Check for
Updates

UniLoc: Unified Fault Localization of Continuous Integration Failures

FOYZUL HASSAN, University of Michigan-Dearborn, USA
NA MENG, Virginia Tech, USA
XIAOYIN WANG, University of Texas at San Antonio, USA

Continuous Integration (CI) practices encourage developers to frequently integrate code into a shared repository. Each
integration is validated by automatic build and testing such that errors are revealed as early as possible. When CI failures or
integration errors are reported, existing techniques are insufficient to automatically locate the root causes for two reasons.
First, a CI failure may be triggered by faults in source code and/or build scripts, while current approaches consider only
source code. Second, a tentative integration can fail because of build failures and/or test failures, while existing tools focus
on test failures only. This paper presents UniLoc, the first unified technique to localize faults in both source code and build
scripts given a CI failure log, without assuming the failure’s location (source code or build scripts) and nature (a test failure or
not). Adopting the information retrieval (IR) strategy, UniLoc locates buggy files by treating source code and build scripts as
documents to search and by considering build logs as search queries. However, instead of naively applying an off-the-shelf IR
technique to these software artifacts, for more accurate fault localization, UniLoc applies various domain-specific heuristics to
optimize the search queries, search space, and ranking formulas. To evaluate UniLoc, we gathered 700 CI failure fixes in 72
open-source projects that are built with Gradle. UniLoc could effectively locate bugs with the average MRR (Mean Reciprocal
Rank) value as 0.49, MAP (Mean Average Precision) value as 0.36, and NDCG (Normalized Discounted Cumulative Gain)
value as 0.54. UniLoc outperformed the state-of-the-art IR-based tool BLUIR and Locus. UniLoc has the potential to help
developers diagnose root causes for CI failures more accurately and efficiently.

CCS Concepts:  Software and its engineering — Software maintenance tools;

Additional Key Words and Phrases: Fault localization, CI failures, information retrieval (IR)

1 INTRODUCTION

As an emerging software engineering practice [18], Continuous Integration (CI) [24] enables developers to identify
integration errors in earlier phases of the software process, significantly reducing project risk and development
cost. Meanwhile, CI poses higher demands for efficient fault localization and program repair techniques to improve
the continuous success of the practice. Specifically, prior work reports that, on average, the Google code repository
receives over 5,500 code commits per day, which makes the Google CI system run over 100 million test cases [65].
When any commit is buggy, the corresponding and follow-up integration trials (“CI trials” for short) will keep
failing until the bug is fixed by another commit. A long-standing CI failure can stop developers from testing
commits effectively [6] and diminish people’s confidence in adopting CI [7]. Existing fault localization (FL)
techniques either rely on bug reports or test failures to locate bugs in source code [21, 33, 79, 84]. However, CI
failures bring new challenges to these techniques.

Authors’ addresses: Foyzul Hassan, University of Michigan-Dearborn, USA, foyzul@umich.edu; Na Meng, Virginia Tech, USA, nm8247@cs.vt.
edu; Xiaoyin Wang, University of Texas at San Antonio, USA, xiaoyin.wang@utsa.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/5-ART $15.00

https://doi.org/10.1145/3593799

ACM Trans. Softw. Eng. Methodol.



2 « Hassan, et al.

Challenge 1: Faulty build scripts. Unlike traditional fault localization scenarios where only source code is
assumed to be buggy, CI failures can also be triggered by build configuration errors and environment changes. In
other words, build scripts can be faulty, but current techniques do not examine these scripts. A recent study [56]
on 1,187 CI failures shows that 11% of failure fixes contain build script revisions only, and 26% of failure fixes
involve revisions to both build scripts and source files. The study indicates that without considering build scripts,
existing techniques are incapable of handling a large portion of CI failures (i.e., 37%).

Challenge 2: Non-Test Failure. A tentative integration may not proceed smoothly due to failures other than
test failures, while existing fault localization techniques mainly consider test failures to locate bugs. Specifically,
Rausch et al. [56] found that among the five major reasons for CI failures, dependency resolution, compilation, and
configuration errors account for 22% of the scenarios, while quality checking errors and test failures separately
take up 13% and 65%. This finding implies that current tools are applicable to at most 65% of CI failures. To
facilitate discussion, we name all failures other than test failures as Non-Test Failure. Existing approaches are
unable to localize bugs for non-test failures.

To overcome the above challenges, we developed a novel approach—UniLoc—to suggest a ranked list of
candidate buggy files given a CI failure log. Unlike existing fault localization techniques, UniLoc takes both source
files and build scripts into consideration, and conducts unified fault localization to diagnose both test failures and
non-test failures. The key insight behind UniLoc is that the CI failure log, the source files and build scripts, and
file changes in commit history can complement and cross validate with each other to reduce additional noises in
this heterogeneous environment. In particular, we adopted the information retrieval (IR) strategy by treating
files as documents (D), and by considering the failed logs (L) as search queries to retrieve documents. Similar to
prior work [58, 73], UniLoc also extracts Abstract Syntax Trees (ASTs) from source files and build files to divide
large documents into smaller ones. However, existing IR-based tools cannot perform unified fault localization for
two reasons:

1) Noisy data in L. Prior IR-based fault localization (IRFL) work uses a given bug report as a whole to retrieve
related source code, assuming that everything mentioned in the report is relevant. However, CI logs are
usually lengthy and contain lots of information irrelevant to any failure. Existing approaches do not refine
L to reduce the noise.

2) Noisy data in D. Prior IRFL work relies on textual relevance to locate bugs given a bug report. However,
textually relevant files may not be involved in a failed CI trial, depending on the build configuration.
Existing tools do not refine D based on the build-target dependencies between modules.

UniLoc solves the above-mentioned issues by (1) optimizing queries to remove noisy information, (2) optimizing
documents to remove files unrelated to a failing build, and (3) tuning candidate ranking to prioritize the most
recently changed files. To optimize queries, the work applies a text diff algorithm between the passed build log
and failed build log to extract failure related text. Even after acquiring the failure-related texts, the query can
still have noises like time and build-process-related information. Such repeated noises are removed through
a similarity based approach. At the same time, search space is optimized by extracting important source code
and build scripts applying AST analysis to them. Such AST analysis for search space optimization includes only
important terms of software entities (e.g., class names, methods names, build dependency names, etc.) instead
of considering full source code and build scripts that may contain noisy terms. Details of AST-Based entity
extraction is discussed in subsubsection 3.2.2. Moreover, static build dependency analysis was applied to rule out
files and project modules that are not associated with the CI failure. Finally, candidate ranking was optimized
based on the heuristics that the recent changes are more likely to be the root cause of the CI failure.

To evaluate UniLoc, we collected 700 real CI failure fixes in 72 GitHub projects from the TravisTorrent
dataset [19]. We used earlier 100 fixes for parameter tuning and the remaining 600 fixes for evaluation.

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures + 3

As with prior work [21, 51, 58, 84], we evaluated UniLoc’s effectiveness by measuring Top-N (Recall at Top N),
MRR (Mean Reciprocal Rank), MAP (Mean Average Precision), and NDCG (Normalized Discounted Cumulative
Gain). Our evaluation shows that UniLoc located buggy files with 65% Top-10, which means that among 65% of
the scenarios, UniLoc successfully included buggy files in the Top-10 recommendations. On average, the MRR,
MAP and NDCG values of UniLoc were 0.49, 0.36 and 0.54, respectively.

This paper is the first work on unified fault localization of both test failures and non-test failures. To compare
UniLoc with existing code-oriented IRFL, we applied widely used IRFL approaches BLUIR [58] and Locus [73] to
the 600 bug fixes. [22, 38]. The MRR, MAP and NDCG values of BLUIiR were 0.29,0.19 and 0.39 respectively, much
lower than those values of UniLoc. For the case of Locus, MRR, MAP and NDCG values are 0.12, 0.09 and 0.22,
respectively, which are also much lower than those values of UniLoc. Such results suggest that existing IR-based
FL techniques can localize CI failures to some extent, but they may not effectively localize CI failures in many
cases and their overall performance is lower than UniLoc. Furthermore, UniLoc optimizes (a) queries, (b) the
search space, and (c) candidate ranking to improve fault localization. To learn how sensitive UniLoc is to each
applied optimization strategy, we evaluated three variants of UniLoc with one strategy removed for each variant.
Our experiment shows that all three strategies are useful, and the optimization of candidate ranking boosts the
effectiveness most significantly.

We summarize the contributions of this paper as follows:

e We developed a unified fault localization approach UniLoc that considers both source code and build scripts
to diagnose CI failures. UniLoc includes novel techniques to extract optimized queries from failed build
logs, to generate optimized document sets from source files and build scripts, and to rank suspicious files
with IR scores and commit history data.

e We constructed a data set of 700 CI failure fixes together with the related failure-inducing commits from
real-world projects in Github. We open-sourced the data and implementation to facilitate future research
in CI failure repair. Our data and program are separately available at https://sites.google.com/view/uniloc
and https://github.com/foyzulhassan/UniLoc.

o We conducted a comprehensive evaluation to evaluate the effectiveness of UniLoc. We explored how UniLoc
works differently from source-code-oriented IR-based fault localization techniques. We also investigated
how different optimization strategies affect the effectiveness of UniLoc.

The organization of the paper is as follows. After describing the background of this work in Section 2, we
introduce UniLoc in Section 3. Section 4 explains evaluation and Section 6 discusses the generalization of our
approach. We expound on the related works and conclusion in Section 7 and Section 8, respectively.

2 BACKGROUND

This section first clarifies terminology (Section 2.1), and then introduces the IR technique we used (Section 2.2).
Finally, it explains the project dependencies manifested by build scripts (Section 2.3).

2.1 Terminology

This paper uses the following terms:

CI trial is the integration process of validating a commit with an automated build and automated tests.

CI log is the log file generated for a CI trial to record any intermediate status as well as the outcome—"“passed”
or “failed”.

Passed log is the log file generated for a successful CI trial.

Failed log is the log file produced for a failed CI trial.

CI failure fix is a program commit whose application updates the CI trial outcome from “failed” to “passed”.

CI failing-inducing commit is a commit that produces a failed CI trial before a CI failure fix is applied.

ACM Trans. Softw. Eng. Methodol.



4 .« Hassan, et al.

include "spock-bom" e
include "spock-core" dependencies {
include "spock-specs" dependencies { testCompile project(":spock-core
include "spock-spring" compile project(":spock-core") ")
include "spock-spring:spring2- . -
test" } }

(a) Script settings.gradle of the whole  (b) Script report.gradle of the spock-  (c) Script specs.gradle of the spock-
project report sub-project specs sub-project

Fig. 1. Three *.gradle files used in spockframework/spock declare sub-projects and specify dependencies between the projects

Query Optimization

Diff(BLs BL;) to Get Cl Noise Removal From
Fail Part Cl Fail Part
Similarity

Ranki

__________________________________ score- gl )
Based File )

ent

Ranking

BLg = Last Successful
Cl Log
BL; = Last Failed CI
Log

Ranked File
List for Cl
Fault
Localization

Search Space Optimization

Establish Dependency Generate AST for
Model for Source and Selected Sources and
Script Selection Build Scripts

Project With
Change History

Fig. 2. UniLoc Architecture

2.2 Information Retrieval (IR)
Given a text query g, an Information Retrieval system searches among the document corpus (D) for relevant
documents. To retrieve documents relevant to g, the IR system computes a similarity score between each document
d € D and g, and ranks documents in descending order of the scores. Below is a frequently used formula for
similarity calculation:

- —

Vq-Va
- —
L Vallval
Vg and V; are term weight vectors of g and d, while Sim(gq, d) is the cosine similarity of the two vectors. In
particular, the term weight values in each vector are determined by term frequency (TF) and inverse document
frequency (IDF). In a typical IRFL approach, source files are treated as documents, while bug reports are used as
queries. Similarity scores are computed to assess how probably a file is buggy.

