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ABSTRACT

Precision nutrition is an emerging concept that aims to develop nu-
trition recommendations tailored to different people’s circumstances
and biological characteristics. Responses to dietary change and the
resulting health outcomes from consuming different diets may vary
significantly between people based on interactions between their
genetic backgrounds, physiology, microbiome, underlying health
status, behaviors, social influences, and environmental exposures.
On 11-12 January 2021, the National Institutes of Health convened
a workshop entitled “Precision Nutrition: Research Gaps and
Opportunities” to bring together experts to discuss the issues
involved in better understanding and addressing precision nutrition.
The workshop proceeded in 3 parts: part I covered many aspects of
genetics and physiology that mediate the links between nutrient in-
take and health conditions such as cardiovascular disease, Alzheimer
disease, and cancer; part Il reviewed potential contributors to
interindividual variability in dietary exposures and responses such
as baseline nutritional status, circadian rhythm/sleep, environmental
exposures, sensory properties of food, stress, inflammation, and the
social determinants of health; part III presented the need for systems
approaches, with new methods and technologies that can facilitate
the study and implementation of precision nutrition, and workforce

development needed to create a new generation of researchers. The
workshop concluded that much research will be needed before more
precise nutrition recommendations can be achieved. This includes
better understanding and accounting for variables such as age, sex,
ethnicity, medical history, genetics, and social and environmental
factors. The advent of new methods and technologies and the
availability of considerably more data bring tremendous opportunity.
However, the field must proceed with appropriate levels of caution
and make sure the factors listed above are all considered, and systems
approaches and methods are incorporated. It will be important to
develop and train an expanded workforce with the goal of reducing
health disparities and improving precision nutritional advice for all

Americans. Am J Clin Nutr 2022;116:1877-1900.
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Introduction

The importance of nutrition for health and disease prevention
is well established (1), and global dietary guidelines are
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established to guide impactful public health policy (2).
However, the practical question of what, when, and how to
eat to stay healthy and aid individuals in their quest to optimize
health is much more complex. As shown in Figure 1, many
factors require consideration, including individual differences
in disease risk, socio-environmental and cultural factors,
and biological, behavioral, physiological, and psychosocial
responses to dietary interventions. As defined by Maruvada
et al. (3), “Precision nutrition is defined as nutrition or
dietary guidance designed to optimize health, facilitate
disease prevention, and enhance therapeutic benefit through
molecular (metabolomic, genomic, proteomic, metagenomic)
profiling at the level of the individual.” Precision nutrition
aims to understand these complex interrelations to optimize
metabolic responses to diet and ultimately make sustainable and
targeted individual nutritional recommendations to prevent
and treat diseases and improve overall health and well-
being. This paper is not intended to be a comprehensive or
systematic review of the current status of precision nutrition
research. Rather, its objective is to summarize the specific
topics, concepts, and issues raised during presentations and
discussions during the NIH-sponsored “Research gaps and
opportunities in precision nutrition” workshop on 11-12
January 2021. Given the many recent developments in this field,
definitions of nutritional genomics, nutrigenomics/nutrigenetics,

personalized, and precision nutrition are evolving, and
different definitions have been presented (Supplemental
Table 1).
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Precision Nutrition in Diet-Related Chronic
Diseases

Chronic diseases [e.g., cardiovascular diseases (CVDs), can-
cers, diabetes, chronic respiratory diseases, and neurological
diseases], also known as noncommunicable diseases, result from
genetic, physiological, environmental, and behavioral factors. In
the words of Richard Lewontin (4), “There are no genetic factors
that can be studied independently of the environment, and there
are no environmental factors that function independently of the
genome.” Among the environmental risk factors, unhealthy diets
and sedentary lifestyles are associated with several metabolic
risk factors, such as increased blood glucose and lipids and
increased risk of hypertension and obesity, leading to CVDs.
These cardiometabolic risk factors can lead to CVD, the most
burdensome global noncommunicable disease.

A fundamental approach to controlling the increasing preva-
lence of noncommunicable diseases is to reduce their risk
factors. While the Dietary Guidelines for Americans (DGA) are
intended as a foundation for a healthy population and guide
government food and agricultural policy, the National Academies
of Science, Engineering, and Medicine (NASEM) report from
2017 entitled Redesigning the Process for Establishing the
Dietary Guidelines for Americans did indicate that, “Diet
constitutes an extremely complex system of exposure that is
known to influence health, and these modeling exercises can
help make sense of that complex system,” and the following
about the food pattern modeling used to inform the DGA: “the
heterogeneity of the population is largely not accounted for, such
as the distribution of requirements for energy and all nutrients,
widely varying food choices by numerous demographic factors,
and some food groups not being consumed by all Americans”
(5). During the first session of the workshop, participants
discussed precision nutrition concerning major chronic diseases,
including cardiometabolic diseases [e.g., type 2 diabetes (T2D)
and impaired glucose regulation] and CVD, cognitive decline,
and diet-related cancers. These topics were presented as examples
of the many areas of disease that are impacted by nutrition.

Nutrition and CVD phenotypes
Gene—diet interactions and CVD.

Nutrigenetics, or gene—diet interactions, are the forerunners
to precision nutrition initially defined for CVD-related traits.
Many studies have been reported showing gene—diet interactions
for intermediate conditions (e.g., hyperlipidemia, diabetes,
obesity, and hypertension) and CVD events. These studies
have been summarized in several reviews for different types
of experimental designs (observation and intervention) and
outcomes (intermediate CVD phenotypes and CVD outcomes)
(6). Hundreds of gene—diet studies support (7) the notion that
diet can modify genetic susceptibility to CVD. However, the
level of specific scientific evidence to achieve precision desired
remains too low to apply it in practice to individualize the
dietary recommendations needed to prevent CVD. Limitations
in the existing body of evidence include the small number
of studies that replicate the evidence in different populations
and the paucity of large phase III dietary intervention trials
testing gene—diet interactions, specifically those having CVD
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Precision Nutrition — Factors Associated with Interindividual
Variability in Responses to Diet
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FIGURE 1 Precision nutrition. Factors associated with interindividual variability in responses to diet.

incidence as the outcome. For those randomized controlled
trials (RCTs) focusing on cardiometabolic traits (e.g., weight
loss) no evidence was found that genotype—diet interaction is
a main determinant of obesity treatment success (8, 9). There
is some evidence from the Food4Me trial conducted in Europe
that personalized dietary interventions using biomarkers could
improve overall diet quality (10, 11). Several RCTs and other
experimental approaches have tested whether genetic testing or
other personalized dietary intervention approaches are useful
in improving compliance and improving diet quality (12—
21). However, the results are inconsistent, even at the level
of systematic reviews and meta-analysis (22-24). Therefore,
beyond the need to further conduct such interventions, additional
meta-analyses of gene—diet interactions of existing randomized
intervention trials and prospective cohorts involving similar
dietary interventions and genetic markers are needed.

Epigenetics, dietary response, and CVD-related traits.

Epigenetic responses (DNA methylation, histone modifica-
tions, and non-protein coding RNAs) to dietary factors and
environmental conditions complement genetic variability in
contributing to health and to the development and progression
of chronic diseases. Diet and lifestyle influence the epigenetic
regulation of key products of energy metabolism. The role of

genes such as leptin (LEP), insulin receptor (/NSR), TNF-«
(TNF), and fatty acid synthase (FAS) (25) in the development
of several chronic disorders can be traced back to epigenetic
mechanisms during fetal development. This concept is further
supported by various non-Mendelian features of metabolic
diseases and cancer and the clinical differences between men
and women or monozygotic twins. Unlike genetic factors
that remain constant throughout life, epigenetics is malleable.
Thus, epigenetic signals regulate genes of nutrient metabolism,
but nutrient metabolism modifies epigenetic signaling (26).
Moreover, DNA methylation at specific loci can be influenced
by sequence variations, such that individual genotypes at a given
locus may result in different patterns of DNA methylation due to
allele-specific methylation. These methylation quantitative trait
loci (mQTLs) can influence the methylation pattern across an
extended genomic region.

Few studies have examined the contribution of epigenetic
markers to variability in dietary response. As an illustrative
example and using data from the Genetics of Lipid-Lowering
Drugs and Diet Network Study (GOLDN) Study, Lai et al. (27)
conducted an epigenome-wide association study (EWAS) on 979
subjects challenged with a high-fat diet. DNA methylation was
measured in CD4+ T cells. Eight methylation sites encompassing
5 genes—lipoma-preferred partner (LPP), carnitine palmitoyl-
transferase 1A (CPTIA), apolipoprotein A5 (APOAS), sterol
regulatory element binding transcription factor 1 (SREBFI), and
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ATP binding cassette subfamily G member 1 (ABCGI)—were
significantly associated with postprandial lipemia (PPL). Higher
methylation at LPP, APOAS, SREBF'1, and ABCGI and lower
methylation at CPTIA were correlated with increased plasma
triacylglycerol (TG) concentrations that contributed to the PPL
response. These PPL-associated methylation sites also correlated
with fasting TG and accounted for the substantially higher
phenotypic variance (~15%) in PPL and fasting TG (~16%)
when compared with the genetic contribution of loci identified
by a previous genome-wide association study (GWAS) (4.5%)
in the same participants (28). However, such findings must be
validated by larger studies, and similar approaches applied to
studies of other nutrients. The cross-talk between epigenetic
markers and genetic variability in relation to dietary response has
been demonstrated in several studies (29). Thus, the epigenetic
status of the APOA2 regulatory region was associated with
saturated fat intake, and the APOA2 — 265T > C genotype
promoted an APOA2 expression difference between APOA2
genotypes on a high-SFA diet (30). Along those lines, Ma et
al. (31) demonstrated that higher n—3 PUFAs were associated
with lower methylation at the /L6 promoter, but single nucleotide
polymorphisms modified this association at the /L6 locus.

An important caveat related to measuring epigenetic changes
in humans is that epigenetic markers are usually tissue specific.
Therefore, the usual epigenetic analyses in human lymphocytes
may not be representative of the changes in liver, muscle, and
brain DNA. New methodological developments, such as the use
of circulating cell-free DNA released from such tissues, may
more precisely assess epigenetic markers within those tissues
(32).

