Check for
Updates

PExReport-Maven: Creating Pruned Executable Cross-Project
Failure Reports in Maven Build System

Sunzhou Huang
sunzhou.huang@utsa.edu
University of Texas at San Antonio
San Antonio, Texas, USA

ABSTRACT

Modern Java software development extensively depends on existing
libraries written by other developer teams from the same or a differ-
ent organization. When a developer executes the test, the execution
trace may go across the boundaries of multiple dependencies and
create cross-project failures (CPFs). A readable, executable, and con-
cise CPF report may enable the most effective communication, but
creating such a report is often challenging in Java ecosystems. We
developed PExReport-Maven to automatically create the ideal CPF
reports in the Maven build system. PExReport-Maven leverages the
Maven build system to prune source code, dependencies, and the
build environment to create a concise stand-alone executable CPF
reproduction package from the original CPF project. The repro-
duction package includes the source code, dependencies, and build
environment necessary to reproduce the CPF, making it an ideal
CPF report. We performed an evaluation on 74 software project
issues with 198 cross-project failures, and the evaluation results
show that PExReport can create pruned reproduction packages for
184 out of the 198 test failures in our dataset, with an average re-
duction of 72.97% in Java classes. A future study will be conducted
based on user feedback from using this tool to report real-world
CPFs. PExReport-Maven is publicly available at https://github.com/
wereHuang/PExReport-Maven. The tool demo is available on the
PExReport website: https://sites.google.com/view/pexreport/home.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools.

KEYWORDS

cross-project failure, test failure, failure report, maven, failure re-
production

ACM Reference Format:

Sunzhou Huang and Xiaoyin Wang. 2023. PExReport-Maven: Creating
Pruned Executable Cross-Project Failure Reports in Maven Build System. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’23), July 17-21, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3597926.3604929

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3604929

1523

Xiaoyin Wang
xiaoyin.wang@utsa.edu
University of Texas at San Antonio
San Antonio, Texas, USA

1 INTRODUCTION

Modern Java software development extensively depends on exist-
ing libraries written by other developer teams. When a developer
executes the test, the execution trace may go across the boundaries
of multiple dependencies and create cross-project failures (CPFs).
Typically, the client and third-party developers do not share depen-
dencies or the test environment, which makes reporting CPFs more
challenging. None of the existing techniques is able to produce
an ideal CPF report that is simultaneously executable, readable,
and concise. In particular, code portions generated from program
slicing techniques [5, 10] are typically not compilable or executable
because they do not consider environment dependencies beyond
source code. Software debloating [6, 7] techniques are applied di-
rectly to binary code, so the corresponding source code is difficult
to acquire. Packaging the whole project will guarantee failure re-
production but lead to high storage and network transmission costs,
as well as noise during debugging. This creates the trilemma of the
cross-project failure report, as shown in Figure 1.

To solve the CPF trilemma, we designed a framework called
PExReport in our previous work [8]. We implemented PExReport
in Maven [1] build system to create a tool called PExReport-Maven
for solving the trilemma in the Java ecosystem. In this paper, we
reveal additional implementation details with a concrete example,
describe the tool’s anticipated users, and propose a plan for future
study based on user feedback.

Executability

P Conciseness

Readability <@

Program Slicing

Figure 1: Cross-Project Failure Report Trilemma

2 PEXREPORT-MAVEN DESCRIPTION
2.1 Overview

Figure 2 shows an overview of PExReport-Maven’s workflow. The
input to PExReport-Maven is a failed test case from an existing
Maven build environment, and the output is a pruned stand-alone
executable failure report. PExReport contains two major phases:
the collection phase to collect information about necessary Java
source code, JAR dependencies, and the Maven build environment
for re-executing the failed test case, and the reconstruction phase
to reconstruct a stand-alone Maven project for the failed test case

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Collection Phase

Hybrid Backward Failure Tracing

Build Config

Test Analyzer

—\

Compile > TestC omp|le

-dcman

On-demand
Compile

Static Analyzer

=

|

Resources
Monitor

Source Roots
Tracer

IC!-I

A Failed Test Case

l

Auto Validation

I

Failure Report
Creator Build Config

Extractor

Source Code g A
Extractor
Resources
Extractor

Dependencies
Extractor

Generated
Code
Extractor

A Pruned Executable
Failure Report

)

Figure 2: PExReport -Maven Workﬂow

based on the collected information. The failure traces are the col-
lected information from a failed test case in the first phase. The
arrows show the information flow between each component of
PExReport. The reconstructed Maven project for failure reporting
will be automatically validated by checking whether exactly the
same error messages are triggered as in the original failure. Once
the project is validated, it can serve as a reproduction package of the
original failed test case and will be reported as a pruned executable
failure report to the developers of dependency code.

