
PExReport-Maven: Creating Pruned Executable Cross-Project
Failure Reports in Maven Build System

Sunzhou Huang
sunzhou.huang@utsa.edu

University of Texas at San Antonio

San Antonio, Texas, USA

Xiaoyin Wang
xiaoyin.wang@utsa.edu

University of Texas at San Antonio

San Antonio, Texas, USA

ABSTRACT

Modern Java software development extensively depends on existing

libraries written by other developer teams from the same or a differ-

ent organization. When a developer executes the test, the execution

trace may go across the boundaries of multiple dependencies and

create cross-project failures (CPFs). A readable, executable, and con-

cise CPF report may enable the most effective communication, but

creating such a report is often challenging in Java ecosystems. We

developed PExReport-Maven to automatically create the ideal CPF

reports in the Maven build system. PExReport-Maven leverages the

Maven build system to prune source code, dependencies, and the

build environment to create a concise stand-alone executable CPF

reproduction package from the original CPF project. The repro-

duction package includes the source code, dependencies, and build

environment necessary to reproduce the CPF, making it an ideal

CPF report. We performed an evaluation on 74 software project

issues with 198 cross-project failures, and the evaluation results

show that PExReport can create pruned reproduction packages for

184 out of the 198 test failures in our dataset, with an average re-

duction of 72.97% in Java classes. A future study will be conducted

based on user feedback from using this tool to report real-world

CPFs. PExReport-Maven is publicly available at https://github.com/

wereHuang/PExReport-Maven. The tool demo is available on the

PExReport website: https://sites.google.com/view/pexreport/home.

CCS CONCEPTS

• Software and its engineering→ Software maintenance tools.

KEYWORDS

cross-project failure, test failure, failure report, maven, failure re-

production

ACM Reference Format:

Sunzhou Huang and Xiaoyin Wang. 2023. PExReport-Maven: Creating

Pruned Executable Cross-Project Failure Reports in Maven Build System. In

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM,

New York, NY, USA, 4 pages. https://doi.org/10.1145/3597926.3604929

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3604929

1 INTRODUCTION

Modern Java software development extensively depends on exist-

ing libraries written by other developer teams. When a developer

executes the test, the execution trace may go across the boundaries

of multiple dependencies and create cross-project failures (CPFs).

Typically, the client and third-party developers do not share depen-

dencies or the test environment, which makes reporting CPFs more

challenging. None of the existing techniques is able to produce

an ideal CPF report that is simultaneously executable, readable,

and concise. In particular, code portions generated from program

slicing techniques [5, 10] are typically not compilable or executable

because they do not consider environment dependencies beyond

source code. Software debloating [6, 7] techniques are applied di-

rectly to binary code, so the corresponding source code is difficult

to acquire. Packaging the whole project will guarantee failure re-

production but lead to high storage and network transmission costs,

as well as noise during debugging. This creates the trilemma of the

cross-project failure report, as shown in Figure 1.

To solve the CPF trilemma, we designed a framework called

PExReport in our previous work [8]. We implemented PExReport

in Maven [1] build system to create a tool called PExReport-Maven

for solving the trilemma in the Java ecosystem. In this paper, we

reveal additional implementation details with a concrete example,

describe the tool’s anticipated users, and propose a plan for future

study based on user feedback.

Conciseness

Executability

Readability

PExReport

Program Slicing

Figure 1: Cross-Project Failure Report Trilemma

2 PEXREPORT-MAVEN DESCRIPTION

2.1 Overview

Figure 2 shows an overview of PExReport-Maven’s workflow. The

input to PExReport-Maven is a failed test case from an existing

Maven build environment, and the output is a pruned stand-alone

executable failure report. PExReport contains two major phases:

the collection phase to collect information about necessary Java

source code, JAR dependencies, and the Maven build environment

for re-executing the failed test case, and the reconstruction phase

to reconstruct a stand-alone Maven project for the failed test case

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1523

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Sunzhou Huang and Xiaoyin Wang

Failure

Traces

A Pruned Executable

Failure Report

A Failed Test Case

Resources
Monitor

Static Analyzer

Dynamic Tracer

Hybrid Backward Failure Tracing

Static Analyzer

Compile TestCompile Test

Compile
On-demand
TestCompile

On-demand
Compile

Build Config

Analyzer

Source Roots
Tracer

Failure Report

Creator Build Config
Extractor

Resources
Extractor

Generated
Code

Extractor

Dependencies

Extractor

Source Code

Extractor

Collection Phase

Reconstruction Phase

Auto Validation

Figure 2: PExReport-Maven Workflow

based on the collected information. The failure traces are the col-

lected information from a failed test case in the first phase. The

arrows show the information flow between each component of

PExReport. The reconstructed Maven project for failure reporting

will be automatically validated by checking whether exactly the

same error messages are triggered as in the original failure. Once

the project is validated, it can serve as a reproduction package of the

original failed test case and will be reported as a pruned executable

failure report to the developers of dependency code.