Sim(q,d) = cos(q,d) = (1)

2.3 Project Dependencies

A build system is an infrastructure to convert source code into artifacts such as modules, libraries, and executable
binaries [47]. A build script specifies how to generate and test artifacts for software projects. In Gradle, a big
project can be divided into several sub-projects. The dependencies between sub-projects are defined in build
scripts, where the overall project is referred to as root. When developers commit program changes, not every
sub-project needs to be rebuilt or retested. Instead, the build system only compiles and tests the sub-projects
being changed and those sub-projects depending on the changed ones.

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures « 5

Figure 1 presents three Gradle scripts defined in the project spockframework/spock. In Figure 1 (a), script
settings.gradle shows that the project includes multiple sub-projects, such as spock-bom and spock-core. In Figure 1
(b), compile/testcompile project(“:spock-core”) means that spock-core is needed for Gradle to compile the owner
sub-project. Figure 1 (c) indicates that spock-core is needed to compile and test spock-specs.

The dependencies between sub-projects can be utilized in UniLoc. For instance, when spock-report does not
compile, only its source code and those sub-projects or libraries on which spock-report transitively depends
should be examined.

3 APPROACH

Figure 2 overviews the design of UniLoc. We envision UniLoc to be used by developers when they notice a failed
log ever since the most recent passed log.

Specifically, UniLoc takes in three inputs: the most recent passed build log BLs, the failed build log BLf
immediately after BL, and the commit history H which includes the most recent passed version V;, the failed
version Vy immediately after Vi, and the failure-inducing single commit (file changes) Cy between the two
versions Vs and V. Prior studies on quality issues of CI process [67, 82] suggested that developers should follow
the process of immediate small integration rather than waiting for large or merged integration to avoid spaghetti
of error during integration. Therefore, we consider that developers are integrating code immediately and Vr is
the commit that introduced the build failure. To suggest a ranked list of potential buggy files, UniLoc consists of
the following four phases:

e Phase 1 compares BLy with BL; to locate failure-relevant description FD and to compose a query g
(Section 3.1).

e Phase 2 retrieves Vy from H and creates project dependency graphs based on build scripts. With the FD
from Phase 1 and recognized dependencies, this phase refines the search scope (Section 3.2).

e Phase 3 compares each document within the scope against q to calculate the similarity score and rank
documents accordingly (Section 3.3).

e Phase 4 retrieves Cy, the failure-inducing commit, and extracts the file-level change information to improve
the ranking formula (Section 3.4).

3.1 Query Optimization

To query for buggy documents with BLr, we decided not to use every word in the log. This is because although
there can be thousands of lines of build information in a failed log, only a very small portion of those lines
are failure-related. Including unrelated information in a query will cause severe noises when we match g with
documents. We extracted the failure-related part from BL¢ by taking two steps: (i) query optimization with text
diff (Section 3.1.1), and (ii) noise removal with text similarity (Section 3.1.2).

3.1.1 Query Optimization with Text Diff. We observed that a failed log could contain duplicated description
with a passed log. Such duplicated fragments are usually less informative than those fragments unique to the
failed log. Inspired by prior work that uses binary file differentiation to locate unreproducible builds [57], we
applied a textual differentiation algorithm—Myers [52]—to BL; and BL to identify any failure-related part in
BL¢. Myers finds the longest common sub-sequence of two given strings. The algorithm is based on the concept
of finding the shortest edit script that can be modeled as a graph search. Myers algorithm is used as a popular
diff utility as a comparison tool that displays line-by-line deletions and insertions for transforming one file
into another. Example 1 shows a passed log (commit:0545247) and a failed log (commit:bf25{df) of the project
BuildCraft/BuildCraft. BLy and BLg denote the CI failed log at version V and the latest successful CI log at
version V before version Vr. The delta between Vs and V¢ can include source files, or build files or both. We only
considered the latest successful version before Vy, as other successful versions may include logs generated by

ACM Trans. Softw. Eng. Methodol.



6 « Hassan,etal.

Example 1 CI Log Diff (BuildCraft/BuildCraft)

CI Log Part for Commit ID: @©545247

Resolving deltas: 13% (69/522)
Resolving deltas: 16% (84/522)

Download http://repol.maven.org/maven2/com/google/collections/google-collections/1.0/google-collections-1.0.jar
:checkstyleMain

BUILD SUCCESSFUL

Done. Your build exited with 0.

CI Log Part for Commit ID: bf25fdf

Resolving deltas: 71% (377/524)
Resolving deltas: 72% (379/524)

Download http://repol.maven.org/maven2/com/google/collections/google-collections/1.0/google-collections-1.0.jar

:checkstyleMain[ant:checkstyle]
/BuildCraft/BuildCraft/common/buildcraft/core/statements/ActionMachineControl.java:16: Wrong order for
’cpw.mods. fml.relauncher.Side’ import.

[ant:checkstyle]l /BuildCraft/BuildCraft/common/buildcraft/core/statements/StatementParameterDirection.java:16:8:
Unused import - buildcraft.api.core.NetworkData.

FAILED

FAILURE: Build failed with an exception.

successfully integrating code segments or build logic that is not part of the failure description and may create
additional noise. In Example 1, after utilizing Myers algorithm, it shows the unique fragments in the passed log
are highlighted with gray, while the unique fragments in the failed log are highlighted with red and
UniLoc can extract these fragments using Myers.

3.1.2  Noise Removal with Text Similarity. With the above-mentioned text diff, we can divide BLy into two parts:
PART;—the part that successfully matches certain segment(s) in BL;, and PART;—the unique part of BLy. Actually,
PART; may still contain segments unrelated to the failure. This is because some program logic changes (e.g.,
adding new tests), environment changes (e.g., removing dependencies on libraries), and random issues (e.g.,
multithreading) can also make BLy look different from previous logs. In Example 1, -colored text block
presents such-an example of noise due to the change in the download process.

Failure-irrelevant lines in PARTf are not responsible for CI failures, and they may be similar to fragments in
PART;. To further remove such failure-irrelevant noise, we conducted line-to-line comparison between PART
and PART; using Myers algorithm [17]. If the similarity between any two lines (I7, l;) is above a threshold Iz,
we consider the lines to match, so lf should be removed from PARTy. Since error-related segments of PARTy
are usually very different from the normal output of PART, this noise removal approach is unlikely to remove
error-related segments. With this step, we can remove the yellow segment in Example 1 while retaining the two
checkstyle errors.

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures « 7

Build Dependency Graph Legend Cl Error Log Part

Commit ID:75e9b4d

A Subproject
Building What went wrong:

Building Execution failed for

S, dependson'S, task ':spock-specs:test'.
Building BuildingThere were

failing tests. See the report at:

S, : spock-core

‘ S, : spock-specs ‘ ‘ S, : spock-report ‘

Fig. 3. Sub-Project Dependency Graph

To decide the optimum value of It, we used 100 CI failure fixes in our dataset (see Section 4.1) as the tuning set.
Note that the 100 CI failures are not used in the evaluation set and they are all chronologically earlier than the CI
failures in the evaluation set. We found 0.9 to be optimal and thus set It = 0.9 by default. Finally, we denote the
refined failure-relevant part with PARTJQ, which is used by UniLoc to compose a query g.

3.2 Search Space Optimization

In addition to optimizing queries, we also optimized the search space for better fault localization. This phase
consists of two steps: i) dependency-based sub-project selection, and ii) AST-based entity name extraction.

3.2.1 Dependency-Based Sub-Project Selection. As described in Section 2.3, Gradle build scripts specify dependen-
cies between sub-projects. We developed a parser to analyze those build scripts and to extract the dependencies.
With the extracted dependencies for each software project, we constructed a build graph B = (S, E), where
S ={s1,...,5,} is the set of sub-projects and E is the set of dependency edges. There is a directed edge from s; to
sj if and only if s; depends on s;. Gradle builds each sub-project s; only after building all the projects on which s;
depends.

To reduce search space, UniLoc finds the mentioned sub-project s; that is closest to the CI failure in PART]Z.
Starting from s;, UniLoc traverses the dependency graph to find all sub-projects on which s; depends. UniLoc
then includes the source files and build scripts of these sub-projects into the search scope, because only these
documents are involved in the CI trial for s; and may be responsible for the failure.

Figure 3 shows part of the dependency graph of spockframework/spock. According to the graph, spock-core
depends on root while being dependent on by spock-specs and spock-report. In this Figure, the CI Error Log Part
shows that the failure occurs in spock-specs. With the project dependencies, UniLoc can skip spock-report when
searching for buggy files because this project has no dependency relationship with spock-specs.

3.2.2 AST-Based Entity Extraction. Prior work [58] shows that IRFL techniques work better, if the search space
includes only names of software entities (e.g., class names, methods names) instead of all source code that contains
noisy details. Although we could adopt this technique [58] for source code, the proper software entities to be
used may be different in the FL scenarios of CI failures and there is no counterpart for build scripts. Therefore,
we developed a unified mechanism on source files and build scripts to identify the top software entities to be
included in the search space.

First, we used UniLoc to generate ASTs for sources files / Gradle build scripts, and to extract AST nodes and
their textual values. Then, for each subject project in our tuning set, we searched for the textual values in its
build scripts and build failure logs. Finally, we counted the frequency when the value of a specific type of AST
node can be found in build failure logs. We consider four (we use four to be consistent with [58]) AST node types
with the highest frequency as top software entities. Note that this is the same tuning set we used for query noise
removal (See Section 3.1.2). In Tables 1 and 2, we show the statistical results for Java source code and Gradle
scripts. The second column shows the number of build failures where at least one AST node of the type has its

ACM Trans. Softw. Eng. Methodol.



8 « Hassan,etal.

Table 1. Top Software Entities Source Code

AST Node Frequency Example
Declaration 100 private long pID;
names
Method names | 99 public ISlot create...)
Class names 84 public class AddSlotFactory
Import items 62 import org.spockframework.runtime

Table 2. Top Software Entities in Build Scripts

AST Node Frequency Example

dependencies {

Dependency 100 compile(’com.google.guava:

items guava:13.0.1°)}

Property defini- | 100 classifier = ’standalone’

tions

Module names | 82 project(’:moco-core’)

Task definitions | 43 task sourcesJar(type: Jar)

textual values appearing in the failed build log. The bold part of the third column shows an exemplar textual
value of the AST node type (the rest part of the column gives some context). As shown in Tables 1 and 2, field
names, method names, class names, and import items are top four software entities in Java source code; dependency
items, property definitions, module names, and task definitions are top four software entities in Grade build scripts.
Therefore, we included only the textual values of these entities in the search space.

3.3 Similarity Score-Based File Ranking

Traditionally, there are two main types of automatic FL techniques: spectrum-based vs. IR-based. Spectrum-based
techniques exploit the execution coverage information of passed and failed tests to rank suspicious files. The
reason why we chose to take an IR-based approach is two-fold. First, faults in a project may exist in source files
of various programming languages and build scripts. Spectrum-based FL techniques must instrument different
language implementations simultaneously to profile executions and analyze test failures. However, we intended
to locate faults in build scripts even though no test failure exists.

Second, the instrumentation by spectrum-based techniques can modify program behaviors, introduce runtime
overhead to program executions, and can make some failures impossible to reproduce (e.g., flaky tests). Without
reproducing those failures, spectrum-based techniques cannot locate any bug.

We reused the implementation in Lucene [3] for the IR technique described in Section 2.2. Given PARTJZ and
the refined search scope, this implementation creates a query vector g and a set of document vectors D. In each
document d € D (i.e., Java file or build script), we conducted a separate search for each type of software entities.
For Java files, we calculated the similarity scores between q and d for the set of entity types includes: field names,
method names, class names, and import items. Then we leveraged the average value between the similarity scores
to compute the overall similarity between g and d:

1
S d) = ———— Si L de 2
core(.d) = eteEm,ZtyTypes im(q, der) )

In Formula (2), if d is a build script, the set of entity types includes: dependency item, property definition, module
name, and task definition. The score is within [0, 1]. The higher score a document has, the higher it is ranked.

