the Green
function of 2(m − �ε) on 
M,ε (resp. on 
ε = εZ2). We also use C to denote the Green
function of 2(m − �) on R

2.

THEOREM 1.3. Let ρ(x) = (1 + |hx|2)−δ/2 be a polynomial weight with h > 0 small

enough and δ > 1/2. It holds that for γ > 0 and some � > 0

(1.6)
∥∥S2

λ,M,ε − CM,ε

∥∥
C2−γ,ε(
ε,ρ�) � λ2 + λ27,

with the proportional constant independent of M , ε. Furthermore taking tight limit, it holds

that
∥∥Sν,2

λ − C
∥∥

C2−γ (R2,ρ�) � λ2 + λ27.

Here C2−γ,ε(ρ�) is the discrete Besov–Hölder space and we refer to the Appendix for its
definition.

REMARK 1.4. By Theorem 1.3 we can write S
ν,2
λ as a function on R

2 and the leading
short distance behavior of S

ν,2
λ is identical to that of C up to a C2−γ part (although each of

them are singular at origin).

We define the following connected 4-point function:

U4
M,ε(x1, x2, x3, x4)

def= S4
λ,M,ε(x1, x2, x3, x4) − S2

λ,M,ε(x1, x2)S
2
λ,M,ε(x3, x4)

− S2
λ,M,ε(x1, x3)S

2
λ,M,ε(x2, x4) − S2

λ,M,ε(x1, x4)S
2
λ,M,ε(x2, x3).

THEOREM 1.5. Let ρ(x) = (1 + |hx|2)−δ/2 be a polynomial weight with h > 0 small

enough and δ > 0. It holds that for γ > 0 and some � > 0
∥∥U4

M,ε

∥∥
C2−γ,ε(
4

ε,ρ
�) � λ + λ54,
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and
∥∥∥∥∥U

4
M,ε + 6λ

∫


M,ε

4∏

i=1

CM,ε(xi − z)dz

∥∥∥∥∥
C2−γ,ε(
4

ε,ρ
�)

� λ2 + λ54,

with the proportional constant independent of M , ε. Moreover, as in (1.4) the tight limit of

U4
M,ε exists which we denote by U

ν,4
λ and

∥∥U ν,4
λ

∥∥
C2−γ (R8,ρ�) � λ + λ54,

and
∥∥∥∥∥U

ν,4
λ + 6λ

∫ 4∏

i=1

C(xi − z)dz

∥∥∥∥∥
C2−γ (R8,ρ�)

� λ2 + λ54.

The proof of the above two results are given in Section 5. We will see in the proof of
Theorem 1.5 that the expansion of U

ν,4
λ cancels some irregular part, and as a result, the

regularity of U
ν,4
λ is C2−γ which is better than the regularity of S

ν,4
λ which is C−γ , for

γ > 0. Here C−γ is the optimal regularity of S
ν,4
λ if considering in Besov–Hölder space since

the Green’s function C, which is not continuous, appears in the expansion of S
ν,4
λ .

Similar results were also obtained in [9], Theorem 1.1, but in our results above we obtain
bounds under stronger regularity norms; moreover [9] requires λ > 0 to be sufficiently small
whereas we do not.

The short distance behavior of �4
3 on the torus has also been studied by Brydges–Dimock–

Hurd, see [7], Theorem 9, where the Lp,p < 3
2 -norm of truncated correlations are controlled.

Here we consider the case of �4
2 on the full plane and we are able to estimate the C2−γ -

Hölder norm of U
ν,4
λ and S

ν,2
λ − C. We refer to the remark at the end of [7] for a discussion

on regularity and how singular the truncated correlation functions can be at coinciding points.
We remark that as far as we understand, our technique in proving the above theorems

appears to be more robust than skeleton inequalities used in earlier literature (e.g., [6] and
[9]), in the sense that at least in 2d, it is valid for all values of the coupling constant λ and
can be very easily adapted to N component models for any N > 1 (PDE estimates for such
models were discussed in [36], Section 2 and Section 6.2).

Finally we mention that it would be interesting to see whether our methodology could be
used to deduce similar results in 3d. For 3d stochastic quantization, namely the dynamical
�4

3 model, we refer to the construction of local solutions [11, 24, 25] and global solutions
[2, 22, 23, 33]. These works, followed by [3, 27, 32, 36, 37], including the present paper,
show that the usage of SPDE methods is not only successful in constructing Euclidean QFTs
but also proving their axioms and properties. As remarked in [23] deducing properties about
correlations from the dynamics would be a very interesting and challenging problem, and our
results in the present paper could be viewed as a step toward this direction. It would be also
interesting to study connected correlations of higher orders. We leave these generalizations
to further work.

2. Uniform estimates via SPDEs. In this section we study �4
2 field via stochastic quan-

tization. We will obtain tightness of the discrete �4
2 field, which gives a construction of �4

2
field in the continuous setting. We also give some uniform estimates via SPDEs, especially
how these estimates depend on the parameter λ.

We consider the �4
2 model in both discrete and continuous settings. In particular, we

set 
ε := εZ2 for ε = 2−N , N ∈ N ∪ {0} and the periodic lattice 
M,ε := εZ2 ∩ T
2
M =
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εZ2 ∩ [−M
2 , M

2 )2. We use S(Rd) to denote the class of Schwartz functions on R
d and

S ′(Rd) denote the dual space of S(Rd) called the Schwartz generalized function space.
Given a Banach space E with a norm ‖ · ‖E and T > 0, we write CT E = C([0, T ];E)

for the space of continuous functions from [0, T ] to E, equipped with the supremum norm
‖f ‖CT E = supt∈[0,T ] ‖f (t)‖E and we write L

p
T E = Lp([0, T ];E) for the space of Lp func-

tions from [0, T ] to E, equipped with the Lp norm ‖f ‖L
p
T E = (

∫ T
0 ‖f (t)‖p

E dt)1/p . We also

use o(ε) to denote a(ε) ∈ R satisfying limε→0
a(ε)
ε

= 0. In this paper we use the polynomial
weight on R

d given by

ρ(x) =
(
1 + |hx|2

)−δ/2
, δ, h ≥ 0.

It is easy to see that
∣∣∇ρ(x)

∣∣� |h|ρ(x).(2.1)

We use Bα,ε
p,q(
k

ε, ρ),α ∈R,p, q ∈ [1,∞] to denote the weighted Besov spaces on 
k
ε, k ∈ N,

and we recall their definition in the Appendix. We also write Bα,ε
p,q(ρ) = Bα,ε

p,q(

k
ε, ρ) if there

is no confusion. Note that if ε = 0, Bα,ε
p,q(ρ) is the classical weighted Besov space Bα

p,q(ρ)

on R
2k . Set Hα,ε(ρ) = B

α,ε
2,2 (ρ), Cα,ε(ρ) = Bα,ε

∞,∞(ρ) and Hα(ρ) = Bα
2,2(ρ), Cα(ρ) =

Bα
∞,∞(ρ). We also use Cα,ε

s to denote the Besov–Hölder space w.r.t. each component on

k

ε for k ∈N with definition given in the Appendix. The duality on 
ε is given by

〈f,g〉ε
def= ε2

∑

x∈
ε

f (x)g(x),

with 〈·, ·〉 as the usual duality between S(Rd) and S ′(Rd). We also write Lp,ε for the Lp

space on 
ε endowed with the norm

‖f ‖Lp,ε =
(
ε2
∑

x∈
ε

∣∣f (x)
∣∣p
)1/p

,

with the usual modification for p = ∞. We refer to the Appendix for discrete Besov embed-
ding, duality, interpolation, which will be used below.

We start with Gibbs measures (νM,ε)M,ε on 
M,ε given by

(2.2) dνM,ε ∝ exp
{
−ε2

∑


M,ε

[
λ

4
�4 +

(
−3

2
λaM,ε + m

)
�2 + |∇ε�|2

]} ∏

x∈
M,ε

d�(x),

where

∇εf (x) =
(

f (x + εei) − f (x)

ε

)

i=1,2

denotes the discrete gradient and aM,ε are renormalization constants defined below. Here
(ei)i=1,2 is the canonical basis in R

2. We write

�εf (x) = ε−2(f (x + εei) + f (x − εei) − 2f (x)
)
, x ∈ 
ε

as the discrete Laplacian on 
ε and Lε := ∂t + m − �ε . We also use �M,ε to denote the
stationary solution to the discrete stochastic quantization equation on 
M,ε

Lε�M,ε +
λ

2
�3

M,ε −
3

2
λaM,ε�M,ε = ξM,ε,(2.3)
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where ξM,ε is a discrete approximation of a space–time white noise ξ on R
+ × R

2 con-
structed as follows: Let ξM denote the periodization of ξ on R

+ ×T
2
M and define the spatial

discretization by

ξM,ε(t, x) := ε−2〈ξM(t, ·),1|·−x|∞≤ε/2
〉
, (t, x) ∈ R

+ × 
M,ε,

where |x|∞ = |x1| ∨ |x2| for x = (x1, x2). The law of �M,ε at every time t ≥ 0 is given by
νM,ε defined in (2.2), which is the unique invariant measure to the finite-dimensional gradient
system (2.3) (see, e.g., [13]). We extend all the functions and distributions to 
ε by periodic
extension.

The aim of this section is to show that {νM,ε}M,ε (properly extended to S ′(R2)) is tight in
C−γ (ρ) for γ > 0 and some polynomial weight ρ. Every accumulation point ν is an invariant
measure of the following SPDE on R

+ ×R
2:

(2.4) L � +
λ

2
:�3: = ξ,

with L = ∂t − � + m. Here :�3: is the Wick power defined by

:�3: = lim
ε→0

M→∞
E

ε(�3
M,ε − 3aM,ε�M,ε

)
,

where Eε is an extension operator from Bα,ε
p,q(ρ) to Bα

p,q(ρ) for some α < 0 defined in (A.4)
in the Appendix.

Here we understand (2.4) decomposed as the following two equations: � = Z + Y

(2.5) L Z = ξ, L Y = −
λ

2

(
Y 3 + 3Y 2Z + 3Y :Z2: + :Z3:

)
,

where

:Z2: def= lim
ε→0,M→∞

E
ε:Z2

M,ε:
def= lim

ε→0,M→∞
E

ε(Z2
M,ε − aM,ε

)
,

:Z3: def= lim
ε→0,M→∞

E
ε:Z3

M,ε:
def= lim

ε→0,M→∞
E

ε(Z3
M,ε − 3aM,εZM,ε

)
.

Here ZM,ε are stationary solutions to

LεZM,ε = ξM,ε,(2.6)

aM,ε = EZ2
M,ε(0) and the limits are in C([0, T ];C−γ (ρκ)) P-a.s. for any γ, κ > 0 and T > 0.

By standard renormalization calculation we have that for every p ≥ 1, κ, γ > 0 and T > 0

E‖ZM,ε‖p

CT C−γ,ε(ρκ )
+ E

∥∥:Z2
M,ε:

∥∥p
CT C−γ,ε(ρκ )

+ E
∥∥:Z3

M,ε:
∥∥p
CT C−γ,ε(ρκ )

� 1,(2.7)

with the proportional constant independent of ε, M , and

(2.8)
E
∥∥EεZM,ε − Z

∥∥p
CT C−γ (ρκ )

+ E
∥∥Eε:Z2

M,ε: − :Z2:
∥∥p
CT C−γ (ρκ )

+ E
∥∥Eε:Z3

M,ε: − :Z3:
∥∥p
CT C−γ,ε(ρκ )

→ 0,

as M → ∞, ε → 0 (cf. [23, 34, 39]). Global well-posedness of equations (2.5) and hence
equation (2.4) have been obtained in [34]. In the following we take (�M,ε,ZM,ε) as joint
stationary processes satisfying equations (2.3) and (2.6), respectively, which could be con-

structed by [36], Lemma 5.7. Hence, YM,ε
def= �M,ε − ZM,ε satisfy the following equation on


M,ε:

LεYM,ε = −
λ

2

(
Y 3

M,ε + 3Y 2
M,εZM,ε + 3YM,ε:Z2

M,ε: + :Z3
M,ε:

)
.(2.9)

In the following we derive uniform estimates in both parameters M , ε for YM,ε . To this
end, we recall that all the distributions above are extended periodically to the full lattice 
ε .

For general p ≥ 2 we have the following Lp uniform bounds.
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LEMMA 2.1. For the polynomial weight ρ(x) = (1+|hx|2)−δ/2 and h > 0 small enough,
it holds that for every p ≥ 1, δ > 1

2 and 0 < σ < 1

E
∥∥YM,ερ

2∥∥2p

L2,ε + E
∥∥YM,ερ

2∥∥2
H 1−σ,ε

∥∥YM,ερ
2∥∥2(p−1)

L2,ε � λp + λ3p.(2.10)

Furthermore, for every p0 ≥ 2 there is h > 0 small enough such that for the weight ρ(x) =
(1 + |hx|2)−δ/2 and every 2 ≤ p ≤ p0 with p even, pδ > 2

E
∥∥Yp

ε ρp
∥∥
L1,ε + E

∥∥|∇εYε|2|Yε|p−2ρp
∥∥
L1,ε � λ + λ2+p/2.(2.11)

Here all the proportional constants are independent of M , ε.

PROOF. We omit the subscript M for notational simplicity, and all the proportional con-
stants in the proof are independent of ε and M . We first note that for the canonical basis
{ei}2

i=1 in R
2 and even p

(2.12)

∇εYε(x) · ∇εY
p−1
ε (x)

=
2∑

i=1

(
∇ i

εYε(x)
)2
( p∑

�=2

Yp−�
ε (x + εei)Y

�−2
ε (x)

)

≥
1

2

(
∣∣∇εYε(x)

∣∣2∣∣Yε(x)
∣∣p−2 +

2∑

i=1

(
∇ i

εYε(x)
)2

Yp−2
ε (x + εei)

)
,

where ∇ i
εYε(x)

def= 1
ε
(Yε(x +εei)−Yε(x)) and we used Y

p−�
ε (x +εei)Y

�−2
ε (x) ≥ 0 for � even

and

Yp−�
ε (x + εei)Y

�−2
ε (x) ≤

1

2
Yp−�+1

ε (x + εei)Y
�−3
ε (x) +

1

2
Yp−�−1

ε (x + εei)Y
�−1
ε (x)

for � odd in the last step. Taking the L2,ε inner product with Y
p−1
ε ρp on both sides of (2.9)

and using (2.12) we obtain

(2.13)

1

p

d

dt

∥∥Yp
ε ρp

∥∥
L1,ε +

1

2
(D1 + D2) + m

∥∥Yp
ε ρp

∥∥2
L1,ε +

λ

2

∥∥Yp+2
ε ρp

∥∥
L1,ε

≤
∣∣〈[∇ε, ρ

p]Yp−1
ε ,∇εYε

〉
ε

∣∣−
3λ

2

〈
ρpYp+1

ε ,Zε

〉
ε

−
3λ

2

〈
ρpYp

ε , :Z2
ε :
〉
ε −

λ

2

〈
ρpYp−1

ε , :Z3
ε :
〉
ε

def=
4∑

k=1

Ik,

where

D1
def=
∥∥|∇εYε|2|Yε|p−2ρp

∥∥
L1,ε , D2

def=
∥∥∥∥∥

2∑

i=1

(
∇ i

εYε

)2 · Yp−2
ε (· + εei)ρ

p

∥∥∥∥∥
L1,ε

.

