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Precise calculations of dynamics in the homogeneous electron gas (jellium model) are of fundamental
importance for design and characterization of new materials. We introduce a diagrammatic Monte Carlo
technique based on algorithmic Matsubara integration that allows us to compute frequency and momentum
resolved finite temperature response directly in the real frequency domain using a series of connected
Feynman diagrams. The data for charge response at moderate electron density are used to extract the
frequency dependence of the exchange-correlation kernel at finite momenta and temperature. These results
are as important for development of the time-dependent density functional theory for materials dynamics as
ground state energies are for the density functional theory.
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Introduction.—To predict functional behavior of new
materials the knowledge of their dynamic response func-
tions at finite temperature is crucial. In this context, the
jellium model plays a special role both as a paradigmatic
system for understanding the physics of the electron liquid
in solids [1-6] as well as being the key element in the
formulation of the time-dependent density functional
theory (TDDFT) [7,8]. The model itself is defined by
the interacting homogeneous electron gas stabilized by the
positive neutralizing background.

Typically, finite-T many-body calculations are per-
formed in the Matsubara representation, i.e., on the
imaginary time or frequency axis [9], and real-frequency
results are recovered only by performing a numerical
analytic continuation (NAC). This poses a major problem
for accurate theoretical descriptions of experimentally
relevant observables because even when the imaginary
axis data are known with very high accuracy, the NAC will
not resolve the fine spectral features at finite frequency or
correctly reproduce complex spectra unless enough known
constrains are imposed in the analysis, which is seldom
possible [10]. Until recently, this infamous problem was
considered unavoidable.

Recent breakthroughs in solving the jellium model by
the diagrammatic Monte Carlo (DiagMC) method in the
Matsubara representation [11,12] and applying the algo-
rithmic Matsubara integration (AMI) to the Hubbard model
[13-15] (see also Refs. [16,17]) paved the road for accurate
studies of finite-T dynamic response in jellium. In this
Letter, we combine these two breakthroughs by developing
the algorithmic Matsubara-diagrammatic Monte Carlo
(ADiagMC) technique to study dynamic properties of
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jellium without employing the NAC. In particular, we
demonstrate that finite-T computations of the momentum
and real frequency resolved dielectric functions and
exchange-correlation kernels are now possible.

In the DiagMC approach for jellium [11,12] all listed
connected diagrams of a given order N are grouped together
with the properly optimized internal integration variables to
suppress variance from sign-canceling contributions. The
ADiagMC technique lists all diagrams of order N, performs
the analytic summation over internal Matsubara frequencies
for every listed diagram [13,14], and stochastically samples
integrals over internal momenta. The DiagMC approach
works directly in the thermodynamic limit [18,19], does not
suffer from the conventional notorious fermionic sign
problem [20], and can be applied to systems with arbitrary
dispersion relations and shapes of the interaction potential
[18,19,21-23]. The ADiagMC technique works in the
same way.

Real frequency technique for jellium.—The Hamiltonian
of the jellium model is defined by

i
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with m the electron mass, p the chemical potential, and e
the electron charge. We use the inverse Fermi momentum,
1=k, and Fermi energy, €; % k?=2m, as units of length
and energy, respectively; the definition of the Coulomb
parameter r; in terms of the particle number density,
p Y% ks =3n?, and Bohr radius, ag % 1=me?, is standard:
4nri=3 % 1=pa;.
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The starting point for all considerations is connected
Feynman diagrams for a system of interacting fermions
written in the momentum-frequency representation. To
account for correlations, an expansion is performed in terms
of renormalized single particle propagators and screened
effective interactions [11,24] and contributions from all
diagrams up to some maximum expansion order N are
computed. In this Letter we focus on the charge response and
compute the polarization function MéQ; Q; Th. The dielec-
tric function, e6Q; Q; Th, is related to M in the standard way,
€% 1- VoM, where V, % 4ne?=Q? is the bare Coulomb
interaction and Q is real frequency. Instead of computing I
in the Matsubara representation and then applying NAC, the
AMI technique [13,14] symbolically generates analytic
expressions for sums over all internal Matsubara frequencies
[ws % 2nTds b 1=2p for fermions and 2nTs for bosons] and
performs the “Wick rotation” of external frequency from the
imaginary to real frequency axis analytically by simply
substituting iQ, with Q p in (for more details see Note Il in
the Supplemental Material [25]). This protocol works at
finite temperature and eliminates all problems associated
with NAC. It utilizes expressions that are analytic functions
of temperature and thus any temperature is potentially
accessible.

