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In this paper we study the perturbation theory of CI>3 model on the whole
plane via stochastic quantization. We use integration by parts formula (i.e.,
Dyson—Schwinger equations) to generate the perturbative expansion for the
k-point correlation functions, and prove bounds on the remainder of the trun-
cated expansion using PDE estimates; this in particular proves that the ex-
pansion is asymptotic. Furthermore, we derive short distance behaviors of the
2-point function and the connected 4-point function, also via suitable Dyson—
Schwinger equations combined with PDE arguments.

1. Introduction. Physicists’ approach to quantum field theory often relies on perturba-
tion theory, which is a formal series expansion in terms of a certain coupling constant; see,
for instance the standard book [40], Chapter 7. The first goal of this paper is to discuss this
perturbative approach and provide some estimates on the expansion using SPDE methods.
We will focus on the ®* model in two space dimensions, formally given by

(1.1 dvocexp(—%/zzd)(x)“:dx) du,
R

where dyu is the Gaussian free field with mean zero and variance %(m —A)"lform>0.In
physics, interesting quantities such as correlations are calculated by formally Taylor expand-
ing the exponential density in the coupling constant A, and then applying the Wick theorem
for Gaussian measures (which yields Feynman diagrams). Jaffe [28] proved that this formal
expansion is a divergent series for any fixed A > 0.

A toy model to illustrate this divergent perturbation theory is a ®* model in “zero dimen-
sion”: consider the following function (“partition function”):

Z(0) = f e e 4y
R

One has Z(0) = /7. For A > 0, one can formally calculate it by the expansion et =

o (_n—A!)”x“”, since there is exact formula for Gaussian moments, that is,
o0 oo
(=" 4, 2 (—=)" (4n — DN/
1.2 Z(A) = /—x"exdx= .
(12 @) ng(:) R n! HX:(:) n! 22

This series is divergent for any fixed A > 0. However, despite its divergence, this perturbative
approach is widely used for other quantum field theories, such as quantum electrodynam-
ics (QED), gauge theory, or the so-called “standard model” in general that comprises these
models; and these perturbative calculations yield numerical values which agree with the ex-
periments at extremely high accuracy; see, for example, [5], equation (4), for calculation of
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the electron’s magnetic moment in QED which agrees with the experiment to eleven decimal
places.

This means that practically it is still often useful to calculate physical quantities by trun-
cating this series. For instance in the above toy model, Z(0.01) ~ 1.7597, and the first two
terms on the RHS of (1.2) are approximately 1.7725 —0.0133 = 1.7592 which is close to the
exact value.! We also refer to another interesting example along this line with illuminating
discussion in [18], Section 6.1.2

We remark that the model (1.1) we consider here is a type of bosonic models, whereas the
perturbation series for some of the ferminoic models actually converge, see [19] (and more
recently [1], Sections B,D, in the setting of stochastic quantization).

The above discussion indicates that asymptoticity is a more relevant notion than conver-
gence in perturbation theory. Asymptoticity means that truncating the series after a fixed
finite number of terms provides a good approximation to Z(X) as A tends towards zero. For
the <I>‘2t model Dimock [14] proved that the perturbative expansion of correlation functions
(Schwinger functions) is asymptotic. His proof crucially relies on the constructive field theory
results and methods by Glimm, Jaffe, Spencer [21]. The asymptoticity of CD% was also proved
in [17], Theorem 3, see also [30], Section IV.2. We remark that a key input to the proof in
[14] is a uniform exponential cluster property proven in [21], from which Dimock managed
to deduce that correlation functions are smooth in A € [0, Ag] where Ao > O is sufficiently
small, and asymptoticity essentially follows from the Taylor remainder theorem. The small-
ness of X is mainly due to requirement for the cluster property to hold. This is also the case for
d = 3. In fact [17] proved cluster property in 3d in detail, and only mentioned that smooth-
ness in A and asymptoticity follow analogously as in 2d [14]. [30], Section IV.2, provided
more details but the basic mechanism is also similar to [14]. The relation between smooth-
ness of correlations in coupling constants and cluster properties was observed in statistical
mechanics, see [29]. Using the results of [14], Eckmann—Epstein—Frohlich [16] proved that
in weakly coupled P (®); theories, perturbation theory in the coupling constant is asymptotic
to the S-matrix elements; and the result was extended to CI>§ in [15] where it was shown that
the time-ordered functions and S-matrix elements admit the standard perturbation series as
asymptotic expansions.

Another approach to asymptotic perturbation theory for the (one and two-component) ®*
model in 2d and 3d was developed by Bovier and Felder in [6], using an infinite family
of skeleton inequalities. The leading orders of these skeleton inequalities were proved by
Brydges—Frohlich—Sokal in [8, 10] and applied to construct CI>‘2"3 in [9].

In this paper we give a new proof of asymptoticity for <I>‘2t based on SPDE methods. More

precisely, we consider the stochastic quantization of the d>‘21 model (i.e., the dynamical <I>‘2t
model) on Rt x R

1
(1.3) (8,—A+m)d>:—§k:d>3:+$,

with & space—time white noise on RT x R? and :®>: is the Wick product defined in Sec-
tion 2. The solution theory of equation (1.3) is now well developed: see [4] where martingale
solutions are constructed and [12] where strong solutions are addressed, as well as the more

1Of course since the series is divergent, for the fixed A = 0.01 the partial sum of (1.2) will not be infinitely close
to the exact value of Z(0.01); indeed the n = 70th term on the RHS is approximately equal to 0.9 and a truncation
up to such a high order certainly loses accuracy.

2The author explains that convergence and effectiveness of approximation are completely different. For ex-

ample, 280 (_Inﬂ converges to e~ 100 ~ 10=%4 but unfortunately its first few partial sums are 1, —99, 4901,

2
~161,7652.
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recent approach to global well-posedness in [34]. It is obtained in [35] that the marginal dis-
tribution of the stationary solution to (1.3) is given by <I>‘2t field. Hence, we could use (1.3) to
study the QD‘Q‘ field.

Another ingredient in our approach is the integration by parts (IBP) formula w.r.t. the
@‘2‘ field, also called Dyson—Schwinger equations. In our SPDE approach it seems not easy to
establish cluster properties or prove smoothness in A over the entire plane, so we do not follow
the methodology in [14]. Instead, we iteratively apply IBP to generate the perturbation theory
(which is similar to [9] and [6]), which after a certain order yields a remainder represented as
integrals of the field ® and Gaussian covariances. Our strategy is then to introduce graphic
representation for such a remainder, and then apply PDE a priori estimates to control the
graphs. To this end we will carry out some manipulations on the graphs, reduce graphs to
trees and design inductive arguments.

As the <I>‘2t field does not have full support on function space, we consider the following
approximation: we start with Gibbs measures (Vys ) p.c on Ay o = (e(Z/M 7))? given by

X 3
dvp,e ocexp{—ez 3 [—@4 + (——xaM,s +m)<1>2 + |v8<1>|2“ [T dow.
Apme 4 2 XEAM,g

where V. denotes the discrete gradient and ay . are renormalization constants. We will use
the stochastic quantization equation for vy . to prove that {vas ¢} . form a tight set in Sec-
tion 2 (see also [23] for the proof of 3d case). We still use (M, ¢) to denote the subsequence
such that vys . o (£° )~! converge to v weakly with £ being the extension operator given in
(A.4). Here v could be every accumulation point and all the theorems hold for every v.

The k-point correlations for vy .—for which we will expand using integration by parts
formula—are given by

k
SK e (o x) =/{H q)(xi):|VM,8(ch)-

i=1
Letting M — oo, ¢ — 0 we obtain the k-point function for v

14) ("% 0¥ lim f/Rz (HCD(xl )(p(xl,.. xk)l—[dx dvpr.e(P),

e—>0,M—o0

for ¢ € S(R?) with compact support Fourier transform, where the existence of the limit will
be discussed in Theorem 2.5. We also give the definition of S, o using the extension operator
in Section 3.1, which coincides with the above definition (1.4). Our first main result gives the
asymptotic expansion of S, ok

THEOREM 1.1. It holds that for ¢ € S(R*)
& N k

(1.5) (S2K, Z—, )+ AV HURYY L 0),
with F,’f only depending on the Green function of Gaussian free field and

(RN @) S 1 aMHI2NED

with the proportional constant independent of 1.3

3Here the proportional constant may depend on N. We remark that the terms AMHLZINED 327 and 254 in
these theorems provide controls for large A, but these exponents may not be optimal (see Remark 2.4).
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The complete version of Theorem 1.1 is given in Theorem 3.9 and Proposition 3.10. Note
that [14] only amounts to A(R’I‘\, +1»9) — 0as A | 0, and the result in [6] also assumes small
A regime, whereas we give a more precise bound here which holds for arbitrary A > 0. More-
over, we obtain (see Theorem 3.9 and Proposition 3.10) that (1.5) holds in C™% (pz) for
y > 0, some ¢ > 0 and polynomial weight o and the same bound holds for ||R§‘VJrl lc-7 (pt)-
Here C™7 (p?) is the weighted Besov—Holder space (see the Appendix for definition).

Note that the expansion (1.5) is precisely the Taylor expansion in the coupling constant A
in the aforementioned perturbation theory. Namely, by taking the nth derivative on the RHS
of (1.5) and evaluating at A = 0, and invoking the above bound on Rfv 41> We have

dn
dA" =0

In physics these derivatives on the LHS result in expectations of Gaussian products and are
typically computed by Wick theorems and Feynman diagrams.

(S75, @)= (Ff.¢) Vn<N.

REMARK 1.2. By [28] each Fnk has a lower bound depending on » that is not summable,
which implies the expansion is a divergent series.

As the second goal of the paper, our strategy of combining the integration by parts formula
and SPDE uniform estimates also allow us to find the leading short distance behavior for the
2-point correlation and the connected 4-point correlation. Let Cys ¢ (resp. C) be the Green
function of 2(m — Ag) on Ay e (resp. on Ay = €Z?%). We also use C to denote the Green
function of 2(m — A) on R2.

THEOREM 1.3. Let p(x) = (1 + |hx|*)7%/? be a polynomial weight with h > 0 small
enough and § > 1/2. It holds that for y > 0 and some £ > 0

(1.6) 152 a1 = Cotel v n, oty S A2 +27,

with the proportional constant independent of M, €. Furthermore taking tight limit, it holds
that

H S;f’z - C”CZ*V(RZ,,OZ) N A + P

Here C27¢(p?) is the discrete Besov—Holder space and we refer to the Appendix for its
definition.

REMARK 1.4. By Theorem 1.3 we can write SX’Z as a function on R? and the leading

short distance behavior of S;’z is identical to that of C up to a C2>~7 part (although each of
them are singular at origin).

We define the following connected 4-point function:

4 def 4 2 2
Uppe(x1, %2, X3, x4) = S5 pp (X1, X2, X3, X4) — S5y (X1, X2) S5 gy 0 (X3, X4)

2 2 2 2
= S (X1, X3) 85 o (2, X4) — S5y e (X1, X2) S5 gy 0 (X2, X3).

THEOREM 1.5. Let p(x) = (1 + |hx|2)_‘s/2 be a polynomial weight with h > 0 small
enough and § > 0. It holds that for y > 0 and some £ > 0

“ U]‘lt/l,s ”CZ*%E(Aé,pﬁ) 5 A+ )\.54,
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and

4
U, +61 / T Care (i — 2)dz
A C2-v.¢ (Ag,pl)

M.e j=1

with the proportional constant independent of M, €. Moreover, as in (1.4) the tight limit of
U;‘,, . exists which we denote by UAV’4 and

JUY oy s oy S A+
and

4
H Uyt + 6A/ [TCGi—2)dz
i=1 C2-7 (RS, pb)

The proof of the above two results are given in Section 5. We will see in the proof of
Theorem 1.5 that the expansion of Uf’4 cancels some irregular part, and as a result, the
regularity of UA”’4 is C2>~7 which is better than the regularity of SX’4 which is C™7, for
y > 0. Here C™7 is the optimal regularity of SX’4 if considering in Besov—Holder space since

the Green’s function C, which is not continuous, appears in the expansion of S, ol

Similar results were also obtained in [9], Theorem 1.1, but in our results above we obtain
bounds under stronger regularity norms; moreover [9] requires A > 0 to be sufficiently small
whereas we do not.

The short distance behavior of CI>§' on the torus has also been studied by Brydges—Dimock—
Hurd, see [7], Theorem 9, where the L?, p < %—norm of truncated correlations are controlled.
Here we consider the case of <I>§ on the full plane and we are able to estimate the C>~7 -

Holder norm of U A” 4 and § ;’2 — C. We refer to the remark at the end of [7] for a discussion
on regularity and how singular the truncated correlation functions can be at coinciding points.