We also set B
def= ‖Yp+2

ε ρp‖L1,ε . For I1 we have

I1 ≤ Cρ

∥∥ρpYp
ε

∥∥1/2
L1,εD

1/2
1 ≤ Cρ,γ

∥∥ρpYp
ε

∥∥
L1,ε + γD1,
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where the constants Cρ , Cρ,γ depend on ‖ρ−p[∇ε, ρ
p]‖L∞,ε , which for given p0 by (2.1)

could be chosen sufficiently small for p ≤ p0 by choosing h small enough. By Lemma A.4
we have for 0 < s < 1

3 , κ > 0

I2 � λ
∥∥Yp+1

ε

∥∥
B

s,ε
1,1(ρ

p−κ )‖Zε‖C−s,ε(ρκ ),

and we use Lemma A.3 to have
∥∥Yp+1

ε

∥∥
B

s,ε
1,1(ρ

p−κ ) �
∥∥Yp+1

ε

∥∥1/2
B

−s,ε
1,1 (ρp−2κ )

∥∥Yp+1
ε

∥∥1/2

B
3s,ε
1,1 (ρp)

.(2.14)

For the first factor on the RHS of (2.14) we use Hölder’s inequality to have

∥∥Yp+1
ε ρp−2κ

∥∥
B

−s,ε
1,1

�
∥∥Yp+1

ε ρp−2κ
∥∥
L1,ε �

∥∥Yp+2
ε ρp

∥∥
p+1
p+2

L1,ε

∥∥ρθ
∥∥

1
p+2

L1,ε � B
p+1
p+2 ,

where θ = (p − 2κ)(p + 2) − p(p + 1) = (1 − 2κ)p − 4κ > 2/δ for κ > 0 small enough.
For the second factor on the RHS of (2.14) we use (iii) in Lemma A.5 to obtain

∥∥Yp+1
ε

∥∥
B

3s,ε
1,1 (ρp)

�
∥∥Yp+1

ε

∥∥
L1,ε(ρp) +

∥∥∇εY
p+1
ε

∥∥
L1,ε(ρp)

�
∥∥Yp+1

ε

∥∥
L1,ε(ρp) +

(
D

1/2
1 + D

1/2
2

)
B1/2,

where we use (2.1) to have

(2.15)

∥∥∇εY
p+1
ε

∥∥
L1,ε(ρp) �

2∑

i=1

∥∥∣∣∇ i
εYε

∣∣(Yp
ε (· + εei) + Yp

ε

)
ρp
∥∥
L1,ε

�D
1/2
2

( 2∑

i=1

∥∥|Yε|p+2(· + εei)ρ
p
∥∥
L1,ε

)1/2

+ D
1/2
1 B1/2

�
(
D

1/2
1 + D

1/2
2

)
B1/2,

in the last step. Substituting the above calculations into (2.14) and using Young’s inequality
we obtain for γ > 0

I2 � λ
(
B

p+1
p+2 +

(
D

1
4
1 + D

1
4
2

)
B

1
4 + p+1

2(p+2)
)
‖Zε‖C−s,ε(ρκ )

≤ γ λB + λCγ ‖Zε‖p+2
C−s,ε(ρκ )

+ γD1 + γD2 + λ2+p/2Cγ ‖Zε‖2(p+2)

C−s,ε(ρκ )
.

Similarly, for I3 we use Lemma A.4 to have

I3 � λ
∥∥Yp

ε

∥∥
B

s,ε
1,1(ρ

p−κ )

∥∥:Z2
ε :
∥∥

C−s,ε(ρκ ),

and we apply Lemma A.3 to obtain for 0 < s < 1
3

∥∥Yp
ε

∥∥
B

s,ε
1,1(ρ

p−κ ) �
∥∥Yp

ε

∥∥1/2
B

−s,ε
1,1 (ρp−2κ )

∥∥Yp
ε

∥∥1/2

B
3s,ε
1,1 (ρp)

.(2.16)

For the first factor on the RHS of (2.16) we use Hölder’s inequality to have

∥∥Yp
ε ρp−2κ

∥∥
B

−s,ε
1,1

�
∥∥Yp

ε ρp−2κ
∥∥
L1,ε �

∥∥Yp+2
ε ρp

∥∥
p

p+2

L1,ε

∥∥ρθ1
∥∥

2
p+2

L1,ε � B
p

p+2 ,

where θ1 = p(1 − κ) − 2κ > 2/δ for κ > 0 small enough. For the second factor on the RHS
of (2.16) we use (iii) in Lemma A.5 to obtain

∥∥Yp
ε

∥∥
B

3s,ε
1,1 (ρp)

�
∥∥Yp

ε

∥∥
L1,ε(ρp) +

∥∥∇εY
p
ε

∥∥
L1,ε(ρp)

�
∥∥Yp

ε

∥∥
L1,ε(ρp) +

(
D

1/2
1 + D

1/2
2

)∥∥Yp
ε

∥∥1/2
L1,ε(ρp)

� B
p

p+2 +
(
D

1/2
1 + D

1/2
2

)
B

p
2(p+2) ,



AN SPDE APPROACH TO PERTURBATION THEORY OF �4
2 2609

where we use a similar calculation as (2.15) in the second step. Combining the above calcu-
lations and Young’s inequality we obtain

I3 � λ
(
B

p
p+2 +

(
D

1
4
1 + D

1
4
2

)
B

3p
4(p+2)

)∥∥:Z2
ε :
∥∥

C−s,ε(ρκ )

≤ γ λB + λCγ

∥∥:Z2
ε :
∥∥

p+2
2

C−s,ε(ρκ )
+ γD1 + γD2 + Cγ λ

p
6 + 4

3
∥∥:Z2

ε :
∥∥

2(p+2)
3

C−s,ε(ρκ )
.

Similarly,

I4 � λ
(
B

p−1
p+2 +

(
D

1
4
1 + D

1
4
2

)
B

3p−4
4(p+2)

)∥∥:Z3
ε :
∥∥

C−s,ε(ρκ )

≤ γ λB + λCγ

∥∥:Z3
ε :
∥∥

p+2
3

C−s,ε(ρκ )
+ γD1 + γD2 + Cγ λ

p+12
10
∥∥:Z3

ε :
∥∥

2(p+2)
5

C−s,ε(ρκ )
.

Combining the above estimates and choosing γ small enough to absorb γD1, γD2 and γ λB

to the LHS of (2.13) we obtain

(2.17)

1

p

d

dt

∥∥Yp
ε ρp

∥∥
L1,ε +

1

4
D1 +

1

4
D2 +

m

2

∥∥Yp
ε ρp

∥∥2
L1,ε +

λ

4

∥∥Yp+2
ε ρp

∥∥
L1,ε

≤
(
λ + λ2+p/2)C(Zε),

where C(Zε) denotes a polynomial in the terms of

‖ZM,ε‖C−s,ε(ρκ ),
∥∥:Z2

M,ε:
∥∥

C−s,ε(ρκ ),
∥∥:Z3

M,ε:
∥∥

C−s,ε(ρκ )

and EC(Zε) � 1 with the proportional constant independent of ε, M . Recall that (�ε,Zε)

are stationary process, so are Yε . Integrating over t and taking expectation we obtain

(2.18)

1

p
E
∥∥Yp

ε (t)ρp
∥∥
L1,ε +

1

4

∫ t

0
E(D1 + D2)ds

+ m

2

∫ t

0
E
∥∥Yp

ε ρp
∥∥2
L1,ε ds + λ

4

∫ t

0
E
∥∥Yp+2

ε ρp
∥∥
L1,ε ds

≤ Cm,ρ

(
λ + λ2+p/2)+

1

p
E
∥∥Yp

ε (0)ρp
∥∥
L1,ε ,

with the constant Cm,ρ ≥ 0. Using stationarity of Yε and dividing t on both sides of (2.18) we
obtain

1

4
E
∥∥∣∣∇εYε(0)

∣∣2∣∣Yε(0)
∣∣p−2

ρp
∥∥
L1,ε +

m

2
E
∥∥Yp

ε (0)ρp
∥∥2
L1,ε

=
1

4t

∫ t

0
E
∥∥|∇εYε|2|Yε|p−2ρp

∥∥
L1,ε ds +

m

2t

∫ t

0
E
∥∥Yp

ε ρp
∥∥2
L1,ε ds

≤ Cm,ρ

(
λ + λ2+p/2)+

1

pt
E
∥∥Yp

ε (0)ρp
∥∥
L1,ε .

The last term can be absorbed by the LHS for t large enough. Then (2.11) follows. Moreover,
by Lemma A.5 we have for σ ∈ (0,1) and any polynomial weight ρ

(2.19) ‖Yε‖B
1−σ,ε
2,2 (ρ)

� ‖Yε‖B
−σ,ε
2,2 (ρ)

+ ‖∇εYε‖B
−σ,ε
2,2 (ρ)

� ‖Yε‖L2,ε(ρ) + ‖∇εYε‖L2,ε(ρ).

Choosing p = 2, replacing ρ by ρ2 with δ > 1
2 in (2.17) and using (2.19) we obtain for some

c0 > 0

1

2

d

dt

∥∥Yε(t)ρ
2∥∥2

L2,ε + c0
∥∥Yερ

2∥∥2
H 1−σ,ε +

m

4

∥∥Yερ
2∥∥2

L2,ε +
λ

4
‖Yερ‖4

L4,ε

≤
(
λ + λ3)C(Zε).
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Furthermore, we consider d
dt

‖Yερ
2‖2p

L2,ε and have for every p > 1

1

2p

d

dt

∥∥Yερ
2∥∥2p

L2,ε + c0
∥∥Yερ

2∥∥2
H 1−σ,ε

∥∥Yερ
2∥∥2(p−1)

L2,ε

+
m

4

∥∥Yερ
2∥∥2p

L2,ε +
λ

4
‖Yερ‖4

L4,ε

∥∥Yερ
2∥∥2(p−1)

L2,ε

�
(
λ + λ3)C(Zε)

∥∥Yερ
2∥∥2(p−1)

L2,ε �
(
λp + λ3p)C(Zε) +

m

8

∥∥Yερ
2∥∥2p

L2,ε ,

which by taking stationary initial condition and similar argument as above gives (2.10). �

By Lemma 2.1 we could give uniform control for the nonlinear terms on the right-hand
side of (2.9). Our aim is to do asymptotic expansion of k-point function up to λN+1 for
k,N ∈ N. In the following we fix a polynomial weight and several parameters:

(2.20) ρ(x) =
(
1 + |hx|2

)−δ/2
, δ > 1/2, p0 >

(
9k(N + 1)

)
∨ (96), p0 even,

with h > 0 small enough such that the bounds (2.10) hold for every p ≥ 1 and (2.11) holds
for 1 ≤ p ≤ p0 and even p. In the subsequent sections we also consider functions on 
k

ε and
we also abuse the notation ρ to denote the weight in R

2k . In this case we say ρ in (2.20)
means that h > 0 satisfies the same condition as in (2.20) and it is easy to find that ρ could
be controlled by the corresponding weight in R

2.

COROLLARY 2.2. For the polynomial weight and p0 in (2.20), it holds that for 1 ≤ p ≤
p0/3, 0 < β < 1

4p
, κ > 0

E‖YM,ε‖p

Cβ,ε(ρ4+κ )
� λp + λ4p,(2.21)

where the proportional constant is independent of ε, M .

PROOF. We consider the case for p even and the general case follows by Hölder’s in-
equality. We also omit the subscript M for notational simplicity and all the proportional
constants in the proof are independent of ε and M . We first prove that for any 0 < s < 1

2p
that

(2.22)
E
∥∥Y 3

M,ε

∥∥p
Lp,ε(ρ3)

+ E
∥∥Y 2

M,εZM,ε

∥∥p
B

−s,ε
1+s,∞(ρ4+κ )

+ E
∥∥YM,ε:Z2

M,ε:
∥∥p
H−s,ε(ρ2+κ )

� λ + λ3p.

By Lemma 2.1 we have for 3p ≤ p0

E
∥∥Y 3

ε

∥∥p
Lp,ε(ρ3)

� E‖Yε‖3p

L3p,ε(ρ)
� λ + λ2+ 3p

2 .

For the second term in (2.22) we use Lemma A.6 to have for s > γ > 0
∥∥Y 2

ε Zε

∥∥
B

−s,ε
1+s,∞(ρ4+κ )

� ‖Zε‖C−γ,ε(ρκ )

∥∥Y 2
ε

∥∥
Bs

1+s,∞(ρ4) � ‖Zε‖C−γ,ε(ρκ )

∥∥Y 2
ε

∥∥
B

3s,ε
1,1 (ρ4)

�
∥∥Zερ

κ
∥∥

C−γ,ε

∥∥Yερ
2∥∥

H 4s,ε

∥∥Yερ
2∥∥

L2,ε

� ‖Zε‖C−γ,ε(ρκ )

∥∥Yερ
2∥∥2θ1

H 1−σ,ε

∥∥Yερ
2∥∥2−2θ1

L2,ε ,

where we choose 0 < σ < 1 small enough such that θ1 = 2s
1−σ

< 1 and we use Lemma A.5
in the second inequality and Lemma A.3 in the last inequality. Thus by (2.10) in Lemma 2.1
and (2.7) we obtain for σ small satisfying 2sp < 1 − σ ,

E
∥∥Y 2

ε Zε

∥∥p
B

−s,ε
1+s,∞(ρ4+κ )

� E‖Zε‖p

C−γ,ε(ρκ )

∥∥Yερ
2∥∥2pθ1

H 1−σ,ε

∥∥Yερ
2∥∥p(2−2θ1)

L2,ε � λp + λ3p,

where we use Hölder’s inequality in the last step.
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For the third term in (2.22) we use Lemma A.6, Lemma A.3, (2.10), (2.7) and Hölder’s
inequality to have for sp < 2(1 − σ)

E
∥∥Yε:Z2

ε :
∥∥p
H−s,ε(ρ2+κ )

� E‖Yε‖p

H s,ε(ρ2)

∥∥:Z2
ε :
∥∥p

C−γ,ε(ρκ )

� E‖Yε‖pθ1/2
H 1−σ,ε(ρ2)

‖Yε‖p(1−θ1/2)

L2,ε(ρ2)

∥∥:Z2
ε :
∥∥p

C−γ (ρκ )
� λ

p
2 + λ

3p
2 .

Now (2.22) follows.
In the following we prove (2.21) by Schauder estimate Lemma A.7. Set

Fε
def= Y 3

ε + 3Y 2
ε Zε + 3Yε:Z2

ε : + :Z3
ε :.

We choose α, s > 0 such that

2

p
< α <

1

4p
+

2

p
<

s(1 − s)

1 + s
+

2

p
< 2,(2.23)

where the last inequality holds by sp < 1
2 . By Schauder’s estimate Lemma A.7

‖Yε‖L
p
T B

α,ε
p,p(ρ) �

∥∥Yε(0)
∥∥
B

α− 2
p ,ε

p,p (ρ)

+ λ‖Fε‖L
p
T B

α−2,ε
p,p (ρ)

,

with the proportional constant independent of T . By Lemma A.5 and the choice of α in (2.23)
we have the following embedding:

B
−s,ε
1+s,∞

(
ρ4+κ)⊂ Bα−2,ε

p,p

(
ρ4+κ), H−s,ε(ρ2+κ)⊂ Bα−2,ε

p,p

(
ρ4+κ),

Lp,ε(ρ3)⊂ Bα−2,ε
p,p

(
ρ4+κ).