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures « 9

3.4 Ranking Adjustment

To further improve file ranking, we leveraged an intuition that the changed files in a failure-inducing commit and
the file names mentioned in PART]Z are more suspicious than other files. If developers noticed a failed version V¢
after the most recent passed version V), we considered all changed files between Vy and V), together with the
files mentioned in PARTY. to be suspicious files. We considered only changes between V; and V), because prior
study [29] identified that if there is CI failure, in most cases, CI outcome remains unchanged with a median of
four CI failures and a maximum of 760 consecutive CI failures. Among these consecutive CI failures, identifying
the culprit commit is challenging as failures can be just failures related to dependency of the first failure, or they
could separate independent failures due to the concurrent nature of the code commit. Additionally, applying a
binary search-based approach to detect culprit commit might not work in cases where commits are dependent on
each other and may take a long processing time if there are multiple consecutive CI failures. For simplicity, we
assume that after each CI failure, developers will analyze and debug the failure, so we only considered Vy after
the most recently passed version V},. Furthermore, we defined the following formula to adjust similarity scores
for documents:

Score(q,d)%, if d is a suspicion file

FinalScore(x) = { ®3)

Score(q,d),  otherwise

In Equation 3, if a file d is suspicious, we raise the score to Score(q,d)*(0 < a < 1); otherwise, the score
Score(q, d) remains the same. Note that in Xuan et al’s prior work [80], they defined a formula to boost suspicious
scores when certain files were recently changed, and we were inspired by their formula. We opted to do file-level
fault localization in file level as most of CI failures are required to fix in multiple files and multiple lines, which is
ill-suited for line-level fault localization [44].

To find the optimal value of «, we varied a from 0.0 to 1.0 with 0.1 increment, and conducted experiments
with the parameter-tuning dataset mentioned in Section 3.1. The experiments showed that 0.1 is the best setting,
so we set a = 0.1 by default.

4 EXPERIMENTS AND ANALYSIS

In this section, we will first introduce our dataset (Section 4.1) and evaluation metrics (Section 4.2). We will then
describe the research questions we explored (Section 4.3), and finally discuss the evaluation results (Section 4.4).

4.1 Dataset

We constructed our evaluation dataset based on TravisTorrent [19], which is a dataset of CI builds. We used
the SQL dump version of the dataset dated February 8, 2017, which version contains the build data collected
from 2011-08-29 to 2016-08-30. For Java projects, TravisTorrent provides CI log data for three build systems:
Ant, Maven and Gradle, and each CI log is a plain text file. A recent study [62] shows that more than 50% of top
GitHub projects are using Gradle as their build configuration tool, so we focused our approach implementation
and evaluation on Gradle-based projects.

In TravisTorrent, we first extracted all CI failures for any Java project built with Gradle. For each CI failure, we
further extracted the most recently passed version as Vg, and its corresponding log as BL;. We also extracted the
failed version immediately following Vr and its corresponding log as BL¢. These are the information available in
the FL scenario of each build failure, so we used them as the input of our tool. We further extracted the following
failure-to-pass transition to find out how the failure is fixed. In particular, all changed files in the commit that
leads to the first following passed build are considered ground truth of fault localization for this build failure.
Here we follow prior works in FL [37, 55, 69] to use all changes in the fixing commit as the ground truth. In CI,

ACM Trans. Softw. Eng. Methodol.



10 . Hassan,etal.

developers only change code when the build failure is confirmed to be related to a defect. With the restriction to
have a failure-to-pass transition commit, we actually ruled out the flakiness-related failures that are reported in
recent CI research work [25, 26].

With our data collection method, we identified 700 CI failures fixes from 72 Gradle-based projects. As shown in
Table 3, we used the chronologically earliest 100 of the fixes for parameter tuning (see Section 3.1 and Section 3.4),
and for software entity selection in Java source code and Gradle build scripts (see Section 3.2.2). We used the
remaining 600 fixes to evaluate the effectiveness of our fault localization techniques. In the dataset, the average
number of source files and the average number of build script files per project is 444.32 and 9.24, respectively. Even
though the number of build scripts per project is much lower than the source file, the localization of build-related
CI failures is challenging due to the abstraction of build logic and limited domain knowledge about the build
process among the developers. Even in many cases, CI logs suggest that the failure is in the source file, but in
reality, the fault is in the build script(see Example 4). Furthermore, there is no or minimal support for debugging
build scripts, which complicates the build script fault localization process. For example, Example 2 shows a CI
failure where the log suggests that the failure is related to a plugin and it’s in the Hystrix module. However, the
fix shows that the failure is due to io.reactivex:rxjava dependency and it’s in the hystrix-core module build script.
Such an example shows that fixing CI failures is challenging due to the high-level abstraction of build scripts and
requires deep domain knowledge of build logic and project structure. Moreover, existing debugging tools can’t be
utilized to analyze such CI failures. So, having a tool even for file-level FL can substantially reduce developer
effort to localize build script related CI failures.

Example 2 A Build Failure Fix that Requires CI specific Knowledge (Netflix/Hystrix: Build Fix Version:bc86bdb)

* Where:
Build file '~/Hystrix/build.gradle' line: 11
* What went wrong:
An exception occurred applying plugin request [id: 'nebula.netflixoss', version: '3.2.3']
> Failed to apply plugin [class 'nebula.plugin.bintray.NebulaBintrayPublishingPlugin']
> Walk failure.

File: /hystrix-core/build.gradle
dependencies \{
compile 'com.netflix.archaius:archaius-core:0.4.1"
compile ’io.reactivexirxjava:1.1.0”
compile ’io.reactivex:rxjava:1.1.1’
compile 'org.slf4j:slf4j-api:1.7.0"

More importantly, we manually inspected the 700 failed logs and their corresponding fixes. For manual
inspection, first we classified failures into test failures and non-test failures using the build log analysis mentioned
in prior work [30]. Then the first author manually confirmed the classification by inspecting the logs of each
failure. We clustered the data based on (1) the failure type and (2) bug locations. As shown in Table 4, 316 (45%) CI
failures are test failure and 384 (55%) failures are due to non-test failure. This observation implies that existing FL
techniques cannot handle most CI failures in our data set because they mainly rely on the existence of test failures.
Moreover, among 316 test failure, 54 failures (17%) require fixes in build scripts. Although the Spectrum-Based
fault localization (SBFL) technique works more precisely for test failures, current SBFL techniques only focus
on source files without handling build scripts. Furthermore, since SBFL techniques rely on instrumentation, it
would be difficult to adapt them for build scripts due to the variety of build tools and plug-ins. In comparison,

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures « 11

Table 3. Dataset Summary

Type Count
Total Number of Projects 72
Average Number of Source Files Per Project 444.32
Average Number of Build Files Per Project 9.24
Average LOC for Source Files 129.89
Average LOC for Build Files 162.69
Maximum Number of Fix From Single Project 119
Minimum Number of Fix From Single Project 1
Average Number of Fix Per Project 9.72
Total Number of Fix 700
Average Number of Buggy Files Per CI Failure 6.34
Average Number of Buggy Source Files Per CI Failure 5.94
Average Number of Buggy Build Scripts Per CI Failure 0.40
Tuning Set Size 100
Evaluation Set Size 600

Table 4. Failure Types and Bug Locations

Only Only Build | Both File
Total . < . .
Source Fix | Script Fix | Type Fix
Test Failure 316 262 22 32
Non-Test Failure 384 244 73 67

our new approach is more generic and more applicable because it can locate bugs in both code and scripts, no
matter whether the failures are related to tests or not.

Additionally, 95 CI failure fixes (14%) changed both source files and build scripts, while another 99 failure
fixes (14%) changed build scripts only. It implies that when current FL tools do not analyze build scripts to locate
bugs, they can miss bug locations for many CI failures. In particular, Example 3 shows a CI failure related to the
usage of a tool Crashlytics. To fix the failure, both a build script and a Java file were modified. In the build script,
enableCrashlytics was set to false. In source code, the import declaration of class com.crashlytics.android.Crashlytics
was removed. Example 4 shows another CI failure, which is triggered by a test failure. In the example, the unit test
throws an exception ClassNotFoundException because of a missing dependency. Consequently, the related fix added
the project dependency to a build script. To fix build script related failures like enableCrashlytics, developers need
specialized knowledge and may need to spend a long time. In our dataset, source-code-only fixes account for 506
of 700 failures, and for the rest of 194 failures, their fixes involve at least one build script. Since in CI pipeline,
developers need to fix CI failures as soon as possible to allow further integration, the commit time between
failed build and successful build is a good indication of time spent for CI failures. According to our analysis,
for source-only related fixes, the median time spent is 43.5 minutes and for build script related 194 failures, the
median time spent is 73 minutes. This analysis also indicates the complexity of build script related failures.

Our prior finding indicates that a considerable portion of CI failures are not triggered by test failures or
fixed by modifications in source code. Our dataset also demonstrates the need to develop a general fault
localization technique that (1) analyzes both source files and build scripts, and (2) handles non-test
failure in addition to test failures.

4.2 Evaluation Metrics

We used the following four widely used metrics [21, 51, 55, 77, 81, 84] to measure the effectiveness of FL techniques.

ACM Trans. Softw. Eng. Methodol.



12 . Hassan,etal.

Example 3 A Build Failure Fix with Both Build Script and Source Code Change (abarisain/dmix: Build Failure
Version:2007058, Build Fix Version:86a0af2)

* What went wrong:
Execution failed for task ':MPDroid:crashlyticsCleanupResourcesFossDebug'.
&gt; Crashlytics Developer Tools error.

File:MPDroid/build.gradle
foss {
versionName defaultConfig.versionName + "-f"
+ext.enableCrashlytics = false

}

File:/mpdroid/MPDApplication.java
-import com.crashlytics.android.Crashlytics;

Example 4 A Test Failure Having Fix in Build Script (jphp-compiler/jphp: Build Failure Version: a148d3c, Build
Fix Version: 1608e0c)

1 warningorg.develnext. jphp.json.classes.JsonProcessorTest &gt; testBasic FAILED
Caused by: java.lang.ClassNotFoundException at JsonProcessorTest. java:21

1 test completed, 1 failed

: jphp-json-ext:test FAILED

FAILURE: Build failed with an exception.

testCompile 'junit:junit:4.+'
+ testCompile project(’:jphp-zend-ext?’)

testCompile project(':jphp-core').sourceSets.test.output

e Recall at Top N (Top-N) calculates the percentage of CI failures, which have at least one buggy file
reported in the top N (N=1,5,10, ...) ranked results. Intuitively, the more failures have their buggy files
recalled in Top-N results, the better an FL technique works.

e Mean Reciprocal Rank (MRR) measures the precision of FL techniques. Given a set of queries, MRR
calculates the mean of Reciprocal Rank values for all queries. The higher the value, the better. The Reciprocal
Rank (RR) value of a single query is defined as:

1
RR= —— 4)
rankpes;
Specifically, rankpes; is the rank of the first correctly reported buggy file. For example, for a given query, if
5 documents are retrieved, and the 3" and 5'" are relevant, then RR is % = 0.33.
e Mean Average Precision (MAP) measures precision in a different way. It computes the mean of Average
Precision values among a set of queries. The higher value, the better. The Average Precision (AP) value of a

single query is:

M
AP = Z P(k) x pos(k) 5)
k=1

number of positive instances

ACM Trans. Softw. Eng. Methodol.