We remark that as far as we understand, our technique in proving the above theorems
appears to be more robust than skeleton inequalities used in earlier literature (e.g., [6] and
[9]), in the sense that at least in 2d, it is valid for all values of the coupling constant A and
can be very easily adapted to N component models for any N > 1 (PDE estimates for such
models were discussed in [36], Section 2 and Section 6.2).

Finally we mention that it would be interesting to see whether our methodology could be
used to deduce similar results in 3d. For 3d stochastic quantization, namely the dynamical
CI>‘3l model, we refer to the construction of local solutions [11, 24, 25] and global solutions
[2, 22, 23, 33]. These works, followed by [3, 27, 32, 36, 37], including the present paper,
show that the usage of SPDE methods is not only successful in constructing Euclidean QFT's
but also proving their axioms and properties. As remarked in [23] deducing properties about
correlations from the dynamics would be a very interesting and challenging problem, and our
results in the present paper could be viewed as a step toward this direction. It would be also
interesting to study connected correlations of higher orders. We leave these generalizations
to further work.

2. Uniform estimates via SPDEs. In this section we study <I>‘21 field via stochastic quan-
tization. We will obtain tightness of the discrete @3 field, which gives a construction of @3
field in the continuous setting. We also give some uniform estimates via SPDEs, especially
how these estimates depend on the parameter A.

We consider the CI>‘21 model in both discrete and continuous settings. In particular, we
set Ap :=¢Z? fore=2"N, NeNU {0} and the periodic lattice Ay := eZ2 N ']I‘%,, =
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eZ2 N [—7, 7)2 We use S(R?) to denote the class of Schwartz functions on R? and
S’ (RY) denote the dual space of S (R?) called the Schwartz generalized function space.
Given a Banach space E with a norm || - ||g and T > 0, we write CTE = C([0,T]; E)
for the space of continuous functions from [0, T'] to E, equipped with the supremum norm
I fllcr E = sup;epo,ry 1 f (Ol £ and we write LgE = LP([0, T]; E) for the space of L” func-
tions from [0, T'] to E, equipped with the L? norm || 1 ;» z = ( JEIF @15 de)' /P, We also

a(s)

use o(¢) to denote a(e) € R satisfying lim,—, ¢ = 0. In this paper we use the polynomial

weight on R? given by

p(x)=(1+hx)™?  8,h>0.
It is easy to see that
2.1) Vo] < Ihlp ().

We use B;‘:; (A’E‘, p),a €R, p,q €1, oo] to denote the weighted Besov spaces on Alg, keN,
and we recall their definition in the Appendix. We also write B“ & (p) B"‘ & (A p) if there
is no confusion. Note that if ¢ =0, B"‘ & (p) is the classical Welghted Besov space ;‘,‘ q(p)
on R*. Set H**(p) = By’ (p), e (p) = B%os(0) and H(p) = BS,(p), C*(p) =
B%, oo (p). We also use C‘s)"é to denote the Besov—Holder space wi.r.t. each component on
A’; for k € N with definition given in the Appendix. The duality on A, is given by

def

(f.g)e =2 Y flx)g),

XENg

with (-, -) as the usual duality between S(R?) and S’(R¢). We also write L?¢ for the L7
space on A, endowed with the norm

1/p
Il = (22 2 |f<x>|”) ,

xelA,

with the usual modification for p = oo. We refer to the Appendix for discrete Besov embed-
ding, duality, interpolation, which will be used below.
We start with Gibbs measures (vys ¢)ar.e On Ay given by

A 3
(2.2)  dvy, exp{—ezg [ZCD“ + <—§xaM,g + m> o2 + |vgc1>|2“x€];£ do(x),
where
V. £(x) = (f(x +eei) — f(x))
€ i=1,2

denotes the discrete gradient and ays . are renormalization constants defined below. Here
(ei)i=1,2 is the canonical basis in R2. We write

Acf()=e2(f(x +ee) + f(x —ee) —2f(x)), x€A,

as the discrete Laplacian on A, and .Z; := 9; +m — A,. We also use ®j; . to denote the
stationary solution to the discrete stochastic quantization equation on Ay ¢
A

3
(2.3) LDy + 5@34,8 = Sham e Pue =Emc,
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where &)/ . is a discrete approximation of a space—time white noise £ on R x R? con-
structed as follows: Let &y, denote the periodization of & on RT x ']I‘%,I and define the spatial
discretization by

Eme(t,x) = e 2(Ep(t, ), Nmxlzesa)s  (6,%) ERT X A,

where |x|oo = |x1| V |x2| for x = (x1, x2). The law of ®,; . at every time ¢ > 0 is given by
Ve defined in (2.2), which is the unique invariant measure to the finite-dimensional gradient
system (2.3) (see, e.g., [13]). We extend all the functions and distributions to A, by periodic
extension.

The aim of this section is to show that {vjs ¢} (properly extended to S’ (R?)) is tight in
C77(p) for y > 0 and some polynomial weight p. Every accumulation point v is an invariant
measure of the following SPDE on RT x R?:

(2.4) $¢+%:q>3:=g=,

with .Z = 8, — A + m. Here :®>: is the Wick power defined by
:®%: = lim Sg(dﬁ,]’g —3am.ePum.e)s

e—0
M— o0

where £° is an extension operator from B;’,‘:Z (p) to B;‘," ¢(P) for some a < 0 defined in (A.4)
in the Appendix.
Here we understand (2.4) decomposed as the following two equations: ® =7 + Y

A
(2.5) L7 =E, $Y=—5(Y3+3YZZ+3Y:ZZ:+:Z3:),
where
.72, def . e.52 . def . (72
Z ._8_)01’11‘1}1_)005 AT _8_)01’11{/[n_)005 (Zy.e —am.e)
.3, def . .53 def . e/3
27 = lim E%Zy o= lim  E(Zy . —3ameZm).

e—0,M—o00 £—0,M—o00

Here Z s . are stationary solutions to

(2.6) ZLeZme=EM.e,

apm.e = EZ%,I’S(O) and the limits are in C ([0, T]; C™7 (p*)) P-a.s. forany y,x >0and T > 0.
By standard renormalization calculation we have that for every p > 1,k,y >0and T > 0

p .72 P .73 P
(27) E” ZM’g ||CTC_V’8(,0K) + E” 'ZM,S' ||CTC_V’€(,0K) + E” 'ZM,S' || CTC—y,g(pK) 5 13
with the proportional constant independent of ¢, M, and

E|EZy — ZH’C’TC,),()OK) +E|&%:23,  — 27|

p

CrC~7 (p¥

2.8) 3 - T (o)

€. . . .

FE|E:ZY 2P e

as M — oo, ¢ — 0 (cf. [23, 34, 39]). Global well-posedness of equations (2.5) and hence

equation (2.4) have been obtained in [34]. In the following we take (Ppr¢, Zpr,¢) as joint

stationary processes satisfying equations (2.3) and (2.6), respectively, which could be con-

— 0,

structed by [36], Lemma 5.7. Hence, Y/ ¢ def Dy ¢ — Zy ¢ satisfy the following equation on
A M.,s .

A
(2.9) LoYye = —E(Y,i,’s +3Y5 e Zme +3VMe1Ziy ot + 2y ).

In the following we derive uniform estimates in both parameters M, ¢ for Y .. To this
end, we recall that all the distributions above are extended periodically to the full lattice A,.
For general p > 2 we have the following L? uniform bounds.
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LEMMA 2.1.  For the polynomial weight p(x) = (1+ |hx |2)=8/2

it holds that for every p > 1,6 > % and <o <1

and h > 0 small enough,

(210) E” YM P ||L2 e T E” YM,SIO2 Hi]lﬂr,s “ YM,&‘pz”i(fs_l) 5 AP + )\‘317'

Furthermore, for every po > 2 there is h > 0 small enough such that for the weight p(x) =
(14 |hx|?)7%/% and every 2 < p < po with p even, p§ > 2

< A +)\’2+[7/2

~

@2.11) E|Y? 0P| 1c +E[|IVeYe2YelP 207 | 1

Here all the proportional constants are independent of M, ¢.

PROOF. We omit the subscript M for notational simplicity, and all the proportional con-
stants in the proof are independent of ¢ and M. We first note that for the canonical basis
{ei}iz:1 in R? and even p

VeYe(x) - VoY (x)

2 p
Z (VY (x)) (Z Y7 (x +8ei)Yf_2(x))

£=2

2.12)

<|v Ye ()Y (x)]P™ 2+Z ViYe(x))YP- 2(x—|—8e,))

i=1

NI'—‘

where V! Y, (x) def %(YS (x +ge;) — Ye(x)) and we used ¥~ “ (x + ge;)Y 2(x) > 0 for £ even
and

Y27 (x +een)Y T (x) < ZY” Clx +ee)Y (0 + 2Y8p lx +eenyt T x)
for £ odd in the last step. Taking the L>* inner product with Y/ - p? on both sides of (2.9)
and using (2.12) we obtain

1d 1 5 A
Sa 1P e+ 5Dt D) +ml[Yepl e + 5] Y22 P | 1

3
<|{[Ve, pP 1Y, VeYe), | — 7(/)pr“» Ze),
(2.13) 3

A A _
- j(ppyep’ :Zz;%:)g - E(ppyep 1’ :Zg:>£

def 4
s
where

def

df
D = <

Ve Ye 21Xl P27 | f1es

2
Z 2YPT (el

Ll.e

We also set B & ||Yp+2pp||L1,g. For I; we have

1/2 1

V2D <Cpy|0PY? |1 + ¥ D1,

I =Clorv2 |V
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where the constants Cp, C,, ,, depend on [|[p~?[V,, p?]]|| ., which for given pg by (2.1)
could be chosen sufficiently small for p < pg by choosing & small enough. By Lemma A.4
we have for 0 < s < é,/{ >0
1
L SMYE gt ooy 1 Ze sy,
and we use Lemma A.3 to have

(2.14) Y2, < [yt ||” 2 |y +! ||” :

‘]Y:‘lg(ppfk) 7s€ (oP~ 2,() 3s, S(,Op).

For the first factor on the RHS of (2.14) we use Holder S 1nequa1ity to have

||Yp+1 p— 2K||B < ||Yp+1 p— 2K||L 85 ||YP+2 P“Ll’ﬁ”p ||L”Ti§Bp+;

where 6 = (p — 2x)(p + 2) —p(p+1)=0A—-2k)p — 4k > 2/8 for k > 0 small enough.
For the second factor on the RHS of (2.14) we use (iii) in Lemma A.5 to obtain

” Ysp+1 ”Bff{s(pp) S “ YepH ||L1~5(p17) + ”VsYspH ||L1’£(p1’)

1/2 1/2
5 “ YspH HL'»E(pp) + (Dl/ + D2/ )Bl/za

where we use (2.1) to have
2
[V X2 e oy S ZIIV’YI (YO C+ee) +Y2)pP| 1

(2.15) 12 2 +2 1/2 P
S’DZ Z“|Y8|p ('+8€i),0p”L1,e +D1 B

i=1
(D 1/2 + DI/Z) 1/2
in the last step. Substituting the above calculations into (2.14) and using Young’s inequality
we obtain for y > 0

pEl 1 1 l+1’—+1
L SA(BPE + (DF + D3)BIT20) || Z, [l s

2 2 2
<YAB A+ AC I ZeB ey + 7 D1+ y D2+ 3FPRC | Zo1 R0

Similarly, for I3 we use Lemma A.4 to have
I MY g ooy [ 222l v -

and we apply Lemma A.3 to obtain for 0 < s < %

1/2 1/2
YPH /*3 S(pp 2/()” & ”B/Ssl,s(pp)'

For the first factor on the RHS of (2.16) we use Holder’s inequality to have

(2.16) 12 3 pre) S

P 2
[Y2 0772 pose S NYE P72 e SIYE2RP 1210712 S B
where 6; = p(1 — k) — 2k > 2/§ for k > 0 small enough. For the second factor on the RHS
of (2.16) we use (ii1) in Lemma A.5 to obtain

”Y ”33”(,)17) S HYep ||L1-8(pp) + ||V8Y€1’ ||L1-8(pp)

1/2

1/2 1/2
HY ”Llf(pp) +(D / + D, / )”Ysp”Ll,s(pP)

< B+ (D} + D)) BT,
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where we use a similar calculation as (2.15) in the second step. Combining the above calcu-
lations and Young’s inequality we obtain
p 1 1 3p
L SA(BP2 4+ (D) + D4)B4(”+2) )l 3252:”0&8(,%)

2(p+2)

P4
<yAB+AC,|:Z%: ||C vy £ Y DU YDy + CpASH 5 [:Z2:] 3 -

Similarly,

p=1 1 1 3p—4
Iy SA(Br2 + (D} + D4)B4<”“) [:22: ) v )

2(p +2)

< yAB Gy |23 ety Y DU+ Y D2+ CA 0 222 e

Combining the above estimates and choosing y small enough to absorb y D1, y D and yAB
to the LHS of (2.13) we obtain