Thus,

E
∥∥Yε(0)

∥∥p
B

α,ε
p,p(ρ4+κ )

=
1

T
E‖Yε‖p

L
p
T B

α,ε
p,p(ρ4+κ )

�
1

T
E
∥∥Yε(0)

∥∥p
B

α− 2
p ,ε

p,p (ρ4+κ )

+
λp

T
E‖Fε‖p

L
p
T B

α−2,ε
p,p (ρ4+κ )

�
1

T
E
∥∥Yε(0)

∥∥p
B

α− 2
p ,ε

p,p (ρ4+κ )

+ λpE
∥∥Y 3

M,ε

∥∥p
Lp,ε(ρ3)

+ λpE
∥∥Y 2

M,εZM,ε

∥∥p
B

−s,ε
1+s,∞(ρ4+κ )

+ λpE
∥∥YM,ε:Z2

M,ε:
∥∥p
H−s,ε(ρ2+κ )

+ λpE
∥∥:Z3

M,ε:
∥∥p

C−s,ε(ρκ )

�
1

T
E
∥∥Yε(0)

∥∥p
B

α− 2
p ,ε

p,p (ρ4+κ )

+ λp + λ4p,

where we use (2.22) in the last step. Choosing T large enough and using Besov embedding
Lemma A.5, we obtain (2.21). �

Define

(2.24)

�M,ε = YM,ε + ZM,ε,

:�2
M,ε:

def= �2
M,ε − aM,ε = Y 2

M,ε + 2YM,εZM,ε + :Z2
M,ε:,

:�3
M,ε:

def= �3
M,ε − 3aM,ε�M,ε = Y 3

M,ε + 3ZM,εY
2
M,ε + 3:Z2

M,ε:YM,ε + :Z3
M,ε:.

Then we can use the right-hand sides to control E‖:�i
M,ε:‖

p

C−γ,ε(ρ9)
for i = 1,2,3. More

precisely we have the following result which will be useful in the subsequent sections.
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COROLLARY 2.3. For the polynomial weight and p0 as in (2.20), it holds for 0 < γ < 1
2 ,

κ > 0, 1 ≤ p < p0/9 that

E‖�M,ε‖p

C−γ,ε(ρ4+κ )
+ E

∥∥:�2
M,ε:

∥∥p
C−γ,ε(ρ9)

+ E
∥∥:�3

M,ε:
∥∥p

C−γ,ε(ρ13)
� 1 + λ12p,

with the proportional constant independent of M , ε.

PROOF. It suffices to consider the case that p even since the general case follows by
Hölder’s inequality. In the following we consider each term separately and we choose κ > 0
small enough. By (2.21) we have for γ > 0, 0 < β < 1

4p
, 3p < p0:

E‖�M,ε‖p

C−γ,ε(ρ4+κ )
� E‖YM,ε‖p

Cβ,ε(ρ4+κ )
+ E‖ZM,ε‖p

C−γ,ε(ρκ )
� 1 + λ4p.(2.25)

We use Lemma A.6, (2.21) and (2.7) to have for 0 < β < 1
8p

, 6p < p0

E
∥∥:�2

M,ε:
∥∥p

C−γ,ε(ρ9)

� E‖YM,ε‖2p

Cβ,ε(ρ4+κ )
+ E‖YM,ε‖p

Cβ,ε(ρ4+κ )
‖ZM,ε‖p

C−β/2,ε(ρκ )
+ E‖ZM,ε‖p

C−γ,ε(ρκ )

� 1 + λ8p,

where we use Hölder’s inequality in the last step. Similarly for the last term we use
Lemma A.6, Hölder’s inequality and (2.21) to have for γ > 0 and 0 < β < 1

12p
, 9p < p0

E
∥∥:�3

M,ε:
∥∥p

C−γ,ε(ρ13)
� E‖YM,ε‖3p

Cβ,ε(ρ4+κ )
+ E‖YM,ε‖2p

Cβ,ε(ρ4+κ )
‖ZM,ε‖p

C−β/2,ε(ρκ )

+ E‖YM,ε‖p

Cβ,ε(ρ4+κ )

∥∥:Z2
M,ε:

∥∥p
C−β/2,ε(ρκ )

+ E
∥∥:Z3

M,ε:
∥∥p

C−γ,ε(ρκ )

� 1 + λ12p.

The corollary then follows from the above bounds. �

REMARK 2.4. The powers for the weight and λ in Corollary 2.3 are not optimal. If we
use Lp,ε-norm in (2.11) to bound C−γ,ε we have lower powers with the cost that γ depends
on p0.

We consider the tight limit of
(
E

ε�M,ε(t),E
εZM,ε(t),E

εYM,ε(t)
)
M,ε

and we denote by (�,Z,Y ) the canonical representative of the random variables under con-
sideration (i.e., the canonical process on the canonical probability space with the limiting
measure).

THEOREM 2.5. For the polynomial weight and p0 as in (2.20), it holds that the family

(
E

ε�M,ε(t),E
εZM,ε(t),E

εYM,ε(t)
)
M,ε

is tight in (C−γ (ρ4+2κ),C−γ (ρ2κ),Cγ (ρ4+κ)) for 0 < γ,κ < 1
8 . Moreover, the first marginal

ν of every tight limit μ is an invariant measure of (2.4) and satisfies for every p ≥ 1, σ, γ > 0
with 3p < p0

Eν‖�‖p

C−γ (ρ4+κ )
� 1 + λ4p, Eμ‖Y‖2

H 1−σ (ρ2)
� λ2, Eμ‖Y‖p

Lp(ρ) � λ + λ2+p
2 .
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PROOF. By Lemma A.8 and (2.10) we know that for p ≥ 1, YM,ε = �M,ε − ZM,ε satis-
fies

E
∥∥EεYM,ε

∥∥2p

L2(ρ2)
+ E

∥∥EεYM,ε

∥∥2
H 1−σ (ρ2)

∥∥EεYM,ε

∥∥2(p−1)

L2(ρ2)
� λp + λ3p.

By Corollary 2.2 and (2.25) we have for γ > 0, p ≥ 2, 0 < β < 1
4p

, 3p < p0

E
∥∥EεYM,ε

∥∥p
Cβ (ρ4+κ )

+ E
∥∥Eε�M,ε

∥∥p
C−γ (ρ4+κ )

� 1 + λ4p.

Then the tightness of (Eε�M,ε(t),E
εZM,ε(t),E

εYM,ε(t))M,ε in (C−γ−κ(ρ4+2κ),C−γ (ρκ),

Cβ−κ(ρ4+2κ)) follows from compact embedding Lemma A.5 and the moment bound fol-
lows from lower semicontinuity of the norm and (2.25), (2.11) and (2.10) with p = 1. We
may extract a converging subsequence, which is still denoted as (Eε�M,ε(t),E

εZM,ε(t),

EεYM,ε(t))M,ε , modify the stochastic basis, and find random variables (�,Z,Y ) ∈
(C−γ (ρ4+κ),C−γ (ρκ),Cβ(ρ4+κ)) such that for p ≥ 2, 0 < β < 1

4p
, 3p < p0

E
∥∥Eε�M,ε − �

∥∥p
C−γ−κ (ρ4+2κ )

→ 0, E
∥∥EεZM,ε − Z

∥∥p
C−γ (ρκ )

→ 0, M → ∞, ε → 0,

and

E
∥∥EεYM,ε − Y

∥∥p
Cβ−κ (ρ4+2κ )

→ 0, M → ∞, ε → 0.

Hence, by Lemma A.9, Lemma A.6 and (2.21), (2.7), (2.8) we have for γ > 0, 1
8p

> β > 0,
3p < p0

E
∥∥Eε(YM,εZM,ε) − YZ

∥∥p
C−γ (ρ4+3κ )

� E
∥∥Eε(YM,εZM,ε) − E

εYM,εE
εZM,ε

∥∥p
C−γ (ρ4+3κ )

+ E
∥∥EεYM,εE

εZM,ε − YZ
∥∥p

C−γ (ρ4+3κ )

� o(ε) + E
∥∥EεYM,ε − Y

∥∥p
Cβ (ρ4+2κ )

∥∥EεZM,ε

∥∥p
C−β/2(ρκ )

+ E‖Y‖p

Cβ (ρ4+2κ )

∥∥EεZM,ε − Z
∥∥p

C−β/2(ρκ )

→ 0, as M → ∞, ε → 0.

Similarly we have that as M → ∞, ε → 0, for 9p < p0, γ > 0

E
∥∥Eε(Y 2

M,ε

)
− Y 2∥∥p

C−γ (ρ8+4κ )
+ E

∥∥Eε(Y 3
M,ε

)
− Y 3∥∥p

C−γ (ρ12+6κ )
→ 0,(2.26)

E
∥∥Eε(Y 2

M,εZM,ε

)
− Y 2Z

∥∥p
C−γ (ρ8+5κ )

+ E
∥∥Eε(YM,ε:Z2

M,ε:
)
− Y :Z2:

∥∥p
C−γ (ρ4+3κ )

→ 0,(2.27)

which implies that

(2.28)
E
∥∥Eε:�2

M,ε: − :�2:
∥∥p

C−γ (ρ8+4κ )

+ E
∥∥Eε:�3

M,ε: − :�3:
∥∥p

C−γ (ρ12+6κ )
→ 0, M → ∞, ε → 0,

where

:�2: def= Y 2 + 2YZ + :Z2:,

:�3: def= Y 3 + 3ZY 2 + 3:Z2:Y + :Z3:.

Since YM,ε satisfies equation (2.9), by Corollary 2.3 it is easy to obtain for 0 ≤ s ≤ t ≤ T

E
∥∥YM,ε(t) − YM,ε(s)

∥∥p
C−2−γ,ε(ρ13)

�
(
1 + λ12p)(t − s)p,
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which combined with (2.7), (2.8) implies that the tightness of the stochastic process
(Eε�M,ε,E

εYM,ε , EεZM,ε) in CT C−2−2γ (ρ13+κ) × CT C−2−2γ (ρ13+κ) × CT C−γ (ρκ).
Since �M,ε satisfies (2.3), we know Eε�M,ε satisfies the following equation:

E
ε�M,ε(t) = E

εYM,ε(0) +
∫ t

0

(
�εE

εYM,ε + E
ε:�3

M,ε:
)

ds + E
εZM,ε(t).

For smooth test functions ϕ it is each to check �εϕ → �ϕ for ε → 0. By the convergence
in (2.28), the nonlinear term Eε:�3

M,ε: also converges in Lp(�,L
p
T C−γ (ρ12+6κ)), which

implies that the limiting process � satisfies equation (2.4). As �M,ε is stationary solution to
(2.3), ν is an invariant measure to (2.4). �

REMARK 2.6. By a similar argument as in [23] we could prove that every ν is translation
invariant and reflection positive and every ν satisfies an integration by parts formula, which
has the same form as in [20], Chapter 12. As � is not a usual function, we will not use the
integration by parts formula for ν directly but use the associated one for νM,ε instead in the
subsequent sections.

3. Integration by parts and graphs. The purpose of this section is to study the pertur-
bative expansion for the k-point correlation Sk

λ,M,ε and apply the estimates from the previous
section to obtain a bound on the remainder of this expansion. To this end we actually con-
sider an equivalent expansion using integration by parts (“IBP” for short in the sequel), that
is, Dyson–Schwinger equations. We also use the same notation as in Section 2.

Let Cε(x) := 1
2(m − �ε)

−1(x) be the Green function of discrete Laplacian �ε on 
ε and
CM,ε is the periodic Green function. Choosing aM,ε = CM,ε(0) as the Wick constant, we
recall

:�3
M,ε: = �3

M,ε − 3aM,ε�ε, :�2
M,ε: = �2

M,ε − aM,ε.

Recall the following IBP formula with respect to νM,ε (see, e.g., [23], Section 6, or [36],
Appendix C) for F(�M,ε) = f (�M,ε(z1), . . . ,�M,ε(zn)), n ∈ N, zi ∈ 
M,ε with smooth
f :Rn →R having polynomial growth first order derivative

(3.1)
E

(
δF (�M,ε)

δ�M,ε(z)

)
=
∫ (

δF (�)

δ�(z)

)
νM,ε(d�) =

∫
F(�)

(
δVM,ε(�)

δ�(z)

)
νM,ε(d�)

= 2E
(
F(�M,ε)(m − �ε)�M,ε(z)

)
+ λE

(
F(�M,ε):�M,ε(z)

3:
)
,

where VM,ε(�) =
∑


M,ε
[λ

4�4 + (−3
2λaM,ε + m)�2 + |∇ε�|2] and

δF (�M,ε)

δ�M,ε(z)
= lim

η→0

1

η

(
F

(
�M,ε + η

ez

ε2

)
− F(�M,ε)

)
,

for ez : 
M,ε → [0,1], ez(z) = 1, ez(y) = 0 for y �= z. We write (3.1) in terms of Green’s
function CM,ε:

(3.2)

∫


M,ε

CM,ε(x − z)E

(
δF (�M,ε)

δ�M,ε(z)

)
dz

= E
(
�M,ε(x)F (�M,ε)

)

+ λ

∫


M,ε

CM,ε(x − z)E
(
F(�M,ε):�M,ε(z)

3:
)

dz

for any x ∈ 
M,ε and we use
∫

M,ε

f (z)dz to denote ε2∑
z∈
M,ε

f (z).
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3.1. k-Point correlation. Consider the k-point correlation given by

Sk
λ,M,ε(x1, . . . , xk) = E

[
k∏

i=1

�M,ε(xi)

]
∈ C−γ,ε(ρ�),

for γ > 0, some � > 0 and the polynomial weight ρ.
In the following, let � denote the stationary solution to (2.4) with marginal distribution

given by ν obtained in Theorem 2.5. We still use (M,ε) to denote the subsequence such that
νM,ε ◦ (Eε)−1 converge to ν weakly with Eε being the extension operator given in (A.4).
Define

(3.3)

〈
S

ν,k
λ , ϕ

〉 def= lim
ε→0,M→∞

E

∫

R2k

(
k∏

i=1

E
ε�M,ε(xi)

)
ϕ(x1, . . . , xk)

k∏

i=1

dxi

= lim
ε→0,M→∞

〈
E

ε
k Sk

λ,M,ε, ϕ
〉
,

for ϕ ∈ S(R2k), where we use the Fubini Theorem in the second equality. Recall Eε
k is intro-

duced in (A.5) in the Appendix to extend functions on 
k
ε and by (A.6) this coincides with

the one given in (1.4). By Theorem 2.5 and Lemmas A.1, A.8 we know

lim
M→∞,ε→0

E
ε
k Sk

λ,M,ε = S
ν,k
λ in C−γ (ρ�),(3.4)

for γ > 0, some n > 0 and the polynomial weight ρ.
In the following we expand Sk

λ,M,ε by applying (3.2) with suitable choices of test func-
tions F . We introduce the following shorthand notation:

Iεf (x)
def=
∫


M,ε

CM,ε(x − y)f (y)dy.(3.5)

Before the proof, let us start by an example on how the iteration of this formula gives the
desired expansion for Sλ,M,ε(x0 − y0) = Sk

λ,M,ε(x0 − y0) with k = 2, x0, y0 ∈ 
M,ε . We first
describe the initial steps of this iteration:

(1) Taking F(�M,ε) = �M,ε(y0) in (3.2) with x = x0, we have

(3.6) CM,ε(x0 − y0) = Sλ,M,ε(x0 − y0) + λE
(
�M,ε(y0)Iε

(
:�3

M,ε:
)
(x0)

)
.

This gives us the leading order expansion of the form Sλ,M,ε = CM,ε + O(λ) where O(λ)

refers to the last term and we will prove in Proposition 3.10 below that the C−γ,ε(ρ�)-norm
of this term is bounded by λ(1 + λ16) for γ > 0, some � > 0 and the polynomial weight ρ in
(2.20).