4.3

UniLoc: Unified Fault Localization of Continuous Integration Failures « 13

Here, k is the rank, M is the number of ranked files and pos(k) is a binary indicator of relevance. P(k) is
the percentage of correctly reported buggy files among the top k results, and pos(k) is a binary indicator
for whether or not the k" file is buggy. For example, if 5 documents are retrieved, and the 3'¢ and 5" are
buggy, then AP is (3 + £)/2 = 0.37.

e Normalized Discounted Cumulative Gain (NDCG) is a widely used metric in recommendation sys-
tems [51, 64]. The basic concept of this metric is to calculate the relative difference between the recommended
ranking and the ideal ranking. NDCG is defined as follows:

n zrelevancei -1

DCG
NDCG = ——, (DCG = _ 6
IDCG’ ( ; logy (i + 1) ) (©)

where relevance; = 1 if the i-th source code file is related to the fault location, and relevance; = 0 otherwise.
IDCG is the ideal order of DCG, which means all the faulty files are ranked higher than the unrelated
files. For example, if an approach recommends three files in which the 37 file is error-related, the results
are represented as {0, 0, 1}, whereas the ideal recommendation is represented as {1, 0,0}. For the given
example, DCG value is 0.5 and IDCG vlaue is 1.0, then NDCG value is 03 — 0 5 NDCG value ranges from

1.0
0.0 to 1.0 and is correlated to the MAP metric as it also evaluates the position of ranked items.

Research Questions

In our experiment, we investigated the following five research questions:

e RQ1 How effective is UniLoc to locate bugs for CI failures? Although fault localization research is an active
research area for over a decade, prior works [11, 16, 58, 79] mostly focus on source code fault localization. In
our work, we considered both source code and build script for fault localization. Therefore, it is important
to measure the effectiveness of UniLoc in comparison with existing approaches. To understand whether
UniLoc works better than naive approach of file names mentioned in build error log file and existing tools,
we will apply our proposed UnilLoc, file name mentioned in error log file and baseline IR-based techniques:
BLUIR and Locus to the same data set.

Analysis Result: Our findings show that that UniLoc outperformed Baselinel (file name mentioned in
log file), Baseline2 (BLUiR) and Baseline3 (Locus) for all metric, specifically higher MAP and NDCG value
indicate that UniLoc works better for different types of CI failure.

e RQ2 What is the impact of recent change based file ranking for build fault localization? As build failures
are usually caused by recent commits, it might be a natural intuition that faults are in the recently changed
files. But our analysis finds that for many cases, fixes are in files other than recently changed files. To
make a quantitative comparison, we compare UniLoc with an approach based on the changed files in the
file-inducing commit.

Analysis Result: Our findings show that change history or reverting-based approach has limited capability
of FL considering wide-range of CI failure types. Overall, the performance of the approach is lower than
UniLoc:

e RQ3 How sensitive is UniLoc to different parameter settings and strategies applied? To improve the perfor-
mance of UniLoc, we developed different techniques such as query optimization, search space optimization,
etc., we need to have an evaluation of the usefulness of these techniques. To understand how UniLoc works
with different configurations, we changed the parameter values and also created variant approaches by
disabling one technique at a time.

Analysis Result: Our findings show that UniLoc is sensitive to both parameter /t—the similarity threshold
between two lines of build information and a—the exponential value used to improve file ranking. Our

ACM Trans. Softw. Eng. Methodol.



14 .« Hassan,etal.

approach worked best with [t = 0.9 and a = 0.1. Apart from that, among the applied techniques: query op-
timization, search space optimization, and file ranking optimization, search space optimization contributed
most to improve UniLoc performance.

e RQ4 How effective is our approach for failures to be repaired in source code only, build script only, and
both? As shown in Table 4.1, CI failure fixes can be in source code, build script, or both. Prior research
works [58, 73] considers only source code. Since UniLoc targets both source code and build script, we
further measure the effectiveness of UniLoc on failures fixed at different locations.

Analysis Result: Baselines’ performance varies a lot for different types of fixes, but UniLoc has a more
robust and balanced performance among all three types of fixes and shows overall the best performance.

e RQ5 How effective is our approach for different type of CI failures? A CI failure can be a test failure or a
non-test failure. As characteristics of test failure and non-test failure might be different, measuring the
performance of UniLoc for test failure and non-test failures can be useful to showcase the effectiveness of
UniLoc for different types of failures.

Analysis Result: For both test failure and non-test failure UniLoc performs better than all three baselines.
However, UniLoc works more effectively on non-test failure.

4.4 Results

RQ1: Effectiveness of UniLoc. To understand the comparison between UniLoc and existing approaches,
we applied UniLoc, file name mentioned in PARTJQ(Baseline 1) and state-of-the-art IR-based FL techniques
BLUIR [58](Baseline2) and Locus [73](Baseline3) to our dataset. Since PARTJQ mentions error file names, so
during fault localization file ranking for each file names mentioned in PARTJZ gets one point and other files get
zero. This comparison will help us know whether our proposed approach works better than a keyword-based
approach that locates failures based on file names mentioned in PART; part. Apart from that, we compared
UniLoc with BLUIR [58] and Locus [73]—state-of-the-art source-code-oriented IR-based FL techniques studied in
recent studies [22, 39]. As BLUIR is not publicly available, we reimplemented BLUIR with default configuration
parameters and structural code entities mentioned in the paper. BLUIR uses bug reports as queries and searches
source code for bugs, to facilitate comparison, we extended the tool in two ways. First, instead of feeding in
a bug report, we used the refined failure-relevant part PART, as an input. We observed that CI logs are very
large (typically more than thousands of lines) compared to bug reports and contain unrelated information such
as downloading dependency, CI server-specific information, etc. As a result, applying the full log will affect
baseline approaches’ performance. In fact, we utilized full log and PARTJQ to BLUIR and observed that in terms of
MMR and MAP metric performance degrades 17.13% and 22.79%, respectively, if we use full log. Moreover, a
recent work [59] on CI configuration correctness also observed that the log error part contains important terms
related to CI failure. So, rather than utilizing the full logs, we used PARTJL for baseline FL techniques. Second, for
source code, we provided AST entities to BLUIR and for build script we provided all the build script contents as
text to BLUIR. For evaluation, we utilized publicly available existing Locus implementation [9]. However, we
transformed our data to Locus compatible form with a data transfer process and modified the Locus data input
process to allow analyzing multiple projects in batch mode. Like BLUIR, Locus also uses bug reports as queries
and searches source code for bugs. Locus utilizes bug open date and fix date to extract change history based on
the dates. For applying Locus to localize CI failures, we used the refined failure-relevant part PART]Z as the bug
description, the commit date that generated CI failure as bug open date and commit date that fixed CI failure as
bug fix date. As CI failures do not have any failure summary, we kept Locus bug summary empty. Note that the

identification of PARTJQ is based on our technique described in Section 3.1, so the baseline approaches already

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures + 15

80
70

62.00 47.17
60
46.33
50 42.50
39.33 8.33
4 32.83
3 24.1
18.0

2
1 6.33 I

0

Top 1 Top 5 Top 10

67.83

% Value
o O O

o

M Baselinel Baseline2 m Baseline3 ™ UnilLoc

Fig. 4. Top-N Comparison between Baselines and UniLoc

0.6
0.49
0.5
0.4
3
= 03
(]
- 0.2 0.19
0.12 '0 o
0.1
0
Avg. MRR Avg. MAP Avg. NDCG

H Baselinel Baseline2 m Baseline3 ™ UnilLoc

Fig. 5. MRR, MAP and NDCG Comparisons between Baselines and UniLoc

partly take advantage of our query optimization technique (directly using the whole build log as the query will
result in much worse results similar to random file selection due to noises in the log).

Figure 4 and Figure 5 present the effectiveness comparison between baselines and UniLoc. According to
Figure 4, Baselinel’s Top-1, Top-5, and Top-10 values are 31.33%, 39% and 42.88%. While Baseline2’s Top-1, Top-5,
and Top-10 values are separately 19%, 38.33%, and 47.17%. At the same time, Baseline3’s Top-1, Top-5 and Top-10
values are 6.33%, 18.00% and 24.17% respectively. In comparison, UniLoc’s Top-1, Top-5, and Top-10 values are
39.33%, 62%, and 67.83%. UniLoc largely outperformed Baselinel, Baseline2 and Baseline3 by recommending
more buggy files in the Top-N results. For Baselinel, even the result was good for Top-1 as for some build
failures like compilation error or static analysis error it mentions file name in error log. But for complex cases
where file names are not directly mentioned or fix is in different file location then Baselinel does not work
well. As a result for Top-10 it’s performance is less effective than Baseline2, Baseline3 and UniLoc. Even though

ACM Trans. Softw. Eng. Methodol.



16 « Hassan,etal.

Table 5. Effectiveness Comparison between Change History Based Approach and UniLoc

Top1 | Top5 | Top10 | MRR | MAP | NDCG

Change History
Based Approach
UniLoc 39.33% | 62.00% 67.83% 0.49 0.36 0.54

27.33% | 51.50% 60.50% 0.38 0.28 0.46

Baseline2 reviewand Baseline3 considers all the source files and build files for FL similarity analysis, Baseline2’s
and Baseline3’s performances are lower than UniLoc. A possible reason for the lower performance of Baseline2 is
that it is considering all files with the same weight. On the other hand, Baseline3 considers all prior all changes
histories to localize faults rather than only recent changes that triggers the CI failure. But for CI failure, failures
are generated by recent changes. So, recent change history does have a high impact on CI fault localization and
prior FL techniques [35, 70] also utilize change history to improve the performance. In Figure 5, the Baselinel
technique achieved 0.38 MRR, 0.26 MAP and 0.41 NDCG, Baseline2 achieved 0.29 MRR, 0.19 MAP and 0.39 NDCG,
while Baseline3 approach achieved 0.12 MRR, 0.12MAP and 0.22 NDCG. Our proposed approach UniLoc achieved
0.49,0.36 and 0.54 as MRR, MAP and NDCG, respectively, so UniLoc shows higher effectiveness than the baselines.

Specifically, in Figure 5, UniLoc has wider value ranges of both MAP and NDCG than baselines. Since MAP and
NDCG metric considers all files ranking rather than one best file ranking; it means that UniLoc’s effectiveness
can vary on different CI failures.

Finding 1: UniLoc outperformed Baselinel, Baseline2 and Baseline3 for all metric, specifically higher MAP
and NDCG wvalue indicate that UniLoc works better for different types of CI failure.

RQ2: Recent Change History Based Fault Localization. We observed that 41.14% of CI failure fixes contain
at least one line of change revert in source code or build script. So, we were curious about pure history-dependent
fault localization. For Change History Based FL, we consider the changes in the failure-inducing commit. Instead
of calculating similarity for these files, we gave the final score as 1.0 for the files changed in the failure-inducing
code commit. For other files, the final score is assigned as 0.0. With this change heuristic driven approach, we
calculated Top N, MRR, MAP and NDCG metrics. We also compared the Change History Based approach with
UniLoc. Table 5 shows the effectiveness comparison in between the change based approach and our proposed
approach. The Change History Based approach achieves 0.38 MRR, 0.28 MAP and 0.46 NDCG (compared to 0.49
MRR, 0.36 MAP and 0.54 NDCG of UniLoc). It also achieves 27.33%, 51.5%, and 60.5% for Top-1, 5, and 10 metrics
(compared to 39.33%, 62.00%, and 67.83% of UniLoc).

Finding 2: UniLoc provides better performance over Change History or Reverting Based approach for CI
fault localization.

RQ3: Sensitivity to Parameters and Strategies. There are two parameters used in UniLoc: [t—the similarity
threshold between two lines of build information, and a—the exponential value used to improve file ranking.
To explore UniLoc’s sensitivity to these parameter settings, we tried [t={0,0.5,0.6,0.7,0.8,0.9} and changed «
between 0.0 and 0.9, with 0.1 increment. As shown in Figure 6, UniLoc obtained the highest MRR value when
1t=0.9 and a=0.1.