1d
(2.17) pdr
< (A +ATPIC(Zy),

where C(Z;) denotes a polynomial in the terms of

1 om ~
—-Dy + Euygprop”il,s + Z”Ysp+2pp”Ll‘s

1
Y2 e+ D1+

1Zuelleer 1 Zaellcseqn 1 Znetlcseqo

and EC(Z.) < 1 with the proportional constant independent of &, M. Recall that (D, Z;)
are stationary process, so are Y. Integrating over ¢ and taking expectation we obtain

LE|vr o] 18+1/tE(Dl+Dz)ds
p € L% 4 Jo
moft s 2 * [ Rlypt2,p
(2.18) +5f0 E|Y/p ||L1,sd5+1/0 E[Y/TpP 1. ds

1
< Comp(A 4271017 + ;EH Y00 |1,

with the constant C, , > 0. Using stationarity of Y, and dividing ¢ on both sides of (2.18) we
obtain

1 _ m
JEIVeYe @Y7 | 1o+ SENYL O)p7 |1
1
4;/ E|||Ve Y, |?|Ye P~ 2,0pHL15dS+ / |Y?pP|3 .. ds

< Cop(A+22TP/2) ¢ EE” Y20 | e

The last term can be absorbed by the LHS for ¢ large enough. Then (2.11) follows. Moreover,
by Lemma A.5 we have for o € (0, 1) and any polynomial weight p

@19 Wellgisoe ) S SWellpge )+ IVeYe IIB—M( ) S Wellp2e ) + 1VeXell L2 ()

Choosing p = 2, replacing p by p? with § > 3 5 in (2.17) and using (2.19) we obtain for some
co>0

d m A
S| Ye()p? |26 + ol Yep® | 310 + n Yep?|7a. + ZIIYspII‘b,s

< (A +23)C(Z).
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Furthermore, we consider - g1 Yep || and have for every p > 1

L2

1 d 212(p=1)
317028+ col o o Yo,

A _
S 3 A D A P VA

S+ C@)|Yep? 35V S (P +23P)C(Ze) + —n Y.’ 5.,

which by taking stationary initial condition and similar argument as above gives (2.10). [

By Lemma 2.1 we could give uniform control for the nonlinear terms on the right-hand
side of (2.9). Our aim is to do asymptotic expansion of k-point function up to AN*! for
k, N € N. In the following we fix a polynomial weight and several parameters:

220)  p(x)=(1+hx>)™% §>1/2,  po> (%N + 1)) v (96), poeven,

with 4 > 0 small enough such that the bounds (2.10) hold for every p > 1 and (2.11) holds
for 1 < p < pp and even p. In the subsequent sections we also consider functions on Ak and
we also abuse the notation p to denote the weight in R?*. In this case we say p in (2 20)
means that 2 > 0 satisfies the same condition as in (2.20) and it is easy to find that p could
be controlled by the corresponding weight in R?.

COROLLARY 2.2. For the polynomial weight and pg in (2.20), it holds that for 1 < p <
p0/3,0<ﬁ<$,x>0

(2.21) E|| Yyl AP 4 A%,

Che (pte) ~
where the proportional constant is independent of ¢, M.
PROOF. We consider the case for p even and the general case follows by Hélder’s in-

equality. We also omit the subscript M for notational simplicity and all the proportlonal
constants in the proof are independent of ¢ and M. We first prove that for any 0 <s < 5 that

3 P 2 P
(222) EH YMvs”L‘”’s(P3) +E|| YM,SZMJ?” ;if (p4+%) +EH YM £- ZM g HH 5.8 (p2tK)
SA+AP,
By Lemma 2.1 we have for 3p < pg
E”Y3 ”L[JS(p’&) S E”Y ||L311 S(,O) < )\ +)\.2+ 2,

For the second term in (2.22) we use Lemma A.6 to have for s > y > 0

Y2 Zel ge oy SWZellereeon ¥ Loy, oty SIZellereqon Y2 ase

SNZep | ¢ove [ Yer? Hmmll Yep?| o

SN Zellcre oo | Yep? s e [ Yep? (227

where we choose 0 < o < 1 small enough such that 6; = 123 < 1 and we use Lemma A.5

in the second inequality and Lemma A.3 in the last inequality. Thus by (2.10) in Lemma 2.1
and (2.7) we obtain for o small satisfying 2sp < 1 — o,

BIY2Zu] oy SENZe N Ve Ve[ S 0 05,

where we use Holder s inequality in the last step.
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For the third term in (2.22) we use Lemma A.6, Lemma A.3, (2.10), (2.7) and Hdolder’s
inequality to have for sp < 2(1 — o)

E”YS ZZ “H —5,6 (n2+K <E||Y8||H:s 2 H ZZ HC y&‘(pk)
(p=T) ~ (p9)

01/2 1-61/2 2. 4 3p
SENYel L o 1Y 15 o 2 1225 Gy ey S 27 427

Now (2.22) follows.
In the following we prove (2.21) by Schauder estimate Lemma A.7. Set

F.¥y3 4 3v27, 4 3v,:22% +: 22

We choose «, s > 0 such that

2 1 2 s(1—ys)
(2.23) —<a<—+—< +— <2,
p 4p 1+s 4

where the last inequality holds by sp < 5 L By Schauder’s estimate Lemma A.7

1Yel 2 w(p)<HY<0>H T L

pp (p

(0)’

with the proportional constant independent of 7. By Lemma A.5 and the choice of « in (2.23)
we have the following embedding:

Bl—:;«?oo(pzt-i-/c) C Bg;)z,e(p4+K), H—s,s(pZ—H() C B;{;jz,s(p4+x)’
Lp,e(p3) C Bg’—pZ,s(p4+/c).
Thus,

B[V Ol s

1 p
=— E Y. (0)]” —E
TEHYS”L;“ ( 4+l() ” ( )”BP p[) F(p4+,{) T ” 8||Lsz 25( 4+K)
FEITO, A EIT g B Ziel
p (p “)

+APE| Vi Zig ot e vy FAPELZig o2 Gt )
< —E||Ys(0) 17 . AT+,
r Bp,pp‘ /(ﬂ4+'()

where we use (2.22) in the last step. Choosing T large enough and using Besov embedding
Lemma A.5, we obtain (2.21). [

Define
Pye=Yme+tZpme,
224) % YOk, —ame =YY, + 2V Zue + 70 0
S ep?W = 3am e P e =Yy +3Zm Vi o 4325 Ve + 120 40

Then we can use the right-hand sides to control E||:d>’}‘,, g:llé,w (09 fori =1,2,3. More
precisely we have the following result which will be useful in the subsequent sections.
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COROLLARY 2.3. For the polynomial weight and pq as in (2.20), it holds for 0 <y < %,
k>0,1<p< po/9 that

E“@M’SHQ*V‘S(/}“K) +E”:q)/21/1,8:”é7%8(p9) +E||:CD?V1,8 ”C V£ (p 13) ~ 1 + )¥12p

with the proportional constant independent of M, ¢.

PROOF. It suffices to consider the case that p even since the general case follows by
Holder’s inequality. In the following we consider each term separately and we choose k¥ > 0
small enough. By (2.21) we have for y > 0,0 < 8 < ﬁ, 3p < po:

(225) E”q)M,g”C yg(p4+l() ~ E”YM 8||Cﬂ,5(p4+/<) +E||ZM 8||C ]/é‘(pl() < 1 +)\4P
We use Lemma A.6, (2.21) and (2.7) to have for 0 < 8 < ﬁ, 6p < po

E||:CI> M. ”c v.e(p9)

5 E” YM,S ||C,B,e(p4+/<) + E” YM,S ”(’éﬂ's(pM”() || ZM,S ”(’é—ﬂ/z,s(p;() + E” ZM,&‘ ”é—y,S(px)
<1428,
where we use Holder’s inequality in the last step. Similarly for the last term we use
Lemma A.6, Holder’s inequality and (2.21) to have for y > 0and 0 < 8 < ﬁ, 9p < po
.H3 2
E” '¢M78 ”C Vs 5(p1?) ~ E” YM & ||Cﬁ,£(p4+x) + E” YM,8 ||Cl;,2(p4+/<) ”ZM,é‘ ||é—ﬁ/2,8(plc)
p .72 P .73 P
+E[Yp e ||cﬂ,8(p4+/<) ” 'ZM,s' “cfﬂ/Z,s(p:«) + E” 'ZM,s’ ”C—%e(pk)
<1410,
The corollary then follows from the above bounds. [J
REMARK 2.4. The powers for the weight and A in Corollary 2.3 are not optimal. If we

use L”¢-norm in (2.11) to bound C~7-¢ we have lower powers with the cost that y depends
on po.

We consider the tight limit of
(ggq)M,e(t)v SSZM,s(t)» SSYM,S(I))M’g

and we denote by (®, Z, Y) the canonical representative of the random variables under con-
sideration (i.e., the canonical process on the canonical probability space with the limiting
measure).

THEOREM 2.5. For the polynomial weight and pg as in (2.20), it holds that the family
(ESCI)M’g(t), ESZM,s(t)» ESYM,,S(I))M’S

is tight in (C™7 (p*+%<), C77 (p*), C¥ (p*t)) for 0 < y, <3 L Moreover, the first marginal
v of every tight limit | is an invariant measure of (2.4) and sansﬁes foreveryp>1,0,y >0
with3p < po

P
EV QN0 ey STHAT EAIY I, 0 SA BHIYIL, ) SA+2712,
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PROOF. By Lemma A.8 and (2.10) we know thatfor p > 1, Yy o = ®p.c — Zpy ¢ satis-
fies

E|&°Yy, e“Lz( 2) +E”“:SYM,SH?{FU(;#)ngyM,e”i(zlz;z])) SAP +27.

By Corollary 2.2 and (2.25) we have fory >0, p>2,0< 8 < ﬁ, 3p < po
4
B Yoo |y + ELE @ur el oy S 1447

Then the tightness of (6@ ¢ (1), E Zp.6(t), E Va6 (t))m.e in (CTV € (p*+2€), C77 (p¥),
CP-« (,04+2" )) follows from compact embedding Lemma A.5 and the moment bound fol-
lows from lower semicontinuity of the norm and (2.25), (2.11) and (2.10) with p = 1. We
may extract a converging subsequence, which is still denoted as (E°Ppy (1), E5Zp £(2),
EYm.e(t))m.s, modify the stochastic basis, and find random variables (®,Z,Y) €
(CTY (p*T%), C77 (p*), CP(p*+*)) such that for p>2,0 < f < ﬁ, 3p < po

E|E5Dy . — d>}|g_y_K(p4+2K)

— 0, E”g’fzm—zug,y(meo, M — 00, — 0,
and

E|&Yy . — Y||€ﬁ_,((p4+2k) —0, M—o00,¢&—0.
Hence, by Lemma A.9, Lemma A.6 and (2.21), (2.7), (2.8) we have for y > 0
3p<po
EHSE(YM,SZM,S) - YZ||€—y(p4+3x)

SJE”E‘?(YM,(EZM,E) - gSYM,SEEZM,e”gfy(pthK) +E”58YM,858ZM,5 - YZ||€7y(p4+3K)

’8p>'3>0

So&) +E|EYme — Y &p pasae) € Zare &,
+EIY 15 pos2e |€°Zate = Z]gppo ey
—0, asM —o00,e—0.

Similarly we have that as M — oo, ¢ — 0, for 9p < pg, y >0

(2.26) E”‘SS(YI%/I,S) - Y2 ||€—V(p8+4k) + E”ga(Yl%/I,s) - Y3 ”g—y(plﬂﬁlc) — 0,
(227) E|E°(Yiy Zue) = Y2Z| ¢y psise, FEIE (Yme: 2y o2) = Y:Z2[ 0, ainey = O,

which implies that

E[£%:0]; i — 0%

C- y(p8+4;<)
(2.28) .
£, . . .
+E|E .CDM’e. —:® ‘Hc—V(p12+6K) —0, M—o00,e—0,
where
®2:y2 Loy z 472

o Yy 4 32y2 4322y + 2%
Since Yy ¢ satisfies equation (2.9), by Corollary 2.3 it is easy to obtainfor 0 <s <z <T

E[Ya.e(0) = Yare()|goaye sy S (L2121 = 5)P,
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which combined with (2.7), (2.8) implies that the tightness of the stochastic process
(@6, EYMer E5Zme) In CrCT272 (p13H4) % CrC72727 (pH€) x CrC77(p").
Since @y . satisfies (2.3), we know £° Dy . satisfies the following equation:

t
E5 Do (1) = E° Y o (0) + /0 (AeE Yy + E5103 ) ds + E Zyg o (0).