(2) We can further expand the last term of (3.6): taking F(�M,ε) = λIε(:�3
M,ε:)(x0) in

(3.2)

(3.7)

3λ

∫


M,ε

CM,ε(y0 − z)CM,ε(x0 − z)E
(
:�M,ε(z)

2:
)

dz

= λE
(
�M,ε(y0)Iε

(
:�3

M,ε:
)
(x0)

)

+ λ2E
(
Iε

(
:�3

M,ε:
)
(x0)Iε

(
:�3

M,ε:
)
(y0)

)
.

Substituting this into (3.6) we see that in order to get the expansion up to the next order, we
need to apply IBP again to the LHS in (3.7). Choose F(�M,ε) = �M,ε(x). The LHS of (3.2)
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only gives a Wick constant which can be absorbed into the RHS, so we get

0 = E
(
:�2

M,ε(x):
)
+ λE

(
�M,ε(x)Iε

(
:�3

M,ε:
)
(x)
)
,(3.8)

which implies that

3λ

∫


M,ε

CM,ε(y0 − z)CM,ε(x0 − z)E
(
:�M,ε(z)

2:
)

dz

= −3λ2
∫


M,ε

CM,ε(y0 − z)CM,ε(x0 − z)E
(
�M,ε(z)Iε

(
:�3

M,ε:
)
(z)
)

dz.

Therefore we have

(3.9)

Sλ,M,ε(x0 − y0)

= CM,ε(x0 − y0) + λ2E
(
Iε

(
:�3

M,ε:
)
(x0)Iε

(
:�3

M,ε:
)
(y0)

)

+ 3λ2
∫


M,ε

CM,ε(y0 − z)CM,ε(x0 − z)E
(
�M,ε(z)Iε

(
:�3

M,ε:
)
(z)
)

dz.

This gives us the next order expansion Sλ,M,ε = CM,ε + O(λ2), that is, the order λ term is
zero (see Proposition 3.10 below for the control of the term containing �M,ε).

REMARK 3.1. We will iteratively apply IBP as above to obtain higher order expansions.
Remark that alternatively, if we replace all the �M,ε in (3.9) by the Gaussian field ZM,ε ,
using

E
(
ZM,ε(z)Iε

(
:Z3

M,ε:(z)
))

= 0,

and pretending that the error of this replacement is order O(λ3), then we can write
Sλ,M,ε(x0 − y0) as

(3.10)

CM,ε(x0 − y0) + λ2E
(
Iε

(
:Z3

M,ε:
)
(x0)Iε

(
:Z3

M,ε:
)
(y0)

)
+ O

(
λ3)

= CM,ε(x0 − y0)

+ 6λ2
∫


M,ε×
M,ε

CM,ε(y0 − w)CM,ε(x0 − z)CM,ε(z − w)3 dz dw + O
(
λ3).

This is the expansion at one more order.

REMARK 3.2. The procedure illustrated above for 2-point correlation also applies to
k-point correlations for general k. For example, taking F(�M,ε) =∏k

i=2 �M,ε(xi) we have

(3.11)

k∑

i=2

CM,ε(x1 − xi)S
k−2
λ,M,ε(x2, . . . , xi−1, xi+1, . . . , xk)

= Sk
λ,M,ε(x1, . . . , xk) + λE

(
k∏

i=2

�M,ε(xi)Iε

(
:�3

M,ε:
)
(x1)

)
dz.

Graphic notation. To iterate the above procedure in a more systematic way, it will be
convenient to introduce some graphic notation. We denote CM,ε by a line, and �M,ε by a
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tiny wavy line. Then one can write the computation (3.6)–(3.10) above graphically as

(3.12)

REMARK 3.3. A very helpful intuition is that at each step of IBP, we simply pick up a
point which has a wavy line (which corresponds to x in (3.2)), and then connect it to the other
existing points with a wavy line (LHS of (3.2)), and also connect it to a new point with 3 new
wavy lines (namely create a new factor Iε(:�3

M,ε:) corresponding to the last term of (3.2)).
For instance, (3.11) amounts to picking up the point x1, or graphically:

(3.13)

We also find that for E[:�2
M,ε(x):], (3.8) holds and for E[:�3

M,ε(x):] we use (3.2) with

F(�M,ε) = :�2
M,ε(x): to have

0 = E
[
:�3

M,ε(x):
]
+ λE

[
:�2

M,ε(x):Iε

(
:�3

M,ε:
)
(x)
]
.

Then there is no need to connect x to itself.
In general, given a graph G, we write G = (VG,EG) or simply G = (V ,E) where V is

the set of vertices and E is the set of edges. We denote by |V |, |E| the cardinalities of these
sets, namely the number of vertices and edges. Here for any two distinct vertices u, v ∈ V ,
we allow multiple edges between u and v (namely we allow “multigraphs” in the language
of graph theory). However, we will assume throughout the paper that our graphs do not have
self-loops, that is, there is not any edge of the form {u,u} for u ∈ V .

DEFINITION 3.4. For each � ≥ 0, we define Hk
� to be the set of all the graphs G = (V ,E)

such that |V | = � + k which has k “special points” {u∗
m,m = 1, . . . , k} in V with deg(u∗

m) ∈
{0,1}, and such that deg(v) ∈ {1,2,3,4} for every v ∈ V \{u∗

m,m = 1, . . . , k}. We then define
H :=⋃

�≥0 H
k
� .

We then define Gk
� to be the set of all the graphs G = (V ,E) ∈ Hk

� such that deg(v) = 4
for every v ∈ V \{u∗

m,m = 1, . . . , k} and deg(u∗
m) = 1 for m = 1, . . . , k. We then write G :=⋃

�≥0 G
k
� . Clearly, for G ∈ Hk

� if we write

n�(G) := 4� + k −
∑

v∈V

deg(v),

then G = {G ∈ H : n�(G) = 0} ⊂ H.
For any such graph we will write V ∂

G = {u∗
m,m = 1, . . . , k} and V 0

G = VG\V ∂
G.
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Remark that the graphs in (3.12) are all elements of H, where those without any tiny wavy
line are elements of G.

We define a mapping from Hk
� to the set of all functions in {xu∗

m
}km=1, which maps G =

(V ,E) ∈ Hk
� to

(3.14)

IG(x1, . . . , xk) =
∫ ( ∏

{u,v}∈EG

CM,ε(xu, xv)

)

× E

( ∏

u∗
m∈V ∂

G

�M,ε(xm)1−deg(u∗
m)
∏

z∈V 0
G

:�M,ε(xz)
4−deg(z):

) ∏

z∈V 0
G

dxz,

where xm = xu∗
m

. In particular when G ∈ Gk
� , IG only depends on CM,ε , and not on �M,ε

(which is then the usual convention for “Feynman diagrams” in physics).
We will sometimes say that G is the graph associated with the function IG. More generally

when a function F is a linear combination of functions of IG (G ∈ H′) for a finite collection
of graphs H′ ⊂ H we say that the graphs in H′ are the graphs associated with the function F .
Whenever it is clear from the context we will sometimes use the same notation (such as x) to
denote both a vertex of a graph and the point in R

2 that is parametrized by x.

LEMMA 3.5. For any k ≥ 1 and N ≥ −1, we have the following representation for the

k-point correlation:

(3.15) Sk
λ,M,ε =

N∑

n=0

λn

n!
F k

n,M,ε + λN+1Rk
N+1,M,ε,

where the graphs associated with F k
n,M,ε belong to Gk

n , and the graphs associated with

Rk
N+1,M,ε belong to Hk

N+1. The functions F k
n,M,ε and Rk

N+1,M,ε are independent of λ.

We remark that in the lemma, when N = −1, in which case the “empty” sum in (3.15)
is understood as 0 by standard convention, (3.15) trivially holds which states that Sk

λ,M,ε =
Rk

0,M,ε where Rk
0,M,ε can be indeed associated with a graph in Hk

0, that is, the graph with
only k vertices and no edge. We also note that as an example the third line of (3.12) shows
that (3.15) holds for k = 2 and N = 1, where F0,M,ε = CM,ε and F1,M,ε = 0.

PROOF OF LEMMA 3.5. In the proof we omit M , ε for notational simplicity. By the
� → −� symmetry, Sk

λ,M,ε = 0 if k is odd, so nothing needs to be proven. For k ∈ 2N, we

will prove by induction in N that the lemma holds with Rk
N+1 having the following form:

(3.16) Rk
N+1 =

∑

G∈Hk
N+1

n�(G)∈[0,m]∩2Z

rGIG

for some m ∈ 2Z which may depend on N , and some coefficients rG ∈ R.
As remarked above, the lemma holds with N = −1, with Rk

0 = Sk
λ = IG, where G =

(V ,E) ∈ Hk
0 with V consisting of the k special points only and E being empty.

Assume that for a fixed integer N ≥ 0 we have already shown that

(3.17) Sk
λ =

N−1∑

n=0

λn

n!
F k

n + λNRk
N , Rk

N =
∑

G∈Hk
N

n�(G)∈[0,m]∩2Z

rGIG
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we then prove that the same holds with N replaced by N + 1, with updated values of m and
rG.

To this end we use IBP to decrease the value of n�(G) for the graphs G ∈ Hk
N above, so

that we are only left with graphs in Gk
N (i.e., n� = 0), at the cost of producing other graphs in

Hk
N+1 which however are multiplied by the parameter λ and which will be defined as Rk

N+1.
More precisely we claim that for each G ∈ Hk

N such that n�(G) = m, the term IG in (3.17)
can be written as

(3.18) IG =
∑

G′∈Hk
N ,n�(G′)=m−2

aG′IG′ + λ
∑

G′′∈Hk
N+1

bG′′IG′′

for some aG′, bG′′ ∈ R.
Assuming (3.18), we plug all these IG with n�(G) = m into (3.17), which allows us to

write

(3.19) Rk
N =

∑

G∈Hk
N

n�(G)∈[0,m−2]∩2Z

r̄GIG + λ
∑

G∈Hk
N+1

r̄GIG

for some coefficients r̄G ∈ R. We then iterate this argument and plug these into (3.19) to ob-
tain (3.19) with an even lower value of m (and new coefficients r̄G ∈ R). After m/2 iterations,
we get

(3.20) Rk
N =

∑

G∈Gk
N

r ′
GIG + λ

∑

G∈Hk
N+1

r ′
GIG

for some r ′
G. We then see that the lemma holds for N with F1, . . . ,FN−1 remaining the same,

FN = N !
∑

G∈Gk
N

r ′
GIG and Rk

N+1 =
∑

G∈Hk
N+1

r ′
GIG.

Since all the graphs in the last sum are finite graphs, Rk
N+1 has the form (3.16) for some m.

It remains to prove (3.18), for which it will be helpful to recall the intuition explained in
Remark 3.3.

Fixing G, we can assume that n�(G) ≥ 2 (otherwise if n�(G) = 0 there is nothing
to prove). We then know that there is a vertex x ∈ V 0

G with deg(x) < 4 or x ∈ V ∂
G with

deg(x) = 0. Fix any such vertex x. Applying (3.2) with x therein being this vertex x, we have

(3.21) IG =
( ∑

z∈V ∂
G

deg z=0,z �=x

(
1 − deg(z)

)
IG−

xz

)
+
( ∑

z∈V 0
G

deg z<4,z �=x

(
4 − deg(z)

)
IG−

xz

)
− λIG+

xz
,

where the graph G+
xz is defined by “adding a new vertex z”:

VG+
xz

= VG ∪ {z}, EG+
xz

= EG ∪
{
{x, z}

}
, (z /∈ VG)

and the graph G−
xz is defined by “connecting x and some z ∈ VG by a new edge”

VG−
xz

= VG, EG−
xz

= EG ∪
{
{x, z}

}
, (z ∈ VG).

This is precisely in the form (3.18), since n�(G−
xz) = n�(G) − 2. �

We remark that from the above proof, it is clear that all the graphs associated with F k
n,M,ε

and Rk
N+1,M,ε are obtained by the procedure described below (3.21), starting from the “initial

graph” with |V | = k and |E| = 0. For convenience of estimating the graphs later, we color
the edges of these graphs as follows. In the above proof, when we use (3.21) each time,
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• we use the red color for the new line {x, z} appearing in G+
xz;

• we use the green color for the new line {x, z} appearing in G−
xz.

REMARK 3.6. Just as an example for (3.21) in the above proof: if G is the last graph in
(3.13), then x can be any point except for the upper-left one. Taking for instance x to be the
upper-right point, then G−

xz will be the following graphs:

and G+
xz is then

Note that we also color the edge connected to x1 by red because of the way it arises in (3.13).

The reason for coloring the edges is that we will reduce graphs in Hk
N to trees by “cutting

out” the green lines.

LEMMA 3.7. For each graph G associated with F k
n,M,ε or Rk

N+1,M,ε in Lemma 3.5,
denote by Ĝ the subgraph formed by all its red lines.

Then, Ĝ has exactly k connected components; each connected component is a rooted tree,
and has exactly one vertex in V ∂

G which is regarded as the root of the tree.4

PROOF. This is obvious by construction. Indeed, for the initial case where |VG| = k and
|EG| = 0, we have that Ĝ is just k trivial trees. Assuming that we already know that a graph
G satisfies the property in the lemma, then, when a new vertex z is added which creates a
new red edge {x, z} as in (3.21), it simply adds one more edge to one of the k red trees. (See
Figure 1 for an illustration.) �

FIG. 1. An illustration of trees formed by red lines in the case of 2-point correlation. Here u∗
1, u∗

2 ∈ V ∂
G and all

other vertices are in V 0
G. One of the two trees, that is, the tree which only contains one single vertex v, is trivial.

4Recall that in graph theory, a tree is a graph without any cycle, and a rooted tree is a tree in which one vertex is
designated to be the root. In particular a graph consisting of only a single vertex and no edge is trivially a rooted
tree.
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LEMMA 3.8. For the polynomial weight ρ in (2.20), it holds that for γ > 0 and some

� > 0 and n ≤ N + 1

lim
M→∞,ε→0

E
ε
k F k

n,M,ε = F k
n in C−γ (ρ�),

and

lim
M→∞,ε→0

E
ε
k Rk

n,M,ε = Rν,k
n in C−γ (ρ�),

with Eε
k being the extension opeartor defined in (A.5). Here F k

n can be written as integrals of

the Green function C of 1
2(m − �) and Rν,k

n only depends on C, �. The associated graph of

F k
n is the same as F k

n,M,ε with CM,ε in (3.14) replaced by the Green function C and the sum

on 
M,ε replaced by the integral on R
2.

The proof of Lemma 3.8 is postponed to Section 4.2. In the proof we could also give the
explicit formula of Rν,k

n . Formally the associated graph of Rν,k
n is the same as Rn,M,ε with

CM,ε and �M,ε in (3.14) replaced by the Green function C of 1
2(m − �) and �, respectively

and the sum on 
M,ε replaced by the integral on R
2.

The following gives the main result of this section.

THEOREM 3.9. It holds that

(3.22) S
ν,k
λ =

N∑

n=0

λn

n!
F k

n + λN+1R
ν,k
N+1,

with F k
n , R

ν,k
N+1 given in Lemma 3.8. This equality holds in C−γ (ρ�) for γ > 0, some � > 0

and polynomial weight ρ in (2.20).

PROOF. By the definition of Sν
λ in (3.3), (3.4), (3.15) we have

S
ν,k
λ = lim

ε→0,M→∞
E

ε
k Sk

λ,M,ε

= lim
ε→0,M→∞

N∑

n=0

λn

n!
E

ε
k F k

n,M,ε + λN+1 lim
ε→0,M→∞

E
ε
k Rk

N+1,M,ε

=
N∑

n=0

λn

n!
F k

n + λN+1R
ν,k
N+1,

where we use Lemmas 3.8 to obtain the last equality. �

Now to prove (1.5), we only need to show the following.

