2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy
Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/Digital Twin/PriComp/Metaverse)

Lightweight Collaborative Inferencing for
Real-Time Intrusion Detection in IoT Networks

Gabriel A. Morales, Jingye Xu, Dakai Zhu, and Rocky Slavin
Department of Computer Science
The University of Texas at San Antonio
San Antonio, Texas, USA
{gabriel.morales, jingye.xu}@my.utsa.edu, {dakai.zhu, rocky.slavin}@utsa.edu

Abstract—The security in Internet-of-Things (IoT) networks
becomes increasingly important with the growing popularity of
IoT devices and their wide applications (e.g., critical infras-
tructure monitoring). However, traditional intrusion detection
systems (IDS) are not suitable for IoT networks due to their
large resource requirements. Moreover, IoT networks tend to
have multiple access points for IoT devices and thus benefit from
a distributed framework to enable collaborative prevention of
potential attacks. To this end, we propose a lightweight collabo-
rative distributed network IDS (NIDS) based on widely-utilized
machine learning (ML) models, which are trained through a
federated learning framework with two known datasets. We
evaluate the distributed NIDS using the trained ML models
on an IoT network testbed under seven types of attacks in
comparison with Snort (a state-of-the-art IDS) and a centralized
implementation of our proposed NIDS. An offline benchmark is
also designed to measure the system’s performance with regard
to resource usage and response time. Our results show that
the proposed distributed NIDS outperforms Snort in identifying
malicious traffic and achieves a much lower false positive rate
compared to the centralized version in real-time for all seven
types of network attacks tested.

Index Terms—Intrusion Detection, Internet of Things, Ma-
chine Learning, Network Security

I. INTRODUCTION

The Internet of Things (IoT) connects a multitude of
devices with each other and is the backbone of smart homes,
smart cities, critical infrastructure monitoring, and count-
less other applications [24]. With the integration of sensors,
lightweight computation, and the proliferation of wireless and
wired technologies on IoT platforms, consumers can easily
interact with their surrounding physical world thoroughly
through IoT networks [2]. This is widely apparent as an
estimated 83 billion ToT-compatible devices are predicted to
be in use by 2024 [22]. As a result of the widespread adop-
tion of IoT infrastructures throughout various domains, such
networks have become attractive to hackers and malicious
applications [2]. This problem motivates the development
of more IoT-conscious network intrusion detection systems
(NIDS) that automatically monitor for potential threats to
IoT networks [24], [14]. However, there remain challenges
in deploying appropriate NIDSs on IoT networks.

First, traditional NIDSs, deployed on access points, may
not be suitable for deployment on IoT networks in terms

979-8-3503-4655-8/22/$31.00 ©2022 IEEE

392

of network architecture. IoT networks have highly mobile
architectures [6], [15] due to the way IoT devices are designed
to communicate with a logical center node through network
access points [23]. This approach enables the flexibility for
IoT devices to switch from one access point to another access
point when moving, thus increasing the potential risk for
attacks [10]. Considering this architecture, even if one access
point locally detects malicious activity, the attacker can switch
to another access point to continue the attacks. Therefore, a
flexible NIDS in which collaboration takes place, is more
suitable: nodes, including access points, in a connected IoT
system, can share local alerts with one another, creating a
stronger deliberation in attack detection.

Second, IoT devices typically have constrained re-
sources [4], [5] and thus have limited computational power
to deploy complex and computationally heavy algorithms
for security. Traditional NIDSs use traffic rules to detect
malicious activities and are usually deployed on servers that
are powerful and can detect risks quickly [21]. Moreover,
the traffic rules need to be updated frequently and manually,
which make traditional NIDSs less feasible for IoTs due to
the resources required.

Finally, IoT networks often convey sensitive data [16],
including personally identifiable information [3], that the data
owners may not want to share outside of the network [12]. For
this reason, intrusion detection should be conducted locally.