Dietary response, microbiome, and cardiometabolic traits.

Research targeting precision nutrition approaches to prevent
and treat cardiometabolic diseases has increasingly implicated a
complex interactive role for the host microbiome (33-35). Some
investigations have contrasted a Western and a Mediterranean-
style dietary pattern (MedDiet) (36) with evidence of associated
changes in the gut microbiome structure and function (37). The
Health Professionals Follow-Up Study findings further supported
protective associations between adherence to the MedDiet and
cardiometabolic disease risk. This study demonstrated that such
cardiometabolic disease as determined by measurements of
blood biomarkers of glucose homeostasis, lipid metabolism, and
inflammation was significantly stronger among participants with
decreased abundance of Prevotella copri (38) bacteria. However,
most existing studies are observational and cross-sectional, while
mechanisms and causal factors remain largely unexplored. In
this regard, studies both published and underway take a multi-
omic approach and demonstrate relations between diet, the
microbiome, and the circulating metabolome. The Personalized
Responses to Dietary Composition Trial-1 (PREDICT-1) study
(34) reported many significant associations between microbes
and specific nutrients, foods, food groups, and general dietary
indices, which were driven especially by the presence and
diversity of healthy and plant-based foods. Moreover, microbial
biomarkers of obesity were reproducible across external publicly
available cohorts and in agreement with circulating blood
metabolites that are indicators of cardiovascular disease risk.
While some specific microbes [e.g., Prevotella copri reported
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by Asnicar et al. (34) and Blastocystis spp.] were indicators
of favorable postprandial glucose metabolism, a microbiome
fingerprint was predictive of cardiometabolic biomarkers (e.g.,
fasting and postprandial glycemic, lipemic, and inflammatory
indices) and was also associated with healthy dietary habits.
However, in acute experiments, measures of colonic fermentation
and abiotic factors were not shown to be significantly associated
with variability in postprandial responses, perhaps because of
resilience in healthy adults (39).

It has been suggested that the habitual long-term diet can
benefit the gut microbiome and the metabolome synergistically.
For example, consistent intake of a predominantly plant-based
diet appears to favorably influence circulating metabolites,
especially bile acids. Thus, it is likely that such studies will
increasingly identify dietary compounds and phytochemicals
that may modulate bacterial abundance and quality within the
gut that interact with the microbiome composition and thereby
influence host metabolism (40, 41). It is important to emphasize
that most of the current studies are still using a “global”
population approach and we need to evolve towards more
“personalized”/individual studies.

Type 2 diabetes
Predicting and controlling glycemic response to diet in T2D.

The dysglycemia observed in T2D can be thought of as
having 3 separate components: glycemic variability, ambient
hyperglycemia, and hypoglycemic episodes (42). Glycemic vari-
ability refers to glucose fluctuations from peaks to nadirs, with
hyperglycemic peaks reflecting postprandial glycemic response
(PPGR). Ambient hyperglycemia is elevated glycemia that results
from the loss of insulin-secreting S cells and their replacement by
glucagon-secreting a cells. Hypoglycemic episodes are adverse
consequences generally driven by medication management.
Glycemic control is an important management target and PPGR
appears to be more damaging than ambient hyperglycemia (43).
Glycemic variability increases oxidative stress and epidemiologic
studies have shown postprandial hyperglycemic peaks to be a
powerful predictor of cardiovascular risk (44). Further, some clin-
ical trials have shown that lowering postprandial hyperglycemic
peaks with medication reduces the risk of progression to diabetes,
hypertension, and cardiovascular events in those with impaired
glucose tolerance (45, 46). There is universal recognition that
dietary management is key to successful T2D treatment. To
date, most studies have used one-size-fits-all dietary interventions
(47-57) with mixed results. Uniform dietary interventions may
fail to manage postprandial hyperglycemia because individuals
vary greatly in their glycemic response to the same food (58).
Given the importance of interindividual variability in dietary
response, new approaches are being used to investigate the range
of responses and the variability in response due to measurement
error or the consequence of behavior compensation, with the goal
of understanding how dietary macronutrient manipulation may be
optimized for individuals.

T2D and the microbiome.

Recent studies have shown that the composition and function
of the intestinal microbiota are critical factors in glucose
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homeostasis (59). In a series of mouse gut microbiota studies,
Turnbaugh et al. (60) demonstrated that the obese microbiome
has an increased capacity to harvest energy from the diet. Others
have shown the composition and function of gut microbiota
to be associated with glucose intolerance (61, 62), insulin
resistance (63), and T2D (64, 65). Vrieze et al. (66) showed
that transferring intestinal microbiota from lean humans to those
with metabolic syndrome increased insulin sensitivity. In 2015,
Zeevi et al. reported on the development of a machine-learning
algorithm for predicting PPGR to specific foods consumed
by the participant (35). In the model discovery phase, a
glycemic profiling training dataset was compiled on 800 Israeli
participants, with data including the gut microbiome, various
blood tests, questionnaires, a date- and time-stamped food
record, sleep, physical activity, and interstitial glucose measured
with continuous glucose monitoring. The model demonstrated
high between-subject variability in PPGR to the same foods,
suggesting that universal dietary recommendations are of limited
utility for limiting PPGR. The derived model was validated in a
new cohort of 100 participants, with model predictions for meals
being highly correlated with the measured glycemic response
(R = 0.6) and substantially higher than naive predictions based
only on the meal’s carbohydrate content (R = 0.28) (35). The
model was recently validated in a large US sample (58, 67) but,
to date, has not been evaluated for limiting PPGR in patients
with T2D. Validation is important as computer algorithms have
not been usually demonstrated to be effective in improving
health outcomes in different populations, and different computer
algorithms may offer inconsistent or even contradictory nutrition
recommendations.

Cancer

Nutrients, nonnutrient bioactives, energy balance, and dietary
patterns are key determinants of cancer risk (68) and estab-
lished guidelines for prevention can significantly impact the
global burden of cancer (69). Such efforts also highlight the
potential for personalized interventions to serve as important
and cost-effective, nonpharmaceutical strategies for primary
cancer prevention and suppressing cancer progression. In the
past, diet and cancer interactions have traditionally focused
on primary prevention. Despite solid preclinical evidence,
nutrition intervention studies with specific dietary patterns,
foods, or nutrients, and the impact on cancer outcomes are
extremely limited. Studies such as the Selenium and Vitamin E
Cancer Prevention Trial (SELECT) for prostate cancer (70) and
the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study
(ATBC) with B-carotene focusing on lung cancer (71) have
shown limited success, and were perhaps suboptimally designed
(72), and reduced enthusiasm for additional studies. A major
gap in these studies was a lack of understanding of the duration
of intervention that may be necessary, as well as the form,
bioavailability, and mechanistic targets, coupled with knowledge
of the baseline nutrient status of the host, and an understanding of
the significant individual variability in responses. One challenge
in the field of cancer research relates to the limited number
of intermediate biomarkers for risk, compared with those that
are available for CVD risk. Definitive phase III trials should be
designed based on knowledge derived from phase I/II data that
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clearly defines the pharmacodynamics of the intervention and the
relevant factors impacting human heterogeneity.

Personalized medicine and targeted therapy approaches are
the foundation of oncology therapeutics. Gene profiling of the
cancer, to define relevant mutations and targets, has allowed
for the development of “gene prognosis signatures”—knowledge
that can improve the selection of higher risk individuals for novel
adjuvant/neoadjuvant therapy trials. In addition, molecular sig-
natures of individual cancers increasingly can define responders
and nonresponding subgroups for specific treatments while also
providing a specific target for defining mutation-specific agents
(73, 74). In parallel, host genetics may define pharmacokinetic
and pharmacodynamic responses in an individual, thereby
impacting response to therapy and toxicity. Few studies address
how dietary variables interact to impact these processes and
improve individual outcomes.

Finally, early detection and improved therapy are greatly
increasing the number of cancer survivors, including many with
long-term cures. Providing evidence-based guidelines, specific
for individuals experiencing unique combinations of therapeu-
tics, are needed to improve long-term outcomes. Opportunities
for precision nutrition trials are abundant and much needed.
Critically, clinical trials in cancer must address issues of dose of
an exposure and the duration of intervention necessary to achieve
an optimal impact. Greater mechanistic insight into how genetic,
epigenetic, microbiome, and other factors contribute to individual
variability in response to dietary patterns, nutrients, and bioactive
phytochemicals will enhance the design of impactful intervention
studies for cancer prevention, therapy, and survivorship.

Gene—diet interactions and cancer.

Precision nutrition research related to cancer started with
the study of gene—diet interactions, similar to cardiometabolic
traits and CVD risk. Theodoratou et al. (75) critically and
comprehensively evaluated the evidence across 13 meta-analyses
of observational studies of gene—diet interactions for the 5
most common cancers (breast, lung, prostate, colorectal, and
stomach). The authors focused on gene—diet interactions for
food and nutrient associations that were classified as convincing
(class I), highly suggestive (class II), or suggestive (class
II) and classified them as strong, moderate, weak, or no
evidence. Among all the evaluated gene—diet interactions with
prior weak, moderate, or high scores, only the interaction
between the 10p14 locus near GATA binding protein 3 (GATA3)
and processed meat in relation to colorectal cancer risk (76)
was classified as moderate. The following interactions were
classified as weak: interactions between rs17468277 [caspase 8
(CASPS8)] and alcohol in relation to breast cancer risk as well
as interactions between rs1805087 [methyltransferase (MTR)]
and alcohol (77), rs16892766 (8q23.3) and vegetables (78), and
glutathione S-transferase theta 1 (GSTT) deletion polymorphism
and cruciferous vegetables (79) in relation to colorectal cancer
risk. The remaining studied associations did not show any
evidence of an interaction. A more recent review focused on
gene—diet interactions related only to breast cancer (80). The
authors listed 18 genes investigated in 25 studies, and most
of them reported significant gene—diet interactions. However,
the strength of the evidence was not assessed. Additional
strategies, perhaps in carefully controlled clinical trials of specific
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nutrients, phytochemicals, or dietary patterns examining the
specific gene variants relevant to the intervention, can provide
greater insight (81). Genetically engineered animal models can
also provide critical preclinical evidence for relevant gene—
nutrient interactions (82, 83).