For smooth test functions ¢ it is each to check A ¢ — A¢ for ¢ — 0. By the convergence
in (2.28), the nonlinear term EE:QD?VLS: also converges in LP (€2, L’;C*}’(,ol”(’")), which
implies that the limiting process @ satisfies equation (2.4). As @y  is stationary solution to
(2.3), v is an invariant measure to (2.4). [

REMARK 2.6. By asimilar argument as in [23] we could prove that every v is translation
invariant and reflection positive and every v satisfies an integration by parts formula, which
has the same form as in [20], Chapter 12. As & is not a usual function, we will not use the
integration by parts formula for v directly but use the associated one for vy . instead in the
subsequent sections.

3. Integration by parts and graphs. The purpose of this section is to study the pertur-
bative expansion for the k-point correlation S i‘ m.¢ and apply the estimates from the previous
section to obtain a bound on the remainder of this expansion. To this end we actually con-
sider an equivalent expansion using integration by parts (“IBP” for short in the sequel), that
is, Dyson—Schwinger equations. We also use the same notation as in Section 2.

Let C.(x) := %(m — AE)*1 (x) be the Green function of discrete Laplacian A, on A, and
Cu ¢ is the periodic Green function. Choosing ay . = Cp (0) as the Wick constant, we
recall

3 3 2 2
Dyp et =Py e — 3am e P, Pyt =Pl —amee.

Recall the following IBP formula with respect to vy . (see, e.g., [23], Section 6, or [36],
Appendix C) for F(®py ) = f(Py.e(z1), ..., Pme(zn)), n € N, z; € Ay with smooth
f :R" — R having polynomial growth first order derivative

(o) =] (oo Jmeemr= [ Fo (S5 Jouceo

= 2E(F (Pu1,e)(m — Ae) P, (2) + AE(F (Ppr,e): Par,e(2):),

where Vi ¢ (®) = Y, [§9* + (—3an . + m)P* + |V, @|*] and

3.1

SF(Ppre) . 1< < ez) )
———~=1Ilim | F|®D +n—=|)—F(® ,
5q>M,e(Z) Ug% ” M,e 7782 ( M,s)

fore; : Ape = [0,1], e;(2) =1, e;(y) =0 for y # z. We write (3.1) in terms of Green’s
function Cpy ¢:

SF(®r.e)
/AM,g Cielr = Z)E( 5 41.0(2) ) d
(3.2) — E(Opr.0 (1) F(Pyr.0))

—i—A/A Core (5 — DE(F(®p1.0): Par.e(2)%) dz

for any x € Ay . and we use fAM . f(z)dz to denote g2 Yceny. f@-
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3.1. k-Point correlation. Consider the k-point correlation given by

k
Sl)f,M,s(xl’ ooy X)) = E|:]_[ <I>M,e(xi):| e C77¢(0Y),
i=1

for y > 0, some £ > 0 and the polynomial weight p.

In the following, let ® denote the stationary solution to (2.4) with marginal distribution
given by v obtained in Theorem 2.5. We still use (M, €) to denote the subsequence such that
vire o (E9)7! converge to v weakly with £° being the extension operator given in (A.4).
Define

X k
def .

(U5 )% lim E (H58¢M,g(xi)>§0(xlv---»xk)l_[dxi

(3.3) e R -

= i EESK 1y o 0),
e—)O,IAI/IIl—>oo< k=A,M.e (P)
for ¢ € S(R*), where we use the Fubini Theorem in the second equality. Recall £ © is intro-
duced in (A.5) in the Appendix to extend functions on A’; and by (A.6) this coincides with
the one given in (1.4). By Theorem 2.5 and Lemmas A.1, A.8 we know
(3.4) lim &S, . =S inC77(ot),
M—00,6—0 v

for y > 0, some n > 0 and the polynomial weight p.

In the following we expand S’A‘, m. by applying (3.2) with suitable choices of test func-
tions F. We introduce the following shorthand notation:

(3.5) L)%

| Cuew=nrmay.
Am,e

Before the proof, let us start by an example on how the iteration of this formula gives the
desired expansion for S . ¢(xo — yo) = S’{’M’g(xo — yo) with k =2, x0, yo € Apr,¢. We first
describe the initial steps of this iteration:

(1) Taking F(Ppr.¢) = Pas.e(yo) in (3.2) with x = xp, we have

(3.6) Cat,e (X0 — 0) = S, w1, (X0 — Y0) + AE(® 1, (50)Ze (:07 .2) (x0)).-

This gives us the leading order expansion of the form Sy y . = Cpy e + O(X) where O(X)
refers to the last term and we will prove in Proposition 3.10 below that the C~7-¢(p*)-norm
of this term is bounded by A(1 4 A!6) for y > 0, some £ > 0 and the polynomial weight p in
(2.20).

(2) We can further expand the last term of (3.6): taking F (D) = AIg(:QDi,Ls:)(xo) in
(3.2)

3 /A Cot.e (V0 — 2)Cit.e(x0 — DE(:®yr. (2)%:) dz
M,e

3.7) = AE(P 1. (0)Ze (103 ) (x0))

+A2E(Z (103 ) (60) Ze (-3 02) (30))-

Substituting this into (3.6) we see that in order to get the expansion up to the next order, we
need to apply IBP again to the LHS in (3.7). Choose F (P ) = ®Pup ¢ (x). The LHS of (3.2)
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only gives a Wick constant which can be absorbed into the RHS, so we get
(3.8) 0=E(:03 . (1):) + AE(® 1,6 () Ze ;D3 1) (x)),

which implies that
3 fA Cat.e (00 — 2)Ciat.e (60 — DE(:B 1o (2)%:) dz
M,e

= —3k2/A Ct,e (00 — 2)Cr.e(x0 — DE(Ppr,6 ()T (93 ,) (2)) dz.

Therefore we have
Sx,M,e (X0 — Yo)
(3.9) = Ci1.¢(x0 — y0) + A’ E(Ze (@3 1) (x0)Ze (: @3 1) (30))
+32 [ | Cure00 = D550 — DB (DT (9},)(2) .

This gives us the next order expansion Sy y . = Cpy e + 0 (22), that is, the order A term is
zero (see Proposition 3.10 below for the control of the term containing @y ).

REMARK 3.1. We will iteratively apply IBP as above to obtain higher order expansions.
Remark that alternatively, if we replace all the &y . in (3.9) by the Gaussian field Zy; ¢,
using

E(Zm.c (D)L (:Zy :(2))) =0,

and pretending that the error of this replacement is order O(A%), then we can write
Si.m.e (X0 — yo) as

Cim,e(x0 — y0) + A2 E(Z, (:Z3 1) (x0)Ze (:Z37 1) (00)) + O (1Y)
(3.10) = CM,s(XO - Y0)

+67 [ Cat.e (50 — W)Ciar e (0 — 2)Car.e(z — )P dzdw + O(A3),
AM,EXAM,e
This is the expansion at one more order.

REMARK 3.2. The procedure illustrated above for 2-point correlation also applies to
k-point correlations for general k. For example, taking F(®ys ) = ]_[i-‘:2 Dy ¢ (x;) we have

k
Y Care et — xSy 7 6 (K20 oo X1 Xt X%
=2

(3.11) ’

k
= S])S,M,s(xl’ ey Xk) —I-)\.E(l_[ CDM,E(X[)Ig(ZCDi,[’gi)(Xl)) dz.
i=2

Graphic notation. To iterate the above procedure in a more systematic way, it will be
convenient to introduce some graphic notation. We denote Cy . by a line, and @y . by a
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tiny wavy line. Then one can write the computation (3.6)—(3.10) above graphically as

S S
R\ W
O N st v>\/
Y, .

— — +6)2 +0(\%)

REMARK 3.3. A very helpful intuition is that at each step of IBP, we simply pick up a
point which has a wavy line (which corresponds to x in (3.2)), and then connect it to the other
existing points with a wavy line (LHS of (3.2)), and also connect it to a new point with 3 new
wavy lines (namely create a new factor Z, (:CDi,L ¢+) corresponding to the last term of (3.2)).

For instance, (3.11) amounts to picking up the point x1, or graphically:

T1e [ T1e ) T1e . I e [ X e .

~,
(3.13) Siare= = + ‘ + \ -

We also find that for E[:@%,[’s(x):], (3.8) holds and for E[:q)i,[’g(x):] we use (3.2) with
F(®uy,)= :@%,,78(x): to have

0=E[:0}, . (x):] + AE[:®7, ,(x): T (:®3; 1) (0)].

Then there is no need to connect x to itself.

In general, given a graph G, we write G = (Vg, Eg) or simply G = (V, E) where V is
the set of vertices and E is the set of edges. We denote by | V|, | E| the cardinalities of these
sets, namely the number of vertices and edges. Here for any two distinct vertices u, v € V,
we allow multiple edges between u and v (namely we allow “multigraphs” in the language
of graph theory). However, we will assume throughout the paper that our graphs do not have
self-loops, that is, there is not any edge of the form {u, u} foru e V.

DEFINITION 3.4. Foreach £ > 0, we define ’H'g to be the set of all the graphs G = (V, E)
such that |V | = € + k which has k “special points” {u),,m =1,...,k} in V with deg(u},) €
{0, 1}, and such that deg(v) € {1, 2, 3, 4} forevery v e V\{u},,m =1, ..., k}. We then define
H = U(ZO le

We then define g§ to be the set of all the graphs G = (V, E) € ’ng such that deg(v) =4
for every v e V\{u),,m =1,...,k} and deg(u),)) =1 form =1, ..., k. We then write G :=
Ueso géf. Clearly, for G € ’H’g if we write

ne(G):=4L+k— ) deg(v),
veV
then G ={G e H:ne(G)=0} CH.
For any such graph we will write Vg ={u¥,m=1,...,k}and Vg = V(;\Vg.

m>
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Remark that the graphs in (3.12) are all elements of #, where those without any tiny wavy
line are elements of G.

We define a mapping from ’ng to the set of all functions in {x,x },/;:1,
(V,E)eHE to
(3.14)

oGt = [ TT Curetrnn)

{u,vieEg

which maps G =

X B TT @m0 T] oy (509295 ) T e,

ut, eV zeVd zeV2

where x;,, = x,x . In particular when G € g§ , I only depends on Cyy ¢, and not on @y .
(which is then the usual convention for “Feynman diagrams” in physics).

We will sometimes say that G is the graph associated with the function I. More generally
when a function F is a linear combination of functions of I (G € H') for a finite collection
of graphs H' C H we say that the graphs in H’ are the graphs associated with the function F.
Whenever it is clear from the context we will sometimes use the same notation (such as x) to
denote both a vertex of a graph and the point in R? that is parametrized by x.

LEMMA 3.5. Forany k> 1 and N > —1, we have the following representation for the
k-point correlation:

k k N+1
(3.15) SyMe= Z FnMg ALY

where the graphs associated with F), k M. belong to Q and the graphs associated with
R§v+1,M,e belong to HN+1' The functions F M. and RNJrl M. are independent of 1.

We remark that in the lemma, when N = —1, in which case the “empty” sum in (3.15)
is understood as 0 by standard convention, (3.15) trivially holds which states that S]f, Me =
Rg, M. Where Rg, m.e can be indeed associated with a graph in HE, that is, the graph with
only k vertices and no edge. We also note that as an example the third line of (3.12) shows
that (3.15) holds for k =2 and N =1, where Fy pr = Cpr.e and Fy a1 =0.

PROOF OF LEMMA 3.5. In the proof we omit M, ¢ for notational simplicity. By the
® — — O symmetry, S]x(, m.e = 0 if k is odd, so nothing needs to be proven. For k € 2N, we

will prove by induction in N that the lemma holds with lev 41 having the following form:

(3.16) Ry, = > rele
Ge%’,‘v +1
ne(G)el0,m]N2Z
for some m € 2Z which may depend on N, and some coefficients rg € R.
As remarked above, the lemma holds with N = —1, with R’é = Slx{ = I, where G =
(V,E)e 7-[16 with V consisting of the k special points only and E being empty.
Assume that for a fixed integer N > 0 we have already shown that
N=14n
k k4N pk k
(3.17) Sy=>_ FFn + AN RE R}, = > rclg

n=0 """ GeHl,
ne(G)el0,m]N2Z
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we then prove that the same holds with N replaced by N + 1, with updated values of m and

rG.
To this end we use IBP to decrease the value of n¢(G) for the graphs G € 7—[1]‘\, above, so

that we are only left with graphs in g’;] (i.e., ngp = 0), at the cost of producing other graphs in
7—[’1‘\, 1 Which however are multiplied by the parameter A and which will be defined as R’I‘V e

More precisely we claim that for each G € ’H’,‘V such that ng(G) = m, the term I in (3.17)
can be written as

(3.18) I = > agle +x Y belgr
G'eHK .no(GH=m—2 GeMk |,

for some ag’, bgr € R.
Assuming (3.18), we plug all these I with n¢(G) = m into (3.17), which allows us to
write

(3.19) Ry = > fele +x Y. Felg
GeH GeHh
ne(G)el0,m—21N27Z
for some coefficients rg € R. We then iterate this argument and plug these into (3.19) to ob-
tain (3.19) with an even lower value of m (and new coefficients 7 € R). After m /2 iterations,
we get

(3.20) Ry= > rele +2 > rGlg
Gegk Gerk,
for some r’G. We then see that the lemma holds for N with F1, ..., Fy_ remaining the same,
Fy=N!Y rglg and Ry = > rilg.
Gegk GeHh

Since all the graphs in the last sum are finite graphs, R’,‘v 1 has the form (3.16) for some m.
It remains to prove (3.18), for which it will be helpful to recall the intuition explained in
Remark 3.3.
Fixing G, we can assume that ne(G) > 2 (otherwise if ng(G) = 0 there is nothing
to prove). We then know that there is a vertex x € VG0 with deg(x) <4 or x € Vg with
deg(x) = 0. Fix any such vertex x. Applying (3.2) with x therein being this vertex x, we have

321 Ig= ( Z (1-— deg(z))IG“) + ( Z (4- deg(z))IG”) — Mg+,

z€ Vg zZ€ V((;)
degz=0,z#x degz<4,7#x

where the graph G is defined by “adding a new vertex z:
VG;;ZZVGU{z}, EG;&:EGU{{x,z}}, (z¢ Vi)
and the graph G, is defined by “connecting x and some z € V; by a new edge”
Ve, = Ve, Eg- =EgU{{x,z}}, (zeVop).