To address these challenges, we propose a collaborative
inference-based NIDS for IoT networks. As a proof of concept
and evaluation, we devised an IoT network testbed consisting
of multiple access points and IoT devices to simulate the char-
acteristics of a consumer-level IoT network. We then employ
a federated machine learning system [17] to train machine
learning (ML) models adopted in the proposed NIDS. Due
to the distributed nature of the proposed NIDS, the access
points can determine locally if traffic flows between devices
are malicious with minimal overhead to the IoT network.

We evaluate the performance of the proposed NIDS with
five widely-utilized ML models and compare their results to
the state-of-the-art NIDS, Snort [20], as well as a centralized
(i.e., non-distributed, sequential) version of the proposed
NIDS framework to evaluate both the system’s ability in
detecting malicious traffic and its response time. The eval-

DOI 10.1109/SmartWorld-UIC-ATC-ScalCom-Digital Twin-PriComp-Metaverse56740.2022.00076

uation results show that, for all considered ML models, the
distributed NIDS outperforms Snort in identifying malicious
traffic. Specifically, Snort could only detect two out of seven
attacks in the experiments, while the distributed NIDS de-
tected six out of seven attacks at the node level. Moreover,
the distributed nature of the NIDS results in a much lower
false positive rate compared to the centralized version for all
seven types of network attacks evaluated.
We summarize the contributions of this paper as follows:

1) A Novel, IoT-Oriented Collaborative IDS Frame-
work: A lightweight collaborative inference framework
is proposed and evaluated on resource-constrained de-
vices such as Raspberry Pis. Real-time detection of
potentially malicious traffic yields fast responses as low
as one second and lower false positive rates with each
model; we also show how the data delegation in the
distributed, collaborative system is performed.

Offline Benchmark: As part of the evaluation of the
framework, we present a benchmark application de-
signed to add stress to the models and algorithms. The
offline benchmark system measures disk space taken
by the models, the amount of time to load them into
memory, and the time it takes for each model to predict
on a large set of flows. The stress-test for the flow table
size is adjustable, along with the packet capture to load
for the test.

Experimental Evaluation of the Proposed NIDS: We
evaluate the proposed NIDS powered with five ML
models trained by two known datasets including seven
attack types on an IoT network testbed. Compared to
the state-of-the-art production-level NIDS, Snort, the
proposed framework is generally more accurate and acts
more rapidly in detecting diverse attacks.

2)

3)

The remainder of this paper is organized as follows.
Section II presents background and closely related work.
The main ideas for the proposed approach are discussed
in Section III. Section IV presents an evaluation of the
approach and Section V discusses potential threats to validity.
Section VI presents our conclusions and outlines our future
work.

II. BACKGROUND AND CLOSELY RELATED WORK

An intrusion detection system (IDS) automates the process
of monitoring for potential threats to a system. These threats
may come in the form of malware, adversaries, or any
other malicious actor attempting to gain unauthorized access
to endpoint devices and the network. A network intrusion
detection system (NIDS) is one such system designed to
facilitate this process and monitor suspicious activities occur-
ring across the network through traffic packets or flows [21].
Traditionally, how well a NIDS performs highly depends
on the detection rules that are designed by analyzing the
specific characteristics of the attack flows. The rules are
highly flexible in that they can be updated to detect new
attacks. However, this incremental update method also makes

393

these rules complicated and hard to maintain. Moreover, the
rules are usually released after attacks become popular and
attract network administrators’ notice. Snort is the foremost
open source NIDS [20]. It uses a series of rules that help
define the malicious network activity and find packets that
match against them. In turn, Snort can generate alerts and
take actions for users. It can detect most network attacks but
requires users to update rules periodically.

A traffic flow is defined as containing the common net-
working attributes of two nodes that communicate with each
other. For example, a standard flow contains the Internet
Protocol (IP) address, Media Access Control (MAC) address,
ports, duration of the communication, package payload, along
with statistical information. This information is organized into
corresponding forward (source to destination) and backward
(destination to source) directions for a single flow. The data
structure of many flows together can be viewed as a flow
table. Based on the aggregate information in a single flow,
node network behavior can be collected. As such, they can
then be used by a NIDS to differentiate between abnormal
and benign traffic flows.