Diet response, epigenetics, and cancer.

Animal models support associations between diet and epige-
netic alterations and between epigenetic alterations and cancer
(84-87). However, data in human populations are sparse and
inconsistent, both for observation studies and randomized clinical
trials. These studies have failed to show clear, consistent,
and predictable effects of diet or supplements on cancer risk
because of high phenotypic variability in response. Therefore, the
conclusion that diet is linked directly to epigenetic alterations and
that these epigenetic alterations directly increase or decrease the
risk of human cancer remained speculative based on the current
evidence (88), suggesting opportunities for future research.

Dietary response, microbiome, and cancer.

Rapidly emerging data implicate the gut microbiome’s respon-
siveness to diet, in terms of both structure and function, impacting
many bioprocesses related to carcinogenesis. We are learning
that dietary patterns characterized by ultra-processed foods,
refined sugar and grains, and meat compared with intake patterns
rich in whole grains, legumes, vegetables, fruits, and fiber can
significantly alter the microbial composition in association with
improved host metabolism and health outcomes (89-92). There
is a critical need to appreciate the potential of the overall dietary
pattern, defined by multiple components of a healthy diet, to
define a healthy and stable microbiome that is also optimized for
cancer prevention.

The diet may impact the colonic microbiome in ways that alter
the propensity for developing obesity and, conversely, obesity
may subsequently lead to changes in colonic composition and
function, impacting the host and perhaps risk of cancer (60,
93-98). Bacteria in various sites may alter the host response to
bioactive phytochemicals through their metabolic conversion to
metabolites that are subsequently absorbed and may have more
or less bioactivity as modulators of carcinogenesis (99-103). For
example, thioglucosidase myrosinase activity, which releases the
bioactive sulforaphane from glucosinolates found in cruciferous
vegetables, often depends upon gut bacterial thioglycosinodases
(104), indicating that the gut microbiome influences sulforaphane
bioavailability (105). However, at the present time, there is a large
gap in knowledge regarding our understanding of the interplay
between the gut microbial flora at various sites and the host in
regard to the metabolism and anti-cancer activity of the diverse
array of dietary bioactives. Studies that examine this interplay
are needed to ultimately aid with personalized stratification-based
prevention strategies to improve anti-cancer efficacy.

The growing evidence that the host microbiome influences the
therapeutic response to cancer immunotherapy is driving new
initiatives that may have a significant impact. The recognition that
the microbiome is a modifiable target for dietary interventions
and can influence efficacy and safety of novel immunotherapeu-
tics, such as immune checkpoint blockade, raises the question of
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defining the optimal dietary interventions that are specific for the
rapidly emerging array of treatment regimens (106, 107).

Thus, research is rapidly expanding regarding how dietary
patterns, nutrients, and phytochemicals impact the microbiome at
various sites as a central mediator of the diet and cancer relation.

Alzheimer disease

Optimal brain function results from highly complex interac-
tions between genetic and environmental factors, including food
intake, physical activity, age, and stress. Specifically, nutrition
affects the brain throughout life, with profound implications
for cognitive decline and dementia. These cognitive effects are
mediated by changes in the expression of multiple genes, and
responses to nutrition are, in turn, affected by individual genetic
variability. Alzheimer disease (AD), the most common cause
of dementia, develops decades before any clinical symptoms
manifest. Lifestyle and genetic factors contribute to AD risk.
The best-known genetic risk factor is the presence of the
apolipoprotein E (ApoE4) allele at the APOE gene (108). The
ApoE4 allele codes for an alternative form of ApoE, which
can disrupt its ability to perform essential functions in lipid
transport and metabolism in the brain. ApoE4 allele frequency
in the general US population is ~20%; however, carriers of this
allele account for ~40-65% of AD cases. Still, most people with
the ApoE4 allele will not express the disease. Therefore, gene—
environment interactions are thought to play a mediating role
(109).

Gene—diet interactions, AD, and cognitive decline.

Migration studies provide a clear example of the importance
of gene—environment interactions in disease expression (110).
For example, the ApoE4 allele at the APOE gene is common
in persons of West African ancestry but does not meaningfully
contribute to AD risk in those living in West Africa (111, 112).
However, incidence of AD is much higher in Africans living
in the United States (113). Likewise, southern Italians carrying
ApoE4 and who live in Italy can reach old age, apparently
unaffected by the genetic risk. However, southern Italians living
in the United States carrying ApoE4 exhibit a highly reduced
chance of living into late old age (114). Findings suggest that
environment and lifestyle, including diet, may mediate ApoE4
effects on development of AD.

Longitudinal observational studies further demonstrate the
potential interaction between dietary factors, cognitive decline,
and the APOE locus. These studies highlight the importance of
dietary components, as well as timing, duration, and “dose” of
dietary and nutrient changes along the spectrum of preclinical
AD, mild cognitive impairment due to AD, and AD dementia
(110, 115). Trials of DHA supplements for AD dementia
treatment failed, possibly due to starting supplementation too
late in the disease process. Other trials that have focused on AD
prevention only were largely negative possibly due to a low-dose
supplementation. However, recent studies have shown that larger
DHA doses are necessary for adequate brain bioavailability and
that ApoE4 is associated with reduced DHA and EPA delivery
to the brain prior to the onset of cognitive decline (116). Further
long-term randomized studies are warranted at the earliest phases
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of the AD pathophysiological process to inform more definitive
conclusions.

Dietary response, epigenetics, AD, and cognitive function.

Epigenetic mechanisms are central to brain development,
structure, and function. Studies linking nutrition with ad-
vances in neuroscience, genomics, and epigenomics should
provide novel approaches to preventing cognitive decline, as
well as treating dementia and AD. For example, curcumin
consumption has been associated with better cognitive per-
formance and lower prevalence of AD. These associations
may be explained by curcumin’s ability to downregulate DNA
acetylation expression in specific cell lineages (117, 118).
Similarly, flavonoids, which are polyphenolic compounds found
in fruits, vegetables, and other natural sources, have been
shown to reduce the expression of proinflammatory cytokines
and prevent neural damage through epigenetic modulation
(119).

Overall, recent studies have shown that personalized
clinical recommendations based on genetics, in combination
with modifiable risk factors (e.g., nutrition, physical
activity, stress management), can help improve cognition
and reduce calculated AD risk in patients at risk for AD
(108, 120).

Dietary response, microbiome, AD, and cognitive function.

The action of the gut microbiome on the ApoE4 allele (CNS)
has been of increasing interest. A bidirectional relation has
been reported between the gut microbiome and the CNS and
has been referred to as the “brain-gut-microbiota axis.” Briefly,
the brain-gut-microbiota axis means that the CNS can regulate
the digestive tract by acting upon the enteric system and, vice
versa, the intestinal microbiome can influence the CNS via
afferent signaling pathways and secretion of active substances.
Studies have implicated the role of the brain-gut-microbiota
axis in AD pathology (121). Preclinical animal studies have
shown that microbiota obtained from the intestines of AD mice
possessing the human APP gene can increase amyloid-B depo-
sition in the intestines of normal mice (122—-124). Furthermore,
studies in older populations suggest an association between
increased levels of proinflammatory bacteria in gut microbiota
and amyloid deposition in the brain and cognitive deficits
(125).

The “Western diet” has been shown to contribute to changes in
gut microbiota and the development of dementia. This higher-
fat diet may change the bacterial composition in both the
colon and cecum, resulting in a higher abundance of bacterial
species associated with cognitive impairment and cerebral
hypometabolism. Conversely, a healthier dietary plan such as
a modified Mediterranean-ketogenic diet has been shown to
improve microbial diversity in subjects with mild cognitive
impairment due to AD compared with a more conventional
Western diet (126). This suggests that diet may modulate the
gut microbiota in a way that potentially reduces their risk of
developing AD.
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Individual Characteristics Influencing Response to
Dietary Intakes

During the second session of the workshop, participants dis-
cussed many potential variables that contribute to interindividual
variability in dietary response. Recent research has highlighted
the importance of the rigorous methodology needed to assess
nutritional physiology and postprandial metabolism.

A past focus on limited subsets of individual nutrients

The role of diet in health is well documented by decades
of research in nutrition (127). However, understanding how
diet affects human health (128, 129) and the methodologies
utilized to acquire this knowledge are the subject of constant
self-reflection and occasionally of fierce debate (130, 131).
From a dietary perspective, what is known is mostly focused
on the role of ~150 dietary components, including most of
the defined nutrients, systemically tracked by food-composition
databases (e.g., by USDA), which represent only 0.5% of the
biochemicals present in food (132). The need to enhance the
USDA and other databases with rigorously collated, synthesized,
and disseminated food-composition data is currently a major
roadblock in the scientific community’s ability to advance the
field and assess the exceptional biochemical diversity of food.
Arguably, accurate information on the biochemical composition
of foods is just as essential to nutrition and health science as the
genome project was to biology, revolutionizing the understanding
of long-ignored environmental factors and their impact on the
molecular roots of human disease. Indeed, one can validly
argue by analogy that current coverage of food composition
is where genetics was before the Human Genome Project.
Quantifying the full biochemical palette of the diet could offer
the possibility of linking these patterns to molecular processes
with ultimate accuracy, leverage high-throughput approaches
common in genomics, pave the way to personalized dietary
recommendations, and improve the understanding of how diet
modulates the efficacy of drugs and treatments (133). For
example, a better understanding of how individuals differ in their
absorption of nutrients can lead to the discovery of molecular
and physiological targets for drug development that may improve
postprandial handling of nutrients (134). Therefore, a Big Data
strategy is needed to create and experimentally validate a high-
resolution compendium of the biochemical composition of food
and to make this new resource widely available in an actionable
form to the research community. Deep mining of the chemical and
biological literature for information on biochemical composition
of food can be complemented with machine-learning tools to
infer missing knowledge, and with systematic experimental
validation to estimate the precision and the completeness of
our current knowledge. The resulting platform would transform
health science by catalyzing dramatic leaps in scientific and
health insights and opening up novel avenues by which to
understand, avoid, and control disease.