PROPOSITION 3.10. For the polynomial weight ρ in (2.20) and n ≤ N + 1, it holds that

for γ > 0 and some � > 0
∥∥Rν,k

n

∥∥
C−γ (ρ�) � 1 + λ4k+12n.

PROOF. The result follows from Lemma 4.2 below and Lemma 3.8. �
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4. Proof of results in Section 3.

4.1. Uniform bound on the remainder RN . In this section we give uniform estimates for
IG defined in (3.14) with G ∈ H. For later use we construct the following random variables
such that {Z(i)

M,ε}i∈N are i.i.d. random variables and each Z
(i)
M,ε is an independent copy of

ZM,ε . We introduce Di as follows: let D0
def= {1} and

(4.1)

D1
def=
{
�M,ε,Z

(i)
M,ε, i ∈ N

}
,

D2
def=
{
:�M,εZ

(i)
M,ε:, :�

2
M,ε:, :Z

(i)
M,εZ

(j)
M,ε:, i, j ∈ N, i �= j

}
,

D3
def=
{
:�2

M,εZ
(i)
M,ε:, :�

3
M,ε:, :�M,εZ

(i)
M,εZ

(j)
M,ε:, :Z

(i)
M,εZ

(j)
M,εZ

(k)
M,ε:,

i, j, k ∈ N, i �= j �= k
}
,

where :�i
M,ε: are defined in (2.24) and for i, j, k ∈N, i �= j �= k

:�M,εZ
(i)
M,ε:

def= �M,εZ
(i)
M,ε, :Z(i)

M,εZ
(j)
M,ε:

def= Z
(i)
M,εZ

(j)
M,ε,

:�2
M,εZ

(i)
M,ε:

def= :�2
M,ε:Z

(i)
M,ε, :�M,εZ

(i)
M,εZ

(j)
M,ε:

def= �M,εZ
(i)
M,εZ

(j)
M,ε,

:Z(i)
M,εZ

(j)
M,εZ

(k)
M,ε:

def= Z
(i)
M,εZ

(j)
M,εZ

(k)
M,ε.

By probabilistic calculation we have that for κ, γ > 0 and p > 1

(4.2) E
∥∥Z(i)

M,ε

∥∥p
C−γ,ε(ρκ )

+ E
∥∥:Z(i)

M,εZ
(j)
M,ε:

∥∥p
C−γ,ε(ρκ )

+ E
∥∥:Z(i)

M,εZ
(j)
M,εZ

(k)
M,ε:

∥∥p
C−γ,ε(ρκ )

� 1,

where i �= j �= k and the proportional constant is independent of ε, M and there exist random
variables Z(i), :Z(i)Z(j):, :Z(i)Z(j)Z(k): ∈ Lp(�,CT C−γ (ρκ)) such that

E
∥∥EεZ

(i)
M,ε − Z(i)

∥∥p
CT C−γ,ε(ρκ )

+ E
∥∥Eε:Z(i)

M,εZ
(j)
M,ε: − :Z(i)Z(j):

∥∥p
CT C−γ,ε(ρκ )

+ E
∥∥Eε:Z(i)

M,εZ
(j)
M,εZ

(k)
M,ε: − :Z(i)Z(j)Z(k):

∥∥p
CT C−γ,ε(ρκ )

→ 0 as ε → 0,M → ∞.

(cf. [23, 34, 39]). By direct calculation we have

CM,ε(x − y) = E
[
ZM,ε(x)ZM,ε(y)

]
.(4.3)

COROLLARY 4.1. For the polynomial weight ρ and p0 in (2.20), it holds for any fi ∈ Di ,
1 < p < p0/9, γ > 0 that

E‖f1‖p

C−γ,ε(ρ5)
+ E‖f2‖p

C−γ,ε(ρ9)
+ E‖f3‖p

C−γ,ε(ρ13)
� 1 + λ12p,

with the proportional constant independent of M , ε.

PROOF. Similar as before we omit the supscript M in the proof for notational simplicity.
By Corollary 2.3 the desired estimate holds for fi = :�i :. For f1 = Z

(i)
ε , f2 = Z

(i)
ε Z

(j)
ε and

f3 = Z
(i)
ε Z

(j)
ε Z

(k)
ε , i �= j �= k, the result follows from (4.2). For other cases we write

:�εZ
(i)
ε : = YεZ

(i)
ε + :ZεZ

(i)
ε :,

:�εZ
(i)
ε Z(j)

ε : = Yε:Z(i)
ε Z(j)

ε : + :ZεZ
(i)
ε Z(j)

ε :,

:�2
εZ

(i)
ε : = Y 2

ε Z(i)
ε + 2Yε:ZεZ

(i)
ε : + :Z2

εZ
(i)
ε :,
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where :Z2
εZ

(i)
ε : = :Z2

ε :Z
(i)
ε and by probabilisitc calculation for γ, κ > 0, p > 1

E
∥∥:Z2

εZ
(i)
ε :
∥∥p

C−γ,ε(ρκ )
� 1.

By (4.2), the same calculation in Corollary 2.3 and Lemma A.6, the desired estimates also
hold for the terms :�εZ

(i)
ε :, :�εZ

(i)
ε Z

(j)
ε : and :�2

εZ
(i)
ε :, which implies the result. �

To state the following lemma for G ∈ H with IG in (3.14), we extend it as periodic func-
tions on 
ε .

LEMMA 4.2. For each G ∈ Hk
n, n ≤ N + 1, that appears in Lemma 3.5, letting IG be the

function introduced in (3.14) and ρ be polynomial weight as in (2.20) it holds that for γ > 0
and some � > 0

∥∥Eε
k IG

∥∥
C−γ (ρ�) � 1 + λ4k+12n,(4.4)

where the proportional constant is independent of ε, M and Eε
k is the extension operator

introduced in (A.5) in the Appendix.

PROOF. In the proof we use ρ� to denote weight and � may change from line to line. We
also abuse the notation of ρ for the weight in different spatial dimensions. By Lemma 3.7 we
have Ĝ which is a union of k rooted trees, formed by the red edges in G.

Step 1. Reduction to trees.

It will turn out that trees are easier to estimate than general graphs. To reduce our analysis
for IG to the case of trees, we proceed as follows.

Recall the definition (3.14) for IG. For each of the green lines {u, v} ∈ EG, we use (4.3)
to replace each CM,ε(xu, xv) in (3.14) by E[Z(i)

M,ε(xu)Z
(i)
M,ε(xv)] with {Z(i)

M,ε}i given at the

beginning of this section. Each CM,ε(xu, xv) corresponds to different Z
(i)
M,ε . This can be done

for all the green lines since our graph is finite. The resulting function is the same as IG.
Note that for periodic functions f on 
ε , Iε(f ) introduced in (3.5) could be written as

Iε(f ) =
∫


ε

Cε(x − y)f (y)dy.

Since Ĝ is a disjoint union of k trees (by Lemma 3.7), that is, Ĝ =⊔k
i=1 Ti , where each Ti

is a tree, we know that IG is the expectation of a product of k functions, and each of these k

functions have the following form:

(4.5)

FT (xu∗) =
∫ ∏

{u,v}∈ET

Cε(xu, xv)

×
(
f1(xu∗)1−degT (u∗)

∏

v∈VT \{u∗}
fv(xv)g

T
v (xv)

) ∏

v∈VT \{u∗}
dxv,

where f1 ∈ D1, fv ∈⋃3
i=0 Di , gT

v = 1 and degT (v) denotes the degree of v in the graph T .
Here and below we just write T for Ti to simplify the notation, and we have introduced the
function gT

v for the purpose of induction later.
For instance, the graph in Figure 1 then reduces to the one shown in Figure 2 where each

tiny green wavy line denotes a factor of Z
(i)
M,ε .

We first consider the degenerate case separately where deg(u∗) = 0, namely FT is simply
f1(xu∗) with f1 ∈ D1. We use (2.25) and (4.2) and easily find for γ > 0 and 3p < p0 with p0
in (2.20)

E‖ZM,ερ‖p

C−γ,ε + E
∥∥�ερ

5∥∥p
C−γ,ε � 1 + λ4p.(4.6)
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FIG. 2. An illustration for reducing graphs to trees, and inductive integrations.

In the following we only need to consider the case that deg(u∗) = 1 that is, nontrivial trees.
We claim that for γ > 0 and � large enough,

‖FT ‖C2−γ,ε(ρ�) �
∏

v∈VT

‖fv‖C−γ,ε(ρ13),(4.7)

with fv ∈⋃3
i=0 Di defined in (4.1). By the reduction we have for γ > 0

(4.8)

‖IG‖
C

−γ,ε
s (
k

ε,ρ
�)
� E

k∏

i=1

‖FTi
‖C−γ,ε(ρ�)

�
∏

deg(u∗
i )=1

(
E‖FTi

‖k
C2−γ,ε(ρ�)

) 1
k

∏

deg(u∗
i )=0

(
E‖FTi

‖k
C−γ,ε(ρ5)

) 1
k ,

where C
−γ,ε
s (
k

ε, ρ
�) is the Hölder space for each variable on 
k

ε introduced in (A.2) in the
Appendix. By the claim (4.7) and Corollary 4.1, we deduce that for deg(u∗

i ) = 1, γ > 0
(
E‖FTi

‖k
C2−γ,ε(ρ�)

)1/k
� 1 + λ12ni ,(4.9)

where ni is given by the number of vertices in V0 for the tree Ti and
∑k

i=1 ni ≤ n and we use
9kni ≤ 9k(N + 1) < p0 in (2.20). For the case that deg(u∗

i ) = 0, by (4.6),
(
E‖FTi

‖k
C−γ,ε(ρ5)

)1/k
� 1 + λ4.(4.10)

As a result, (4.4) follows from Lemma A.8, Lemma A.1 and arbitrary γ . It remains to prove
(4.7).

Step 2. Estimate of each tree.

Fixing a rooted tree T as above, we will integrate the variables in FT in (4.5) from the
leaves5 of the tree T and estimate the effect of the integrations. More precisely, we claim
that for every subtree T̄ of T which contains the root u∗, (4.5) still holds with T and gT on
the RHS replaced by T̄ and gT̄ , where the functions g (which depend on T̄ ) are such that
‖g‖Cs,ε(ρ�) is bounded by

∏
j∈Ig

‖fj‖C−γ,ε(ρ13), fj ∈
⋃3

i=0 Di for some index set Ig ⊂ N and
s > γ > 0, n > 0.

We prove by induction downwards on the value of |VT̄ |. We already have that (4.5) holds
for T̄ = T where g = 1 trivially satisfies the claimed bound.

5Recall that in graph theory a leaf of a rooted tree is a vertex of degree 1 and is not the root. Any nontrivial
rooted tree must have at least one leaf.
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Assume that (4.5) holds with FT (xu∗) on the LHS, and the RHS written as the integral
in terms of a subtree T̄ . Let v̄ be a leaf of T̄ . Then there is a unique ū ∈ VT̄ such that

ē
def= {ū, v̄} ∈ ET̄ . We then have

(4.11)

FT (xu∗) =
∫ ∏

{u,v}∈ET̄ \{ē}
Cε(xu, xv)

∏

v∈VT̄ \{u∗,v̄}

(
fv(xv)g

T̄
v (xv)

)

×
(∫

Cε(xū, xv̄)
(
fv̄(xv̄)g

T̄
v̄ (xv̄)

)
dxv̄

) ∏

v∈VT̄ \{u∗,v̄}
dxv,

and we now estimate the integration over v̄ in the parenthesis, which will imply that (4.5)
holds for the subtree T ′ = (VT̄ \{v̄},ET̄ \{ē}) with gT ′

ū (xū) redefined as

gT ′
ū (xū) =

(∫
Cε(xū, xv̄)

(
fv̄(xv̄)g

T̄
v̄ (xv̄)

)
dxv̄

)
gT̄

ū (xū)(4.12)

and fv , gv for v �= ū left unchanged. (See Figure 2 for an illustration.)
The integration over v̄ in the parenthesis is in one of the following forms:

Iε(g)(xū), Iε(f3)(xū), Iε(f2g)(xū), Iε(f1g)(xū),(4.13)

with fi ∈ Di . By (A.7) and Lemma A.6, we have that for 1 > s > γ > 0,

(4.14)

∥∥Iε(g)
∥∥

C2−γ,ε(ρ�) � ‖g‖Cs,ε(ρ�),

∥∥Iε(f3)
∥∥

C2−γ,ε(ρ13) � ‖f3‖C−γ,ε(ρ13),

∥∥Iε(gf2)
∥∥

C2−γ,ε(ρ�+13) � ‖g‖Cs,ε(ρn)‖f2‖C−γ,ε(ρ13),

∥∥Iε(gf1)
∥∥

C2−γ,ε(ρ�+13) � ‖g‖Cs,ε(ρn)‖f1‖C−γ,ε(ρ13).

By the inductive assumption on g, we have that the left-hand sides are bounded by
∏

j∈Ig

‖fj‖C−γ,ε(ρ�)‖fv̄‖C−γ,ε(ρ13),

with fv̄ ∈⋃3
i=0 Di . This implies that (4.5) holds for the smaller subtree T ′, namely the num-

ber of vertices decreases by one.
By inductively decreasing the value of |VT̄ |, we know that (4.5) holds for the subtree T̄

which only has 2 vertices including u∗. Now FT is simply equal to one of the cases in (4.13),
so we can just bound FT by (4.14). On the other hand, integration over one vertices counts
for at most one ‖fi‖C−γ,ε(ρ13), which gives (4.7). �

4.2. Convergence of F k
n,M,ε and Rk

n,M,ε . In this section we give the proof of Lemma 3.8,
that is, the discrete integral converges to the corresponding continuous one. By the uniform
bound in Section 4.1 we already know that each ‖Eε

k F k
n,M,ε‖C−γ (ρ�) and ‖Eε

k Rk
n,M,ε‖C−γ (ρ�)

are uniformly bounded, which implies there exists a convergent subsequence. Now, we want
to give the explicit formula of the limit.

PROOF OF LEMMA 3.8. Since we consider the limits of Eε
k F k

n,M,ε and Eε
k Rk

n,M,ε , which
only depend on the law of �M,ε and ZM,ε , we can assume the setting as in the proof of
Theorem 2.5, that is, we fix a stochasitic basis (�,F,P) and we have random variables
(�M,ε,ZM,ε, YM,ε) and (�,Z,Y ) such that the convergence in (2.26)–(2.28) holds. We also
have all the random variables

{
Z

(i)
M,ε, :Z

(i)
M,εZ

(j)
M,ε:, :Z

(i)
M,εZ

(j)
M,εZ

(k)
M,ε:, i �= j �= k

}
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and their continuous limit {Z(i), :Z(i)Z(j):, :Z(i)Z(j)Z(k):, i �= j �= k} on the same stochastic
basis, which can be done by the Skorohod theorem. As a result, every element in

⋃3
i=1 Di

and their continuous limit can be realized on this stochastic basis. We also view �M,ε , YM,ε

and Z
(i)
M,ε as periodic functions on 
ε .