2.2 Core Maven Phases for the Lifecycle of Test

Failures

PExReport-Maven is designed based on the core phases of the

Maven build system involved in the lifecycle of test failures. [4]

These phases are generally executed in the order they are presented,

but some phases may be omitted if not required for the current

project.

• GenerateSources (optional): generate any source code for

inclusion in compilation.

• ProcessResources (optional): copy and process the resources

into the destination directory.

• Compile (mandatory): compile the source code of the project.

• TestCompile (mandatory): compile the test source code into

the test destination directory.

• Test (mandatory): run tests using a suitable unit testing

framework.

The three mandatory phases, namely Compile, TestCompile

and Test, are the basic steps to reproduce a test failure used by

Maven. We noticed that compile and test-compile are both used

to compile source code. The main reason is to make the software

source code independent of the test source code. Code generation

and resource management are quite popular in complex real-world

Java applications. Although they are optional tasks, we should not

underestimate their role in reproducing real-world failures.

Figure 3 is a concrete example that shows the lifecycle of a Java

test failure in the Maven build system. This example only involves

sample Java source code and JAR dependencies. The Generate-

Sources and ProcessResources are excluded for simplicity.

• Compile: Java compiler compiles all source code in the left

rounded rectangle (red) by referencing JARs.

• TestCompile: Java compile compiles all test source code in

the middle rounded rectangle (blue) by referencing classes

of Compile task and test JARs.

• Test: In the right rounded rectangle (orange), the JVM runs

ClientTest.clientTestCase test by loading classes from Compile

and test tasks.

2.3 Hybrid Backward Failure Tracing

In the collection phase, the base component is hybrid backward

failure tracing, a three-step analysis that traces failure-related Java

source code and JAR dependencies (Java classes or Bytecode). This

component compiles and executes the failed test case in its original

Maven build environment, and tracks Java class usage at Test, Test-

Compile and Compile core Maven phases. These three phases are

essential for any test code to be compiled and executed, as shown

in Figure 3.

The workflow of hybrid backward failure tracing is shown in the

top part of Figure 2. In build process order, the compiled Java classes

in Compile task are provided to the succeeding testCompile task as

dependencies; after that, the compiled Java classes of testCompile

are loaded to test task for execution. The build process must be

irreversible to ensure that the Java classes that compile before them

never depend on those that compile after them. If a test failure

occurs, all the failure-related Java classes can be tracked in the

reversed build process order. Since failure happens at the end of

the build process (test task), backward tracing can be performed to

obtain the failure dependency tree.

The detailed tracing of the failure example in Figure 3 is shown

in the following:

• Round 1: executes Compile (all source) and TestCompile (all

test source) tasks, then run

ClientTest.clientTestCase in Test task. The dynamic tracer

component records all dynamically loaded classes in the Test

task, accordingly.

– Input: ClientTest.clientTestCase

– Output Traces:

∗ From TestCompile: ClientTest, ClientTestHelp (dynamic)

∗ From Compile: ClientClass

∗ From Internal: ClassForExternal (client-internal-util.jar)

∗ From External: ClassLibraryFailure (library-failure.jar)

• Round 2: executes Compile task, and TestCompile

1524

PExReport-Maven: Creating Pruned Executable Cross-Project Failure Reports in Maven Build System ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

ClientTest.clientTestCase
>JVM dynamic class loading

From TestCompile:
ClientTest.class
ClientTestHelp.class

From Compile：
ClientClass.class

From Internal：
...jar: ClassForExternal.class

From External：
...jar: ClassLibraryFailure.class

Test

client-internal-core.jar

client-internal-util.jar

public class ClassForExternal{
private ClassLibraryFailure library;
public methodForExternal(){

library.methodLibraryFailure();}}

public class ClassForCore{}

ClientCore.java

public class ClientCore(){}

ClientClass.java

public class ClientClass(){
private ClassForExternal util;
public methodForInternal(){

util.methodForExternal();}}

ClientTest.java

public class ClientTest(){
private ClientClass client;
@Test
public clientTestCase(){

Class.forName("ClientTestHelp");
client.methodForInternal();}}

library-failure.jar

public class ClassLibraryFailure(){
public methodLibraryFailure();}

ClientTestHelp.java

public class ClientTestHelp(){
private methodNeverInvoke(){

private ClassForHelp help;}}
ClassForHelp.java

class ClassForHelp

Compile

TestCompile

client-internal-help.jar

class InternalHelp()

Figure 3: Maven Test Failure Example

(ClientTest.java, ClientTestHelp.java) task. The static analyzer

component records all referred classes in TestCompile task,

accordingly.