Impact of race, ethnicity, and culture on diet-related health
outcomes

It is well established that individual nutritional needs and re-
sponses to diets vary across populations according to biological,
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demographic, and environmental features (135, 136). Although
differences in populations and ethnicities are being increasingly
acknowledged, these factors are often ignored in nutrition-based
studies. For example, diverse groups are combined under the
heading of Asian Americans, although there are striking social,
cultural, and genetic differences among the subgroups within
this population (137, 138). Similar criteria are applied to people
of African-American and Hispanic heritage, although genotype
and allele frequencies differ within these populations/ethnicities.
Changes in diet or epidemiological transition have not equally
affected all ethnic groups or subgroups (139, 140) and a
significant gap exists in the understanding of genetic variability
on nutrient requirements, as well as how genetics impacts re-
sponsiveness to nutrient change. Inclusion of diverse populations
and their subgroups in studies is critical to understanding the
physiological response to diet and characterization of responder
versus nonresponder phenotypes. These phenotypes should be
further evaluated in relation to their exposure to social and
environmental factors such as physical activity and mobility;
socioeconomic status; geography, including rural/urban settings;
food security/availability; living situation; and exposure to
pollutants. Identification of genetic variants that make specific
subgroups susceptible to diseases and an understanding of dietary
response in the context of exposure to the environmental factors
will support the development of nutritional interventions targeted
to these groups, which is a key step towards personalized
nutrition.

Nutritional status as a source of interindividual variability

As described above, participants in nutrition research studies
exhibit a large variability in response to dietary interventions.
For many years, it was assumed that the variation in response
was due to incomplete adherence to protocols. An individual’s
ability to adhere to dietary change is, in itself, an important factor
to understand. Being able to make behavior changes to comply
with dietary protocols may be different between participants
due to factors such as social support, mental health, stress,
financial, and environmental stability. Data on these outcomes
should be collected in precision nutrition studies. Furthermore,
in addition to factors that reduce an individual’s ability to adhere
to a research protocol, participants can have acceptable levels
of adherence to dietary intervention protocols, particularly in
the context of well-designed and highly controlled intervention
studies, yet exhibit a wide array of biological responses to
a specific intervention (34, 141). Study participants are not
uniform in terms of the characteristics they bring into a dietary
intervention—they differ in age, body habitus, microbiome,
metabolome, epigenetic characteristics, usual diet prior to the
intervention, dietary supplement use, medical conditions, and
other lifestyle habits that influence metabolism and intervention
response. Statistical designs that include block randomization can
help distribute some of these characteristics across intervention
groups. However, this strategy is typically only practical for a
limited number of categorical variables, such as age groups, BMI
groups, and sex. Importantly, stratification across more groups
requires larger sample sizes to fill the blocks. Moreover, it is not
feasible to block the randomization scheme to include complex,
multidimensional exposures such as baseline microbiome and
metabolome features. It is also important to recognize that the
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diet itself is complex. Shifting 1 dietary component, whether
it is the macronutrient distribution or specific food components
(e.g., cruciferous vegetables), will often produce changes in
the metabolome, proteome, and microbiome. For comparisons
of isocaloric diets, an increase in 1 of the 3 macronutrients
(carbohydrate, fat, protein) will necessitate the reduction in
another of the macronutrients as a percentage of total energy
and may induce shifts in downstream metabolic by-products.
Thus, both larger sample sizes and advanced computational
strategies are needed to handle high multidimensional path-
ways to understand the metabolic effects of macronutrient
change.

Measuring physiologic responses to eating

Fasting blood concentrations of metabolites are used to
determine disease risk and treatment outcomes in health care.
However, daily excursions of metabolites and hormones—
exemplified by the rise and fall of blood concentrations of
glucose, lipids, insulin between meals—are better predictors of
disease risk compared with fasting blood values. For example,
elevated concentrations of blood TGs after meals have a stronger
association with CVD risk compared with fasting measurements
of TGs (142, 143). Similarly, the use of glycated hemoglobin
(HbAlc) levels—a read-out of plasma glucose concentrations
over months—is well established to predict diabetes risk. Over
the past 40 y, studies of meal carbohydrate metabolism have
focused on utilizing an oral-glucose-tolerance test (OGTT) to
assess fed-state glucose metabolism. The use of an OGTT simpli-
fies test procedures and multiple indices of insulin sensitivity can
be calculated (144). However, people rarely consume glucose in
isolation and interactions exist between the metabolism of many
components in mixed meals. Thus, although the OGTT is an
important tool to understand metabolism, it should not be referred
to as a meal test. Similarly, to understand TG metabolism,
tests should contain mixed amounts of fat, representing more
traditional daily food intake. New methods have been developed
recently using metabolomics to track the processing and fate of
dietary nutrients (35, 145).

Currently, state-of-the-art meal tolerance tests (MTTs) are
performed in the morning after a fast of at least 10 h. Blood
samples are drawn before and after the MTT as well as
intermittently over 4-9 h. Longer times are needed to capture the
concentrations of metabolites as they return to baseline levels.
The total energy of the MTT can vary between subjects, so that it
is scaled to be a set proportion of the subject’s total daily energy
needs (145). Several factors have been identified that influence
the postmeal metabolism of nutrients (Table 1). These factors
should be considered during the development of study designs
to decide whether to intentionally control for these variables or
not. Moving the field of precision nutrition forward will require
an understanding of the biology of interindividual variability in
response to dietary interventions. Careful planning and execution
of metabolic tests will be required to accomplish this goal (141).

The influence of sensory nutrition

Consumers report that the “taste” of foods drives what they
like and choose to consume. “Taste” and flavor are complex
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TABLE 1 Examples of factors that can influence the metabolic response to eating'

Factor Examples of the possible effects

Age Meal glucose and TG metabolism slows with aging (146).

Sex Compared with women, men are more susceptible to dietary-induced hypertriglyceridemia (147).

Time of day Compared with the first meal of the day, the processing of meal CHO from a second meal exhibits a pattern of insulin resistance;
CHO and fat consumed at night clear from the plasma more slowly (148).

Exercise Exercise the night before, or the morning before a meal test, will increase apparent glucose and fat clearance rates (149, 150).

Alcohol Alcohol consumed with meals raises postmeal blood TG concentrations (151-153).

Fasting values

The fasting concentration of TG is the strongest predictor of postprandial TG excursions and fasting hyperglycemia is associated

with greater glucose excursions after a CHO bolus (154).

Cross-macronutrient
effects

A high-CHO evening meal raises fasting blood TG the next morning and slows postmeal TG clearance; conversely, a high-fat
evening meal slows CHO clearance following the next morning’s meal (155). Fiber slows glucose absorption (156).

ICHO, carbohydrate; TG, triacylglycerol.

chemosensory experiences with multiple peripheral inputs (true
taste, smell, and chemesthesis) carried centrally for perceptual
integration and coupling with hedonic, reward, decisional,
and satiety responses. Multiple factors that drive variation
in flavor perception and food preference influence dietary
behaviors, chronic diet-related diseases, and the compliance
with dietary interventions. These factors include conditions that
impede chemicals reaching chemoreceptors and influence the
function of chemosensory-related nerves [including coronavirus
disease 2019 (COVID-19)], genetic variation in chemoreceptors,
interactions between internal and external environments to
influence the plasticity of chemosensory systems, and age-
related changes. Genetic variation in taste and flavor perception
frames the development of dietary behaviors in early life,
in interaction with food environments. Aging, with changing
experiences and environmental exposures, can modify flavor
perception, with or without changes in food preferences and
behaviors (157, 158). Interdisciplinary research should leverage
sensory nutrition as markers of usual dietary behaviors and
responses to improve understanding of variability in dietary
interventions (159). Clinical nutrition research needs to account
for chemosensation in measures that reflect sensory function
and are relevant to food perception, including self-report and
measures of food preference. Even the perception of the energy
content of food can influence research results (160). Population-
based research should incorporate feasible and informative
measures of sensory nutrition and food preference with new study
designs to enhance understanding of diet—disease relations (161).
Last, the formulations of the diets and test meals being fed can
impact research findings because palatability and acceptability
can influence the postingestive processing of nutrients.

Immune system status and inflammatory response to diet

Optimal immune system status is paramount for health,
as evidenced by the current COVID-19 pandemic (162). In
summarizing the current state-of-the-art, there is relatively good
prospective evidence demonstrating the relation between diet,
nutritional status, the immune system, and inflammation (163).
Also, there is well-developed knowledge with respect to the
impact of different dietary elements on various aspects of
immunity and inflammation, although this knowledge is yet to be
fully elucidated. A key area for development is in the translation

to human clinical prospective interventions and defining the
impact on health outcomes mediated by the immune system.

Immune system status is determined by factors ranging
from age, gender, circadian biology, infection history, and
vaccination status to diet, alcohol intake, physical fitness, and
the microbiome. Recent research relating to the adaptive and
innate immune response has greatly advanced our knowledge
(164). First, the adaptive immune response has memory (i.e.,
prior exposure to a pathogen heightens the future responses
to the same pathogen). This is critical because the cells of
the adaptive immune system such as T cells are specific to
each pathogen and, without the propagation upon exposure,
they would not be able to mount an effective defense. On
the other hand, the innate immune response does not have a
memory and can respond to any pathogen. Second, the metabolic
configuration of an immune cell determines the nature of the
immune response. Obesity-induced innate and adaptive immune
dysregulation is characterized by heightened proinflammatory
reactivity of myeloid cells and predominant glycolytic metabolic
reconfiguration supporting a proinflammatory phenotype as well
as suppressed adaptive immune response, including ability
to produce an effective antibody response to vaccines. The
profound impact of obesity on innate and adaptive immunity
plays a crucial role in the severity of COVID-19 disease in
this population. Nevertheless, knowledge in this field needs to
deepen the understanding of the impact of different dietary
elements on immune modulation beyond obesity (163). The
challenge in the future will be to determine if and how different
nutrients and nonnutrient food components train and re-configure
immune response. The real challenge will be to understand
the extent to which these paradigms, with co-regulation of
both metabolic and inflammatory processes (165), translates to
humans.