2.2 Core Maven Phases for the Lifecycle of Test
Failures

PExReport-Maven is designed based on the core phases of the
Maven build system involved in the lifecycle of test failures. [4]
These phases are generally executed in the order they are presented,
but some phases may be omitted if not required for the current
project.

e GenerateSources (optional): generate any source code for
inclusion in compilation.
ProcessResources (optional): copy and process the resources
into the destination directory.
Compile (mandatory): compile the source code of the project.
e TestCompile (mandatory): compile the test source code into
the test destination directory.
Test (mandatory): run tests using a suitable unit testing
framework.

1524

Sunzhou Huang and Xiaoyin Wang

The three mandatory phases, namely Compile, TestCompile
and Test, are the basic steps to reproduce a test failure used by
Maven. We noticed that compile and test-compile are both used
to compile source code. The main reason is to make the software
source code independent of the test source code. Code generation
and resource management are quite popular in complex real-world
Java applications. Although they are optional tasks, we should not
underestimate their role in reproducing real-world failures.

Figure 3 is a concrete example that shows the lifecycle of a Java
test failure in the Maven build system. This example only involves
sample Java source code and JAR dependencies. The Generate-
Sources and ProcessResources are excluded for simplicity.

e Compile: Java compiler compiles all source code in the left
rounded rectangle (red) by referencing JARs.

o TestCompile: Java compile compiles all test source code in
the middle rounded rectangle (blue) by referencing classes
of Compile task and test JARs.

o Test: In the right rounded rectangle (orange), the JVM runs
ClientTest.clientTestCase test by loading classes from Compile
and test tasks.

2.3 Hybrid Backward Failure Tracing

In the collection phase, the base component is hybrid backward
failure tracing, a three-step analysis that traces failure-related Java
source code and JAR dependencies (Java classes or Bytecode). This
component compiles and executes the failed test case in its original
Maven build environment, and tracks Java class usage at Test, Test-
Compile and Compile core Maven phases. These three phases are
essential for any test code to be compiled and executed, as shown
in Figure 3.

The workflow of hybrid backward failure tracing is shown in the
top part of Figure 2. In build process order, the compiled Java classes
in Compile task are provided to the succeeding testCompile task as
dependencies; after that, the compiled Java classes of testCompile
are loaded to test task for execution. The build process must be
irreversible to ensure that the Java classes that compile before them
never depend on those that compile after them. If a test failure
occurs, all the failure-related Java classes can be tracked in the
reversed build process order. Since failure happens at the end of
the build process (test task), backward tracing can be performed to
obtain the failure dependency tree.

The detailed tracing of the failure example in Figure 3 is shown
in the following:

e Round 1: executes Compile (all source) and TestCompile (all
test source) tasks, then run
ClientTest.clientTestCase in Test task. The dynamic tracer
component records all dynamically loaded classes in the Test
task, accordingly.
— Input: ClientTest.clientTestCase
— Output Traces:
From TestCompile: ClientTest, ClientTestHelp (dynamic)
From Compile: ClientClass
From Internal: ClassForExternal (client-internal-util.jar)
From External: ClassLibraryFailure (library-failure jar)
e Round 2: executes Compile task, and TestCompile

*

*

*

k

PExReport-Maven: Creating Pruned Executable Cross-Project Failure Reports in Maven Build System ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Compile

ClientClass java

public class ClientClass(){

TestCompile

~ Test

private ClassLibraryFailure library; @Test

public methodForExternal()(

private ClassForExternal util;
public methodForinternal(){
util.methodForExternal();}} 'd
l ClientTest java
client-internal-util jar
public class ClientTest()}{
public class ClassForExternal{ private ClientClass client;

public clientTestCase(}

library.methodLibraryFailure();}} 3:::? r:’;mz’;‘:(o"ncr:i;?;:;fgehi"): ClientTestHelp.class

ClientTest.clientTestCase
>JVM dynamic class loading

Erom TestCompile:
ClientTest.class

* public class ClassForCore{} : |:>

library-failure jar

H

ClientClass.class

|:> From Compile:

From Internal :