[ Finding 3: UniLoc is sensitive to both parameters: It and a. It worked best when It = 0.9, & = 0.1. ]

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures « 17

[t=0.9
0.48
-_—
[t=0.8
0.46
1t=0.7
0.44
[t=0.6
0.45
—_—
[t=0.5
0.44
1t=0
0.190
0 0.1 0.2 0.3 0.4 0.5 0.6

mo=09 m0=0.8 W0=0.7 W0=0.6 ma=0.5 0=04 W0=0.3 W0=0.2 mo=0.1 Wo=0

Fig. 6. MRR for Different Parameter Value on Tuning Dataset

Table 6. Effectiveness Comparison between variant approaches, Baselines, and UniLoc

Approach Name Top1 | Top5 | Top10 | MRR | MAP | NDCG
Baselinel 32.83% | 42.50% | 46.33% 0.38 0.26 0.41
Baseline2 19.00% | 38.33% | 47.17% 0.29 0.19 0.39
Baseline3 6.33% 18.00% | 24.17% 0.12 0.09 0.22
V1—Without

PP 33.50% | 59.50% | 66.16% 0.44 0.33 0.51
Query Optimization

V2—Without Search
Space Optimization
V3—Without File
Ranking Optimization
UniLoc 39.33% | 62.00% | 67.83% 0.49 0.36 0.54

13.16% | 27.00% | 35.00% 0.21 0.14 0.50

16.67% | 36.50% | 42.83% 0.26 0.19 0.37

There are three strategies applied in UniLoc: S1—query optimization (Section 3.1), S2—search space optimization
(Section 3.2), and S3—file ranking optimization (Section 3.4). To understand how different strategies influence
UniLoc’s effectiveness, we also created three variants of our tool: V1—a variant without applying S1, V2—a variant
without S2, and V3—a variant without S3.

Table 6 shows the effectiveness comparison between variants, Baselines, and UniLoc. According to the table,
without search space optimization(S2) and file ranking optimization(S3) UniLoc worked worse than baselines.
Among S2 and S3 approaches, S2 that is build dependency analysis and AST entity use plays the most important
role for performance improvement. Among the variants, V1 worked much better than V2, which implies that
S2 and S3 are more effective than S1. V2 has less metric values than V1 and V2, meaning that S2 is much more
important than the other two strategies. Uses of changed files in failure-inducing commits are also important for
UniLoc’s performance improvement.

Finding 4: Query optimization, search space optimization, and file ranking optimization all help with fault
localization, while search space optimization boosts effectiveness the most.

ACM Trans. Softw. Eng. Methodol.



18 « Hassan,etal.

Table 7. Effectiveness Evaluation for Different Fix Types

Fi A h | Fail.
x pproach | #al- | 15p1 | Top5 | Top 10 | MRR | MAP | NDCG
Type Name Cnt.
Baselinel 30.47 38.84 42.09 0.35 0.25 0.39
Baseline2 256 | 1953 | 29.07 | 011 | 0.10 0.28
Source z
Baseline3 430 3.49 13.26 18.14 0.09 0.06 0.14
Only -
UniLoc 30.00 | 53.26 | 59.30 | 0.41 | 0.31 | 0.48
Baselinel 2692 | 3462 | 3590 | 031 | 0.29 0.39
Build Baseline2 50.00 82.05 89.74 0.64 0.60 0.70
Onl Baseline3 78 12.82 33.33 47.44 0.22 0.19 0.50
y UniLoc 65.38 | 82.05 87.16 0.74 0.67 0.75
Baselinel 4891 | 6630 | 7500 | 057 | 0.28 0.52
Baseline2 69.57 | 89.13 95.65 0.80 0.30 0.58
Both | Baseline3 | 92 | 1413 | 27.17 | 3260 | 021 | 0.14 0.31
UniLoc 60.87 85.87 91.30 0.71 0.34 0.60

RQ4: Effectiveness for Different Types of Bug Locations The bug locations of CI failures may be in source
files, build scripts, or both types of files. We further clustered UniLoc’s evaluation results among these three
kinds of scenarios. As shown in Table 7, among the 600 evaluated CI failures, 430 failures were fixed by only
source code changes, 78 failures were fixed by only modifying build scripts, and 92 failures were fixed by changes
in both types of files. These number already shows the complexity of CI failure fixes. In Table 7, we can see that
all approaches perform better when the fixes are in build scripts or in both types of files, maybe because there
are fewer build script files than source files. Furthermore, three baselines perform very differently in different
types of fixes, but UniLoc is more balanced and always has the best performance score in terms of MAP and
NDCG. As MAP and NDCG metric considers all faulty file’s ranking for performance calculation, UniLoc shows
a more robust FL ranking considering all faulty files. In fact, in the evaluation dataset, the average number of
files modified to fix CI failures is 6.8 files per failure, with an average of 7.32 source file modification if it requires
source-related modification and an average of 1.48 build script modification if it involves build-related failure.
Although, in most cases build related CI failure requires one or two files modification from the average of 9
build script files, it is always difficult to determine whether any build-script change is required. Furthermore,
identifying faulty build scripts is more challenging than identifying faulty source files due to the high-level
abstraction of statements in build scripts, latent dependencies between build scripts and source code and among
build scripts themselves, and lack of tool support for build-script debugging.

Moreover, among 600 CI failure, 347 failures required more than one file modification(s) to fix the CI failure.
This brings in the necessity of more robust FL tools like UniLoc to localize CI failure root causes. Apart from that,
since it is not possible to know the type of fixes in advance, UniLoc’s balance and robust performance will help it
achieve the expected performance in most cases.

More surprisingly, Baseline2 (BLUiR) performed better on build script fixes, but Baseline1 (querying file
names in PARTJ} ) performed better on source code fixes, which is different from our expectations. Baseline3
(Locus) preformed worst for source related CI failures. After a detailed investigation, we found that, even after
our query optimization, the build logs still contain some noises which look similar to AST elements of the
build script, so they misled BLUIiR even when the actual fixes required are in the source file(s). This result
is consistent with UniLoc without optimizations V2 or V3, as shown in Table 6. This shows that even better
query-optimization techniques are still required for applying IR-based FL approaches to CI scenarios. For build
scripts, BLUIR performs better because build-related terms from specific build script(s) are dominating the build
logs, so it simply ranked all of them higher, and thus had higher Top-10 coverage (note that their Top-1 coverage

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures « 19

is much lower than UniLoc). But if the fix requires to change in multiple build script with module dependency,
then in those cases Baseline 2 cannot perform well. As a result, even for many cases, Top-N (considers one file
only) metric result is better, but in terms of MAP and NDCG metric, Baseline 2 performance is lower than UniLoc.
In contrast, Baselinel performs better on source-only fixes. Our further investigation (presented in Table 8)
shows that its high performance mainly comes from source-only fixes of non-test failures, which are mainly
compilation errors and code-style errors. Since file names are often provided in such non-test failures, it is no
wonder that Baseline1 performed very well on them. But in many cases fixing compilation errors and code-style
errors might require changes in other files (due to dependency) that are not mentioned in failure log. For those
cases, Baselinel might show promising results in terms of Top-N and MRR metric, but for MAP and NDCG
metric Baseline1’s performance is lower than others. The analysis also shows that looking at the error log for the
faulty file might not be sufficient to solve CI failures, and the approach can suffer from missing fault-related files
in fault localization. For fixes with both file change types, Baseline2 showed promising results in terms of Top1,
Top5, Top10 and MRR metrics. These four matrices consider first file matching rather than all faulty file matching.
Among both file type-related fixes, many of the fixes are related to plug-in, compilation and dependency-related
failure where the failed log clarifies which file with configuration or code entity(s) generated errors. However,
fixing those failures, in most cases, requires changes in files with matching entities, and requires changes in some
other related files whose names or entities are absent in the failure log. Baseline2 can rank the first matching file
in the higher position but cannot identify other related files due to lack of dependency information and recent
change information. Example 5 shows such a build failure, where the build log explicitly mentioned entities
related to /sandbox/build.gradle file; however, while fixing developer changed this file, as well as four other .java
source files. In this case, Baseline2 can rank /sandbox/build.gradle in a higher position, but the approach cannot
prioritize other related files. As a result, in terms of MAP and NDCG metric, UniLoc outperforms Baseline2
and other approaches. In the case of Baseline3, the tool performed poorly as the approach considers all priors
commit history and change hunks for FL. However, prior commits might be related to bug fixes, feature addition,
and CI fixes and it cannot differentiate CI fixes from other kind of code modifications. Since the number of other
kinds of modifications(e.g., bug fix, feature addition) are much more frequent than CI fix modifications, in most
cases, FL rankings generated by this approach are less relevant to CI failures.

Example 5 Failure Segment that Requires Change in Both File Type (jphp-compiler/jphp)

CI Log Part for Commit ID: cb98af7

FAILURE: Build failed with an exception.
Build file '/home/~/sandbox/build.gradle' line: 13
* What went wrong:
A problem occurred evaluating project ':sandbox'.
&gt; Failed to apply plugin [id 'php']
&gt; Plugin with id 'php' not found.
Run with --stacktrace option to get the stack trace. Run with --info or --debug option to get more log output.
BUILD FAILED

Finding 5: Baselines’ performance varies a lot for different types of fixes, but UniLoc has more robust and
balanced performance among all three types of fixes.

ACM Trans. Softw. Eng. Methodol.



20 « Hassan, et al.

Table 8. Effectiveness for Different Failure Types

Approach Only Source Only Build
Name Change Script Change
Test Failure
Cnt. 222 Cnt. 21 Cnt. 31 Cnt. 274
MRR | MAP | NDCG | MRR | MAP | NDCG | MRR | MAP | NDCG | MRR | MAP | NDCG
Baselinel 0.19 0.14 0.30 0.06 0.05 0.19 0.23 0.13 0.40 0.18 0.13 0.30
Baseline2 0.09 0.08 0.27 0.58 0.51 0.63 0.69 0.34 0.60 0.19 0.14 0.34
Baseline3 0.11 0.08 0.15 0.25 0.22 0.57 0.33 0.27 0.40 0.14 0.11 0.21
UniLoc 0.35 0.27 0.45 0.66 0.58 0.66 0.67 0.40 0.64 0.41 0.31 0.49

Both Change Overall

Non-Test Failure
Cnt. 208 Cnt. 57 Cnt. 61 Cnt. 326
MRR | MAP | NDCG | MRR | MAP | NDCG | MRR | MAP | NDCG | MRR | MAP | NDCG
Baselinel 0.53 0.38 0.49 0.40 0.37 0.46 0.75 0.35 0.60 0.55 0.37 0.50
Baseline2 0.14 0.12 0.31 0.65 0.64 0.72 0.85 0.27 0.57 0.36 0.23 0.43
Baseline3 0.06 0.04 0.14 0.21 0.18 0.48 0.15 0.08 0.26 0.10 0.07 0.22
UniLoc 0.47 0.35 0.52 0.76 0.71 0.78 0.72 0.31 0.58 0.57 0.40 0.58

RQ5: Effectiveness of Different Types of CI Failures. CI failures can be triggered by test failures or non-test
failures. We also clustered UniLoc’s evaluation results among these two kinds of failures and presented the results
in Table 8. Table 8 presents the performance of UniLoc and baseline approaches using MRR, MAP and NDCG
metrics. Since both Top-N and MRR metric utilizes only the first matched buggy file’s ranks among all buggy
files to calculate the performance, we believe that MRR reflects the performance considering the first buggy file
match. As a result, we did not present the performance evaluation with Top-1, Top-5 and Top-10 metrics for this
analysis. Table 8 shows one important insight that 18.97% of test failure fixes require accompanying changes in
the build script. Although prior research works [69, 85] on fault localization identifies that spectrum-based fault
localization (SBFL) works better for Test Failures, based on test failure fix statistics (see Table 8), existing SBFL
techniques might not work for test failures that require build script change. Moreover, for SBFL, running these
test cases on an instrumented version of the faulty program may not track build script execution traces. Since it
is not possible to know the type of fixes in advance, UniLoc does have an advantage over SBFL techniques to
localize faults in a balanced way.