This is precisely in the form (3.18), since ne(Gy,) =ne(G) —2. U

We remark that from the above proof, it is clear that all the graphs associated with F,f’ Me
and Rj‘\, +1.m. are obtained by the procedure described below (3.21), starting from the “initial
graph” with |V| =k and |E| = 0. For convenience of estimating the graphs later, we color
the edges of these graphs as follows. In the above proof, when we use (3.21) each time,
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e we use the red color for the new line {x, z} appearing in sz;

o we use the green color for the new line {x, z} appearing in G .

REMARK 3.6. Just as an example for (3.21) in the above proof: if G is the last graph in
(3.13), then x can be any point except for the upper-left one. Taking for instance x to be the
upper-right point, then G, will be the following graphs:

X .\./o €T X1 o\/o €T I o\. o
+ .
and G7, is then
T e o T
\. ./

Note that we also color the edge connected to x| by red because of the way it arises in (3.13).

The reason for coloring the edges is that we will reduce graphs in ”H’,‘v to trees by “cutting
out” the green lines.

LEMMA 3.7. For each graph G associated with F,IZC’M8 or R5€V+1,M,8 in Lemma 3.5,
denote by G the subgraph formed by all its red lines.

Then, G has exactly k connected components; each connected component is a rooted tree,
and has exactly one vertex in Vg which is regarded as the root of the tree.*

PROOF. This is obvious by construction. Indeed, for the initial case where | V| = k and
|Eg| = 0, we have that G is just k trivial trees. Assuming that we already know that a graph
G satisfies the property in the lemma, then, when a new vertex z is added which creates a
new red edge {x, z} as in (3.21), it simply adds one more edge to one of the k red trees. (See
Figure 1 for an illustration.) [J

uis 1

o,
./\.
FI1G. 1. An illustration of trees formed by red lines in the case of 2-point correlation. Here MT, uj € Vg and all

other vertices are in Vg. One of the two trees, that is, the tree which only contains one single vertex v, is trivial.

4Recall that in graph theory, a tree is a graph without any cycle, and a rooted tree is a tree in which one vertex is
designated to be the root. In particular a graph consisting of only a single vertex and no edge is trivially a rooted
tree.
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LEMMA 3.8. For the polynomial weight p in (2.20), it holds that for vy > 0 and some
L>0andn <N +1

lim  EFF, . =FF inC7(p"),

M—00,6—0

and

. e pk — pvk vt
lim &R, =Ry inC77(p),
M—00,6—0

with E; being the extension opeartor defined in (A.5). Here F,f can be written as integrals of
the Green function C of %(m — A) and R;l”k only depends on C, ®. The associated graph of
F,’f is the same as F,]f, m.e With Cuy ¢ in (3.14) replaced by the Green function C and the sum
on Ay ¢ replaced by the integral on R.

The proof of Lemma 3.8 is postponed to Section 4.2. In the proof we could also give the
explicit formula of R”. Formally the associated graph of R’ is the same as R,y with
Cum e and @y . in (3.14) replaced by the Green function C of %(m — A) and &, respectively
and the sum on Ay . replaced by the integral on R.

The following gives the main result of this section.

THEOREM 3.9. [t holds that
k k
(3.22) % Z F +ANFIRYE
n= 0

with F RN+1 given in Lemma 3.8. This equality holds in C™Y (p%) for y > 0, some £ > 0
and polynomial weight p in (2.20).

PROOF. By the definition of S} in (3.3), (3.4), (3.15) we have

vk _ : e ok
S 0= lim &8
e—>0,M—o0

£—0, M—>oo e—0,M—o0

n

ul k
_ N+1 pv,
= Z + AR

where we use Lemmas 3.8 to obtain the last equality. [
Now to prove (1.5), we only need to show the following.

PROPOSITION 3.10. For the polynomial weight p in (2.20) and n < N + 1, it holds that
fory >0 and some £ >0

”Rv ”C ot S <1 +A4k+12"

PROOF. The result follows from Lemma 4.2 below and Lemma 3.8. [
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4. Proof of results in Section 3.

4.1. Uniform bound on the remainder Ry. In this section we give uniform estimates for
I; defined in (3.14) with G € H. For later use we construct the following random variables

such that {Zz(\il), cJieN are 1.i.d. random variables and each Zj(‘fl)’ . 1s an independent copy of

Z .. We introduce D; as follows: let Dy def {1} and

D ¥ oy, 2, i €N},
def ; ; N .,
D, = {:CDM,EZI(Q)’S:, :@12‘,,’8:, :Z&),SZZ(V’[?S:, i,j NI # j},

4.1)
def j j i i i k
Dy = (103, Z4) @3 Py e 2y 22 280 2
i,j,keN,i#j#k},
where :QD’M’S: are defined in (2.24) and for i, j,k e N, i £ j #k

N def . ) N def (i .
.2 (@) .def 22 () . (i) -(j)  def @ ()
'CDM,SZM,g' = 'q)M,s'ZM,s’ 'cDMﬁZM,sZM,s' - cDM,SzM,eZM,s’

) F() k) def () () (k)
'ZM,{:‘ZM,SZM,S' - ZM,EZM,SZM,S'
By probabilistic calculation we have that for x, > 0 and p > 1
@) p 7O Z0) P 7O Z) k) P
(4.2) E”thil,s“C—%@(pK) +E”‘ZAll,sZM,a‘”C—%e(pK) +E”‘ZAILSZM,SZM,S‘”C—Vqs(pK) 5 1,

where i # j # k and the proportional constant is independent of ¢, M and there exist random
variables Z(®,: 20 zW. .zO 7D 7® e LP(Q, CrC~Y (p¥)) such that
() i) || P 7D ) L @) 7 ()P
E|&zy,), — Z(Z)HcTc—%f(pK) +E|E%:Z), Zy o — .z<z>z(1>.HCTC_y,s(pK)
@) S LK) S i) 7 (k). || P
+E|E:Zy) 231 Zy et =20 ZDV 2O E ey = O asE— 0, M — o0,

(cf. [23, 34, 39]). By direct calculation we have

(4.3) Cue(x =) =E[Zm,e(X) Zum,e(9)].

COROLLARY 4.1. For the polynomial weight p and pg in (2.20), it holds for any f; € D;,
1 <p<po/9,y >0 that

p p p 12p
E” fl ”C—y.a(pS) + E” f2 ||C—y,8(p9) + E||f3 ||C—y,8(p13) rg 1 + A ’
with the proportional constant independent of M, €.
PROOF. Similar as before we omit the supscript M in the proof for notational simplicity.

By Corollary 2.3 the desired estimate holds for f; = :®':. For fi= S), fr= Zéi)Zéj) and
fr= Zé’)zéf )Zék), i # j # k, the result follows from (4.2). For other cases we write

0,20 1,20 412,20
0,207 =Y, 2070 4.7, 2070,
:CI)?ZS); = Yszzg) + 2Y€:Z&‘Z§i): + :ZgZéi):,
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where 3252 §"): = :Z?: éi) and by probabilisitc calculation for y,x >0, p > 1
72 7(i).
E[:Z2Z0: ¢y S 1.
By (4.2), the same calcu}ation in Corqllary 2.3 and Lemma A.6, the desired estimates also
hold for the terms :CIDEZS):, D, Zél)Zéj ): and :<I>g él):, which implies the result. [

To state the following lemma for G € ‘H with I in (3.14), we extend it as periodic func-
tions on Ag.

LEMMA 4.2. Foreach G € 7—[’; n < N + 1, that appears in Lemma 3.5, letting 1 be the
function introduced in (3.14) and p be polynomial weight as in (2.20) it holds that for y > 0
and some £ > 0

4.4) ”&flG HC*l’(p[) S+ )“4k+12n’

where the proportional constant is independent of ¢, M and & is the extension operator
introduced in (A.5) in the Appendix.

PROOF. In the proof we use p’ to denote weight and ¢ may change from line to line. We
also abuse the notation of p for the weight in different spatial dimensions. By Lemma 3.7 we
have G which is a union of k rooted trees, formed by the red edges in G.

Step 1. Reduction to trees.

It will turn out that trees are easier to estimate than general graphs. To reduce our analysis
for I to the case of trees, we proceed as follows.

Recall the definition (3.14) for I. For each of the green lines {u, v} € Eg, we use (4.3)

to replace each Cys ¢ (x,, x,) in (3.14) by E[Z](‘f,)ﬁ(xu)Z[(&)’e(xv)] with {Zl(lil),s}i given at the
beginning of this section. Each Cy; - (x,, x,) corresponds to different Z](lil), .- This can be done

for all the green lines since our graph is finite. The resulting function is the same as Is.
Note that for periodic functions f on Ag, Z.(f) introduced in (3.5) could be written as

7.(f) =/A Celx — y) £ () dy.

Since G is a disjoint union of £ trees (by Lemma 3.7), that is, G= Ule T;, where each T;
is a tree, we know that I is the expectation of a product of k functions, and each of these &
functions have the following form:

Frow)=| ] CeCru.xv)
{u,v}€Er
4.5)
x(ﬁ(xu*)l—degf(” I fv<xv)g5<xv>) M do
veVr\{u*} veVr\{u*}

where f1 € Dy, f, € U?:O D;, gvT =1 and deg; (v) denotes the degree of v in the graph T.
Here and below we just write T for 7; to simplify the notation, and we have introduced the
function gUT for the purpose of induction later.

For instance, the graph in Figure 1 then reduces to the one shown in Figure 2 where each
tiny green wavy line denotes a factor of Z](‘ﬁ[), o

We first consider the degenerate case separately where deg(u*) = 0, namely Fr is simply
Jf1(xu*) with f1 € D1. We use (2.25) and (4.2) and easily find for y > 0 and 3p < pg with pg
in (2.20)

(4.6) ElZuyeplfoye +E| @00y ST+
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FI1G. 2. An illustration for reducing graphs to trees, and inductive integrations.

In the following we only need to consider the case that deg(u™) = 1 that is, nontrivial trees.
We claim that for y > 0 and £ large enough,

4.7) IFrllcrepry S TT N1follcreps),

veVr

with f, € U?:o D; defined in (4.1). By the reduction we have for y > 0

k
”IG”C;%E(A{;,,OK) 5 E l_[ ”FTI ||C—y.£(p[)
(4.8) =l

1 1
S I EIFRIG vee)® TT EIFGIE05)F
deg(u)=1 deg(u})=0

where CS_Y’S(A’;, pz) is the Holder space for each variable on A’g introduced in (A.2) in the
Appendix. By the claim (4.7) and Corollary 4.1, we deduce that for deg(u}) =1, y >0

(4.9) (E||Fr, YR < 1412

k
||C27y,s(pé)
where n; is given by the number of vertices in Vj for the tree 7; and Zle n; <n and we use
9kn; <9k(N + 1) < pg in (2.20). For the case that deg(u;) = 0, by (4.6),

(4.10) (BIFE e s) S T422

As aresult, (4.4) follows from Lemma A.8, Lemma A.1 and arbitrary y. It remains to prove
4.7).

Step 2. Estimate of each tree.

Fixing a rooted tree T as above, we will integrate the variables in Fr in (4.5) from the
leaves® of the tree T and estimate the effect of the integrations. More precisely, we claim
that for every subtree T of T which contains the root u*, (4.5) still holds with 7' and g7 on
the RHS replaced by T and g’ , where the functions g (which depend on 7') are such that
I8 lls.e ey is bounded by [Tz, I fillc-re(p13), fj € \U;_o Di for some index set I, C N and
s>y >0,n>0.

We prove by induction downwards on the value of |Vz|. We already have that (4.5) holds
for T = T where g = 1 trivially satisfies the claimed bound.