Combining the proof in Theorem 2.5 and Corollary 4.1 we know that for every element
fi ∈ Di , Eεfi converges to the corresponding continuous one in Lp(�;C−γ (ρ13)) for γ > 0,
p > 1 with 9p < p0 for p0 in (2.20). For example, we consider :�2

M,εZ
(i)
M,ε: and by similar

calcuation as (2.27) we obtain

E
∥∥Eε(Y 2

M,εZ
(i)
M,ε

)
− Y 2Z(i)

∥∥p
C−γ (ρ13)

� o(ε),

for γ > 0, where the proportional constant is independent of M . For other terms in
:�2

M,εZ
(i)
M,ε: we have similar convergence. In the following n may change for different con-

vergences.
For each graph we consider each IG and as in the proof of Lemma 4.2 we know

IG(x1, . . . , xk) = E

(
k∏

i=1

FTi
(xi)

)
,

with FTi
defined in (4.5) and Ti being trees and subgraphs for G. By the uniform bounds

obtained in (4.10) and (4.9), we first consider the convergence of EεFTi
in Lk(�,C−γ (ρ�))

for each tree Ti and γ > 0. For the degenerate case where deg(u∗) = 0, that is, FTi
is just

f1(xi) with f1 ∈ D1, we have proved the convergence.
In the following we consider the nontrivial case, that is, deg(u∗) = 1. The idea is to use

Lemma A.10, Lemma A.9 and uniform estimate in Corollary 4.1 to exchange the extension
operator Eε to every leaf in the tree up to an o(ε) constant. We consider the subtree T̄ of
Ti and we want to prove for each subtree T̄ as in Step 2 in the proof of Lemma 4.2 and
0 < γ < s < 1

(4.15)

E

∥∥∥∥E
εFTi

(xu∗)

−
∫ ∏

{u,v}∈ET̄

C(xu − xv)
∏

v∈VT̄ \{u∗}

(
E

εfv

)
(xv)

(
E

εgT̄
v

)
(xv)

∏

v∈VT̄ \{u∗}
dxv

∥∥∥∥
k

C2−s(ρ�)

� o(ε).

We do induction on |VT̄ | and we start from the subtree T̄ containing the root u∗ with |VT̄ | = 2
and by Step 2 in the proof of Lemma 4.2, we have

FTi
(xu∗) =

∫
Cε(xu∗, xv)fv(xv)g

T̄
v (xv)dxv,

with fv ∈ ⋃3
i=0 Di and gT̄

v as in the proof of Lemma 4.2. By Lemma A.10 and uniform
bounds of EεFTi

we know that for s > γ > 0 and some n > 0

E

∥∥∥∥E
εFTi

(xu∗) −
∫

C(xu∗ − xv)E
ε(fv(xv)g

T̄
v (xv)

)
dxv

∥∥∥∥
k

C2−s(ρ�)

� o(ε).(4.16)

Using Lemma A.9 we find

E

∥∥∥∥E
εFTi

(xu∗) −
∫

C(xu∗ − xv)
(
E

εfv

)
(xv)

(
E

εgT̄
v

)
(xv)dxv

∥∥∥∥
k

C2−s(ρ�)

� o(ε).
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Hence (4.15) holds with T̄ satisfying |VT̄ | = 2. Suppose that (4.15) holds with T̄ satisfying
|VT̄ | ≤ n. Now we consider the subgraph T̄ with |VT̄ | = n + 1. By the Step 2 in the proof of
Lemma 4.2 we could find a v̄ as a leaf of T̄ and a unique ū ∈ VT̄ such that (4.11) holds. We
set gT ′

ū (xū) as in (4.12) and use induction for T ′ = T̄ \{v̄} to have

E

∥∥∥∥E
εFTi

(xu∗)

−
∫ ∏

{u,v}∈ET̄ \{ē}
C(xu − xv)

∏

v∈VT̄ \{u∗,v̄}

(
E

εfv

)
(xv)

(
E

εgT ′
v

)
(xv)

∏

v∈VT̄ \{u∗,v̄}
dxv

∥∥∥∥
k

C2−s(ρ�)

� o(ε).

For Eεgū(xū) we use Lemma A.10 and Lemma A.9 to have

E

∥∥∥∥E
εgT ′

ū (xū) − E
εgT̄

ū (xū)

∫
C(xū − xv̄)

(
E

εfv̄

)
(xv̄)

(
E

εgT̄
v̄

)
(xv̄)dxv̄

∥∥∥∥
k

C2−s(ρ�)

� o(ε).

Hence (4.15) holds for T̄ satisfying |VT̄ | = n + 1 and for T̄ = Ti , which combined with the
convergence of Eεfv implies that

(4.17)
E

∥∥∥∥E
εFTi

(xu∗) −
∫ ∏

{u,v}∈ETi

C(xu − xv)
∏

v∈VTi
\{u∗}

f̄v(xv)
∏

v∈VTi
\{u∗}

dxv

∥∥∥∥
k

C2−s(ρ�)

� o(ε),

with f̄v = limε→0 E
εfv . Here for the second term we abuse the notation f̄v(xv) which means

a distribution in C−γ (ρ�) and the integral of C(xu − xv) w.r.t. xv means the operator 1
2(m −

�)−1 acts on the corresponding distributions f̄v . Now we obtain the convergence of each FTi

and give the explicit formula for the limit F k
n and Rν,k

n .
We use G to denote the graph associated with F k

n . To write F k
n as the integrals of C, that

is,
∫ ( ∏

{u,v}∈EG

C(xu − xv)

) ∏

v∈V 0
G

dxv,

which we denote by F̃ k
n , we only need to replace all the correlation of Z(i) in F k

n by C. How-
ever, since Z(i) is not a usual function, we need more argument to explain this replacement
and it suffices to prove 〈F k

n , ϕ〉 = 〈F̃ k
n , ϕ〉 with 0 ≤ ϕ ∈ S(R2k). As Z(i) is not a function, we

first replace each Z(i) in F k
n by Z(i) ∗ ϕε with {ϕε}ε being standard mollifiers and we denote

the resulting function by F k,ε
n . This means we replace each f̄v in the second term of (4.17)

by f ε
v , which converges to f̄v in C−γ (ρ�). To compare F k

n with F k,ε
n we are in a similar

situation as the convergence of F k
n,M,ε to F k

n with the sum on 
ε replaced by the integral on
R

2. Then the same argument as reduction to trees and induction on subtrees implies that
∣∣〈F k,ε

n − F k
n , ϕ

〉∣∣→ 0 as ε → 0.

For F k,ε
n we could replace each E[(Z(i) ∗ ϕε)(x)(Z(i) ∗ ϕε)(y)] by C̃ε(x − y)

def= (ϕε ∗ C ∗
ϕε)(x − y) by Fubini’s theorem. Now we check that F k,ε

n converge to F̃ k
n . For each graph G

associated with F k
n we abuse the notation m to denote the Lebesgue measure

∏
v∈VG

dxv . We
then choose a finite reference measure μ which is absolutely continuous w.r.t. m and has the
C associated with the red lines and ϕ as the density. Then it suffices to check that all the green
lines (means C̃ε) are uniform integrable under this finite measure μ since C̃ε converges to C
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in measure. To obtain uniform integrability we prove that the integral of the square of all the
green lines w.r.t. μ is uniformly bounded, which follows by the same argument as what we
proved in Lemma 4.2 since adding extra Z(i) to fv at each point will not influence our proof.
Thus

∣∣〈F k,ε
n − F̃ k

n , ϕ
〉∣∣→ 0 as ε → 0,

which implies F k
n = F̃ k

n . Now the result follows. �

We remark that one could also use [26], Theorem A.3, to prove the convergence of F k,ε
n

to F̃ k
n , though it would require some adaptation since the setting is slightly different, for

example, C would need to be decomposed as a compact supported function plus a smooth
remainder.

5. Short distance behavior of correlations. In this section we use integration by parts
formula and similar estimates to derive the short distance behavior of the 2-point correlation
function and 4-point correlation function.

To compare S(x0 − y0) − C(x0 − y0) we use integration by parts for the last term of (3.9).
Choosing F(�M,ε) = λIε(:�3

M,ε:)(x) in (3.2) we obtain

3λ

∫


M,ε

CM,ε(x − z)2E
(
:�M,ε(z)

2:
)

dz

= λE
(
�M,ε(x)Iε

(
:�3

M,ε:
)
(x)
)
+ λ2E

((
Iε

(
:�3

M,ε:
)
(x)
)2)

.

Substitute this into (3.9) we obtain

(5.1)

S2
λ,M,ε(x0 − y0)

= CM,ε(x0 − y0) + λ2E
(
Iε

(
:�3

M,ε:
)
(x0)Iε

(
:�3

M,ε:
)
(y0)

)

+ 9λ2
∫


2
ε

CM,ε(y0 − z)CM,ε(x0 − z)CM,ε(z − z1)
2E
(
:�M,ε(z1)

2:
)

dz1 dz

− 3λ3
∫


ε

CM,ε(y0 − z)CM,ε(x0 − z)E
((
Iε

(
:�3

M,ε:
)
(z)
)2)dz.

In the following we give the proof of Theorem 1.3. In the proof we view all the functions on

M,ε as periodic functions on 
ε and we will use Lemma A.2 to bound each term.

PROOF OF THEOREM 1.3. In the proof we choose p0 > 18 for the weight ρ in (2.20) and
use ρ� to denote the weight and � may change from line to line. We also abuse the notation
of ρ for different spatial dimensions. We write the last three terms in (5.1) as

∑3
i=1 Ii , which

are graphically

(5.2)

It suffices to calculate the C2−γ,ε(ρ�)-norm for each graph and γ > 0. By Corollary 2.3 and
(A.7) we know for γ > 0 and some � > 0

‖I1‖C2−γ,ε(
2
ε,ρ

�) � λ2E
∥∥:�3

M,ε:
∥∥2

C−γ,ε(ρ�) � λ2 + λ26.

Similarly, by translation invariance,

J (z)
def= E

(
Iε

(
:�3

M,ε:
)
(z)2)
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is a constant independent of z, and we can write I3 as −3λ3(CM,ε ∗ CM,ε)(x0 − y0)J . By
Corollary 2.3 and (A.7) we know for γ > 0 and some � > 0

‖J‖L∞,ε(ρn) � 1 + λ24.

Moreover, by (A.8), CM,ε ∗ CM,ε(x0 − y0) ∈ C2−γ,ε(
2
ε), which implies

‖I3‖C2−γ,ε(
2
ε,ρ

n) � λ3 + λ27.

For I2 we set

J1
def=
∫

CM,ε(z − z2)
2E
(
:�M,ε(z2)

2:
)

dz2,

which is also a constant by translation invariance. Then we could write I2 as 9λ2(CM,ε ∗
CM,ε)(x0 − y0)J1 and by (A.8) and Corollary 2.3 we have for γ > 0

|J1|� ‖J1‖L∞,ε(ρ�) � E
∥∥:�2

M,ε:
∥∥

C−γ,ε(ρ�) � 1 + λ12.

Using (CM,ε ∗ CM,ε)(x0 − y0) ∈ C2−γ,ε(
2
ε) we deduce

‖I2‖C2−γ,ε(
2
ε,ρ

�) � λ2 + λ14.

Now the first result follows from Lemma A.1 and the fact that we can view S2
λ,M,ε − CM,ε as

a function of one variable by translation invariance.
For the second result, note that by Lemma A.8 ‖Eε(S2

λ,M,ε − CM,ε)‖C2−γ (R4,ρ�) is uni-

formly bounded w.r.t. ε, M with Eε defined for functions on 
2
ε and there exists a sub-

sequence converges, which is still denoted by ε, M . We would like to prove the limit of
Eε(S2

λ,M,ε −CM,ε) given by S
ν,2
λ −C. By Lemma 3.8 we know the limit of Eε

2 (S2
λ,M,ε −CM,ε)

given by S
ν,2
λ −C. Moreover, by (A.6) we know for ϕ ∈ S(R4) with compact support Fourier

transform

lim
ε→0,M→∞

〈
E

ε(S2
λ,M,ε − CM,ε

)
, ϕ
〉

= lim
ε→0,M→∞

〈
S2

λ,M,ε − CM,ε, ϕ
〉
ε

= lim
ε→0,M→∞

〈
E

ε
2
(
S2

λ,M,ε − CM,ε

)
, ϕ
〉
=
〈
S

ν,2
λ − C,ϕ

〉
,

which by lower semicontinuity of the norm implies
∥∥Sν,2

λ − C
∥∥

C2−γ (R4,ρ�) � λ2 + λ27.

Since

E
ε
2
(
S2

λ,M,ε − CM,ε

)
(x, y) = E

ε
2
(
S2

λ,M,ε − CM,ε

)
(x − y,0),

the limit S
ν,2
λ − C also satisfies the same property and can be viewed as a function on R

2.
Hence,

∥∥Sν,2
λ − C

∥∥
C2−γ (R2,ρ�) � λ2 + λ27. �

In the following we consider the connected 4-point function and we give the proof of
Theorem 1.5.

PROOF OF THEOREM 1.5. In the proof we omit the subscript M , ε and 
M,ε for nota-
tional simplicity. We also write S(x, y) = S2

λ,M,ε(x, y). We choose p0 > 36 for the weight
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ρ in (2.20) and will use ρ� to denote the weight and � may change from line to line. We
introduce the following notation:

If (x)
def=
∫

C(x − y)f (y)dy, J f (x, x1)
def=
∫

C(x − z)C(x1 − z)f (z)dz,

and

J1f (x, x1, x2)
def=
∫

C(x − z)C(x1 − z)C(x2 − z)f (z)dz.

The idea of the proof is to use the integration by parts formula for S4
λ(x1, x2, x3, x4) and

we will find some C(xi −xj ), i, j ∈ {1,2,3,4} appear. However, C is not in the Hölder space
C2−γ,ε(ρ�), γ > 0. By (3.6) and Theorem 1.3 we find

S(xi − xj ) = C(xi − xj ) − R(xi − xj ),(5.3)

with R ∈ C2−γ,ε(
2
ε, ρ

�). Here by (3.6)

R(xi − xj ) = λE
(
�(xj )I

(
:�3:

)
(xi)

)
.(5.4)

Hence, we use C(xi − xj ) from S(xi − xj ) to cancel with the corresponding C(xi − xj ) in
the decomposition of S4

λ .
To be more precise, for S4

λ = E[∏4
i=1 �(xi)] we use integration by parts formula (3.11)

with k = 4 to have

S4
λ(x1, x2, x3, x4) = C(x1 − x2)S(x3 − x4) + C(x1 − x3)S(x2 − x4) + C(x1 − x4)S(x2 − x3)

− λE
(
�(x2)�(x3)�(x4)I

(
:�3:

)
(x1)

)
.

By (5.3) this implies that U4 can be written as

R(x1 − x2)C(x3 − x4) + R(x1 − x3)C(x2 − x4) + R(x1 − x4)C(x2 − x3)(5.5)

− λE
(
�(x2)�(x3)�(x4)I

(
:�3:

)
(x1)

)
− Ū(5.6)

and by Lemma A.1

Ū (x1, x2, x3, x4)

= R(x1 − x2)R(x3 − x4) + R(x1 − x3)R(x2 − x4) + R(x1 − x4)R(x2 − x3)

∈ C2−γ,ε(
4
ε, ρ

�).

By Theorem 1.3 we have

‖Ū‖C2−γ,ε(
4
ε,ρ

�) � λ4 + λ54.