– Input: Traces from Round 1

– Output Traces:

∗ From TestCompile: ClientTest, ClientTestHelp (dynamic)

∗ From Compile: ClientClass, ClassForHelp (static)

∗ From Internal: ClassForExternal (client-internal-util.jar)

∗ From External ClassLibraryFailure (library-failure.jar)

• Round 3: executes Compile task (ClientClass.java,

ClassForHelp.java) task. The static analyzer component records

all referred classes in Compile task, accordingly.

– Input: Traces from Round 2

– Output Traces:

∗ From TestCompile: ClientTest, ClientTestHelp (dynamic)

∗ From Compile: ClientClass, ClassForHelp (static)

∗ From Internal: ClassForExternal (client-internal-util.jar

), InternalHelp (client-internal-help.jar)

∗ From External: ClassLibraryFailure (library-failure.jar)

2.4 Enhancement Components

In addition to the base component (hybrid backward failure tracing),

our tool also consists of three enhancement components to further

reconstruct a reliable build environment.

• Handling of the build configuration. In Maven, all work

is done by plugins, but most plugins are irrelevant for repro-

ducing failure. The Build Configuration Analyzer fetches the

effective build configuration (help:effective-pom [3]), which

Maven uses to build the failed test at run time. The effective

POM gathers all build configuration values scattered in all

build configuration files and resolves configuration value

overwriting among multiple configuration files based on the

nearest definition for resolving dependencies. However, the

effective POM is still redundant for reproducing the failed

test compared with the required configuration values of the

three core phases. Since phases in the Maven build process

are performed by various plugins and the plugins can be

attached to different build phases (e.g., the Java compiler

plug-in can be attached to the Compile and TestCompile

phases), we further leverage the attachment relationship to

identify all the plugins that are attached to the three core

build phases. It also excludes code-style checking and analy-

sis plugins because they do not directly affect compilation

or testing. The build configuration extractor collects the con-

figuration information from these plugins and updates the

failure reproduction package.

• Handling of resource files. In the Linux kernel, the ino-

tify API provides a mechanism for monitoring filesystem

events. We use Pyinotify [2], a Python module that wraps

the inotify API, to monitor all resource activities under the

project scope. As shown in Figure 2, the resource monitor

only outputs files accessed at Test phase because the Process

resources phase copies all resource files to the target folder.

For necessary resource files accessed during the compila-

tion process (e.g., templates of generated source code), we

specially handled them by the Generated Code Extractor.

Our resource monitor also ignores all files and directories

generated during the build or test process because these files

should not be included in the reproduction package (unnec-

essary and causing path conflicts). For the files copied to the

target location from source locations, we do not consider

them generated files because the Resource Monitor can trace

back to their source copies in the original project.

• Handling of source code generation. The Maven build

process may generate new source code in various ways, such

as by creating code from template files, generating parsing

code from syntax or XML files, or even directly fetching

source code from remote locations. Furthermore, code gener-

ation is often implemented in third-party tools and plugins.

To handle such high flexibility in code generation in a gen-

eral way, we omit the code generation process and directly

1525

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Sunzhou Huang and Xiaoyin Wang

include the generated source code in the failure reproduction

package. At GenerateSources phase, the build tools use source

code root paths (Source Roots) to locate all original and gen-

erated source code. In the Collection Phase, our Source Roots

Tracer tracks all the accessed source code root paths from

the debug information of compilation. Next, the Generated

Code Extractor utilizes the paths to identify the generated

source code and excludes all original source code. In addi-

tion, the build tools may also generate some source code

from code annotation processing. Our Generated Code Ex-

tractor excludes such code because it will cause compilation

conflicts.

3 ENVISIONED USERS

The following users can make use of PExReport-Maven:

• Developers of Java applications who use the Maven build

system and third-party libraries (open-source or proprietary)

can use our tool to report test failures.