SRecall that in graph theory a leaf of a rooted tree is a vertex of degree 1 and is not the root. Any nontrivial
rooted tree must have at least one leaf.
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Assume that (4.5) holds with F7(x,+) on the LHS, and the RHS written as the integral
in terms of a subtree T. Let v be a leaf of T. Then there is a unique u € V; such that

e déf{ﬁ, v} € E;. We then have

Fr(x,) = [T Cuwxy) ] (el ()
{u,v}eEz\{e} veVi\{u*,v}
4.11)

x ( [ cetsa ) (fotuorg] (xa))dxﬁ) M do

veVi\{u*,5)

and we now estimate the integration over v in the parenthesis, which will imply that (4.5)
holds for the subtree 7’ = (V;\{v}, E7\{e}) with gﬁT (x;;) redefined as

@.12) o (va) = ( [ et wo)(feearg] <xa>)dxa)g§ (x2)

and f, g, for v # u left unchanged. (See Figure 2 for an illustration.)
The integration over v in the parenthesis is in one of the following forms:

(4.13) Ze(8)(xa), Ze(f3) (X)), Ze(f28) (xa), e (f18) (xa),
with f; € D;. By (A.7) and Lemma A.6, we have thatfor 1 > s > y > 0,

HIS €3] H C2-7:£(pt) 5 llg ||cs.8(pl),

1Ze (f3) ]| co-ree 13y S N3l vt (135
4.14) £ C2—7:£(pl3) (")

|Ze (8£2) [ ca-re pes13) S Ngllcseomll follcree 13

|Ze (8D c2-r.e pes13) S Mgl cse(om | fillgree (o13)-

By the inductive assumption on g, we have that the left-hand sides are bounded by

l_[ I f] ||C*Vfg(,o[') I fo ”Cﬂ/,s(pm),

Jelg

with f; € U?:o D;. This implies that (4.5) holds for the smaller subtree 7', namely the num-
ber of vertices decreases by one.

By inductively decreasing the value of [V;|, we know that (4.5) holds for the subtree T
which only has 2 vertices including u*. Now Fr is simply equal to one of the cases in (4.13),
so we can just bound F7 by (4.14). On the other hand, integration over one vertices counts
for at most one || fi ||¢-v.(,13), which gives (4.7). [

4.2. Convergence of F,]l‘ M. and Rﬁ .- Inthis section we give the proof of Lemma 3.8,
that is, the discrete integral converges to the corresponding continuous one. By the uniform
bound.in Section 4.1 we alr.ead'y knpw that eagh ||S,fF,f’M’5 llc-v(pt) and ||515R£,M,a lc—v(pt)
are uniformly bounded, which implies there exists a convergent subsequence. Now, we want
to give the explicit formula of the limit.

PROOF OF LEMMA 3.8.  Since we consider the limits of £ F:f,M,a and & R,’;M,E, which
only depend on the law of @7 . and Zjs ., we can assume the setting as in the proof of
Theorem 2.5, that is, we fix a stochasitic basis (2, 7, P) and we have random variables
(Pm.e, Zme, Y ,e) and (P, Z, Y) such that the convergence in (2.26)—(2.28) holds. We also
have all the random variables

O O F) D) () LK), ;
{ZM,e’ 'ZM,SZM,s" 'ZM,SZM,SZM,é‘"l ;é] #k}
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and their continuous limit {Z®,: 2Dz :zO7W z &) £ j £k} on the same stochastic
basis, which can be done by the Skorohod theorem. As a result, every element in U?: 1 Di
and their continuous limit can be realized on this stochastic basis. We also view ® s ¢, Y ¢
and Z](‘ﬁ[) . as periodic functions on A..

Combining the proof in Theorem 2.5 and Corollary 4.1 we know that for every element
fi € D;, E? f; converges to the corresponding continuous one in L” (£2; C_.V (p'3)) fory >0,
p > 1 with 9p < pg for pg in (2.20). For example, we consider :<I>/21,L SZ](;]), .- and by similar
calcuation as (2.27) we obtain

2 (@) 27@)||P
E”gS(YM,SZAil,g) - Y Z(l) ”ny(pIS) S 0(8)5
for y > 0, where the proportional constant is independent of M. For other terms in
:CD%VL EZI(;I), .- we have similar convergence. In the following n may change for different con-
vergences.
For each graph we consider each I and as in the proof of Lemma 4.2 we know

k
IG(x1,. ., xx) =E(1‘[ Fn<xi>),
i=1

with Fr, defined in (4.5) and T; being trees and subgraphs for G. By the uniform bounds
obtained in (4.10) and (4.9), we first consider the convergence of £° Fr; in LK(Q,C77(pY))
for each tree 7; and y > 0. For the degenerate case where deg(u*) = 0, that is, Fr, is just
f1(x;) with fi € D1, we have proved the convergence.

In the following we consider the nontrivial case, that is, deg(u*) = 1. The idea is to use
Lemma A.10, Lemma A.9 and uniform estimate in Corollary 4.1 to exchange the extension
operator £° to every leaf in the tree up to an o(e) constant. We consider the subtree 7' of
T; and we want to prove for each subtree 7 as in Step 2 in the proof of Lemma 4.2 and
O<y<s<l1

Be Py )
_ k
@19 [ ] cw-x [ EReEDE ]
{u,v)eE; veVi\{u*) veVi\{ut) C*5(p")
So(e).

We do induction on | V| and we start from the subtree T containing the root 1™ with Vil =2
and by Step 2 in the proof of Lemma 4.2, we have

Fr (xu) = / Co G ) fo (o) g () i,

with f, € U?:O D; and gvf as in the proof of Lemma 4.2. By Lemma A.10 and uniform
bounds of £° Fr, we know that for s > y > 0 and some n > 0

B k
(4.16) E‘ ECFT, (xy») — f C(x,» —xv)gg(fv(xv)gg(xv)) dx, s <o(e).
—S p
Using Lemma A.9 we find
B} k
E‘E“"Fri(xu*) —/C(xu* — x0)(E° fu) () (EF gL ) (xy) dixy s So(e).
5o
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Hence (4.15) holds with T satisfying |V;| = 2. Suppose that (4.15) holds with T satisfying
|V#| < n. Now we consider the subgraph T with |V7| =n + 1. By the Step 2 in the proof of
Lemma 4.2 we could find a v as a leaf of T and a unique u# € V; such that (4.11) holds. We

set gﬁT/ (xz) as in (4.12) and use induction for 7’ = 7_"\{17} to have

E‘ E°Fr, (xu)
T’ k
- [T Cou—x) I ER)@EE ) [] du|
{w.v}eEp\(@) veVz\(u*.i} veVy\(u*.i} 5 (p")

So(e).

For £¢ g;;(x;) we use Lemma A.10 and Lemma A.9 to have
k
E‘ggg; (xa) — E°gp (xu)/C(xu —x3)(E° f5) (x) (E%g )(xf))dxﬁ i) So(e).
~5(p

Hence (4.15) holds for T satisfying |Vz| =n + 1 and for T = T;, which combined with the
convergence of £° f,, implies that

EEeFTi(xu*)—/ [] cou—x) [] A [ dx

‘ k
“4.17) {u.v}€ET, veVr \{u*} veVr, \(u*)

C2=5(pY
So(e),

with f,, =limg_, o £? f,. Here for the second term we abuse the notation fv (xy) which means
a distribution in C™7 (,0 ) and the integral of C(x, — x,) w.r.t. x, means the operator ;(m —
A)~! acts on the corresponding distributions f,. Now we obtain the convergence of each F: T
and give the explicit formula for the limit F¥ and R

We use G to denote the graph associated with F,f. To write F,f as the integrals of C, that
is,

/( [T ceu-x) IT e,

{u,vi€eEg Vg

which we denote by F,’f, we only need to replace all the correlation of Z) in F,f by C. How-
ever, since Z® is not a usual function, we need more argument to explain this replacement
and it suffices to prove (F,/, k)= (I:“ k @) with 0 < ¢ € S(R?). As Z¥ is not a function, we
first replace each Z® in F! k by Z® x ¢, with {¢.}, being standard mollifiers and we denote
the resulting function by F;" ke . This means we replace each fv in the second term of (4.17)
by f¢, which converges to f, in C77(p*). To compare F¥ k with Fy k& we are in a similar
situation as the convergence of F,’f, M 1O F,f with the sum on A, replaced by the integral on

R?. Then the same argument as reduction to trees and induction on subtrees implies that

(FXe — FX )| -0 ase— 0.

For FX¢ we could replace each E[(Z® % ¢¢) (x)(Z® x ¢,)(y)] by Co(x — y) & (g % C %
©@:)(x — y) by Fubini’s theorem. Now we check that F,,’f ¢ converge to F,’f. For each graph G
associated with F,f we abuse the notation m to denote the Lebesgue measure [ [,cy,, dx,. We
then choose a finite reference measure & which is absolutely continuous w.r.t. m and has the
C associated with the red lines and ¢ as the density. Then it suffices to check that all the green
lines (means C,) are uniform integrable under this finite measure u since C, converges to C
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in measure. To obtain uniform integrability we prove that the integral of the square of all the
green lines w.r.t. u is uniformly bounded, which follows by the same argument as what we
proved in Lemma 4.2 since adding extra Z() to f, at each point will not influence our proof.
Thus

(F&e — FX )| -0 ase—0,
which implies F¥ = ﬁ,’f Now the result follows. [l
We remark that one could also use [26], Theorem A.3, to prove the convergence of F,’f*s
to F,f , though it would require some adaptation since the setting is slightly different, for

example, C would need to be decomposed as a compact supported function plus a smooth
remainder.

5. Short distance behavior of correlations. In this section we use integration by parts
formula and similar estimates to derive the short distance behavior of the 2-point correlation
function and 4-point correlation function.

To compare S(xg — yg) — C(xo — yo) we use integration by parts for the last term of (3.9).
Choosing F (P ) = klg(:CDﬁ,,,gz)(x) in (3.2) we obtain

3% /A Cote(r — 2)2E(: @0 (2)%) dz
M.,e

= AE(P e ()T (93 2 (1)) + AZE((Ze (@3,) (0))).
Substitute this into (3.9) we obtain
St a6 (0 — ¥0)

= Ca,e(x0 — y0) + A E(Ze (@3 ) (0 Ze (@3 .2) (0))

1) +932 [ | Cue0 = 2)Chr,e(t0 = 2)Che e = 20 BBy o (21)) de

— 3)\3‘/1\ CM,g(yO - Z)CM,S(X() — Z)E((Ig(:q)?v[,(g:)(Z))z) dz.

In the following we give the proof of Theorem 1.3. In the proof we view all the functions on
A ¢ as periodic functions on A, and we will use Lemma A.2 to bound each term.

PROOF OF THEOREM 1.3. In the proof we choose pg > 18 for the weight p in (2.20) and
use p to denote the weight and ¢ may change from line to line. We also abuse the notation
of p for different spatial dimensions. We write the last three terms in (5.1) as Z?:l I;, which

are graphically
To o A2 Y0
—3\° / \

To s * Yo N N
(5.2) A2 \ / + 9\ <>

It suffices to calculate the C>~7+¢(p%)-norm for each graph and y > 0. By Corollary 2.3 and
(A.7) we know for y > 0 and some £ > 0

e Yo

2113, -2 24 426
1l ca-v.e a2, pt) S 2 E”'q)M,g'Hc—y,e(pz) SATHAT.
Similarly, by translation invariance,

J(2) ‘EfE(Ig(:CDﬁLE:)(z)z)
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is a constant independent of z, and we can write /3 as —3)»3(CM75 * Cp.¢)(x0 — yo)J. By
Corollary 2.3 and (A.7) we know for y > 0 and some ¢ > 0

1T 1| oo (omy S 14+ 274,
Moreover, by (A.8), Cis.e * Casr.(xo — yo) € C277°¢(A2), which implies
13 ”CZ—%S(Ag’pn) 5 )\-3 + )\27.

For I, we set
def
5 / Cato(z — 22) E(:® 1.0 (22)%) dza,

which is also a constant by translation invariance. Then we could write I as 92(C M. ¥
Cu.e)(xo — yo)J1 and by (A.8) and Corollary 2.3 we have for y >0

12
11 S M e oty SE[:@3 o] o repty S 1+2A
Using (Cpr.¢ * Cpr.¢)(x0 — ¥o) € C>77¢(A2) we deduce
||12||C2 )/S(AZ Z) <)\. +)\.14

Now the first result follows from Lemma A.1 and the fact that we can view S% me—Cumeas
a function of one variable by translation invariance.
For the second result, note that by Lemma A.8 ||E° (S)% me — Cme)llcz-vwa, oty 1S uni-

formly bounded w.r.t. &, M with £ defined for functions on A2 and there exists a sub-
sequence converges, which is still denoted by ¢, M. We would like to prove the limit of

E°(S? 4y . —Cume) given by S;> — C. By Lemma 3.8 we know the limit of &5 (57, , — Cpr.¢)

given by S} 2 _ C. Moreover, by (A.6) we know for ¢ € S(R*) with compact support Fourier
transform

lim  (E5(S7 y 0 — Cue)s @)

e—>0,M—o0

= lim (87, ,—Cue,
e—)O,M—>oo< rM.e M.e (p>8

= lim <528(S)%,Me Cum.e), ) (SUZ_C@

e—>0,M—o0

which by lower semicontinuity of the norm implies
2 27
1807 = Cllcvge oty S SA 0
Since
55(5)2»,M,s - CM,S)(xv y)= EE(S)Z\,M,S - CM,S)(X -,0),

the limit S/‘\)’2 — C also satisfies the same property and can be viewed as a function on R?.
Hence,

157 = Cllga-yga,pry S 27 +47. O

In the following we consider the connected 4-point function and we give the proof of
Theorem 1.5.