A key stumbling block is the lack of sensitive and specific
biomarkers that accurately reflect the dynamic and circadian
rhythm of the immune response. MTTs are 1 potential tool, with
the prospect to capture both the metabolic and inflammatory
dynamics in response to food intake (166, 167). This response
varies substantially with age, gender, and metabolic phenotype.
Nevertheless, there remains a significant body of work required
to understand the impact of different dietary constituents on the
acute postprandial immuno-metabolic response in a temporal,
cell-specific manner. In this realm, although the adverse effects of
some dietary elements are well known, greater focus needs to be
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paid to the extent to which immuno-metabolic responses can be
attenuated or resolved with dietary change and how these effects
can be robustly measured or quantified. To this end, precise
nutrition approaches should add greater clarity with respect to
optimal opportunities to maximize knowledge concerning the
interactions between diet-related metabolism, immune function,
and health.

Circadian rhythm, food intake, and sleep
Food intake.

“When should I eat?” has emerged as a compelling research
question. That food-intake timing matters is supported by an
established body of evidence linking metabolism to the circadian
system, a system composed of a network of internal biological
clocks (141, 168, 169). As such, when we eat intimates a
dimension of time, although there are several aspects of time that
warrant consideration. Time may be social and determined by
clock time (e.g., work time, school time); it may be biological
and determined by internal body clocks (e.g., chronotype, age);
or it may also be environmental and determined by sunrise and
sunset, which vary by season and geographic latitude (e.g., solar
time). Research to date has focused on clock time with regard
to eating behavior. Early appreciation for the influence of the
timing of food intake (170) on total daily energy intake has
advanced to more sophisticated analyses of eating occasions
across the 24-h day (171). Earlier versus later eating occasions,
as well as intermittent fasting and restricted time windows
for eating, have been associated with better metabolic health
outcomes in ecologically valid settings (172-175). However,
some evidence suggests that the benefits of earlier versus later
eating occasions may be more relevant for the metabolic health
of some individuals, such as MTNRIB risk-carriers or sedentary
individuals, than others (176-178).

Data indicate that eating later in the day, later relative to the
sleep episode and later compared with the central circadian clock
(using the gold-standard dim-light melatonin onset), is associated
with increased body mass, increased adiposity, increased odds
of being obese or overweight, and decreased success of weight
loss during dietary weight-loss interventions and in the years
following bariatric surgery, both in children and adults and
without apparent differences in energy intake (173, 175, 179—
185). One of the possible mechanisms for this effect is if the
magnitude of the increase in energy expenditure following a meal
(known as diet-induced thermogenesis, or the thermic effect of
food) is dependent on the time at which the meal is consumed.
Diet-induced thermogenesis (DIT) is substantially higher when
a test meal is consumed in the morning as compared with the
evening. This variation in DIT may be primarily driven by
the circadian timing system (186). Glucose tolerance also is
relatively impaired in the evening compared with the morning
(187), and the endogenous circadian system plays a key role in
this modulation via regulation of B-cell function (188-190). With
regard to personalized chrono-nutrition, it should also be pointed
out that the effect of dinner timing on glucose control can depend
importantly on individual genotype (176, 191). Progress in this
area is stymied by the lack of an accurate and feasible assessment
for biological time in ecologically valid settings. The complexity
of the internal body clock system introduces further challenges.
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With clocks existing in every tissue, it remains uncertain which
tissue would best represent biological time relevant to nutrition.
This is especially important for the important segment of the
population working night shifts, which has been associated with
altered circadian rhythms, lifestyle habits, and cardiometabolic
risks, and should be factored in when developing effective
workplace wellness and precision nutrition programs (192). This
is a promising and active area of ongoing research that may have
implications for dietary interventions.

Sleep restriction and timing.

The association between sleep and cardiometabolic function
and disease, including the interaction with nutrition, has received
increasing recognition. Controlled experimental studies have
shown reduced insulin sensitivity to a morning OGTT in healthy
adults during short-sleep, early-waking conditions (193). Short
sleep, poor sleep quality, and sleep disorders are associated
with increased risk for T2D (194-196), obesity, subclinical
atherosclerosis, and CVD (197-199). Sleep deficiency affects
hunger, appetite, food choice, and intake; however, this effect
varies across individuals. Sleep loss exerts these effects via
alterations in homeostatically regulated pathways, assessed by
changes in circulating concentrations of leptin and ghrelin. A
positive correlation has been reported between the increase in
ghrelin-to-leptin ratio and increase in hunger following sleep
restriction (200). Interindividual variability can also be observed
within hedonic systems following sleep loss, as seen within the
endocannabinoid system, which is known to regulate hedonically
driven food intake (200). Sleep loss facilitates a robust increase
in ratings for sweet, salty, and starchy foods as well as an actual
increase in snack food intake specifically (201-204). There is
also developing evidence for the reverse relation: the influence
of nutrition on sleep (204, 205). Finally, the disturbances in
daily routines due to the COVID-19 confinement and remote
work have impacted circadian rhythms, energy balance, and
body weight (206). More research is needed in this burgeoning
field.

Social determinants influencing food and health

Social determinants of health refer to the economic and
political structures, social and physical environments, and access
to health services that shape a person’s health and well-being.
Social factors contribute significantly to health and may account
for up to 20-50% of the disease burden of society (207). They
also expose—and explain—nutrition and health disparities, as
the social and environmental factors that influence a person’s
dietary choices are unequally distributed within a population. For
example, structural barriers to healthy food choices (including
low income, unavailability of food stores that sell healthy
foods, neighborhood characteristics like walkability and crime,
lack of transportation, literacy, discriminatory practices) exist
for susceptible groups, such as racial/ethnic minorities. The
concentration of structural barriers within communities can
also give rise to unhealthy social and cultural food norms,
which further reinforce unhealthy eating patterns. As such,
diet quality is consistently poorer among populations with low
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incomes and among some minority populations like African-
Americans (208, 209). Additionally, exposures to environmental
stressors like discrimination, social isolation, and pollution
affect not only food access and choice but also biological
processes including inflammatory responses and gene expression
(210). A precision nutrition approach should use all relevant
information on an individual’s characteristics, including their
social context, to drive implementation strategies to achieve
optimal compliance with nutritional guidelines and recommen-
dations for better health. Inequitable social and environmental
experiences may explain disparities in health outcomes mediated
by epigenetics or the microbiome (211, 212). Unfortunately,
past work in precision nutrition has often failed to integrate
social determinants of health and, even when it does, investment
in research to optimize translation to vulnerable communities
is scarce. Current research opportunities to promote a wider
integration of social determinant data in precision nutrition
are presented in Table 2. To help close critical knowledge
gaps, researchers may leverage and augment existing cutting-
edge tools and databases to collect, share, and harmonize data
and resources. Active inclusion of social and environmental
factors should be done in novel research lines, training, diverse
and inclusive interventions, and policies for optimal precision
nutrition.

Differences in body weight as a source of individual response
to diet

One important aspect of precision nutrition is to understand
the factors that govern an individual’s response to a weight-loss
intervention. This is particularly relevant given the challenge of
overweight and obesity in the United States. In addition to genetic
and metabolic characteristics, tailoring specific dietary patterns
to individual needs may help increase long-term adherence
to weight-loss programs. This will, in turn, produce lasting
weight management and aid in the prevention and treatment
of obesity-related comorbidities, such as insulin resistance and
dyslipidemia. Specific characteristics that should be considered
include genetics, race, ethnicity, sex, menopausal status, level
of glycemic control, disease history, gut microbial composition,
food and taste preferences, eating behaviors (e.g., dietary
restraint), and level of physical activity. Well-designed trials,
such as the PREDICT-1 study (214), will be needed to clarify
individual differences in responses to diet. When sufficient data
are available in this area, it may be possible to create an online
tool to help clinicians quickly identify what diets would work
for certain individuals based on their unique characteristics.
These tools could greatly augment a patient’s success with their
prescribed weight-loss intervention and other health outcomes
(215).

Opportunities exist to close these gaps, including utilizing
cutting-edge tools for data collection and developing databases
to collect, share, and harmonize data. Recommendations and
resources are available from several agencies on how to conduct
research and intervene on social factors for optimal precision
nutrition strategies. It is thus essential for social determinants
of health to be prioritized in research, education, and policies
relevant to precision nutrition.
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The Need for New Technology and Computer-Aided
Approaches to Better Understand the Complex
Systems Involved

The third session of the workshop focused on analytical
approaches in precision nutrition; application of knowledge to
benefit individuals; ethical and legal challenges in study design,
data collection, and implementation; and the need to train
scientists in computational methodology, data science, systems
science, machine learning, artificial intelligence (Al), and data
infrastructure. As described earlier, achieving precision nutrition
entails understanding and addressing the complex systems of
factors that affect and may be affected by a person’s diet
and nutritional health (216). Progress will depend upon the
development and integration of novel computational methods,
tools, and approaches. While direct cause-and-effect relations
may be easier to elucidate, unaided scientists can struggle
with following secondary, tertiary, and other indirect effects,
especially when time elapses between the initiation of the cause
and the surfacing of the effects (217, 218). Often, the impact of a
factor may not manifest for years, and the specific importance
of such factors can differ between individuals. In addition,
numerous feedback loops and dynamic factors that change over
time can make relations even more challenging to disentangle.