In Table 8, we can observe that all approaches except Baseline3 performed better on non-test failures than
test failures, which is reasonable as the latter can be more complicated and involve more files. Baseline3 Locus
was mainly optimized to detect test failures. However, in many cases in CI environment, test failures happen
due to missing dependency or run-time class binding that generates exceptions and can fail a test. As a result,
even though Baseline3 performed better for test failures rather than non-test failures, the overall performance
of Baseline3 is low. At the same time, for test failures such as Example 6 where the file name is mentioned in
the build log, Baselinel can find the first faulty file based on the log but cannot identify dependent files that are
also required-to fix. To fix Example 6 failure, the developer needs to make changes in six files, and only one of
them is mentioned in the build log. Baseline2 can find those faulty files, but its ranking is not optimized due to
the lack of build dependency information, as well as change history information. Overall for test failure, UniLoc
outperformed all baseline approaches for all the metrics. In terms of NDCG, the improvement over Baselinel and
Baseline2 are 38.77% and 30.61%, respectively.

Apart from test failures, there can be non-test failures due to configuration errors, compilation issues, static
analyzers (e.g., CheckStyle, Lint), etc. For non-test failures involving only source fix, Baselinel shows better
performance. So we did an analysis for performance improvement and observed that compilation errors and

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures « 21

Example 6 Test Failure Segment (thatJavaNerd/JRAW)

CI Log Part for Commit ID: 5e45bab

/home/~/auth/OAuth2Test. java:111: error: exception ApiException is never thrown in body of corresponding try
statement
} catch (NetworkException | ApiException e) {
:compileTestJava FAILED
FAILURE: Build failed with an exception.

CheckStyle errors are common in this category. In such failures, all or many error files are mentioned in the build
log , so it works better. Example 7 shows such a non-test build failure where the faulty file is directly mentioned
in the build log and the developer made modifications in the mentioned file. But for the cases where changing a
class file required further changes in its parent class, BaseLinel cannot localize all the faulty files. For non-test
failures involving build script only, UniLoc outperforms Baselinel and Baseline2 due to optimized use of build
script ASTs. Baselinel shows a surprisingly good result for non-test failures with both source and build source
file change. So we analyzed the cases where Baselinel outperforms UniLoc. From our analysis, we observed
that among these 61 failures, 27 failures were from the same project (BuildCraft/BuildCraft). Then we analyzed
the commits (Example Commit ID:d236d08) of these 27 failures and observed that after each build error fix, the
developer updated the version number in root build.gradle file, which is not related to the build error but
related to Checkstyle convention. Since UniLoc optimizes ranking with precise build dependency information
and AST optimization, such unrelated build. gradle is ranked lower. In contrast, build.gradle almost always
shows up in the build log and it is ranked highest among all files by default because it is in the root folder and
starts with ‘b’. Besides, CheckStyle usually reports all the file names in the build log that violates stylistic rules.
So Baselinel performs very well on these failures. But this type of CI failure is uncommon and project-specific.
Even involving these 27 failures, UniLoc’s performance for non-test failures involving both file type changes is
only 3.33% lower than BaseLinel’s in terms of NDCG metric. Overall for non-test failure, UniLoc outperformed
both BaseLinel and BaseLine2 in terms of three metrics MRR, MAP and NDCG. The results show that UniLoc
performs better than baselines for both types of failures.

Example 7 Non-Test Failure (BuildCraft/BuildCraft)

CI Log Part for Commit ID: 20f6900

:checkstyleMain[ant:checkstyle] /home/~/ItemLaserTable.java:11:8: Unused import - java.util.List.
[ant:checkstyle] /home/~/ItemLaserTable.java:14:8: Unused import - net.minecraft.entity.player.EntityPlayer.

FAILURE: Build failed with an exception.

Execution failed for task ':checkstyleMain'.

* Try:

Run with --stacktrace option to get the stack trace. Run with --info or --debug option to get more log output.
BUILD FAILED

ACM Trans. Softw. Eng. Methodol.



22 « Hassan, et al.

Finding 6: UniLoc works more effectively on non-test failures and performs better than all three baselines on
both test failures and non-test failures.

5 THREATS TO VALIDITY

One potential internal validity of our evaluation is the ground truth we considered to resolve the CI failures may
contain code changes other than build fix like code enhancement, refactoring etc. Actually since changes in one
code commit may be dependent on each other (i.e., a partial commit may not compile or passes tests), there does
not exist a clear definition for the relevant part in the repairing commit. We assumed that the one we extracted
from the project repository was the best one, as it was the actual developer fix. To reduce the threat, we only
considered CI build instances with failed status to passed status with modification of build script or source code
in one single commit. Prior research efforts [37, 55, 69] on FL also used the difference of pre-fix and post-fix code
commits as the ground truth for evaluation. Actually, among the 600 evaluated fixes, 253 (42.16%) fixes touched
only one file (so their ground truth is fully precise for our evaluation) and the rest of the 347 (57.83%) fixes touched
multiple file change, so only them might be affected by the threat. The major external threat to our evaluation
is that we evaluated UniLoc for only Gradle based project with Java as a programming language. We tried to
make our approach generalized so that it can be applied to other build management tools and programming
languages. To reduce this threat, we plan to apply our approach to other popular build systems and programming
languages. Last of all, our FL technique can identify faults in file level, which could be coarse-grained for the
practical usability of the tool. However, considering the heterogeneity of CI failures and the different nature of CI
failures, the file-level FL technique can be helpful for developers. To mitigate such threat, we plan to extend the
FL technique to have more fine-grained such as block-level or statement-level localization capability.

6 DISCUSSIONS

This section discusses the implications of our results and observations from our study on FL. It further outlines
some future research directions.

6.1 Implications

Implications of the Dataset Observations. A significant amount of research effort has been devoted to CI
in identifying barriers to adopt CI and optimize the workflow of CL Prior study on CI workflow [75] identified
that increased build complexity is the main reason to abandon CI work process. Hilton et al. [31] identified
that troubleshooting CI build failures as the top barrier when developers using CI. To overcome such barrier,
several research works on CI build failure have been conducted. Vassallo et al. [68] did an analysis of CI build
failure on 349 Java OSS projects and 418 projects from a financial organization. They categorized CI build failure
into 20 categories and identified that testing failures and release preparation failures are the topmost reasons
for CI failure. A recent study [26] on build breakage data identified that 33% of the build breakages are due to
environmental factors, 29% are due to errors in previous builds, and 9% are due to build jobs. In our study, we
also categorized 700 build failures into two broad categories: i) Test Failure and ii) Non-Test Failure. Among these
failures, 45% CI failures are test failures and 55% failures are non-test failures. Apart from that 17% of test failure
require to have fixed in build script and 24% overall failures need to have fixed in build script. These are important
empirical evidence for tool builders to work on the heterogeneity nature of CI failures and the requirement of
tool support for source code and build script.

Implications of the CI Failure Debugging. Fault Localization has been a widely explored research area over
the decades. IRFL-based fault localization techniques [58, 71, 73] are mostly using bug reports to find faulty code
locations. While SBFL based techniques [11, 79, 80] mostly rely on test case execution results to find source

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures + 23

code fault locations and require instrumentation support. Even after the wide advancement of FL techniques,
a prior empirical study on CI [31] identified the need for debugging assistance for CI workflow. Moreover,
prior studies [20, 69] identified that SBFL and IR-based fault localization has limited usability in the real-world
development workflow due to execution overhead, limited bug context information, inaccurate ranking, etc.
Considering the limitations, our proposed approach aligns with the CI workflow and can localize CI faults without
instrumentation overhead. Also, UniLoc can localize faults in both source code and build script, which is not
supported by prior FL techniques. Our empirical analysis also suggests that UniLoc outperforms existing IR-based
FL techniques for test failure and non-test failures. UniLoc can be a more effective tool support to meet the needs
of debugging assistance in CI. Our approach was evaluated on real-world CI failures from large-scale open-source
projects, suggesting that the UniLoc can be useful in real-world development scenarios. Apart from that, UniLoc
is one of the first in its kind for fault localizing build script, which is limited in the count but different than
source code in terms of abstraction, domain knowledge and limited tool support for debugging. Considering the
heterogeneity of CI failure involving source code and build script and limited support of debugging build script,
our proposed approach with IR-based FL in file-level granularity can be useful for developers to debug CI failure.
The work can be the basis for further research on the usability of such tool support and more fine-grained unified
fault localization tools, such as at block level, given that a widely accepted definition of blocks in build scripts
can be developed.

6.2 Research Directions

Build Tools Other than Gradle. In this research work we only considered CI failures of projects using Gradle
as their build management tool. The major Gradle-specific part of UniLoc is our build dependency module. Like
Gradle, other popular build systems also provide support for multi-module build. Ant [1] provides multi-module
build with dependency information with the help of Ivy [2]. In Maven [4], mechanism to handle multi-module
build is called Reactor. With the help of Reactor, Maven can also define project dependency. Apart from that, Ant
and Maven also provide build log with rich source of information like build status, fail information, compilation
issue etc. Moreover, Ant and Maven build failures are also available in TravisTorrent dataset. So, our approach
can be applied to other build management tools by extending our build configuration and build script analyzer,
as well as be evaluated on the TravisTorrent dataset.

IR-based vs. Spectrum-based Fault Localization. Compared with spectrum-based fault localization, IR-based
fault localization is often less precise due to the lack of runtime information. In contrast, IR-based approach can
be applied without code instrumentation. In the scenario of continuous integration, even if code instrumentation
support does exist, it cannot be always turned on due to the high overhead. So due to the urgency of resolving CI
stalls, an IR-based approach can be very helpful with the initial assignment of bugs to a proper developer, and
the developer’s initial investigation. Furthermore, as illustrated in multiple examples in this paper, CI failures
often involve multiple types of files (e.g., source files, build scripts) and their dependencies. In such cases, code
instrumentation on one file type may miss root causes of failures, while a comprehensive code instrumentation
support can be difficult to implement. Apart from that, in some CI practices, CI servers queue multiple commits
into a single commit to optimize integration time and testing time [8]. In those case applying, applying SBFL on
smaller sub-commits can be impractical due to resource and time limitation and IR-based approach can be more
efficient on smaller sub-commits to identify faulty files.

7 RELATED WORKS
7.1 Automatic Bug Localization

Automatic bug localization has been an active research area over the decades [41] [84]. Automatic bug localization
techniques can be generally divided into two categories: i) dynamic approaches and ii) static approaches. Dynamic

ACM Trans. Softw. Eng. Methodol.



24 + Hassan, et al.

fault localization [53] requires execution of programs and test cases to identify precise fault location. Dynamic fault
localization techniques need pre-processing of the code or underlying platform, as well as precise reproduction
of the failure. Among the dynamic fault localization techniques, spectrum based fault localization (SBFL) [11] is
the most prominent technique. SBFL usually depends on suspicion score based on program elements executed
by the test cases. Tarantula [33] is the early research work on SBFL and subsequent researchers are working to
improve the accuracy of the localization technique. Ochiai [10] uses different similarity co-efficient to find more
accurate fault localization. Xuan and Monperrius proposed Multric [79], which combines learning-to-rank and
fault localization techniques for more accurate localization. Savant [16] uses likely invariant with learning-to-rank
algorithm for fault localization. Kiiciik et al. [36] proposed a novel approach that combines the causal inference
from code and coverage information. Sarhan et al. [60] developed a fault localization tool for python based on
exisitng spectrum-based approaches. Most recently, Lou et al. [43] and Li et al. [40] use representation learning
on code dependencies and run-time code coverage to predict the failure-causing statements. Meng et al. [50]
further enhanced these techniques by incorporating knowledge from historical bugs and code from other software
projects. Since the software building process lacks test cases and instrumentation of all building scripts in various
forms can be challenging, the dynamic localization techniques mentioned above cannot be easily applied to faults
in build scripts and configuration files.