Various novel intelligent NIDS have been proposed demon-
strating that traditional machine learning algorithms can be
applicable in lightweight applications, without sacrificing
detection and model performance [7], [9], [11]. Commonly,
collaboration is implemented by collaborative learning. For
instance, several K-Means variants via distributed computa-
tion of alerts from various local IDS systems were proposed
by Mokry et al. [18]. In other cases, collaboration is achieved
through distribution and coordination of elements within such
a system. Igbe et al. [§] modeled a non-centralized NIDS
based on artificial immune systems. Dat-Thinh et al. [4]
implemented a collaborative mechanism by way of a multi-
staged, multi-model approach. This is a non-distributed col-
laborative process whereby the IoT traffic detection is split up
into three pieces: detecting device type, detecting whether or
not this particular traffic is anomalous, and finally detecting
the specific attack type. Notably, the aforementioned systems
implement their collaborative process during training. Our
system implements a collaborative algorithm during real-time
predictions .

McMahan et al. [17] introduced a distributed collaborative
machine learning approach known as federated learning. This
approach enables distributed nodes to collaboratively learn
and update any shared model while keeping all the training
data local. Federated learning can be a valuable approach
for IoT NIDSs as it does not require the need to upload the
privacy-concerned data to a central node but still can use them
to train NIDS models efficiently.

III. METHODOLOGY AND IMPLEMENTATION

Figure 1 illustrates the overview of the proposed NIDS
framework with collaborative inference and machine learning
models. From left to right: first, our chosen datasets are pre-
processed to sanitize the traffic flows and combine them.

Training Process
& Federated

igi : Learnin,
g;ﬁs‘:ﬁ Data Preprocessing Processed Data g
1. Data Cleaning 2017
CICIDS 17 2. Data Balancing 2018 Trained
CICIDS 18 3. Feature Selection 17+18 Models

4. Normalization

Distributed NIDS Deployment

Captured
Traffic
L

‘Compute Node 1
Master Node

=

Compute Node X

1oT Network

Fig. 1. Overview of the Proposed NIDS Framework with Federated ML models and Collaborative Inference.

Then, these datasets are used to train the adopted ML models
through a federated learning system, which are subsequently
saved for deployment. In the deployment stage, as shown
in the right part of the figure, each trained ML model
is loaded into the distributed compute nodes (representing
access points) in the IoT network. For ease of processing
and evaluation, network traffic is captured from the switch
and routed into a master node which will orchestrate the
collaborative inference and make the final decisions of benign
or malicious network flows. Notably, the master node can also
process all the network traffic flows using one of the trained
ML models (i.e., a centralized version of the NIDS).

In a distributed IoT network, the task of evaluating a
network flow can occur more efficiently in real-time since
subdivided captures are delegated to each computing node
by the master node (as shown in Figure 1). Each computing
node predicts on its own sets of data, which necessitates a
collaborative scheme for deliberation as traditional voting is
not sufficient and difficult to scale.

A. Distributed Collaborative Framework Design

Fig. 2. Concurrent Distributed NIDS Data Flow

The proposed lightweight collaborative framework main-

394

tains fairness and operates in real-time by yielding a fast
response. The system encapsulates a single responsibility in
each compute node, which reports to the master node. Each
compute node contains separate evidence buffers to which
local predictions are mapped. Predictions made raise the count
of benign or malicious alerts within the particular node’s
buffer. Once any of the benign or malicious thresholds are
reached within a compute node, the evidence is then sent out
to the master node, which maintains its own local buffer and
thresholds. Once enough compute nodes have reported the
same judgement over time, the master node makes the final
determination. This careful deliberation allows the system to
provide additional fairness so as to limit false positive rates
within the system, regardless of the model used.