Our society is at a key inflection point when it comes to the
use of computer-aided analytics

Computer-aided methods, approaches, and tools have trans-
formed a number of other disciplines, industries, and sectors
(219-222). For example, meteorology relied considerably on
direct observation and inaccurate conjecture before the advent
of such methods. Imagine how difficult it was to anticipate what
the weather might be beyond the next several hours. Nowadays,
weather maps help bring together very disparate data streams
that allow decision makers to better understand and address
complex weather streams and to prepare better for more tailored
responses to the weather. These weather maps are essentially
visualizations of computer-generated information (223). People
across the United States do not all have to remain prepared for
rain, tornados, hurricanes, snow, and other inclement weather all
the time. Instead, there are more precise preparations for and
responses to the weather in different parts of the country.

Similarly, computer-aided methods, approaches, and tools can
transform and advance the field of precision nutrition. Computer-
aided methods include Al methods. The Encyclopedia Britannica
(224) defines Al as “the ability of a digital computer or computer-
controlled robot to perform tasks commonly associated with
intelligent beings,” and Merriam-Webster (225) defines Al as
“1) A branch of computer science dealing with intelligent
behavior in computers and 2) The capability of a machine to
imitate intelligent human behavior.” As can be seen by these
definitions, Al is a very broad umbrella term encompassing any
use of computers or computer-driven technology to perform tasks
that intelligent beings would typically perform. This can range
from sorting information in ways that are easier to digest, to
performing tasks that human beings usually do to make decisions
based on available information, to deriving insights from data.
A computer-aided method becomes an Al method when it goes
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TABLE 2 Current research limitations to understand the influence of social determinants in precision nutrition

. Limited data from diverse and vulnerable populations

0NN AW —

economics, culture)

Lack of consensus on the definition of social determinants (213) and their metrics
. Complexity of interactions across social factors requiring advanced analytical technologies

. Lack of understanding of mechanistic pathways and of the individual responses or embodiment of social factors

. Inattention to protective social factors such as social support, resilience, and optimism

. Unknown potential for sustainability, outreach, and implementation of interventions that account for social determinants

. Lack of approaches and techniques that fill data gaps and rank the most influential measurements in ways that are transparent, fair, and free from errors

. Dearth of technologies and methods that link different scales that affect precision nutrition (e.g., biology, behavior, social networks, environment, policy,

9. Lack of studies that use systems approaches and methods to better elucidate how social determinates may affect and be affected by nutrition

beyond the simple, straightforward, “mindless,” and predictable
execution of tasks.

Included under Al are a range of different methods such as
computer simulation modeling and machine learning (226). A
computer simulation model is a computer-generated represen-
tation of a real-world situation. Machine learning is the use
of algorithms to get computers to identify patterns in data and
“learn” as humans do. This includes both traditional machine-
learning algorithms that learn patterns and identify new relations
from the data and thereby make predictions as well as Al capable
of learning in new ways that mimic additional aspects of human
intelligence. Machine learning can proceed with varying degrees
of guidance from humans (227). Supervised learning is when
an initial labeled training dataset is shown to the computer
algorithm. A labeled training dataset is one that is organized and
labeled in a way that shows the algorithm what, specifically, it
should look for and assess, predetermining both the input and
the output. Once the algorithm has learned from the training
dataset, it can then be applied to other datasets. Unsupervised
learning is when the algorithms train on unlabeled data, giving
the algorithms the opportunity to figure things out. Computer-
aided methods and technology such as machine learning can also
facilitate precision nutrition by further elucidating the key factors
and processes involved with precision nutrition. Since many of
these may not be obvious and have clear, simple, and direct
connections, and the clean and easily analyzable data may not
be readily available, computer-aided methods such as machine
learning can help organize and dig through available data to iden-
tify both the existence and the contribution of sometimes hidden
factors that impact precision nutrition and diet-related diseases.

For example, Zeevi et al. (35) monitored glucose concentra-
tions over the course of 1 wk in a cohort of 800 adults after
measuring responsiveness to identical meals, and found high
individual variability in response to the same meal and developed
and validated a machine-learning algorithm integrating blood
parameters, dietary habits, anthropometrics, physical activity, and
gut microbiota in an attempt to predict individual responses to
meals. Last, they conducted a dietary intervention to control
glucose response, based on what they were learning from
the algorithm, which resulted in significantly lower glucose
responses after the meal as well as consistent changes to gut
microbiota. In another study of 1002 healthy UK adults, Berry
et al. (141) found that postprandial response to identical meals
had large interindividual variability in both a clinical setting
and at home. The research team found that factors such as
the gut microbiome had a greater influence on postprandial

lipidemia than meal macronutrients, but not on postprandial
glycemia. In addition, genetic variation also had a modest impact
on predictions. Additional studies have developed simulation
models of metabolic events such as the glucose-insulin system
following a meal, which can be used to understand and address
how the body responds to meals among both healthy adults and
individuals with diet-related health conditions (e.g., T2D) (228).

Computers have theoretical advantages over humans. They
have the potential to perform calculations very quickly, holding,
retrieving, and considering large amounts of information at a
time, and remaining relatively “objective” when completing
their tasks. At present, computers cannot do everything humans
do, such as come up with original thoughts. Moreover, their
execution of tasks depends heavily on how humans programmed
and structured the tasks. Computer-aided approaches can help
with all stages of achieving precision nutrition. This includes the
following:

¢ Determining what data are needed

* Designing studies and data-collection activities
 Helping collect and gather data and other information
 Organizing, managing, and making data readily available
¢ Analyzing and interpreting data and information

e Communicating and disseminating insights

* Implementing policies and interventions

Our society is at an inflection point. The past several decades
have seen major growth in the capabilities and use of computers.
Computational power has grown to the point where calculations
can be done very rapidly, and a large amount of data can be readily
stored and processed. Available infrastructure and platforms
allow tools and information to be easily shared. There has been
increasing acceptance and use of computer-driven approaches
in health-related areas (229, 230). Additionally, the amount of
data available has grown exponentially, rapidly exceeding the
capacity of traditional methods to process and analyze the data
(216).

The need for systems approaches when using
computer-aided analytics for precision nutrition

When computer-aided analytics do not account for or represent
the actual systems it can result in “band aids” rather than
sustainable solutions, overlooking indirect (e.g., secondary,
tertiary, and beyond) effects of any situation or change,
skewing choices among alternatives, unintended consequences,
not collecting needed information and/or collecting superfluous
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or even misleading information, and wasting time, effort, and
resources that, in many cases, end up not working, at best,
and having negative effects at worst. Traditional approaches
can overlook the complexities of the systems involved. For
example, large-cohort studies that use multivariate regression to
identify broad associations between a given nutritional factor
and health outcomes may overlook differences in physiology,
behaviors, and social determinants. Such approaches are also
insufficient for understanding dietary factors or influences that
are dynamic, such as exposures to and use of food environments.
Just using computer-aided approaches to make such calculations
faster may not really advance precision nutrition but rather
deepen the current drawbacks of nutrition research. This is
why computer-based approaches need to incorporate systems
science and more systems approaches to nutrition research. It is
important to remember that computer-aided approaches in and
of themselves are neither bad nor good. Incorporating systems
approaches means designing and implementing computer-based
and other technology approaches in ways that account for and
help characterize the complex systems involved (216, 231).
Figure 2 shows how a systems approach can utilize technology
to iteratively better understand these complex systems.

Systems-oriented computer-aided methods and technology
can also facilitate precision nutrition by bringing different factors,
processes, and components together to better understand and
address the systems involved. Computer models can attempt to
represent all of the key components and processes of a system and
serve as virtual laboratories to test the effects of different changes
in circumstances and interventions (232-237). These virtual
laboratories have the ability to represent systems and complex
interactions between dynamic variables that influence each other
in complex ways, which can enable deeper understanding into
processes and causal pathways that affect diet and related diseases
(238). A “Virtual Infant” agent-based model representing infant—
caregiver pairs has been developed that exemplifies this type
of virtual laboratory. This agent-based model allowed virtual
caregivers to feed virtual infants each day according to major
feeding guidelines. The model simulated the development of
the infants from birth to 6 mo. These simulations identified
several scenarios where caregivers followed the guidelines,
but infants still became overweight/with obesity by 6 mo
even when caregivers adjusted feeding based on the infant’s
weight. This study exemplifies how one-size-fits-all nutritional
guidelines might not result in the best health outcomes for
all (184).

Similarly, 3 agent-based models of Baltimore, San Francisco,
and Philadelphia were developed to evaluate the potential impact
of implementing sugar-sweetened beverage warning labels in
the different cities (236). Detailed representations of each city’s
layouts, including household, school, grocery, corner store, and
restaurant locations, as well as detailed representations for each
person, including behaviors, movements, clinical status, and
physiology, were brought together using agent-based models.
New technology can help with the implementation and adoption
of prescribed precision nutrition behaviors as well. Al approaches
can help identify barriers and facilitators of precision nutrition
adoption. Systems modeling can show what adoption may be
under different circumstances and test various policies and
interventions. And sensors such as apps and wearables that
monitor eating, movement, and mobility can provide real-time
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prompts, deliver “just in time adaptive interventions,” and track
the adoption and long-term maintenance of dietary changes. In
a longer-term vision, approaches can be designed to leverage
all of these technologies in an end-to-end Al-enabled systems
approach that facilitates improved adoption of precision nutrition
interventions.

The need for a new systems-oriented data ecosystem

One way that new computer-aided methods and technology
can bring the systems approaches needed to precision nutrition
is by gathering and assessing data on different and often
neglected parts of the system. For example, eating is a social
practice, and what people eat is influenced by the people
they eat with, as well as the family, friends, and community
members who make up their social network (239, 240). These
social ties influence eating through many socially influenced
mechanisms, such as mimicry and normative influence, and
by providing social support and social capital that can impact
food access and consumption. Such information is rarely
captured in nutrition research. New opportunities exist for
using wearable devices, ecological momentary assessments, and
digital traces of social phenomena to more precisely monitor
social exposures and influences in context, and in real time,
and to better understand the unique and varied situations
that influence a person’s food intake and nutritional health.
These insights may inform intervention strategies that leverage,
or even alter, social network phenomena (e.g., group-based
interventions, targeting key opinion leaders and influencers) as
part of efforts that promote the adoption of tailored dietary
recommendations.