Since by (A.7) I has smoothing effect, we use IBP for the first term in (5.6) with the isolated
point x4 to have two terms, which by (5.4) cancel with the first two terms in (5.5). As a result,
we obtain that U4 can be written as

R(x1 − x4)C(x2 − x3) + λ2E
(
�(x2)�(x3)I

(
:�3:

)
(x1)I

(
:�3:

)
(x4)

)
(5.7)

− 3λE
(
�(x2)�(x3)J

(
:�2:

)
(x1, x4)

)
− Ū .(5.8)

We further apply IBP for each term in (5.7)–(5.8). For R(x1 − x4)C(x2 − x3) in (5.7) we use
integration by parts (3.7) for R with x4 to have

(5.9)
R(x1 − x4)C(x2 − x3) = 3C(x2 − x3)λE

(
J
(
:�2:

)
(x1, x4)

)

− λ2C(x2 − x3)E
(
I
(
:�3:

)
(x1)I

(
:�3:

)
(x4)

)
,
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where the second line cancels with one term obtained from the second term in (5.7) by IBP.
In fact using IBP for x2 the second term in (5.7) could be written as

λ2C(x2 − x3)E
(
I
(
:�3:

)
(x1)I

(
:�3:

)
(x4)

)

+ 3λ2E
(
�(x3)J

(
:�2:

)
(x2, x4)I

(
:�3:

)
(x1)

)
(5.10)

+ 3λ2E
(
�(x3)J

(
:�2:

)
(x1, x2)I

(
:�3:

)
(x4)

)
(5.11)

− λ3E
(
�(x3)I

(
:�3:

)
(x2)I

(
:�3:

)
(x1)I

(
:�3:

)
(x4)

)
.(5.12)

As mentioned above the first term cancels with the second term for R(x1 − x4)C(x2 − x3).
By using IBP for the isolated point x3 again, the term in (5.12) could be written as

(5.13)

− 3λ3E
(
J
(
:�2:

)
(x2, x3)I

(
:�3:

)
(x1)I

(
:�3:

)
(x4)

)

− 3λ3E
(
I
(
:�3:

)
(x2)J

(
:�2:

)
(x1, x3)I

(
:�3:

)
(x4)

)

− 3λ3E
(
I
(
:�3:

)
(x2)I

(
:�3:

)
(x1)J

(
:�2:

)
(x3, x4)

)
,

which share the following same graph:

and one term like λ4E(
∏4

i=1 I(:�3:)(xi)). By (A.7) and Corollary 2.3 we know for γ > 0
and 9p < p0

E
∥∥I
(
:�3:

)∥∥p
C2−γ,ε(ρ�)

� E
∥∥:�3:

∥∥p
C−γ,ε(ρ�)

� 1 + λ12p,(5.14)

and

E
∥∥J
(
:�2:

)∥∥p
C2−γ,ε(ρ�)

� E
∥∥:�2:

∥∥p
C−γ /2,ε(ρ�)

� 1 + λ12p,(5.15)

which by Lemma A.1 implies that the C2−γ,ε(
4
ε, ρ

�)-norm for the term in (5.12) is uni-
formly bounded by λ3 + λ52 up to a multiplicative constant. Here we abuse the notation of ρ

for different spatial dimensions.
Now we consider the first term in (5.8) and we apply IBP for the isolated point x2 to write

it as

(5.16)
− 3λC(x2 − x3)E

(
J
(
:�2:

)
(x1, x4)

)
− 6λE

(
�(x3)J1(�)(x1, x2, x4)

)

+ 3λ2E
(
�(x3)I

(
:�3:

)
(x2)J

(
:�2:

)
(x1, x4)

)
.

We find that the first term cancels with the first term on the RHS of (5.9). We apply IBP for
the second term for the isolated point x3 and obtain

− 6λ

∫
C(x1 − z)C(x4 − z)C(x2 − z)C(x3 − z)dz(5.17)

+ 6λ2E
(
I
(
:�3:

)
(x3)J1(�)(x1, x2, x4)

)
.(5.18)

We apply IBP for the terms in (5.10), (5.11) and (5.16) for x3, which have the same graph,
and we obtain three terms (see (5.20) below) similar to (5.18) and the following terms:

9λ2E
(
J
(
:�2:

)
(x2, x4)J

(
:�2:

)
(x1, x3)

)
− 3λ3E

(
J
(
:�2:

)
(x2, x4)I

(
:�3:

)
(x1)I

(
:�3:

)
(x3)

)

+ 9λ2E
(
J
(
:�2:

)
(x1, x2)J

(
:�2:

)
(x3, x4)

)
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− 3λ3E
(
J
(
:�2:

)
(x1, x2)I

(
:�3:

)
(x4)I

(
:�3:

)
(x3)

)

+ 9λ2E
(
J
(
:�2:

)
(x1, x4)J

(
:�2:

)
(x2, x3)

)

− 3λ3E
(
J
(
:�2:

)
(x1, x4)I

(
:�3:

)
(x2)I

(
:�3:

)
(x3)

)
,

where they have the following two graphs:

By (5.14) and (5.15) C2−γ,ε(
4
ε, ρ

�)-norm of all the above terms are uniformly bounded by
λ2 + λ39 up to a multiplicative constant.

Now the only term in U4 not in C2−γ,ε(ρ�) is given by the following terms in (5.17) and
(5.18) and similar terms as (5.18):

− 6λ

∫
C(x1 − z)C(x4 − z)C(x2 − z)C(x3 − z)dz(5.19)

+ 6λ2E
(
I
(
:�3:

)
(x3)J1(�)(x1, x2, x4)

)
+ 6λ2E

(
I
(
:�3:

)
(x1)J1(�)(x2, x3, x4)

)
(5.20)

+ 6λ2E
(
I
(
:�3:

)
(x2)J1(�)(x1, x3, x4)

)
+ 6λ2E

(
I
(
:�3:

)
(x4)J1(�)(x1, x2, x3)

)
.

The term in (5.19) belongs to C2−γ,ε(
4
ε, ρ

�) by (A.9) and Lemma A.1 and could be bounded
by λ up to a multiplicative constant. The last four terms have the same graph. We only con-
sider the term in (5.20) and the other terms could be estimated similarly. By (A.9) and Corol-
lary 2.3 we know for γ > 0 and 3p < p0

E
∥∥J1(�)

∥∥p
C2−γ,ε(ρ�)

� E‖�‖p

C−γ /2,ε(ρ�)
� 1 + λ4p,

which combined with (5.14) and Lemma A.1 implies that the C2−γ,ε(
4
ε, ρ

�)-norm of the
terms in (5.20) are uniformly bounded. Now the first result follows.

Using Lemma A.8 we obtain ‖EεU4
M,ε‖C2−γ (R8,ρ�) is uniformly bounded w.r.t. ε, M with

Eε defined for functions on 
4
ε . We define the limit of a subsequence as U

ν,4
λ , which is also

the limit of Eε
4U4

M,ε by similar argument as in the proof of Theorem 1.3. On the other hand,
by (A.9) and Lemmas A.1, A.8,

E
ε
J2(x1, x2, x3, x4)

def= E
ε
∫


M,ε

CM,ε(x1 − z)CM,ε(x4 − z)CM,ε(x2 − z)CM,ε(x3 − z)dz

is uniform bounded in C2−γ (ρ�), which implies that there exists a subsequence, still denoted
by ε, M , converges. Then by (A.6) for ϕ(x1, x2, x3, x4) =∏4

i=1 ϕi(xi) and ϕi ∈ S(R2) with
Fourier transform compact support, it holds

lim
M→∞,ε→0

〈
E

εJ2, ϕ
〉
= lim

M→∞,ε→0

〈
E

ε
4J2, ϕ

〉
.

Then by a similar argument as in the proof in Section 4.2 for Eε
4J2 we replace CM,ε(xi − z)

by E(Z
(i)
M,ε(xi)Z

(i)
M,ε(z)) for i = 2,3,4 and apply Lemmas A.9 and A.10 to obtain that Eε

4J2

converges to
∫

C(x1 − z)C(x4 − z)C(x2 − z)C(x3 − z)dz when testing positive ϕ. The the
lower-semicontinuity of the norm gives the result. �



AN SPDE APPROACH TO PERTURBATION THEORY OF �4
2 2633

APPENDIX: DISCRETE BESOV SPACES

In this section we introduce Besov spaces on the lattice 
ε = εZd where ε = 2−N , N ∈
N∪{0}, from [23, 31] and Besov spaces on R

d from [38]. For f ∈ �1(
ε) and g ∈ L1(ε−1
T

d)

we define the Fourier and the inverse Fourier transform as

Ff (ξ) = εd
∑

x∈
ε

f (x)e−2πιξ ·x, F
−1g(x) =

∫

ε−1Td
g(ξ)e2πιξ ·x dξ,

for ξ ∈ ε−1
T

d , x ∈ 
ε . We use ε = 0 to denote the continuous setting with FRd and F
−1
Rd

being the usual Fourier transform and its inverse on R
d . Let (ϕj )j≥−1 be a dyadic partition

of unity on R
d . We define the dyadic partition of unity for x ∈ ε−1

T
d :

ϕε
j (x) =

⎧
⎪⎨
⎪⎩

ϕj (x), j < jε,

1 −
∑

j<jε

ϕj (x), j = jε.(A.1)

Here jε := inf{j : suppϕj ∩ ∂(ε−1
T

d) �= ∅}.
Now we define the Littlewood–Paley blocks for distributions on 
ε by

�ε
jf := F

−1(ϕε
jFf

)
,

which leads to the definition of weighted Besov spaces. Let ρ denote a polynomial weight of
the form ρ(x) = (1 + |x|2)−δ/2 for some δ ≥ 0. For α ∈ R, p,q ∈ [1,∞] and ε ∈ [0,1] we
define the weighted Besov spaces on 
ε given by the norm

‖f ‖B
α,ε
p,q (
ε,ρ) =

( ∑

−1≤j≤jε

2αjq
∥∥�ε

jf
∥∥q
Lp,ε(ρ)

)1/q

< ∞.

If ε = 0, Bα,ε
p,q(ρ) is the classical Besov space Bα

p,q(ρ) on R
d . Similarly, we extend the def-

inition of Besov space to functions on 
k
ε = εZdk , k ∈ N, which is denoted by Bα,ε

p,q(

k
ε, ρ).

Whenever there is no confusion we also write Bα,ε
p,q(
k

ε, ρ) as Bα,ε
p,q(ρ) for simplicity. We also

set Cα,ε(ρ)
def= Bα,ε

∞,∞(ρ) and Hα,ε(ρ)
def= B

α,ε
2,2 (ρ). We also define the Besov–Hölder space

w.r.t. each component in 
k
ε for k ∈N: for f : 
k

ε →R, α ∈ R,

‖f ‖C
α,ε
s (
k

ε ,ρ)
def= sup

−1≤ji≤jε

2α
∑k

i=1 ji

∥∥∥∥∥

(
k∏

i=1

�ε
ji ,xi

)
f

∥∥∥∥∥
L∞,ε(ρ)

< ∞.(A.2)

Here we write x = (x1, . . . , xk) ∈ 
k
ε and �ε

ji ,xi
means the Littlewood–Paley blocks for the

ith component xi ∈ 
ε . If ε = 0, Cα
s (Rkd , ρ) is the Besov space w.r.t. each component in R

d .
The duality on 
ε is given by

〈f,g〉ε
def= εd

∑

x∈
ε

f (x)g(x).

We also set

(f ∗ε g)(x)
def= εd

∑

y∈
ε

f (x − y)g(y).

For the polynomial weight ρ, by [23], Lemma A.1, it holds for α ∈ R, p,q ∈ [1,∞] that

‖f ‖B
α,ε
p,q (ρ) � ‖fρ‖B

α,ε
p,q

,(A.3)

where the implicit constant is independent of ε.
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For a function f on ε−1
T

d we use fext to denote its periodic extension to R
d .

Extension operator:
We follow [31] to introduce the following extension operator. Recall ϕε

j given in (A.1). We

choose a symmetric function ψ ∈ Cc(R
d) satisfying the following property:

• ∑
k∈Zd ψ(· − k) = 1,

• ψ = 1 on suppϕj for j < j1,
• (suppψ ∩ supp(ϕ1

j )ext)\Td �= ∅⇒ j = j1.

Here (ϕ1
j )ext means periodic extension to R

d of function ϕ1
j on T

d . More precisely, in [31]
such ψ is called a smear function. It is easy to see that ψ(ε·) satisfies the same property on

ε . Set wε = F

−1
Rd ψ(ε·) and define

E
εf (x)

def= εd
∑

y∈
ε

wε(x − y)f (y), f ∈ Bα,ε
p,q(ρ).(A.4)

We also introduce the following extension operators for functions f : 
k
ε →R:

E
ε
k f (x1, . . . , xk)

def= εdk
∑

yi∈
ε,
i=1,...,k

(
k∏

i=1

wε(xi − yi)

)
f (y1, . . . , yk).(A.5)

It is easy to see that
〈
E

εf,g
〉
=
〈
f,wε ∗ g

〉
ε, f, g ∈ L2,ε(
ε).(A.6)

We have the following elementary result for the Besov–Hölder space.

LEMMA A.1. For ε ∈ [0,1), if α < 0, then Cα,ε
s (
k

ε, ρ) ⊂ Ckα,ε(
k
ε, ρ); if α > 0, then

‖f ‖Cα,ε(
k
ε ,ρ) �

k∑

i=1

‖f ‖C
α,ε
xi

(
k
ε ,ρ).

Here

‖f ‖C
α,ε
xi

(
k
ε ,ρ) := sup

xj∈
ε,j �=i

∥∥f (x1, . . . , xi−1, ·, xi+1, . . . , xk)
∥∥

Cα,ε(
ε,ρ(x1,...,xi−1,·,xi+1,...,xk))
.

PROOF. Let �ε
j and �ε

ji ,xi
the Littlewood–Paley blocks in 
k

ε and 
ε , respectively. By
Littelwood–Paley decomposition we have

2αkj
∥∥�ε

jf
∥∥
L∞,ε(ρ) �

∑

−1≤ji≤jε,
i=1,...,k

2αkj

∥∥∥∥∥�
ε
j

(
k∏

i=1

�ε
ji ,xi

)
f

∥∥∥∥∥
L∞,ε(ρ)

� 2αkj
∑

ji�j

∥∥∥∥∥

(
k∏

i=1

�ε
ji ,xi

)
f

∥∥∥∥∥
L∞,ε(ρ)

� 2αkj
∑

ji�j

2−α
∑k

i=1 ji‖f ‖C
α,ε
s (
k

ε ,ρ) � ‖f ‖C
α,ε
s (
k

ε ,ρ),

where in the second inequality we use ϕj (ξ1, . . . , ξk)
∏k

i=1 ϕji
(ξi) �= 0 only if ji � j . Here

and in the following we abuse the notation ϕj in different dimensions. Thus the first result
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follows from the definition. In the following we prove the second one. By definition we have

‖f ‖C
α,ε
xi

(
k
ε ,ρ)

= sup
xj∈
ε,j �=i

sup
l

2lα
∥∥�ε

l,xi
f (x1, . . . , xi−1, ·, xi, . . . , xk)

∥∥
L∞(
ε,ρ(x1,...,xi−1,·,xi ,...,xk))

= sup
l

2lα
∥∥�ε

l,xi
f
∥∥
L∞(
k

ε ,ρ) � sup
l

2lα
∑

l�j

∥∥�ε
l,xi

�ε
jf
∥∥
L∞(
k

ε,ρ)

� sup
l

2lα
∑

l�j

∥∥�ε
jf
∥∥
L∞(
k

ε ,ρ) � sup
l

2lα
∑

l�j

2−jα‖f ‖Cα,ε(
k
ε ,ρ) � ‖f ‖Cα,ε(
k

ε,ρ),

where in the first inequality we used ϕj (ξ1, . . . , ξk)ϕl(ξi) �= 0 only if l � j and in the last
inequality we use α > 0. For the converse part we have

‖f ‖Cα,ε(
k
ε ,ρ) = sup

j

2jα
∥∥�ε

jf
∥∥
L∞(
k

ε ,ρ) � sup
j

2jα
∑

−1≤ji≤jε,
i=1,...,k

∥∥∥∥∥�
ε
j

(
k∏

i=1

�ε
ji ,xi

)
f

∥∥∥∥∥
L∞,ε(
k

ε ,ρ)

�
∑

i

∑

ji�j

2αj

∥∥∥∥∥�
ε
j

(
k∏

i=1

�ε
ji ,xi

)
f

∥∥∥∥∥
L∞,ε(
k

ε ,ρ)

�
∑

i

∑

ji�j

2αj
∥∥�ε

ji ,xi
f
∥∥
L∞,ε(
k

ε,ρ) �
k∑

i=1

‖f ‖C
α,ε
xi

(
k
ε ,ρ),

where we used ϕj (ξ1, . . . , ξk)
∏k

i=1 ϕji
(ξi) �= 0 only if there exists one ji � j in the third

inequality. Thus the second result follows. �

By similar argument as in the proof of [23], Lemma A.16, and [31], Proposition 3.6, we
obtain the following estimate. We recall that we view all the functions on 
M,ε as periodic
functions on 
ε .