PROOF OF THEOREM 1.5. In the proof we omit the subscript M, ¢ and Ay . for nota-
tional simplicity. We also write S(x,y) = S%, M. (X, y). We choose po > 36 for the weight
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p in (2.20) and will use p’ to denote the weight and £ may change from line to line. We
introduce the following notation:

Tfoo & / Ca—yfody, T ™ / Clx—2)CG — 2 f(2)dz,
and

TfGroxt,x0) & / Clx —2)C1 — C (2 — 2) f(2) dz.

The idea of the proof is to use the integration by parts formula for Sf (x1,x2, x3, x4) and
we will find some C(x; —x;), 1, j € {1, 2, 3, 4} appear. However, C is not in the Holder space
C27¢(pt), y > 0. By (3.6) and Theorem 1.3 we find

(5.3) S(x;i —xj) =C(xi — xj) — R(x; — x;),
with R € C277¢(A2, p*). Here by (3.6)
(5.4) R(x;i —x;) = AE(®(x)HZ(:0%:) (x1)).

Hence, we use C(x; — x;) from S(x; — x;) to cancel with the corresponding C(x; — x;) in
the decomposition of Sf.

To be more precise, for St = EH—I?:] ®(x;)] we use integration by parts formula (3.11)
with k =4 to have

S5 (x1, %2, %3, x4) = C(x1 — x2)S(x3 — x4) + C(x1 — x3)S(x2 — x4) + C(x1 — x4)S(x2 — x3)
— AE(® (x2) D (x3) D (x)Z(:D%:) (x1)).
By (5.3) this implies that U* can be written as
(5.5) R(x1 —x2)C(x3 — x4) + R(x1 —x3)C(x2 — x4) + R(x1 — x4)C(x2 — x3)
(5.6) —AE(® ()P (x3) P (1) Z(:0%:) (1)) — U
and by Lemma A.1
U(x1, x2, X3, X4)

= R(x1 —x2)R(x3 —x4) + R(x1 —x3)R(x2 — x4) + R(x1 — x4)R(x2 — x3)

e CT 7 (A, pY).
By Theorem 1.3 we have

1Tl g2r.e s piy S AY+27%

Since by (A.7) Z has smoothing effect, we use IBP for the first term in (5.6) with the isolated
point x4 to have two terms, which by (5.4) cancel with the first two terms in (5.5). As a result,
we obtain that U*# can be written as

(5.7) R(x1 — x4)C (x2 — x3) + A?E(® (x2) D (x3)Z(:0%:) (x1)Z(:D>:) (x4))
(5.8) — 3AE(P (x2) @ (x3) T (:9%:) (x1, x4)) — U.

We further apply IBP for each term in (5.7)—(5.8). For R(x1 — x4)C (x2 — x3) in (5.7) we use
integration by parts (3.7) for R with x4 to have
R(x1 — x4)C(x2 — x3) = 3C (xz — x3)AE(J (:07:) (x1, x4))

(5.9)
—A2C(x — 3)E(Z(: %) (xNZ(:D>:) (x4)),
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where the second line cancels with one term obtained from the second term in (5.7) by IBP.
In fact using IBP for x, the second term in (5.7) could be written as

A2C(xy — x3)E(Z(: D) (x)Z(:9°:) (x4))

(5.10) + 307E (@ (x3) T (:0%:) (x2, x) Z(: D) (x1))
(5.11) + 3A2E(D (x3).T (:0%:) (x1, x2)Z(:D%:) (x4))
(5.12) — VPE(®(3)Z(:9%:) (x)Z(:0%:) (x1)Z(: D) (x4)).

As mentioned above the first term cancels with the second term for R(x; — x4)C (xo — x3).
By using IBP for the isolated point x3 again, the term in (5.12) could be written as

—3E(T(:9%) (x2, x3)Z(:0%:) (x NI (:9%:) (x4))
(5.13) —3VE(Z(:0%:) () T (%) (x1, x3)Z(: D) (x4))
—3VE(Z(:9%) () Z(:9%:) (x1) T (:92:) (x3, x4)),

which share the following same graph:

.\. ./.

and one term like )»“E(]_[?:l T(G:D3)(x)). By (A.7) and Corollary 2.3 we know for y > 0
and 9p < po

(5.14) E|Z(:9%) [ 8o ye () SEPME 0y S T+,
and
(5.15) E[T (%) |gamye ) SEN: @G ey S THAP,

which by Lemma A.1 implies that the CZ_V’S(Ag, p[)—norm for the term in (5.12) is uni-
formly bounded by A3 4+ 1°2 up to a multiplicative constant. Here we abuse the notation of p
for different spatial dimensions.
Now we consider the first term in (5.8) and we apply IBP for the isolated point x, to write
it as
—3AC(x2 — x3)E(T (:0%:) (x1, x4)) — 6LE(® (x3) J1 (P) (x1, X2, x4)
+ 302E (@ (x3)Z(: D) () T (: %) (x1, x4)).

We find that the first term cancels with the first term on the RHS of (5.9). We apply IBP for
the second term for the isolated point x3 and obtain

(5.16)

(5.17) — 6A/C(x1 —2)C(x4 —2)C(xp —2)C(x3 — 2)dz

(5.18) + 6APE(Z(:9%:) (x3) J1 (P) (x1, X2, X4)).

We apply IBP for the terms in (5.10), (5.11) and (5.16) for x3, which have the same graph,
and we obtain three terms (see (5.20) below) similar to (5.18) and the following terms:

IMZE(T (:0%:) (x2, x4) T (:9%:) (x1, x3)) — 3APE(T (:92:) (x2, x)Z(:®°:) (x)Z(:D>:) (x3))
+ OZE(T (:9%:) (x1, x2) T (:92:) (x3, x4))
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—3VE(T(:9%) (x1, x2)Z(:9%:) (x4) L (:0°:) (x3))
+ 9)»2E(j(:<1>2:)(x1,X4)j(:d>2:)(x2, x3))
—3AE(T (:0%) (x1, x)Z(: D) () Z(: ) (x3)),

where they have the following two graphs:

.\. /. .\. ] /.
. /'\. . /'\.

By (5.14) and (5.15) C>~ V¢ (Ag, p%)-norm of all the above terms are uniformly bounded by
A% + 132 up to a multiplicative constant.

Now the only term in U# not in C>77¢(p*) is given by the following terms in (5.17) and
(5.18) and similar terms as (5.18):

(5.19) —6A/C(x1 — 2)C (s — 2)C s — 2)Clxs — 2) dz

(520) 4+ 6AZE(Z(:93:) (x3) J1 (D) (x1, X2, X4)) + OAZE(Z(:>:) (x1) T1 (P) (x2, X3, x4))
+ 6B (Z(:9%:) (x2) J1 (®) (x1, X3, X4)) + OAZE(Z(:%:) (x2) T1 (P) (x1, X2, x3)).

The term in (5.19) belongs to C2~7-¢ (Ag, p%) by (A.9) and Lemma A.1 and could be bounded
by A up to a multiplicative constant. The last four terms have the same graph. We only con-
sider the term in (5.20) and the other terms could be estimated similarly. By (A.9) and Corol-
lary 2.3 we know for y > 0 and 3p < po

E[71(®)[¢ame ity SEIPNGy ey ST+,

which combined with (5.14) and Lemma A.1 implies that the Cz_V*e(Ag, pY)-norm of the
terms in (5.20) are uniformly bounded. Now the first result follows.
Using Lemma A.8 we obtain ||£¢ U,‘l‘,,, ellc2-» w8, o) 18 uniformly bounded w.r.t. &, M with

¢ defined for functions on A%. We define the limit of a subsequence as U; 4, which is also

the limit of £§ U;“/[’ . by similar argument as in the proof of Theorem 1.3. On the other hand,
by (A.9) and Lemmas A.1, A.8,

def
EE T (x1, X2, X3, X4) = 58/ Cume(x1 —2)Cpm,e(x4 —2)Cppe(x2 — 2)Cppe(x3 — 2)dz

AM,e
is uniform bounded in C>~¥ (p%), which implies that there exists a subsequence, still denoted
by e, M, converges. Then by (A.6) for ¢(x1, x2, X3, x4) = ]_[?:1 @i (x;) and ¢; € S(R?) with
Fourier transform compact support, it holds

. & _ . &

M—>1éon,ls—>0<€ 2, ¢> o M—>lcl>on,ls—>0(€4 2, ¢>'

Then by a similar argument as in the proof in Section 4.2 for £5 Jo we replace Cy ¢ (x; — 2)
by E(Z}&)’g(xi)zl(\?’g(z)) for i =2, 3,4 and apply Lemmas A.9 and A.10 to obtain that £; 7>
converges to [ C(x; — z)C (x4 — z2)C(x2 — 7)C(x3 — z) dz when testing positive ¢. The the
lower-semicontinuity of the norm gives the result. [
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APPENDIX: DISCRETE BESOV SPACES

In this section we introduce Besov spaces on the lattice A, = ¢Z¢ where e =27V, N ¢
NU{0}, from [23, 31] and Besov spaces on R4 from [38]. For fe 2Y(A,) and g€ L'(e~1T9)
we define the Fourier and the inverse Fourier transform as

ff(é:) = gd Z f(x)e—Zﬂl§~x’ f—lg(x) :/ g(é)eZHLS-x dg’
xeA e~1Td
for & € e7!T?, x € A,. We use & = 0 to denote the continuous setting with Fs and ]-"Hgdl

being the usual Fourier transform and its inverse on R?. Let (¢ j)j=—1 be a dyadic partition
of unity on R?. We define the dyadic partition of unity for x € e ~'T?:

. 0 (x), J < Jes
(A.-D i) =11— 3" 0;(x), j=je.
j<js

Here jo :=inf{;j : suppg; N d(e~1TY) £ @).
Now we define the Littlewood—Paley blocks for distributions on A, by

A =F e F ),

which leads to the definition of weighted Besov spaces. Let p denote a polynomial weight of
the form p(x) = (1 + |x|®)~%2 for some § > 0. For« € R, p,q €[1,00] and ¢ € [0, 1] we
define the weighted Besov spaces on A, given by the norm

gl ne 1/q
VAT =< > 2AS f||u”<p>> < 00
—l=j<je
Ife=0, B"‘ & (,0) is the classical Besov space B (,o) on R?. Similarly, we extend the def-
inition of Besov space to functions on A’; = 6de, k € N, which is denoted by B“ & (A 0).

Whenever there is no confusion we also write B‘” (Ak 0) as B‘” (p) for simphc1ty We also

set C% 8(,0) < g, % oo(p) and H**(p) def 32 > ~(p). We also define the Besov—Holder space

w.r.t. each component in A’g for k € N: for f: A’g - R, axelR,

k
def kg
(A.2) Ifllcee Ak, py = sup 20 Limt i (l_[ Aj'i,xl)f < 00.
—1<ji<Je i—1 L% (p)
Here we write x = (x1,...,xx) € Alg and Ai.l_ x; means the Littlewood—Paley blocks for the

ith component x; € A.. If e =0, C*(R*?, p) is the Besov space w.r.t. each component in R¥.
The duality on A, is given by

(f,2)e el 3 F0g).
xeA;
We also set
(Fre @ Ee? 3 flx— g,
yEA,

For the polynomial weight p, by [23], Lemma A.1, it holds for @ € R, p, g € [1, oc] that
(A.3) ||f||qu(p) = ||f,0||B;’,‘;g,

where the implicit constant is independent of €.
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For a function f on e~ 1T we use Jext to denote its periodic extension to R4,
Extension operator:
We follow [31] to introduce the following extension operator. Recall (p;f givenin (A.1). We

choose a symmetric function ¥ € C.(R?) satisfying the following property:

® dhezd V(- —k)=1,
e ¥ =1onsuppg; for j < ji,
o (supp ¥ Nsupp(@))ex)\T¢ # @ = j = ji.