To realize the promise of precision medicine, it is also
necessary that the data is Al/machine learning ready. Al/machine
learning-ready data include large repositories of patient/human
data, which are privacy protected, available to all, and serve as a
standard dataset for comparison across studies. They also need to
contain data pertaining to a wide variety of health and disease
states, from a wide variety of sources (multi-omics, clinical,
imaging, wearables) over the life course and before, during, and
after episodes of care. Further, data ought to provide linkage
across many types of data within the same subjects, utilize com-
mon data formats, and be sourced ethically and with input from
communities participating in research (i.e., those whose data are
being utilized for research purposes). Historically, data have been
collected in a more ad hoc way without first determining what
data need to be collected to account for all aspects of the system.
A systems approach to data collection starts by mapping out all
components, processes, relations, and mechanisms in a system,
and using the map to determine where data collection is actually
needed.

The need to include and incorporate more diverse
populations

New technology can also facilitate a better understanding
of neglected, disadvantaged, and vulnerable populations. For
example, exposure to multiple risky social determinants of
health, such as poverty and food insecurity, can limit individuals’
ability to eat recommended healthy foods (241, 242), as well
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FIGURE 2 How a systems approach can utilize technology to iteratively better understand complex systems. Al, artificial intelligence.

as encompass exposures to stressors that have “under the skin”
effects, such as increased inflammation, which may play an
important role in physiological processes relevant to nutritional
health (243). Conducting and implementing precision nutrition
science without a central focus on the franslation of this science,
by considering the socio-ecological and economic challenges
that vulnerable populations face, could further exacerbate health
disparities. Specifically, people with few barriers to eating
well will be better able to adopt new and tailored information
to improve their diet and health. On the other hand, people
facing socio-ecological barriers—including low incomes, food
insecurity, and discrimination—and community divestment may
not be able to change their diet, unless these specific barriers are
addressed.

For example, recent research has begun to use population-
scale mobility data passively collected from smartphones and
novel data analytic techniques to study the food environments that
large, diverse urban populations are exposed to throughout their
day-to-day experiences (244). Early findings have uncovered that
lower-income populations not only are more likely to live in areas
surrounded by low nutritional quality food environments than
richer populations, such as those with much more fast food than
other types of prepared or fresh food, but are also more likely to
be surrounded by these types of low-quality food environments
when at work or conducting other daily activities. Achievable
personalized nutrition interventions will need to take these types
of barriers to access of food of higher nutritional quality into
account.

The need to translate precision nutrition and the use of
computer-aided analytics to the ‘“‘real world”

Translating precision nutrition findings and recommendations
to the “real world” is important yet challenging. Determining
how nutritional recommendations can be better tailored to
individuals or different groups of people is not the same
as implementing such recommendations. Translating scientific
findings into policies and practice is not trivial. Historically,
even the translation of fairly simple dietary recommendations
(e.g., consuming a variety of fruits and vegetables) has not been
successful, with the majority of the population not following this
nutritional guidance, and vulnerable groups having even lower
adoption. We present several considerations and approaches that
may help move precision nutrition from research to practice.

Scalability and sustainability are 2 closely related concepts
that are critical for practitioners (245). Likelihood scenarios
need to be translated into practical solutions that can be applied
to real-world challenges and implemented with scalability and
sustainability. Translation of likelihood scenarios into action
addresses bridging the gap between the availability of systems
models and their uses (246). Bridging research, education, policy,
and practice can be accomplished using a variety of approaches.
For example, awareness and understanding of how systems work
can be accomplished through training and education or through
the use of participatory approaches to model building where the
users or decision makers can see the impact of certain strategies
on outcomes or identify where unintended consequences may
surface (229). From a translation perspective, moving evidence
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TABLE 3 Research needs and future directions’

Study design needs

Well-controlled intervention studies are needed to address individual differences in response to dietary exposures, food bioactives, and dietary patterns,
including timing, duration, and dose-response. Studies specifically designed to target high-risk populations for prevalent health conditions (obesity, CVD,
T2D, cancer, cognitive decline, and AD) are needed. Moreover, it is essential to determine the applicability of the findings to real-world settings.

Develop and test novel intervention strategies to help people change their dietary intake patterns over the long term and test if changing one’s diet
significantly affects disease risk and outcome. Considerable efforts are needed to help people /) know what their dietary pattern is, 2) effectively modity
their dietary pattern and be more “adherent” to a healthier diet, and 3) maintain these dietary and behavioral changes over time, including over a lifetime.

Studies that account for factors that cross all the different relevant scales (e.g., genetics, physiology, behavior, social networks, environment, economics).

Studies that utilize systems approaches and methods (e.g., maps and models) that can help better elucidate and bring together different components,
factors, and mechanisms.

Hybrid approaches that combine different types of study design approaches (e.g., integrating systems models with intervention studies) to work
synergistically.

Technologies and methods

Develop and validate accurate and precise objective measures of dietary intake, including real-time monitoring of food intake, postprandial response, and
noninvasive biological responses.

Develop tools and methods to standardize, harmonize and improve interoperability of nutrition and food data.

Develop robust methods to integrate data from the genome, epigenome, microbiome, metabolome, and the exposome (i.e., single or multi-nutrient diet
components, dose and timing of dietary modulations, and health behaviors (e.g., physical activity and sleep) into the precision nutrition framework.

Develop standardized and harmonized study procedures and data collection to control for and/or at least assess factors that can influence precision
nutrition outcomes, including sleep and circadian biology (274).

Identify biomarkers for diet-related cancers and CVD is prioritized to more quickly elucidate the underlying basis of interindividual variability in diet and
disease risks.

New methods and technologies to extract insights from existing data and sources (e.g., natural language-processing techniques to mine text for
information).

Develop methods to extract and collapse larger data sources, including Big Data sources, into more refined datasets in ways that do not introduce bias.

Develop methods and tools to fill in missing data in ways that do not introduce bias.

Develop new AI/ML algorithms that can draw insights from datasets in ways that do not introduce bias.

Develop systems modeling methods that can better represent the actual mechanisms that affect and are affected by nutrition.

Develop mathematical and computational methods that help cross different scales (e.g., genetics, physiology, behavior, social networks, environment,
economics).

Knowledge gaps

Develop more in-depth and precise knowledge of foods, food composition and groups and eating patterns, and related biomarkers.

Identify individual nutrigenomic/behavioral/lifestyle differences in chronic diet-related disease (e.g., CVD, neurodegenerative disease, cancer, T2D) and
risk factors in order to personalize approaches for primary and/or secondary prevention of disease over the life course.

Collect data using objective measures of dietary intake episodically and prospectively over longer periods of time to learn if dietary patterns among the
same individuals are reliable/repeatable and to what extent changes in dietary patterns affect disease risk and outcome.

Determine the predictive role of metabolomics and microbiome data in precision nutrition and chronic disease interrelations.

Determine the contribution and mechanisms of sleep and circadian effects in precision nutrition research and interventions based on chronobiological
insights.

Quantify the effect of food policy, the food environment, socioeconomic and other personal factors, and industry on peoples’ dietary intake. Identify ways
to change policy, the food environment, and industry to improve people’s diets and presumably their health.

Better understand how complex systems are involved, affect, and are affected by nutrition.

Needs related to training in precision nutrition

Fill gaps in the implementation and dissemination of scientific research for evidence-based precision nutrition strategies and medical nutrition to reduce
chronic diseases.

Develop a diverse workforce that has training in Al/nutrition science.

Develop a new generation of truly interdisciplinary researchers able to cross different content areas of nutrition and different new methodological areas
such as mathematical and computer modeling and other types of Al

Train more people well versed in systems, mathematical, and computational methods.

Train people to better recognize and address bias.

Train people to be better versed in social determinants.

'AD, Alzheimer disease; Al artificial intelligence; CVD, cardiovascular disease; ML, machine learning; T2D, type 2 diabetes.

into practice demands a framework or model that leverages
system drivers, deep knowledge, and expertise that bridges
research and practice, and the a priori inclusion of user and
stakeholder perspectives (229, 246, 247).

Computing platforms and tools need to provide access to
conducting research on Al/machine learning datasets’ computing
power, analytic tools, algorithms, visualizations, and secure

electronic storage for data, data derivatives, visualizations,
results, and other related research products. The platforms
should foster collaborative research among interdisciplinary
teams through enhanced discovery of one another’s work and
through direct support for shared pipelines, workflows, shared
standards, etc. In addition, all tools need to facilitate transparent,
reproducible, shareable research practices, such as through
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virtual machines that save workflows and analytic plans as
executed. To foster transparent collaboration they should provide
access to algorithms for reuse/adaptation, reproducibility, and
transparency and facilitate dissemination of research findings.

Translation and dissemination frameworks need to go beyond
publications of research findings into initial implementation
efforts, include pragmatic evaluation, iterate, and adapt to local
needs and demands, and scale-up to broader implementations
that include scaling-up to different audiences, settings, and
population sizes. To date, much of translation, dissemination,
and implementation research has focused on initial uptake by
early adopters of 1 health intervention at a time. Efforts to
successfully scale and sustain must optimize context. Translation
and dissemination of evidence-based interventions must be able
to vary by context because few such efforts can be implemented
according to identical protocols, resources, or levels of expertise
(248-250). In fact, the need to recognize that things vary
by context is so important that explicit efforts have focused
on evidence-based principles that can be used in the context
of evidence-informed decision making (251), a concept that
appreciates that decisions to be made are not only based on
research but also need to consider other variables such as
political, organizational, or community health factors (251,
252).

Experts are required to interpret, understand, and disseminate
the knowledge generated by research. Such expertise comes
from multiple disciplines, including the fields of medicine,
health, technology, and engineering, and provides deep insights
into systems science, Al, and machine learning, as well as
areas critical to successful translation into practice, such as
human-centered design and health communications. Stakehold-
ers’ perspectives need to be surfaced, considered, valued, and
acted upon for translation to occur so that dissemination and,
ultimately, implementation may successfully bring evidence-
based solutions into practice. Stakeholders’ perspectives may,
at times, be similar or vastly different because different people
perceive and experience the world in different ways. Furthermore,
any given stakeholder may hold various perspectives on the
same system (253). Perspectives related to the implementation
of systems epidemiology models should be gleaned from
patients, providers, health care providers, care teams, payers,
policymakers, caregivers, and community agencies. In addition,
points of view should consider the biological, social, financial,
behavioral, and political context.