The ability to account for the high-order Feynman
diagrams is important for estimating the accuracy of
calculation, and in the Coulomb system this is only possible
by incorporating screening into a new noninteracting action
Sy using shifted and homotopic action tools [24,26]. The
idea is to rewrite the system’s action identically as
S%S, b AS, with AS composed of interactions and the
so-called “counterterms” that partially or completely com-
pensate contributions from diagrams generated by inter-
actions. Our choice is to replace the Coulomb interaction Vg
with the Yukawa one, Y % 4ne?=3q? b k2P, where k is some
screening momentum. To understand how compensation for
an arbitrary k works, consider an effective Coulomb poten-
tial, U % Vy=ltl- VI, and rewrite it identically as U
= Y=41 - YOMN p k?=4ne?p. Thus, if the bare Coulomb
potential V,8qgb is replaced with Y 8qPp, then the diagrammatic
expansion in powers of Y should be augmented with the
“polarization” counterterm k?=4mne?. The value of k can be
optimized order by order for faster convergence [11]. For
dynamic properties one should also pay attention to cau-
sality [27]. In this Letter we chose k % 1 from a broad ex-
tremum of the static charge polarization, Mdq % O;
w % 0; kb, where it remains nearly constant (for more details
see Ref. [11]).

In addition, to ensure that the expansion is performed at
constant electron density p (fixed by the value of the
Coulomb parameter r,) we employ the “chemical poten-
tial” counterterms. Even if the chemical potential is fine-
tuned to reproduce p at the self-consistent Hartree-Fock
level, higher order self-energy corrections would still result
in the density changes. The standard renormalization

scheme is to introduce counterterms based on the chemical
potential shifts &, for proper self-energy diagrams of the
orlgier n such that the series for the Green’s function satisfy
2 . ny % p at each order of expansion.

We expand on top of the self-consistent Hartree-Fock
(HF) solution for the Green’s function: G™* % G;'-
2. %G, where G is the bare Green’s function. This solution is
based on the Fock diagram for the proper self-energy
(Hartree I_(,1iagram is canceled by charge neutrality):
2;0kb %, Y3qbnde 4P, where ndegb = GOk;t % 0P
are finite-temperature Fermi occupation numbers. Note that
G% (w-k¥=2m- 3.8kP b u)™' = dw- b ! has the
same simple pole structure as Gy. By incorporating all
Fock diagrams into G we simplify the series expansion by
omitting all diagrams with Fock type self-energy insertions.

Each diagram for the polarization function N is charac-
terized by three integerspa, b, c defining the order of
expansion N% ab bp [, re a is the number of
independent internal momenta, b is the number of polari-
zation counterterms, and c is the number of self-energy
counterterms (the minimal value of r for the self-energy
counterterm is r % 2 because Fock diagrams are excluded,
for more details see Note I in the Supplemental Material
[25]). In what follows, the “Nth order result” means that all
diagrams up to the Nth order are included in the answer.

In the rest of the Letter we demonstrate how our
technique works for the jellium model and allows us to
produce unique results for dynamic response at finite
temperature. All results in the main text are based on
the N % 3 calculations for the polarization function M with
selected N % 4 and N % 5 calculations used to estimate the
accuracy bounds, see Fig. 5 below (and, also, Note IV in the
Supplemental Material [25]).

Dielectric function.—In Fig. 1 we compare our results
for the dielectric function with the leading-order random
phase approximation (RPA) for the same set of parameters.
The T and n dependent polarization function within the
RPA is given by

z

d3 nNde,,oP — Nde, P
MepadQ; Q; TP % 2 P pbQ P

o2np3Q - €pa P € b in’

o2p

where €, % p?=2m - p is the bare electron dispersion. As
expected, corrections to the RPA grow with the value of r,
and can exceed 20% for some points at rg % 2. Zeros of
Ree at frequencies Q > v Q, where v; is the Fermi
velocity (in our units v¢ % 2), reveal the collective plasmon
mode with dispersion w,,0Q; TP. At momentum Qg the
plasmon branch and the electron-hole (e — h) continuum
merge; the inset in Fig. 1(a) shows two close zeros of Ree
for Q slightly below Q,,,. The value of Q, increases with ry
and can be approximately determined from the condition
w,0Q,P % &8ke b QP where &kp is the quasiparticle
dispersion relation measured from the chemical potential.
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FIG. 1. Real and imaginary parts of the dielectric function as
functions of frequency at different momenta and temperatures for
r« % 1 (a),(b) and rs % 2 (c),(d). Solid curves with symbols:
ADiagMC results. Dotted curves: RPA results for the same
parameter sets including T and n values. Insets in (a) and
(b) present results for larger momentum transfer Q. Insets in
(c) and (d) show the effect of lowering the temperature T. Errors
are within the symbol sizes.