ClientTestHelp.java
public class ClassLibraryFailure(){

private methodNeverinvoke()}
private ClassForHelp help;}}

...jar: ClassForExternal.class

...jar: ClassLibraryFailure.class

public methodLibraryFailure();} public class ClientTestHelp(){
ClassForHelp.java
. ClientCore.java * | class ClassForHelp
: . A
* public class ClientCore(){} - l
[client-internal-help.jar
. client-internal-core.jar . class InternalHelp()

Figure 3: Maven Test Failure Example

(ClientTest.java, ClientTestHelp.java) task. The static analyzer
component records all referred classes in TestCompile task,
accordingly.
— Input: Traces from Round 1
- Output Traces:
% From TestCompile: ClientTest, ClientTestHelp (dynamic)
« From Compile: ClientClass, ClassForHelp (static)

« From Internal: ClassForExternal (client-internal-util.jar)
* From External ClassLibraryFailure (library-failure.jar)
e Round 3: executes Compile task (ClientClass.java,
ClassForHelp. java) task. The static analyzer component records
all referred classes in Compile task, accordingly.
— Input: Traces from Round 2
— Output Traces:
* From TestCompile: ClientTest, ClientTestHelp (dynamic)
« From Compile: ClientClass, ClassForHelp (static)
* From Internal: ClassForExternal (client-internal-util.jar
), InternalHelp (client-internal-help.jar)

« From External: ClassLibraryFailure (library-failure.jar)

2.4 Enhancement Components

In addition to the base component (hybrid backward failure tracing),
our tool also consists of three enhancement components to further
reconstruct a reliable build environment.

e Handling of the build configuration. In Maven, all work
is done by plugins, but most plugins are irrelevant for repro-
ducing failure. The Build Configuration Analyzer fetches the
effective build configuration (help:effective-pom [3]), which
Maven uses to build the failed test at run time. The effective
POM gathers all build configuration values scattered in all
build configuration files and resolves configuration value
overwriting among multiple configuration files based on the
nearest definition for resolving dependencies. However, the
effective POM is still redundant for reproducing the failed
test compared with the required configuration values of the

1525

three core phases. Since phases in the Maven build process
are performed by various plugins and the plugins can be
attached to different build phases (e.g., the Java compiler
plug-in can be attached to the Compile and TestCompile
phases), we further leverage the attachment relationship to
identify all the plugins that are attached to the three core
build phases. It also excludes code-style checking and analy-
sis plugins because they do not directly affect compilation
or testing. The build configuration extractor collects the con-
figuration information from these plugins and updates the
failure reproduction package.

Handling of resource files. In the Linux kernel, the ino-
tify API provides a mechanism for monitoring filesystem
events. We use Pyinotify [2], a Python module that wraps
the inotify APIL to monitor all resource activities under the
project scope. As shown in Figure 2, the resource monitor
only outputs files accessed at Test phase because the Process
resources phase copies all resource files to the target folder.
For necessary resource files accessed during the compila-
tion process (e.g., templates of generated source code), we
specially handled them by the Generated Code Extractor.
Our resource monitor also ignores all files and directories
generated during the build or test process because these files
should not be included in the reproduction package (unnec-
essary and causing path conflicts). For the files copied to the
target location from source locations, we do not consider
them generated files because the Resource Monitor can trace
back to their source copies in the original project.
Handling of source code generation. The Maven build
process may generate new source code in various ways, such
as by creating code from template files, generating parsing
code from syntax or XML files, or even directly fetching
source code from remote locations. Furthermore, code gener-
ation is often implemented in third-party tools and plugins.
To handle such high flexibility in code generation in a gen-
eral way, we omit the code generation process and directly

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

include the generated source code in the failure reproduction
package. At GenerateSources phase, the build tools use source
code root paths (Source Roots) to locate all original and gen-
erated source code. In the Collection Phase, our Source Roots
Tracer tracks all the accessed source code root paths from
the debug information of compilation. Next, the Generated
Code Extractor utilizes the paths to identify the generated
source code and excludes all original source code. In addi-
tion, the build tools may also generate some source code
from code annotation processing. Our Generated Code Ex-
tractor excludes such code because it will cause compilation
conflicts.

3 ENVISIONED USERS

The following users can make use of PExReport-Maven:

e Developers of Java applications who use the Maven build
system and third-party libraries (open-source or proprietary)
can use our tool to report test failures.

o All software defect datasets suffer from software breakages
that are mostly related to software dependencies. Depen-
dency caching can effectively prevent software breakages
and ensure long-term reproducibility. [11] Because PExReport-
Maven can preserve Maven build environments (e.g., re-
quired dependency caching) and necessary portions of Java
projects for reproducing CPFs, our tool is useful for re-
searchers who want to share their CPF datasets with pruned
build environments. For example, our tool has been vali-
dated on the Sensor dataset, which is a dependency conflict
dataset. [8, 9]

4 USING THE TOOL
4.1 Download

PExReport have been uploaded to a open source repository on
GitHub. It can be download use following git command.
git clone https://github.com/wereHuang/PExReport-Maven

4.2 Create a Working Environment

(1) Use a Linux machine; the tool is verified in Ubuntu 22.04
LTS. This tool also supports containerized environments
with Linux host machines.