The interpretation and translation of systems science ap-
proaches to precision nutrition call for an appreciation of the
physical, social, and economic environments that modify the
outcomes. There is a need to observe and summarize the
strength of evidence of effectiveness and adapt such insights
to the marketplace using scalable and sustainable solutions,
including business plans that allow for sustained implementation.
Engagement of leadership from across multiple sectors in an
ongoing dialogue could facilitate the creation of models that
reflect an alternative way of thinking designed to simultaneously
benefit society and business while mobilizing resources and
activating funding mechanisms from federal and private sources
(254-259).

Based on the above, and in alignment with previously
identified considerations (253), several public health-related
recommendations for moving research findings toward practical
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implementation may be applied to precision nutrition. First,
the ability to leverage existing system drivers will provide
opportunities to advance translation, dissemination, and imple-
mentation efforts. This includes understanding the processes of
adoption, implementation, and sustainability of new initiatives
within organizations and institutions. Second is the application
of pragmatic evaluation. Newly implemented programs or
interventions should be assessed according to principles of
evaluability that allow for conclusions to be made about their
performance in the field and generate options for improvement
(260). Furthermore, it is recommended to use existing measures
to document performance as a cornerstone of an iterative learning
approach. Third is the use of an explanatory, process, and
outcome framework for translation and implementation. This will
allow for moving beyond reporting on effectiveness and include
descriptions and explanations of why things worked the way
they did and how it was done. This approach should include
both qualitative and quantitative observations, thereby providing
insights on outcomes, mechanisms of action, and processes
deployed.

The need to address key ethical and legal challenges with
new technology and precision nutrition

Precision nutrition presents an opportunity to shift health
care from being reactive to being proactive by providing insight
into the specific dietary needs of individuals and populations.
But the field’s promise depends on adequate attention to issues
of informed consent, representative datasets, socio-culturally
sensitive design, and equitable access to products. These
considerations must be built into research and implementation, as
opposed to retrofitted. Building these considerations into research
will ensure that personal information is not used for unapproved
or malicious purposes, that tailored dietary recommendations are
accurate and helpful, and that such recommendations benefit the
people in greatest need.

The capacity to assess risks and benefits and authorize action
in accordance with one’s values is a critical consideration for
various aspects of precision nutrition. Basic respect for autonomy
requires that we do not impose risk on individuals without
their understanding and agreement. The Al systems on which
precision nutrition will increasingly rely must be fed significant
amounts of protected health information (PHI) and personally
identifiable information (PII). It can be argued on privacy
grounds that one’s PHI/PII should not be accessed by others
without permission, regardless of actual harm incurred. Data
providers must also be aware of tangible harms—entities can use
PHI/PII to raise insurance premiums and hackers can use it to
obtain ransom or steal an identity. For those receiving precision
nutrition recommendations, disclosure of limitations and risks
is critical for informed decision making. As precision nutrition
hangs adjacent to health research and health care, there will
be ambiguity as to when practices fall under the auspices of
the federal “common rule” and Health Insurance Portability and
Accountability Act (HIPAA) privacy rule and are thus subject to
legal informed consent and security requirements. There will also
be ambiguity as to whether precision nutrition applications will
be regulated by the US FDA through the Software as a Medical
Device pathway, meeting the same approval obstacles faced by
medical Al applications, or whether a different regulatory process
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will be required. One challenge will be striking a balance between
having enough regulatory procedures and oversight in place to
protect the population to maintain and not unduly impede the
adoption of such computational approaches. Regardless of legal
requirements, the actual risks should inform the development of
measures necessary to protect and respect individuals.

Data used to train algorithms for precision nutrition must
be adequately representative of diverse populations, and recom-
mendations must adequately recognize socio-cultural elements
of the diet. Findings of 1 precision nutrition study using a
specific cohort may not necessarily be applicable to predict
responsiveness in other cohorts. If training datasets are inaccurate
or incomplete, regardless of algorithm quality, the output will
be inapplicable or harmful to populations missing from or
inaccurately represented by the training set. Poorly designed
algorithm systems and services that conflate race with genetics,
inappropriately narrow user options, or under- or over-account
for nonbiological socio-cultural correlations can also lead to bias
and harmful recommendations. Research and development teams
have begun developing strategies and toolkits for assessing and
mitigating bias in Al algorithms (261-264). Precision nutrition
developers should build off these strategies, with significant
attention to testing before deployment and monitoring after
deployment.

Precision nutrition has the potential to help address social
determinants of health that lead to racially and socioeconomically
disparate health outcomes. However, without subsidization or
sponsorship, the whole field risks becoming a “boutique” service
available only to those able to pay. To ensure populations
in greatest need benefit, precision nutrition must be /) ac-
curately grounded in scientific research and sound algorithm
development, 2) actionable based on available resources, and 3)
supported by appropriately trained experts. Diverse populations
must be involved in development, and design must keep diverse
populations in mind.

The need to train a new generation familiar with
computer-aided analytics and precision nutrition

The precipitous rise in the volume, velocity, and variety of
available data and the corresponding arrival of Big Data analytics
have created a new landscape for health research (265, 266) and
make the vision of precision nutrition possible. Yet, precision
nutrition can only be realized if the complex interplay of factors
that influence nutrition and health outcomes are understood.
These factors are present at multiple levels of influence: 1)
external context, such as environment (including but not limited
to food environment and opportunities for physical activity),
policy, culture; 2) individual behavioral context such as dietary
habits, physical activity; 3) clinical context, including current
health status, treatments, and health history; and 4) below the
skin contexts, such as genetic make-up, microbiome composition,
metabolic factors. Understanding the joint impact of these factors
is challenging because the sheer number of factors is large
(i.e., high dimensionality) and compounded by the presence
of bidirectional and nonlinear relations and moderated by the
temporality of contexts (critical periods of exposure, timing,
periodicity, duration, frequency).

Understanding how the entire web of interacting factors
would play out over all health and disease topics at once is
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far too ambitious of a goal. A more feasible approach would
be assembling teams of interdisciplinary scientists, as indicated
by the specialized questions within the field. These teams will
require a wide breadth and depth of collective domain expertise
spanning across nutrition science, biomedical science, and
behavioral science, but also core competencies in computational
methodology, data science, systems science, machine learning,
Al, and data infrastructure.

To properly examine interdisciplinary questions with complex
and voluminous data, the members of scientific teams must
possess core knowledge and competencies in data analytics; data
infrastructure; data sharing; Findable, Accessible, Interoperable,
and Reusable (FAIR) data principles (267); and algorithmic bias
[e.g., detection, mitigation (268)], with additional understanding
of statistical analysis, database design, technical coding skills,
and data visualization along with relevant biomedical or behav-
ioral science domain knowledge. Moreover, these competencies
must be taught through a lens of equity, inclusion, and human
rights (269), such as the Framework on Integrating Health
Equity and Racial Justice into the AI development lifecycle
(270).

To meet this charge, at least 2 types of training are needed.
On the one hand, we need to retrain the existing investigative
workforce not only to work in interdisciplinary teams but also
to learn core competencies in data science. On the other hand,
we need to reimagine how we currently train the next generation
of scientists to incorporate interdisciplinary and data science
competencies into their main disciplinary degree programs.
To be successful, this cross-disciplinary training must include
experiential, project-based learning. The authors offer 2 models
of training from their own experience that incorporate this
approach. The Institute for Systems Science in Health (ISSH)
was an intensive, week-long summer course sponsored by
the NIH Office of Behavioral and Social Sciences Research
(OBSSR) from 2009 to 2012 (271). The ISSH was intentionally
designed to provide an incubator space for luminaries in
systems science to interact with public health researchers
with applied research questions that could be addressed with
systems science methodologies. Each year, ~45 early-career
and established investigators received hands-on training in 1 of
3 methods (agent-based modeling, system dynamics modeling,
and network analysis) through a week-long in-residence training
course. This type of intensive short-term, face-to-face approach
could easily be adapted to the training needs of precision
nutrition.

A second example of experiential project-based training is a
predoctoral training program established in 2020 by OBSSR,
the Training in Advanced Data Analytics for Behavioral and
Social Sciences Research (TADA-BSSR) Program [NIH, 2019:
RFA-OD-19-011 (272)]. The aim was to create new predoctoral
programs to integrate innovative computational and data science
analytic approaches directly into doctoral training. The program
is offered at 8 universities (273). While this program was focused
solely for OBSSR doctoral students, the principles and approach
should be readily translatable to other disciplines involved in
biomedical and health research.

Providing training in the core competencies in modern
data science and opportunities for researchers at all ca-
reer levels to apply their biomedical domain knowledge
in the context of large interdisciplinary scientific teams
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will be key for the future precision nutrition scientific
workforce.

Summary

Table 3 presents the many research opportunities that were
identified from the workshop’s presentations, discussions, and
participant comments.

Advancements in precision nutrition will mean better tailoring
of dietary interventions to different people’s circumstances and
situations. It is not yet clear how specific this tailoring may
need to be, as precision nutrition does not necessarily mean
personalized nutrition when each person should get dietary
recommendations specific to himself or herself. As discussed
above, much consideration and research will be needed before
more precise nutrition recommendations can be achieved. This
includes better understanding and accounting for variables such
as age, sex, ethnicity, medical history, genetics, and social and en-
vironmental factors. The advent of new methods and technologies
and the availability of considerably more data bring tremendous
opportunity. However, we must proceed with appropriate levels
of caution and make sure that the variables listed above are all
appropriately considered, and systems approaches, and methods,
are incorporated. Last, it will be important to develop and train
an expanded workforce with the goal toward reducing health dis-
parities and improving the precision of nutritional advice for all
Americans.
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