LEMMA A.2. For α ∈R, p,q ∈ [1,∞], d = 2
∥∥(m − �ε)

−1f
∥∥
B

α+2,ε
p,q (ρ)

� ‖f ‖B
α,ε
p,q (ρ).(A.7)

Moreover, set

J f (x1, x2) =
∫


M,ε

CM,ε(x1 − z)CM,ε(x2 − z)f (z)dz,

and

J1f (x1, x2, x3) =
∫


M,ε

CM,ε(x1 − z)CM,ε(x2 − z)CM,ε(x3 − z)f (z)dz.

If α < 0, γ > 0, then for ρ(x1, x2) = ρ1(x1)

‖J f ‖Cα+2−γ,ε(ρ) � ‖f ‖Cα,ε(ρ1),(A.8)

and for ρ(x1, x2, x3) = ρ1(x1)

‖J1f ‖Cα+2−γ,ε(ρ) � ‖f ‖Cα,ε(ρ1).(A.9)

Here all the proportional constants are independent of ε and M .
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PROOF. We only give the proof of (A.8) and (A.7), (A.9) follow similarly. Since CM,ε =∑
l∈MZ2 Cε(· + l), it is easy to see that

∫


M,ε

CM,ε(x1 − z)CM,ε(x2 − z)f (z)dz =
∫


ε

Cε(x1 − z)CM,ε(x2 − z)f (z)dz,

with f being the periodic extension from 
M,ε to 
ε . By the definition of the Besov space
it is sufficient to prove for −1 ≤ j ≤ jε

∥∥�ε
jJ f

∥∥
L∞(ρ) � 2(−2+γ−α)j‖f ‖Cα,ε(ρ1).(A.10)

We have for ξ, η ∈ ε−1
T

2

F(J f )(ξ, η) = FCε(ξ)FCM,ε(η)Ff (ξ + η),

which combined with
∑

−1≤l≤jε
ϕl = 1 implies that

�ε
jJ f = F

−1(ϕε
j (ξ, η)FCε(ξ)FCM,ε(η)Ff (ξ + η)

)

=
∑

−1≤l≤jε

F
−1(ϕε

j (ξ, η)FCε(ξ)FCM,ε(η)ϕε
l (ξ + η)Ff (ξ + η)

)

=
∑

l�j

F
−1(ϕε

j (ξ, η)FCε(ξ)FCM,ε(η)ϕε
l (ξ + η)Ff (ξ + η)

)

=
∑

l�j

F
−1(ϕε

j (ξ, η)FCε(ξ)FCM,ε(η)
)
∗ε F

−1(ϕε
l (ξ + η)Ff (ξ + η)

)

def=
∑

l�j

I1 ∗ε I2.

Here we abuse the notation ϕε
j for different spatial dimensions and in the third equality we

used on the support of ϕε
j , |ξ + η| � 2j . Moreover, by a similar argument as [31], Proposi-

tion 3.6, we can use the smear function ψ introduced in the definition of extension operator
Eε and rewrite I1 as the Fourier transform on R

4. More precisely,

I1 =F
−1
R4

(
ψ(εξ, εη)

(
ϕε

j

)
ext(ξ, η)FCε(ξ)FCM,ε(η)

)
.(A.11)

Here (ϕε
j )ext means periodic extension of ϕε

j from ε−1
T

2 to R
2 and we extend FCε , FCM,ε

to R
2 by the following formula:

FCε(ξ1, ξ2) = 1

2[m + 4(sin2(επξ1) + sin2(επξ2))/ε2]
=:

1

2(m + lε(ξ))
,

and by the Possion summation formula

FCM,ε(ξ) =
1

M2FCε(ξ)
∑

n∈ 1
M
Z2

δ0(ξ − n),(A.12)

where δ0 is the Dirac measure at 0. It is easy to see that

I2(x1, x2) = �ε
l f (x1)ε

−21x1=x2, , x1, x2 ∈ 
ε.

Thus we use ρ(x1)� ρ(y1)(1 + |x1 − y1|β) for some β > 0 to obtain
∥∥�ε

jJ f
∥∥
L∞,ε(ρ) � sup

y1,y2∈
ε

∑

l�j

ε2
∑

x1∈
ε

∣∣I1(y1 − x1, y2 − x1)
(
1 + |y1 − x1|β

)∣∣∥∥�ε
l f
∥∥
L∞,ε(ρ1)

.
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On the other hand since α < 0
∑

l�j

∥∥�ε
l f
∥∥
L∞,ε(ρ1)

�
∑

l�j

2−lα‖f ‖Cα,ε(ρ1) � 2−jα‖f ‖Cα,ε(ρ1),

and

I1(x) = 22j V̄j

(
2jx1, x2

)
,

with

V̄j =F
−1
R4

(
ψ
(
ε2j ξ, εη

)(
ϕε

j

)
ext

(
2j ξ, η

)
FCε

(
2j ξ

)
FCε,M(η)

)
.

Now it suffices to prove for N ∈ N

(
1 + |x1|2

)N
V̄j (x)� 2(−2+γ )j .(A.13)

Note that by (A.12)

V̄j (x1, x2) =
1

M2

∑

n∈ 1
M
Z2

∫

R2
ψ
(
ε2j ξ, εn

)(
ϕε

j

)
ext

(
2j ξ, n

)
FCε

(
2j ξ

)
FCε(n)e2πι(ξx1+nx2) dξ1.

By [31], Lemma 3.5, and using lε(2j ξ) = 22j lε2j (ξ) and ε2j � 1

|∂N
ξ (ψ

(
ε2j ξ, εn

)(
ϕε

j

)
ext

(
2j ξ, n

)
FCε

(
2j ξ

)
|� 2−2j 1|ξ |�1,

which combined with
∣∣(1 + |x1|2

)N
V̄j (x)

∣∣

�
1

M2

∑

n∈ 1
M
Z2

|
∫

e2πιx1·ξ (1 − �ξ )
N (ψ

(
ε2j ξ, εn

)
ϕε

j

(
2j ξ, n

)
F
(
Cε

(
2j ξ

))
dξ |FCε(n),

implies that

∣∣(1 + |x1|2
)N

V̄j (x)
∣∣� 2−2j

(
1

M2

∑

n∈ 1
M
Z2,|n|�2j

1

m + |n|2
)
� 2(−2+γ )j .

Thus (A.13) and (A.10) holds, which implies (A.8). �

We recall the following results for discrete Besov embedding, duality, interpolation and
all the results hold for ε = 0, that is, the continuous setting. The following interpolation
inequality are used frequently, which is an easy consequence of Hölder’s inequality and the
corresponding definition (see [23], Lemma A.3, for the proof).

LEMMA A.3. Let ρ be a polynomial weight and θ ∈ [0,1]. Let α,α1, α2 ∈ R and

δ, δ1, δ2 ∈ R satisfy

δ = θδ1 + (1 − θ)δ2, α = θα1 + (1 − θ)α2,

and p,q,p1, q1,p2, q2 ∈ [1,∞] satisfy

1

p
=

θ

p1
+

1 − θ

p2
,

1

q
=

θ

q1
+

1 − θ

q2
.

Then it holds that

‖f ‖B
α,ε
p,q (ρδ) ≤ ‖f ‖θ

B
α1,ε
p1,q1 (ρδ1 )

‖f ‖1−θ

B
α2,ε
p2,q2 (ρδ2 )

.(A.14)
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LEMMA A.4. Let ρ be a polynomial weight. Let α ∈ R and p1, q1,p2, q2 ∈ [1,∞] sat-

isfy

1 =
1

p1
+

1

p2
, 1 =

1

q1
+

1

q2
.

Then it holds that

〈f,g〉ε � ‖f ‖B
α,ε
p1,q1 (ρ)‖g‖

B
−α,ε
p2,q2 (ρ−1)

.

PROOF. See [23], Lemma A.2. �

We recall the following Besov embedding theorems (cf. [31], Lemma 2.22).

LEMMA A.5.

(i) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R, ρ2 � ρ1. Then B
α1,ε
p1,q1(ρ1)

is continuously embedded in B
α2,ε
p2,q2(ρ2) for α2 − d

p2
≤ α1 − d

p1
. Furthermore, if α2 − d

p2
<

α1 − d
p1

and lim|x|→∞ ρ2(x)/ρ1(x) = 0, the embedding is compact.

(ii) Let 1 ≤ p < ∞, ε > 0. Then B
0,ε
2,1(ρ) ⊂ L2,ε(ρ) ⊂ B

0,ε
2,2(ρ) and B

0,ε
p,1(ρ) ⊂ Lp,ε(ρ) ⊂

B0,ε
p,∞(ρ).
(iii) Let γ ∈ (0,1), p ∈ [1,∞]. Then

‖f ‖
B

1−γ,ε
p,p

� ‖∇εf ‖
B

−γ,ε
p,p

+ ‖f ‖
B

−γ,ε
p,p

.

PROOF. See [31], Lemma 2.22, for the proof of (i). (ii) and (iii) follow from [23],
Lemma A.4, Lemma A.5. �

Recall the following result on the bounds for powers of functions (cf. [23], Lemma A.7,
[31], Lemma 4.2).

LEMMA A.6. Let α > 0. Let ρ1, ρ2 be polynomial weights. Then for every β > 0 it holds

that
∥∥f 2∥∥

B
α,ε
1,1 (ρ1ρ2)

� ‖f ‖L2,ε(ρ1)
‖f ‖Hα+2β,ε(ρ2)

.

For p ∈ [1,∞], γ < 0 < α with α + γ > 0 and β > 0 it holds that

‖fg‖B
γ,ε
p,∞(ρ1ρ2)

� ‖f ‖B
α,ε
p,∞(ρ1)

‖g‖Cγ+β,ε(ρ2)
.

Now we prove the following Schauder estimate for discrete heat semigroup P ε
t =

et (�ε−m).

LEMMA A.7. Let ρ be a polynomial weight and α ∈ R, p ∈ [1,∞], T > 0. Then it holds

that for f ∈ L
p
T Bα−2,ε

p,p (ρ), g ∈ B
α−2/p,ε
p,p (ρ)

∥∥∥∥
∫ ·

0
P ε

·−sf ds

∥∥∥∥
L

p
T B

α,ε
p,p(ρ)

� ‖f ‖
L

p
T B

α−2,ε
p,p (ρ)

,

and
∥∥P ε

· g
∥∥
L

p
T B

α,ε
p,p(ρ) � ‖g‖

B
α−2/p,ε
p,p (ρ)

,

where the proportional constants are independent of T and ε.
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PROOF. By [23], Lemma A.16, we have that for c > 0
∥∥�ε

jP
ε
t f
∥∥
Lp,ε(ρ) � e−ct (22j+m)

∥∥�ε
jf
∥∥
Lp,ε(ρ),

with the proportional constant independent of ε and t ,6 which implies that
∥∥∥∥
∫ ·

0
P ε

·−sf

∥∥∥∥
p

L
p
T B

α,ε
p,p(ρ)

=
∑

j

2αpj
∫ T

0

∥∥∥∥
∫ t

0
�ε

jP
ε
t−sf ds

∥∥∥∥
p

Lp,ε(ρ)

dt

�
∑

j

2αjp
∫ T

0

(∫ t

0

∥∥�ε
jP

ε
t−sf

∥∥
Lp,ε(ρ) ds

)p

dt

�
∑

j

2αjp
∫ T

0

(∫ t

0
e−c(t−s)(22j+m)

∥∥�ε
jf
∥∥
Lp,ε(ρ) ds

)p

dt

�
∑

j

2αjp
∫ T

0

(∫ t

0
e−c(t−s)(22j+m)

∥∥�ε
jf
∥∥p
Lp,ε(ρ) ds

)(∫ t

0
e−c(t−s)(22j+m) ds

)p−1
dt

�
∑

j

2αjp2−2j (p−1)
∫ T

0

∫ T

s
e−c(t−s)(22j+m) dt

∥∥�ε
jf
∥∥p
Lp,ε(ρ) ds

�
∑

j

2(α−2)jp
∫ T

0

∥∥�ε
jf
∥∥p
Lp,ε(ρ) ds,

where we change the order of the integral in the fourth inequality. The first result then follows
from the definition of the Besov space. Similarly we have

∥∥P ε
· g
∥∥p
L

p
T B

α,ε
p,p(ρ)

≤
∑

j

2αjp
∫ T

0

∥∥�ε
jP

ε
t g
∥∥p
Lp,ε(ρ) dt

�
∑

j

2αjp
∫ T

0
e−ctp(22j+m)

∥∥�ε
jg
∥∥p
Lp,ε(ρ) dt

�
∑

j

2jpα−2j
∥∥�ε

jg
∥∥p
Lp,ε(ρ).

Thus the result follows. �

Now we recall the following property of Eε in Besov spaces.

LEMMA A.8. For any α ∈ R, p,q ∈ [1,∞] the family of extension operators

E
ε : Bα,ε

p,q(ρ) → Bα
p,q(ρ), E

ε
k : Cα,ε

s (ρ) → Cα
s (ρ),

defined in (A.4) and (A.5) are uniformly bounded in ε.

PROOF. See [31], Lemma 2.24, for the proof of the result for Eε . The result for Eε
k follows

from a similar argument. �

6[23], Lemma A.16, only proves the result for p = 1 and the same result also holds for general p ∈ [1,∞] by
exactly the same argument
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LEMMA A.9. For p ∈ [1,∞], γ < 0 < α with α + γ > 0 and β > 0 it holds that
∥∥Eε(fg) − E

εf E
εg
∥∥
B

γ,ε
p,∞(ρ1ρ2)

� o(ε)‖f ‖B
α,ε
p,∞(ρ1)

‖g‖Cγ+β,ε(ρ2)
.

PROOF. See [31], Lemma 4.2. �

We prove the following result by the same argument as in [31], Theorem 5.13.

LEMMA A.10. Assume that

(m − �ε)uε = fε

and ρ be some polynomial weight. It holds that for α ∈ R and δ > 0
∥∥Eεuε − (m − �)−1

E
εfε

∥∥
Cα+2−δ(ρ) � εδ‖fε‖Cα,ε(ρ).

PROOF. It is easy to see that

(m − �ε)E
εuε = E

ε(m − �ε)uε = E
εfε.(A.15)

Moreover, by [31], Lemma 3.4, and Lemma A.8, (A.7) we know for any δ > 0
∥∥(m − �ε)E

εuε − (m − �)Eεuε

∥∥
Cα−δ(ρ) � εδ

∥∥Eεuε

∥∥
Cα+2(ρ) � εδ‖uε‖Cα+2,ε(ρ)

� εδ‖fε‖Cα,ε(ρ),

which implies the result by (A.15) and the Schauder estimate for (m − �)−1. �
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