The plasmon dispersion is visualized in Fig. 2 showing
the loss function Ime™? in the 8Q; Qb plane. At moderate
values of r; and small momenta the plasmon spectrum
closely follows the RPA result at the same tempera-
ture starting from the exact hydrodynamic relation,
wz0Q % 0P % Q3 % 4ne’p=m. Deviations become visible
at large momenta where rg % 2 and r, % 3 loss function
maxima are getting visibly lower than the RPA ones.

Broadening of the plasmon dispersion comes from decay
processes into multiple particle-hole pairs. The correspond-
ing lifetime is finite even at T % O [27]. Additional
contribution to broadening in Fig. 2 comes from a finite
value of n in the substitution Q - Q p in that provides
regularization of all poles under the integrals. Ultimately,
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FIG. 2. Loss function Ime™ at T=g¢ % 0.1 forrs % 1 (a), rs %

2 (b), and rs % 3 (c). The plasmon dispersion in RPA is shown by
small black circles. For this data set n % g¢=20.

the final results need to be extrapolated to n % 0, but
calculations with small values of n are progressively
more expensive. A meaningful compromise is to select
n @ minfeg; Tg (see also Note III in the Supplemental
Material [25]). While choosing n @ T can distort the data
significantly, for n % =200 @ T this systematic bias does
not exceed 5% (which is smaller than uncertainty origi-
nating from third-order expansion at ry > 1). Except for
Fig. 2, all data in the main text were computed with
n % €;=200.

To obtain results with desired accuracy one has to account
for high enough diagrammatic orders and the proper balance
is between the systematic errors originating from the series
truncation and statistical errors. Importance of high-order
terms increases with rg; while for ry % 1 calculations up to
the third order are sufficient (by observation that third and
fourth order results are nearly indistinguishable at rg % 2,
see Fig. 3 in the Supplemental Materials), the rg > 1 cases
may require higher order contributions for reaching the
desired accuracy (see Fig. 5 below and Note IV in the
Supplemental Material [25]).

Third-order calculations with n % €;=200 take from a
few days (for dielectric function curves shown in Fig. 1) to
several weeks (for exchange-correlation kernel curves
shown in Fig. 4 below) on a 256-core cluster. Extending
these simulations to the fourth order is estimated to take at
least a factor of ten longer (especially at high frequencies).
An important algorithmic development that may reduce the
computational cost would be to implement the n = 0 limit
analytically [27].

Exchange-correlation kernel.—Within the TDDFT, the
charge response function, xdQ; Q; Tb, is constructed from
the noninteracting response function x s and the exchange-
correlation kernel K, .6Q;Q;Th. Following Ref. [28]),
one has

X% XL = Vo b KiePXes; 53
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FIG. 3. Real (a)and imaginary (b) parts of X as functions of Q at

T=¢g¢ % 0.1 for rg % 2 and momenta Q=kr % 0.20027, 0.50011.
Simulation results are shown with red and blue curves with
symbols. Black dotted curves: n-dependent RPA results for
Q=k¢ % 0.50011 truncated at the figure scale. Errors are within
the symbol sizes.
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FIG. 4. Real (a),(b),(c) and imaginary (d),(e),(f) parts of the
exchange-correlation kernel Ky, in jellium as functions of
frequency at T=g¢ % 0.1, rg % 1, and 2, and several values of
momentum Q.

where in jellium X5 % Mgpp is given by Eq. (2) (at T % 0
it is the Lindhard function [29]). By comparing Eq. (3) with
the definition of x through the exact polarization function,
X % M=e, we arrive at the definition of K, in terms of
polarization functions

KeeOQ; Q; TP % M, 6Q; Q; TP - N718Q; Q; Th: 64P

While x s is always straightforward to calculate, the kernel
K, 1s typically approximated by a certain jellium model
parametrization—its dependence on frequency is perhaps
the most important challenge in the modern theory of the
electron liquid [30]. Because of the NAC problem, conven-
tional quantum Monte Carlo methods cannot address the
dynamics of realistic interacting models. In the absence of
numerical inputs, the existing phenomenological approx-
imations [5,7,8,28,31] were shown to be insufficient in a
number of cases [32]. As a result, the frequency depend-
ence of the kernel remains largely unknown, except for
known zero and infinite frequency limits.