(2) Install Maven 3 and pip for Python3.
sudo apt update
&& sudo apt install maven python3-pip -y

(3) Install Python packages using requirements. txt under the
root folder of PExReport-Maven.
sudo pip install -r requirements.txt

(4) Install the customized Maven Archetype for PExReport-Maven.

Change the working directory to pexreport-archetype, then
execute:

mvn clean install
(5) Install Java 8 (required for test)
sudo apt install openjdk-8-jdk -y

1526

Sunzhou Huang and Xiaoyin Wang

4.3 Command Line Usage
(1) A CPF can be triggered by the following Maven command:
mvn clean test -Dtest=TEST_NAME

(2) Pass the test name, path of the source project, group ID for
internal dependencies, and report name of output to per. py:

per.py -n TEST_NAME -s SOURCE -g GROUPID -t TARGET

(3) The CPF report named TARGET will be created, which is a
reproduction package for the original CPF. In the directory
of the generated CPF report, use the same Maven command
that triggered the original CPF to reproduce.

5 EVALUATION AND STUDIES

Our tool has been evaluated on executability and conciseness in
our prior work [8]. The evaluation of 74 software project issues
with 198 CPFs achieved a high reproduction rate for 184 out of 198
CPFs, with an average reduction rate of 72.97% on Java classes.

We plan to further collect user feedback to understand how much
our tool can help developers report real-world test failures. This
study could also assist us in answering the question, "How could
the community enhance this tool?"

6 CONCLUSIONS

An executable test case is one of the most desirable features of
failure reports. When reporting cross-project failures (CPFs) to li-
brary developers, a test case is even more helpful because code is
a natural way to describe interactions between library code and
client code. In this paper, we present PExReport-Maven, a tool to
automatically create pruned executable CPF reports for reporters
using the Maven build system, and solve the CPF report trilemma
in the Java ecosystem. The future study will be conducted based
on user feedback from using this tool for real-world test failure
reporting.

REFERENCES

[1] 2002. Apache Maven. https://maven.apache.org/.

[2] 2015. seb-m/pyinotify. https://github.com/seb-m/pyinotify.

[3] 2022. Apache Maven help:effective-pom. https://maven.apache.org/plugins/
maven-help-plugin/effective-pom-mojo.html.

[4] 2023. Introduction to the Build Lifecycle. https://maven.apache.org/guides/
introduction/introduction- to- the-lifecycle.html.

[5] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. In

Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language

Design and Implementation. 246-256.

Bobby R Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung

Kim. 2020. Jshrink: In-depth investigation into debloating modern java applica-

tions. In Proceedings of the 28th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering.

135-146.

[7] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
program debloating via reinforcement learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 380-394.

[8] Sunzhou Huang and Xiaoyin Wang. 2023. PExReport: Automatic Creation of
Pruned Executable Cross-Project Failure Reports. In Proceedings of the 45th Inter-
national Conference on Software Engineering.

[9] Ying Wang, Rongxin Wu, Chao Wang, Ming Wen, Yepang Liu, Shing-Chi Cheung,
Hai Yu, Chang Xu, and Zhi-liang Zhu. 2021. Will Dependency Conflicts Affect
My Program’s Semantics. IEEE Transactions on Software Engineering (2021).

[10] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352-357.

[11] Hao-Nan Zhu and Cindy Rubio-Gonzalez. 2023. On the Reproducibility of Soft-
ware Defect Datasets. In Proceedings of the 45th International Conference on
Software Engineering.

G

Received 2023-05-18; accepted 2023-06-08

	Abstract
	1 Introduction
	2 PExReport-Maven DESCRIPTION
	2.1 Overview
	2.2 Core Maven Phases for the Lifecycle of Test Failures
	2.3 Hybrid Backward Failure Tracing
	2.4 Enhancement Components

	3 envisioned users
	4 using the tool
	4.1 Download
	4.2 Create a Working Environment
	4.3 Command Line Usage

	5 EVALUATION and Studies
	6 Conclusions
	References