• All software defect datasets suffer from software breakages

that are mostly related to software dependencies. Depen-

dency caching can effectively prevent software breakages

and ensure long-term reproducibility. [11] Because PExReport-

Maven can preserve Maven build environments (e.g., re-

quired dependency caching) and necessary portions of Java

projects for reproducing CPFs, our tool is useful for re-

searchers who want to share their CPF datasets with pruned

build environments. For example, our tool has been vali-

dated on the Sensor dataset, which is a dependency conflict

dataset. [8, 9]

4 USING THE TOOL

4.1 Download

PExReport have been uploaded to a open source repository on

GitHub. It can be download use following git command.

git clone https://github.com/wereHuang/PExReport-Maven

4.2 Create a Working Environment

(1) Use a Linux machine; the tool is verified in Ubuntu 22.04

LTS. This tool also supports containerized environments

with Linux host machines.

(2) Install Maven 3 and pip for Python3.

sudo apt update

&& sudo apt install maven python3-pip -y

(3) Install Python packages using requirements.txt under the

root folder of PExReport-Maven.

sudo pip install -r requirements.txt

(4) Install the customizedMavenArchetype for PExReport-Maven.

Change the working directory to pexreport-archetype, then

execute:

mvn clean install

(5) Install Java 8 (required for test)

sudo apt install openjdk-8-jdk -y

4.3 Command Line Usage

(1) A CPF can be triggered by the following Maven command:

mvn clean test -Dtest=TEST_NAME

(2) Pass the test name, path of the source project, group ID for

internal dependencies, and report name of output to per.py:

per.py -n TEST_NAME -s SOURCE -g GROUPID -t TARGET

(3) The CPF report named TARGET will be created, which is a

reproduction package for the original CPF. In the directory

of the generated CPF report, use the same Maven command

that triggered the original CPF to reproduce.

5 EVALUATION AND STUDIES

Our tool has been evaluated on executability and conciseness in

our prior work [8]. The evaluation of 74 software project issues

with 198 CPFs achieved a high reproduction rate for 184 out of 198

CPFs, with an average reduction rate of 72.97% on Java classes.

We plan to further collect user feedback to understand howmuch

our tool can help developers report real-world test failures. This

study could also assist us in answering the question, "How could

the community enhance this tool?"

6 CONCLUSIONS

An executable test case is one of the most desirable features of

failure reports. When reporting cross-project failures (CPFs) to li-

brary developers, a test case is even more helpful because code is

a natural way to describe interactions between library code and

client code. In this paper, we present PExReport-Maven, a tool to

automatically create pruned executable CPF reports for reporters

using the Maven build system, and solve the CPF report trilemma

in the Java ecosystem. The future study will be conducted based

on user feedback from using this tool for real-world test failure

reporting.

REFERENCES
[1] 2002. Apache Maven. https://maven.apache.org/.
[2] 2015. seb-m/pyinotify. https://github.com/seb-m/pyinotify.
[3] 2022. Apache Maven help:effective-pom. https://maven.apache.org/plugins/

maven-help-plugin/effective-pom-mojo.html.
[4] 2023. Introduction to the Build Lifecycle. https://maven.apache.org/guides/

introduction/introduction-to-the-lifecycle.html.
[5] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. In

Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation. 246–256.

[6] Bobby R Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung
Kim. 2020. Jshrink: In-depth investigation into debloating modern java applica-
tions. In Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
135–146.

[7] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
program debloating via reinforcement learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 380–394.

[8] Sunzhou Huang and Xiaoyin Wang. 2023. PExReport: Automatic Creation of
Pruned Executable Cross-Project Failure Reports. In Proceedings of the 45th Inter-
national Conference on Software Engineering.

[9] YingWang, RongxinWu, ChaoWang, MingWen, Yepang Liu, Shing-Chi Cheung,
Hai Yu, Chang Xu, and Zhi-liang Zhu. 2021. Will Dependency Conflicts Affect
My Program’s Semantics. IEEE Transactions on Software Engineering (2021).

[10] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[11] Hao-Nan Zhu and Cindy Rubio-González. 2023. On the Reproducibility of Soft-
ware Defect Datasets. In Proceedings of the 45th International Conference on
Software Engineering.

Received 2023-05-18; accepted 2023-06-08

1526

	Abstract
	1 Introduction
	2 PExReport-Maven DESCRIPTION
	2.1 Overview
	2.2 Core Maven Phases for the Lifecycle of Test Failures
	2.3 Hybrid Backward Failure Tracing
	2.4 Enhancement Components

	3 envisioned users
	4 using the tool
	4.1 Download
	4.2 Create a Working Environment
	4.3 Command Line Usage

	5 EVALUATION and Studies
	6 Conclusions
	References