The most prominent feature of the charge response
function is the plasmon resonance, see Fig. 3. Its amplitude
and width are controlled by the plasmon lifetime, which is
finite at 6Q; TP % 60; 0b and increases with Q and T [27]. In
contrast, the plasmon decay into multiple electron-hole
pairs is absent in the RPA and the peak in Xys is a delta
function (regularized in simulations by n # 0). A shift in
the pole position at momentum Q = k=2 (better seen in the
Imy part) reflects deviations in the plasmon dispersion
relation from the RPA prediction (see also Fig. 2).

Our finite-T simulations of the exchange-correlation
kernel K, 8Q=¢g.b are shown in Fig. 4. They are based
on the exact relation (4) and simulated on a relatively sparse
fQ; Qg grid with momenta Q @ ky=2 with the goal of
demonstrating the feasibility of the technique. Proper

Re Ky(0,0)

8 i 1 L L L 1 . . 1
0 0.25 0.5 1/N

FIG. 5. Real parts of the exchange-correlation kernel
K e0Q % 0;Q % 0P at T=e¢ % 0.1 as functions of the inverse
diagrammatic order N for rg% 1 (triangles) and rg % 2

(diamonds). Exponential fits ap be N (black dotted lines)
were used to perform extrapolation towards an infinite diagram-

matic order limit, shown by blue symbols. Red stars: static
ReKy.8Q % 0p from [28] (in our units).

tabulation of the kernel on a dense grid for practical
TDDFT applications goes beyond the scope of present
work (and requires substantial increase in computational
resources).

K, .0Q=¢g. P curves feature two prominent extrema
around QBv Q, which grow in amplitude with Q andr ,
apd have been previously missed by phenomenological
modeling of K,.. They are related to multiple crossings
between the high-order (third order in Fig. 4) and RPA
polarization functions (see also Note V in the Supplemental
Material [25]) determined by properties of the e-h con-
tinuum. Unlike RPA, high-order results include contri-
butions from multiple excitation processes in addition
to renormalization of the single particle dispersion and
Z factor. We note that the imaginary part of K,.6Qbp is
positive at small frequencies and goes negative only beyond
the frequency Q > v;Q, hence K,. is not causal as is
frequently assumed.

The large frequency limit of K,. is known from the
exchange-correlation energies of the model [33], but this
asymptotic regime has not been reached in our simulations
because the difference between the exact and RPA response
functions becomes vanishingly small at high frequency
while both quantities tend to zero, leading to strongly
amplified numerical noise in K,, data, and consequently
large error bars. However, the important low and inter-
mediate frequency parts of the kernel at finite momentum
are not masked by noise. It is also evident that for Q & e;
and Q @ k; these curves are self-similar functions that
depend only on the Q=vQ ratio, i.e., minima and maxima
shift to smaller and smaller frequencies when Q - 0 and
ReK,.0Q; Q % 0b saturates to its finite Q % O limit—at
T % 0 it is determined by the derivatives of the exchange-
correlation energy with respect to density [8,28,33].
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Our data for ReK,.0Q; Q % 0; Tb largely agree with, but
numerically do not precisely match the values presented in
[8,28] on the basis of ground state calculations (after
conversion to the same units). This is mainly the finite
diagrammatic order effect. A few percent contribution to N
from higher order diagrams results in a much larger effect
for the difference M - M, , determining the kernel (see the
Q - 0 limit in Fig. 1). In Fig. 5 we show that results for
ReK,.8Q % 0;Q % 0; TP computed up to fifth order and
extrapolated to an infinite order limit do match static
ground state answers within the error bars.

Conclusions.—By implementing the algorithmic Matsu-
bara integration within the diagrammatic Monte Carlo
approach we formulated a technique for accurate calcu-
lations of dynamic response in the homogeneous electron
gas at finite temperature. It works directly in the real-
frequency domain and eliminates the need for the infamous
numerical analytic continuation—the long-standing
obstacle for the accurate theoretical description of exper-
imentally relevant observables.

We computed the exchange-correlation kernel of the
homogeneous electron gas by a controlled method for the
first time, and revealed unexpected features in its frequency
dependence, which should spark the development of better
kernels for the time-dependent density functional theory
both at zero and finite temperature.
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