Static fault localization techniques do not require test cases and execution information. Static fault localization
depends on static source code analysis [83] [23] or information retrieval based approaches [69] [84]. Lint[32] is
one of the first tool to find fault in C programs. FindBug [15] and PMD [5] are prominent static code analyzer
for Java source code. Lots of IR-based approaches [84] [58] have been proposed by the researchers for fault
localization. BugLocator [84] performs bug localization based on revised VSM model. Saha et al. [58] proposed
BLUIR considering source code structure for IR-based fault localization. Recent work on fault localization
Locus [73] utilizes change history for fault localization. Since static fault localization does not require execution
environment and test cases, we applied IR-based fault localization technique for build fault localization. In our
approach, we adopted build script analysis, source code AST and also recent change history for locating build
fault from build log information.

7.2 Fault Localization Supporting Automatic Program Repair

Over the last few years Automatic Program Repair [34] [27] is gaining popularity. GenProg [27] uses Genetic
Programming(GP) for automatic patch generation. RSRepair [54] performs random searching for generating a
path. To reduce searching from existing code, PAR [34] uses predefined fix patterns to generate a patch for a new
bug. Apart from search-based or template-based patch generation, machine learning and probabilistic models are
also getting popularity for automatic program repair. Prophet [42] uses a probabilistic model to generate a new
patch. Van Tonder and Le Goues [66] applied separation logic for automatic program generation. While Wen et
al. [72] used AST context information for better program repair. Automatic program repair techniques are also
getting popular for automatic build repair. Recently Macho et al. [46] proposed BUILDMEDIC to repair Maven
dependency failure. HireBuild [30] uses a history driven approach for Gradle build script repair. For all these
automatic repair works, one of an integral part of the repair is fault localization. As discussed in 7.1, there are
different approaches for bug localization. For automatic build repair, previous works consider only build script for
their repair target. But build failure can be generated for source code, build script or both. So, apart from assisting
developers for fixing build failure, build fault localization can be useful for automatic build repair research work.

7.3 Build Script Analysis

With the growing popularity of build management tools and automatic build scripts, analysis of build script is
also getting importance for software engineering research areas such as build repair, fault localization, build

ACM Trans. Softw. Eng. Methodol.



UniLoc: Unified Fault Localization of Continuous Integration Failures + 25

target decomposition, migration of build configuration, etc. For build dependency analysis, Gunter [14] proposed
a Petri-net based model. Adams et al. [12] proposed re(verse)-engineering framework MAKAO to keep build
consistency in change revisions. MAKAO extracts dependency from build traces to generate build consistency.
Recently Wen et al. [74] proposed BLIMP for build change impact analysis generated from the build dependency
graph. Xia et al. [78] proposed a machine learning based model to predict build co-changes. While from source
code change history, Macho et al. [45] proposed model to predict build configuration changes. McIntosh et
al. [49] performed a large study to find relation in between build maintenance and build technology. SYMake [63]
uses a symbolic-evaluation based technique to detect common errors in Make files. To improve software build
process, McIntosh et al. [48] did a study on header file hotspots. On the study of building errors, Hassan et al. [28]
performed empirical analysis on build failure hierarchy.

The most closely related work is fault localization of Make build script proposed by Al-Kofahi et al. [13]. They
proposed MkFault to generate suspiciousness scores of Make statement for a build error. MkFault instrumented
code to generate build traces. But in CI environment, instrumenting large code base might be costly in terms of
time and resource. Apart from that MkFault only considers Make build script as source of build failure. But our
analysis on real build error fix finds that build error can happen due to source code, build script or both. We also
performed evaluation of our approach on a large dataset with different project configuration. Recently Sharma et
al. [61] proposed an approach to identify bad smells in configuration files.

8 CONCLUSION AND FUTURE WORK

Most existing approaches(e.g., Locus [73], BRTracer [76], BLUIR [58]) in fault localization focus on test failures
or bug reports and source code or other single type of files for fault localization. By contrast, there are much less
research on the fault localization of build scripts and repair. A more realistic scenario in practice is that multiple
types of failures happen simultaneously and can be ascribed to multiple types of files. Our analysis of localization
CI failure with BLUIR and Locus suggests that the approaches can localize CI failures to a certain extent but are
not fully optimized to localize CI failures: In this research work, we proposed the first unified fault localization
approach that considers both source code and build script to localize the repair for continuous integration. Our
approach works on top of classical IR-based approach with query and search space optimization based on build
configuration and CI log analysis, and generates suspicion ranking of faulty files including both source code and
build script. Our evaluation on 600 real CI failure shows that UniLoc can localize faulty files with MRR as 0.49,
MAP as 0.36 and NDCG as 0.54, which outperforms baseline approaches for all types of failures.

In the future, we plan to implement file level build dependency graphs to filter out irrelevant files in search
space. File-based build dependency graph with change history might help us reduce search space dramatically.
Apart from that, we plan to apply more advanced IR-based searching approaches to find better ranking. Our
experiment results show that query optimization is still a key challenge of applying IR-based FL approaches to CI
scenarios, so we plan to develop more advanced techniques on query optimization. Moreover, we are planning to
expand our fault localization approach to the source code and build script block level to assist developers and
automatic repair approaches better. Finally, beyond source code and build scripts there are also other types of
files to be involved during software repair, especially in other scenarios. For example, in the fault localization of
web applications, we need to consider html files, css files, client-side JavaScript files and server side source code.
We plan to adapt our technique to more scenarios with heterogeneous bug locations.

ACKNOWLEDGMENTS

This material is based in part upon work supported by National Science Foundation awards CSPECC-1736209,
CCF-1846467, CCF-2007718, CNS-2221843, CCF-1845446, CCF-2006278 and CCF-2152819.

ACM Trans. Softw. Eng. Methodol.



26

« Hassan, et al.

REFERENCES

(1]

(12]

(13]

(14]

(15]

16]

2018. Ant. https://ant.apache.org/. Accessed: 2018-08-18.

2018. Ivy. http://ant.apache.org/ivy/. Accessed: 2018-08-18.

2018. Lucene. http://lucene.apache.org/. Accessed: 2018-08-18.

2018. Maven. https://maven.apache.org/. Accessed: 2018-08-18.

2018. PMD. https://pmd.github.io/. Accessed: 2018-08-18.

2019. An Introduction to CI/CD Best Practices. https://www.digitalocean.com/community/tutorials/an-introduction-to-ci-cd-best-
practices.

2019. Why Continuous Integration Doesn’t Work. https://devops.com/continuous-integration-doesnt-work/.

2022. Improving the Efficiency of CI with Uber-commits. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1126&context=
computerscidiss. Accessed: 2022-10-27.

2022. Locus Implementation. https://github.com/justinwm/Locus/. Accessed: 2022-10-27.

R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. 2006. An Evaluation of Similarity Coefficients for Software Fault Localization. In 2006
12th Pacific Rim International Symposium on Dependable Computing (PRDC’06). 39-46. https://doi.org/10.1109/PRDC.2006.18

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-Based Multiple Fault Localization. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering (ASE "09). IEEE Computer Society, Washington, DC, USA, 88-99.
https://doi.org/10.1109/ASE.2009.25

B. Adams, H. Tromp, K. de Schutter, and W. de Meuter. 2007. Design recovery and maintenance of build systems. In 2007 IEEE International
Conference on Software Maintenance. 114-123. https://doi.org/10.1109/ICSM.2007.4362624

Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2014. Fault Localization for Build Code Errors in Makefiles. In Companion
Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE Companion 2014). ACM, New York, NY,
USA, 600-601. https://doi.org/10.1145/2591062.2591135

Nasreddine Aoumeur and Gunter Saake. 2004. Dynamically Evolving Concurrent Information Systems Specification and Validation: A
Component-based Petri Nets Proposal. Data Knowl. Eng. 50, 2 (Aug. 2004), 117-173. https://doi.org/10.1016./j.datak.2003.10.005
Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou. 2007. Using FindBugs on Production Software.
In Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications Companion (Montreal,
Quebec, Canada) (OOPSLA °07). ACM, New York, NY, USA, 805-806. https://doi.org/10.1145/1297846.1297897

Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A Learning-to-rank Based Fault Localization Approach Using Likely
Invariants. In Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbr&#252;cken, Germany) (ISSTA
2016). ACM, New York, NY, USA, 177-188. https://doi.org/10.1145/2931037.2931049

Brenda S Baker. 1999. Parameterized diff. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 854-855.

Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A software architect’s perspective. Addison-Wesley Professional.

M. Beller, G. Gousios, and A. Zaidman. 2017. TravisTorrent: Synthesizing Travis CI and GitHub for Full-Stack Research on Continuous
Integration. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories. 447-450.

Tung Dao, Max Wang, and Na Meng. 2021. Exploring the Triggering Modes of Spectrum-Based Fault Localization: An Industrial Case. In
2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). 406-416. https://doi.org/10.1109/ICST49551.2021.00052
Tung Dao, Lingming Zhang, and Na Meng. 2017. How Does Execution Information Help with Information-retrieval Based Bug
Localization?. In Proceedings of the 25th International Conference on Program Comprehension (Buenos Aires, Argentina) (ICPC ’17). IEEE
Press, Piscataway, NJ, USA, 241-250. https://doi.org/10.1109/ICPC.2017.29

T. Dao, L. Zhang, and N. Meng. 2017. How Does Execution Information Help with Information-Retrieval Based Bug Localization?. In
2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC). 241-250. https://doi.org/10.1109/ICPC.2017.29

Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and Emerson Murphy-Hill. 2017. Just-in-time Static
Analysis. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (Santa Barbara, CA, USA)
(ISSTA 2017). ACM, New York, NY, USA, 307-317. https://doi.org/10.1145/3092703.3092705

Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration: improving software quality and reducing risk. Pearson
Education.

Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. 2018. Noise and Heterogeneity in Historical Build Data: An
Empirical Study of Travis CI. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier,
France) (ASE 2018). Association for Computing Machinery, New York, NY, USA, 87-97. https://doi.org/10.1145/3238147.3238171
Taher Ghaleb, Daniel Costa, Ying Zou, and Ahmed E. Hassan. 2019. Studying the Impact of Noises in Build Breakage Data. IEEE
Transactions on Software Engineering (08 2019), 1-14. https://doi.org/10.1109/TSE.2019.2941880

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (Jan 2012), 54-72. https://doi.org/10.1109/TSE.2011.104

ACM Trans. Softw. Eng. Methodol.



(28]

[29]

(30]

(31]

(32
(33]

—

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

UniLoc: Unified Fault Localization of Continuous Integration Failures « 27

F. Hassan, S. Mostafa, E. S. L. Lam, and X. Wang. 2017. Automatic Building of Java Projects in Software Repositories: A Study on
Feasibility and Challenges. In 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM).
38-47. https://doi.org/10.1109/ESEM.2017.11

Foyzul Hassan and Xiaoyin Wang. 2017. Change-Aware Build Prediction Model for Stall Avoidance in Continuous Integration (ESEM
’17). IEEE Press, 157-162. https://doi.org/10.1109/ESEM.2017.23

Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An Automatic Approach to History-driven Repair of Build Scripts. In Proceedings
of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 1078-1089.
https://doi.org/10.1145/3180155.3180181

Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig. 2017. Trade-Offs in Continuous Integration:
Assurance, Security, and Flexibility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA, 197-207. https://doi.org/10.1145/3106237.3106270
Stephen C Johnson. 1977. Lint, a C program checker. Citeseer.

James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Tarantula Automatic Fault-localization Technique. In Proceedings
of the 20th IEEE/ACM International Conference on Automated Software Engineering (Long Beach, CA, USA) (ASE 05). ACM, New York,
NY, USA, 273-282. https://doi.org/10.1145/1101908.1101949

D. Kim, J. Nam, J. Song, and S. Kim. 2013. Automatic patch generation learned from human-written patches. In 2013 35th International
Conference on Software Engineering (ICSE). 802-811. https://doi.org/10.1109/ICSE.2013.6606626

Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller. 2007. Predicting Faults from Cached History. In
Proceedings of the 29th International Conference on Software Engineering (ICSE °07). IEEE Computer Society, USA, 489-498. https:
//doi.org/10.1109/ICSE.2007.66

Yigit Kiiciik, Tim AD Henderson, and Andy Podgurski. 2021. Improving fault localization by integrating value and predicate based
causal inference techniques. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 649-660.

Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. 2015. Information Retrieval and Spectrum Based Bug Localization: Better Together.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). ACM, New York,
NY, USA, 579-590. https://doi.org/10.1145/2786805.2786880

Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung, and Yves Le Traon. 2018. Bench4BL: Reproducibility Study on the
Performance of IR-based Bug Localization. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis (Amsterdam, Netherlands) (ISSTA 2018). ACM, New York, NY, USA, 61-72. https://doi.org/10.1145/3213846.3213856
Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung, and Yves Le Traon. 2018. Bench4BL: Reproducibility Study
on the Performance of IR-Based Bug Localization. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Amsterdam, Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY, USA, 61-72.
https://doi.org/10.1145/3213846.3213856

Yi Li, Shaohua Wang, and Tien Nguyen. 2021. Fault localization with code coverage representation learning. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 661-673.

Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. 2005. SOBER: Statistical Model-based Bug Localization. In Proceedings
of the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Lisbon, Portugal) (ESEC/FSE-13). ACM, New York, NY, USA, 286-295. https://doi.org/10.1145/1081706.1081753
Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning Correct Code. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA,
298-312. https://doi.org/10.1145/2837614.2837617

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang. 2021. Boosting coverage-based fault
localization via graph-based representation learning. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 664—676.

Lucia LUCIA, Ferdian Thung, David Lo, and Lingxiao Jiang. 2012. Are faults localizable? (2012).

Christian Macho, Shane McIntosh, and Martin Pinzger. 2016. Predicting Build Co-Changes with Source Code Change and Commit
Categories. In Proc. of the International Conference on Software Analysis, Evolution, and Reengineering (SANER). 541-551.

C. Macho, S. McIntosh, and M. Pinzger. 2018. Automatically repairing dependency-related build breakage. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 106-117.

Shane Mcintosh, Bram Adams, and Ahmed E. Hassan. 2012. The Evolution of Java Build Systems. Empirical Softw. Engg. 17, 4-5 (Aug.
2012), 578-608. https://doi.org/10.1007/s10664-011-9169-5

Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E. Hassan. 2016. Identifying and Understanding Header File Hotspots
in C/C++ Build Processes. Automated Software Engineering 23, 4 (2016), 619-647.

Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and Ahmed E. Hassan. 2015. A Large-Scale Empirical Study of
the Relationship between Build Technology and Build Maintenance. Empirical Software Engineering 20, 6 (2015), 1587-1633.

ACM Trans. Softw. Eng. Methodol.



28 « Hassan, et al.

[50] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022. Improving fault localization and program repair
with deep semantic features and transferred knowledge. In Proceedings of the 44th International Conference on Software Engineering.
1169-1180.

[51] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. 2017. PerfRanker: Prioritization of Performance Regression Tests for Collection-Intensive
Software. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (Santa Barbara, CA, USA)
(ISSTA 2017). Association for Computing Machinery, New York, NY, USA, 23-34. https://doi.org/10.1145/3092703.3092725

[52] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its Variations. Algorithmica 1 (1986), 251-266.

[53] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. 2010. Falcon: Fault Localization in Concurrent Programs. In Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape Town, South Africa) (ICSE '10). ACM, New York, NY,
USA, 245-254. https://doi.org/10.1145/1806799.1806838

[54] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The Strength of Random Search on Automated Program
Repair. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE 2014). ACM, New York, NY,
USA, 254-265. https://doi.org/10.1145/2568225.2568254

[55] Mohammad Masudur Rahman and Chanchal K. Roy. 2018. Improving IR-based Bug Localization with Context-aware Query Reformulation.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New York, NY, USA, 621-632. https://doi.org/10.1145/3236024.
3236065

[56] T.Rausch, W. Hummer, P. Leitner, and S. Schulte. 2017. An Empirical Analysis of Build Failures in the Continuous Integration Workflows
of Java-Based Open-Source Software. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). 345-355.

[57] Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. 2018. Automated Localization for Unreproducible Builds. In Proceedings of the
40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 71-81. https:
//doi.org/10.1145/3180155.3180224

[58] R.K. Saha, M. Lease, S. Khurshid, and D. E. Perry. 2013. Improving bug localization using structured information retrieval. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE). 345-355. https://doi.org/10.1109/ASE.2013.6693093

[59] Mark Santolucito, Jialu Zhang, Ennan Zhai, Jirgen Cito, and Ruzica Piskac. 2022. Learning CI Configuration Correctness for Early
Build Feedback. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 1006—-1017. https:
//doi.org/10.1109/SANER53432.2022.00118

[60] Qusay Idrees Sarhan, Attila Szatmari, Rajmond Téth, and Arpad Beszedes. 2021. CharmFL: A fault localization tool for Python. In 2021
IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 114-119.

[61] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your Configuration Code Smell?. In Proceedings of the 13th
International Conference on Mining Software Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 189-200. https:
//doi.org/10.1145/2901739.2901761

[62] Matus Sulir and Jaroslav Porubén. 2016. A Quantitative Study of Java Software Buildability. In Proceedings of the 7th International
Workshop on Evaluation and Usability of Programming Languages and Tools (Amsterdam, Netherlands) (PLATEAU 2016). ACM, New York,
NY, USA, 17-25. https://doi.org/10.1145/3001878.3001882

[63] A.Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen. 2012. SYMake: a build code analysis and refactoring tool for makefiles. In
2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering. 366-369. https://doi.org/10.1145/
2351676.2351749

[64] C. Tantithamthavorn, R. Teekavanich, A. Thara, and K. Matsumoto. 2013. Mining A change history to quickly identify bug locations : A
case study of the Eclipse project. In 2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). 108-113.

[65] Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, and Vahab Mirrokni. 2015. Automated Decomposition of Build Targets. In
Proceedings of the 37th International Conference on Software Engineering - Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway, NJ,
USA, 123-133. http://dl.acm.org/citation.cfm?id=2818754.2818772

[66] Rijnard van Tonder and Claire Le Goues. 2018. Static Automated Program Repair for Heap Properties. In Proceedings of the 40th
International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 151-162. https:
//doi.org/10.1145/3180155.3180250

[67] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C. Gall, and Massimiliano Di Penta. 2020. Configuration Smells in Continuous
Delivery Pipelines: A Linter and a Six-Month Study on GitLab (ESEC/FSE 2020). Association for Computing Machinery, New York, NY,
USA, 327-337. https://doi.org/10.1145/3368089.3409709

[68] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaidman, M. Di Penta, and S. Panichella. 2017. A Tale of CI Build

Failures: An Open Source and a Financial Organization Perspective. In 2017 IEEE International Conference on Software Maintenance and

Evolution (ICSME). 183-193.

Qiangian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the Usefulness of IR-based Fault Localization Techniques. In

Proceedings of the 2015 International Symposium on Software Testing and Analysis (Baltimore, MD, USA) (ISSTA 2015). ACM, New York,

NY, USA, 1-11. https://doi.org/10.1145/2771783.2771797

(69

[’

ACM Trans. Softw. Eng. Methodol.



[70]

(71]

[72]

(73]
(74]

[75]

(78]
(79]

(80]

(81]

(82]

(83]

UniLoc: Unified Fault Localization of Continuous Integration Failures + 29

Shaowei Wang and David Lo. 2014. Version History, Similar Report, and Structure: Putting Them Together for Improved Bug Localization.
In Proceedings of the 22nd International Conference on Program Comprehension (Hyderabad, India) (ICPC 2014). Association for Computing
Machinery, New York, NY, USA, 53-63. https://doi.org/10.1145/2597008.2597148

Shaowei Wang and David Lo. 2016. AmaLgam+: Composing Rich Information Sources for Accurate Bug Localization: Composing Rich
Information Sources for Accurate Bug Localization. Journal of Software: Evolution and Process 28 (10 2016). https://doi.org/10.1002/smr.
1801

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware Patch Generation for Better Automated
Program Repair. In Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New
York, NY, USA, 1-11. https://doi.org/10.1145/3180155.3180233

M. Wen, R. Wu, and S. Cheung. 2016. Locus: Locating bugs from software changes. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). 262-273.

R. Wen, D. Gilbert, M. G. Roche, and S. McIntosh. 2018. BLIMP Tracer: Integrating Build Impact Analysis with Code Review. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME). 685-694.

David Widder, Michael Hilton, Christian Késtner, and Bogdan Vasilescu. 2018. I'm Leaving You, Travis: A Continuous Integration
Breakup Story. In International Conference on Mining Software Repositories (MSR). ACM, 165-169. https://doi.org/10.1145/3196398.3196422
C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. 2014. Boosting Bug-Report-Oriented Fault Localization with Segmentation
and Stack-Trace Analysis. In 2014 IEEE International Conference on Software Maintenance and Evolution. 181-190. https://doi.org/10.
1109/ICSME.2014.40

Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014. CrashLocator: Locating Crashing Faults Based on Crash
Stacks. In Proceedings of the 2014 International Symposium on Software Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). ACM, New
York, NY, USA, 204-214. https://doi.org/10.1145/2610384.2610386

X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan. 2015. Cross-project build co-change prediction. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER). 311-320. https://doi.org/10.1109/SANER.2015.7081841

J. Xuan and M. Monperrus. 2014. Learning to Combine Multiple Ranking Metrics for Fault Localization. In 2014 IEEE International
Conference on Software Maintenance and Evolution. 191-200. https://doi.org/10:1109/ICSME.2014.41

Jifeng Xuan and Martin Monperrus. 2014. Test Case Purification for Improving Fault Localization. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). ACM, New York, NY, USA,
52-63. https://doi.org/10.1145/2635868.2635906

Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to Rank Relevant Files for Bug Reports Using Domain Knowledge. In Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). ACM, New
York, NY, USA, 689-699. https://doi.org/10.1145/2635868.2635874

Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora, Harald Gall, and Massimiliano Di Penta. 2020. An empirical
characterization of bad practices in continuous integration. Empirical Software Engineering 25, 2 (2020), 1095-1135.

J. Zheng, L. Williams, N. Nagappan, W. Snipes, ]. P. Hudepohl, and M. A. Vouk. 2006. On the value of static analysis for fault detection
in software. IEEE Transactions on Software Engineering 32, 4 (April 2006), 240-253. https://doi.org/10.1109/TSE.2006.38

[84] J. Zhou, H. Zhang, and D. Lo. 2012. Where should the bugs be fixed? More accurate information retrieval-based bug localization based

(85]

on bug reports. In 2012 34th International Conference on Software Engineering (ICSE). 14-24. https://doi.org/10.1109/ICSE.2012.6227210
D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang. 2019. An Empirical Study of Fault Localization Families and Their Combinations.
IEEE Transactions on Software Engineering (2019), 1-1.

ACM Trans. Softw. Eng. Methodol.



	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Information Retrieval (IR)
	2.3 Project Dependencies

	3 Approach
	3.1 Query Optimization
	3.1.1 Query Optimization with Text Diff
	3.1.2 Noise Removal with Text Similarity

	3.2 Search Space Optimization
	3.2.1 Dependency-Based Sub-Project Selection
	3.2.2 AST-Based Entity Extraction

	3.3 Similarity Score-Based File Ranking
	3.4 Ranking Adjustment

	4 Experiments and Analysis
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Research Questions
	4.4 Results

	5 Threats to Validity
	6 Discussions
	6.1 Implications
	6.2 Research Directions

	7 Related Works
	7.1 Automatic Bug Localization
	7.2 Fault Localization Supporting Automatic Program Repair
	7.3 Build Script Analysis

	8 Conclusion and Future Work
	References