Here ((pjl-)ext means periodic extension to R4 of function (pjl. on T¢. More precisely, in [31]
such v 1s called a smear function. It is easy to see that i/ (e-) satisfies the same property on
Ag. Set wf = fﬂgdlw(s-) and define

def
(A4) Ef=Ee! Y wx—yfG), feByip).
YEA,
We also introduce the following extension operators for functions f : A’g — R:
def £
C

(A.5) Ef(xr,... ) = e Y ( w® (x; — y,-))f(yl, )

yieAs, \i=1

i=1,...k
It is easy to see that

(A.6) (€ f g)=(f.w' xg),, f.geL>(A,).

We have the following elementary result for the Besov—Hélder space.

LEMMA A.1. Fore €0, 1), ifa <0, then C%¢(AX, p) c Ck*¢(AK, p); if a > 0, then

k
1f e (ak o) < D I ez ak.p)-
i=1

Here

”f”Cﬁ'f}s(A]é,p) = sup .Hf(xl’ s Xiels s Xitls s 'xk)”C‘)“S(Aeaﬂ(xls-~~sxi71mxi+l ~~~~~ X))
XjE€Ng, jFi

PROOF. Let Aj and A% the Littlewood—Paley blocks in AX and A., respectively. By

JisXi
Littelwood—Paley decomposition we have

k
5 (1T45.0)

i=1

298G ey s Do 2N
__lfljifis,
i=l1,...,

L (p)

SJ 2ozkj Z

Jisi

kj — k ji
<200 Z =iy ||f||C§‘~’~’(A§,p) < ||f||C§”’g(A’g,p)v
JiSi

k
(H Ai-,x,)f

i=1

Loe#(p)

where in the second inequality we use ¢; (&1, ..., &) ]_[i-‘zl @j; (&) # 0 only if j; < j. Here
and in the following we abuse the notation ¢; in different dimensions. Thus the first result
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follows from the definition. In the following we prove the second one. By definition we have

||f||c§l:f(A§,p)

= sup. . sup 21a ” Alg,xif(xl s Xie Ly s Xis ooy XE) HLOO(AE,p(xl,...,x,-,l,~,xi,...,xk))
Xj€he, jF#i 1
= Slllp 210! || A;,x,' f”Loo(Alg,p) 5 Slllp 2la Z” Aixi Aj'f”LOO(A/g”O)
IS
S sup2 Y A% £ oo at ) S Slllp2l“ D27 flleweakp) S IS e (at,pys
I<j ISy

where in the first inequality we used ¢;(&1,...,&)¢i(&) # 0 only if [ < j and in the last
inequality we use o > 0. For the converse part we have

k
5 (IT850 )1

i=1

||f||ca,£(A§,p) = sup 27 ”Aj"fHLOO(AIS‘,p) S quzja Z
J J _'1§ji§j85

i=1,...,

Lo (A, p)

SIPIL

k
(11450 )
i=1

i jivj Leo(Af,p)
k
S Z Z 2% H Ai’,‘,x,‘fHLoovs(Aé,p) S Z ”f”Cing(Aé’p)’
i jinj i=l1

where we used ¢; (&1, ..., &) ]_[f-‘:1 @j.(6i) # 0 only if there exists one j; -~ j in the third
inequality. Thus the second result follows. [

By similar argument as in the proof of [23], Lemma A.16, and [31], Proposition 3.6, we
obtain the following estimate. We recall that we view all the functions on A s . as periodic
functions on A;.

LEMMA A.2. ForaeR, p,ge[l,o0],d=2

(A7) [on = 8™l garze ) S 1S g5 -

;
Moreover, set
Trene = | Cuelr = Che2 = DS
and
T f(x1, %2, x3) = /A | Cure( = 9Cu o2 = DCu el = D ()

Ifa <0,y >0, then for p(x1, x2) = p1(x1)

(A.8) 1T fllcerzve(py S I llces (o)
and for p(x1, x2, x3) = p1(x1)
(A.9) IT1 f lcavzvee (o) S NS llcee (op)-

Here all the proportional constants are independent of € and M.
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PROOF. We only give the proof of (A.8) and (A.7), (A.9) follow similarly. Since Cyps =
Y remzz Ce (- +1), it is easy to see that

/AM’E Crme(x1 —2)Cpe(x2 —2) f(2)dz = fA Ce(x1 —2)Cume(x2 —2) f(2) dz,
with f being the periodic extension from Ay . to A.. By the definition of the Besov space
it is sufficient to prove for —1 < j < j,
(A.10) ”Aj'jf” L (p) S 2y I lcee o) -
We have for &, € ¢~ T?
FITHE ) =FCe(§)FCm,e(MF f(§+n),

which combined with }©_; ;- ¢; = 1 implies that
AT f = F N (g8 6 FCe®) FCor e DF £ + 1)
= > FUSE MFCEFCue(mef & +MFfE +m)

—l=il<je

=Y F U FC®FCure ef (€ + MF £ + 1)

IS)

=Y F @5 E MFCE)FCre () % F ' (0f & + ) F F(E + 1)

IS
def
= Z I % I>.
i
Here we abuse the notation <p§ for different spatial dimensions and in the third equality we

used on the support of <p§ , |€ + 1| <2/. Moreover, by a similar argument as [31], Proposi-
tion 3.6, we can use the smear function ¥ introduced in the definition of extension operator
£¢ and rewrite I as the Fourier transform on R*. More precisely,

(A.11) Iy = Foid (W (&, ) (¢5) oy (€. M FCe(€) FCor,e ().
Here ((pj- )ext Mmeans periodic extension of (pj from ¢ 1 T2 to R? and we extend FC,, FC M.
to R? by the following formula:
1 . 1
2[m + 4(sin (&) + sin?(ewEr))/e2]  2(m +15(§))’

and by the Possion summation formula

FCe(81,8) =

1
(A.12) FCne€) =57 Cel8) Y o5 —n),

neﬁZz
where &g is the Dirac measure at 0. It is easy to see that
-2
L(x1,x2) = A f(x1)e” g =yy,, X1,X2 € Ag.

Thus we use p(x1) < p(y)(1+ |x; — yllﬂ) for some S > 0 to obtain

|A5T fllimey S sup Do 30 [hGn —x1, 32 = x) (L4 Iyt = 1) [[AF £l e -
y1,y2€A515]~ X1€As
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On the other hand since o < 0

YNAT £l oy S 227 e o) S 27N fll o (o).

I<j IS
and
I1(x) =2% V(27 x1, x2),
with
Vj =Tt (¥ (e2E, en)(¢5) o (2 €, ) FCe(278) F Ceomt ().

Now it suffices to prove for N € N

(A.13) (14 x1 )YV (x) S 207200,

Note that by (A.12)

Vi(x1,x2) = Z / Y (278, &n) (%) ey (276, 0) FCo (276) FCo ()™ EX1H12) gty
neqy; L 72

y [31], Lemma 3.5, and using 18(215) = 221152] (¢) and g2/ <1

|08 (Y (6278, &n) (¢5) o (278, 0) FC(278) | S 272 1111,
which combined with

1+ |x1|2)NV~<x>|

Z |/ T (1 — AN (Y (278, en)g (2’5 n)F(Ce(278)) d&|FCe(n),

ne; Zz

implies that

_ i 1
1 2NV )] < 2—21<_ 7> <241
(14 1x119)" V0] S 2 > e

1
neMZ2,|n|§2J

Thus (A.13) and (A.10) holds, which implies (A.8). [

We recall the following results for discrete Besov embedding, duality, interpolation and
all the results hold for ¢ = 0, that is, the continuous setting. The following interpolation
inequality are used frequently, which is an easy consequence of Holder’s inequality and the
corresponding definition (see [23], Lemma A.3, for the proof).

LEMMA A.3. Let p be a polynomial weight and 6 € [0,1]. Let o,a1, 0y € R and
8,681, 62 € R satisfy

8§=061+(1—-0)s, a=~0ua;+ (1 —-0)ay,

and p,q, p1, 91, P2, q2 € [1, 0o] satisfy
1 6 1-6 1 0 1—-6
=—+ .

p o 9 @ @
Then it holds that

(A.14) I gt < 1 Wgore o I W
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LEMMA A.4. Let p be a polynomial weight. Let « € R and p1, q1, p2, q2 € [1, 00] sat-
isfy
l=—+—, l=—+—.
P1 p2 q1 q2
Then it holds that
< o,& —Q,& —
(f 80 S1Fmse, 18l goze (o1
PROOF. See [23], Lemma A.2. O

We recall the following Besov embedding theorems (cf. [31], Lemma 2.22).

LEMMA A.S.
(i) Let 1 <p1 <pr<ocand1<q) <q» <oco,andleta € R, p» < p1. Then Bp!'g, (p1)
is continuously embedded in ngjgz (02) for ag — % <o — % Furthermore, if ar — % <

o] — % and limy | 00 p2(x)/p1(x) = 0, the embedding is compact.
(ii) Let 1 < p <00, & > 0. Then By'{ (p) C L**(p) C By’5(p) and B, (p) C LP**(p) C

By:5o(p).
(iii) Lety €(0,1), p €1, 00]. Then

e < - _
10 g1ye S IVefllgme + £l e

PROOF. See [31], Lemma 2.22, for the proof of (i). (ii) and (iii) follow from [23],
Lemma A.4, Lemma A.5. [

Recall the following result on the bounds for powers of functions (cf. [23], Lemma A.7,
[31], Lemma 4.2).

LEMMA A.6. Leta > 0. Let py, pa be polynomial weights. Then for every 8 > 0 it holds
that

2
“f ” B‘ﬁ*f(plpz) 5 ||f||L2,£(p1)||f||Ha+2ﬂ,£(p2)-
Forpe[l,ool,y <O<awitha+y >0and B > 0 it holds that

178l B2 (o100 S NS N B2e oy 1€l cr e (o)

Now we prove the following Schauder estimate for discrete heat semigroup P/ =
t(Ag—m)
e .

LEMMA A.7. Let p be a polynomial weight and o € R, p € [1, 00], T > 0. Then it holds
that for f € LEBY=2¢(p), g € BE /7% (p)

T"p.p
[ re.ras
0

S ||f|| P pa—2¢
D o, ~ L B, “(p)’
LT By (e) e
and
2 <
H P. g“L’T’Bg;j,(p) ~ ”g”Bﬁ,‘;,z/p’g(p)’

where the proportional constants are independent of T and ¢.
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PROOF. By [23], Lemma A.16, we have that for ¢ > 0

et (2%
||Ajpt€f||m8(p) Se ot m ||A§f”L

P-£(p)’
with the proportional constant independent of ¢ and 7,® which implies that
| et
P
U 199 0
T\ ot P
= 30 f ‘ / A%PE fds dr
; 0 1J/0 LP-¢(p)

. T t p
SZzwp/o (/0 ||A§-Pzg—sf||m€<p)ds> dr
J
_ T t 2j 3
< § " pip / (/ A e d> ¢
N; ([ | ]f||uv(p) §

T t ; p
sy [ [Feee@ima g, a)([Teeea@man) e
- 0 0
J

T T .
ipn—2j(p—1 —c(t—s5)(2% + p
< Zzwpz i )/0 /S e CU=9)2 +m) 44 HAi'fHuw(p) ds
J
@=2jp [T ne £P
a—
ST 2 [TAGf [y ds
J
where we change the order of the integral in the fourth inequality. The first result then follows
from the definition of the Besov space. Similarly we have

T
1P €1 gy = 22 [ 185 el

: _ 2j
sy [T A,

N Z 2P | A% g”LP £(p)"
J

Thus the result follows. [
Now we recall the following property of £ in Besov spaces.

LEMMA A.8. Foranya €R, p,q €[1, o0] the family of extension operators
EF 1By a(p) = By (), & :CTF(p) — C(p),
defined in (A.4) and (A.5) are umformly bounded in ¢.

PROOF. See [31], Lemma 2.24, for the proof of the result for £°. The result for £ follows
from a similar argument. [

6[23], Lemma A.16, only proves the result for p = 1 and the same result also holds for general p € [1, co] by
exactly the same argument
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LEMMA A.9. Forpell,ool,y <0 <awitha+y >0and B > 0 it holds that
|&5(fe) —E° fE%

575 oum S 0@ F gz (o I8l creme -
PROOF. See [31], Lemma4.2. [
We prove the following result by the same argument as in [31], Theorem 5.13.

LEMMA A.10. Assume that
(m—Agug = fe
and p be some polynomial weight. It holds that for « € R and § > 0

|E8ue — (m — A)TIEE f, [FAERTARS &I fellews(o)-

PROOF. Itis easy to see that
(A.15) (m—A)E U =E°(m — Au, =E° fs.
Moreover, by [31], Lemma 3.4, and Lemma A.8, (A.7) we know for any § > 0

[0 — A)E ue — (m — M)E e | cus ) S E%Ue | oragy S 8 el casre )

8
S € ”fs”C“»g(,o)»

which implies the result by (A.15) and the Schauder estimate for (m — AL O
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