We choose to use the Dask [19] distribution framework
due to its plug-and-play functionality: any computing device
with Dask installed may become a component in the cluster
via a single command-line invocation. Furthermore, Dask
provides straightforward APIs to submit computing tasks to
the cluster. The NIDS is divided into two primary computa-
tion components: the master node and the compute nodes.
To use Dask, the master node will be the server running
the dask-scheduler service, responsible for transpar-
ently managing the cluster and submitting computation tasks.
Any device can become a compute node by running the
dask-worker service. The compute nodes may come and
go on-demand without interrupting the cluster, making the
system easily scalable. In order to develop a NIDS which is
compatible with our models, live traffic must be converted
into the flow formats the models were trained on. Live
data is captured from our test network, which may either
be benign or malicious depending on if we are conduct-
ing attacks. For ease of implementation, these captures are
saved using a tempfile system call to create flows using
NFStream [1] from each capture. Furthermore, all models
have their weights, along with their respective feature scalers,
saved. In deployment, both are loaded. In what follows, the
algorithmic steps for each component is described in more
detail.

1) Master Node: The master node computation is divided
into four concurrent tasks. Outside of the Dask scheduler,
which is initialized on startup, three threads are in operation.
As shown in Figure 2, these three threads are labelled numer-
ically with four algorithmic sub-tasks each. Thread 1 captures
data from the Network Switch plugged into the Ethernet

interface using the Python networking package, Scapy (step
1A). These data packets are then saved to random access
memory (RAM) and processed into individual flows via the
NFStream package, then turned into flow tables (steps 1B &
1C). To perform effective data delegation, historical flows are
used by appending each new flow table to the table generated
in the prior iteration. The resulting aggregate flow table is
split into smaller fragments amongst the flow table queue for
thread 2, and flushed for the next iteration (step 1D).

Thread 2 first takes the next available flow table from
a thread-safe queue, and then passes it as a parameter to
be scheduled for a task on the cluster (steps 2A & 2B).
Each submitted task is handled by the Dask scheduler service
running in the background. When a task is submitted, a
Dask future object, an asynchronous object which allows non-
blocking computations, is returned immediately for the next
step (step 2C). This future, representing the cluster task, is
then added to the DASK_FUTURE_QUEUE on the system for
thread 3 (step 2D).

For the steps in thread 3, Algorithm 1 is also refer-
enced. Thread 3 obtains the next available future from the
DASK_FUTURE_QUEUE (step 3A, line 27) and then the
result method is called on the future. This is a blocking
call, so instead we check if the task is pending and re-
queue it if so (step 3B, lines 28-31), otherwise the result
can be obtained. These results are encoded from the evidence
buffers in the compute nodes. Results are then submitted
to the master evidence buffer (step 3C, lines 31-35). The
final step is observing the master node’s thresholds and
checking if either is exceeded. If the benign threshold,
MN_BENIGN_THRESH, is exceeded, enough evidence has
been accrued to judge that activity is benign. If the malicious
threshold, MN_MAL_THRESH, is exceeded, the activity is
judged as malicious. Finally, the respective entry is flushed
(step 3D, lines 36-42).

2) Compute Node(s): In Figure 2 Compute Node X de-
notes one or more devices joining as a dask-worker to
the cluster. Algorithm 1 is also referenced. Compute nodes
have two steps: predict on the received flow table (lines
3-4) and map the predictions to the local evidence buffer.
For each prediction, the MAC addresses are mapped to the
buffer and their judgment count is increased (lines 6-10).
If any of the thresholds are exceeded, the MAC address is
encoded with the node’s judgment of benign or malicious
and the count (lines 11-14 & 15-19). If the benign thresh-
old, CN_BENIGN_THRESH, is exceeded, it is reset to zero
for future flows of this device. If the malicious threshold,
CN_MAL_THRESH, is exceeded, its counts are gradually reset
by half to maintain a level of suspicion over time, thus
ensuring real malicious activity is not ignored.

The source code for Algorithm 1 and the proposed NIDS
system is open source and available on GitHub!.

Uhttps://github.com/jingye-xu/DistriLearn

395

Algorithm 1 Distributed Collaborative Flow Detection NIDS
1: function RUN_INFERENCE(data frame)

2: model.get_instance() // load once and reference from mem-
ory

3: predictions <— model.predict(data frame)

4: result < 0

5: mac_index <+ 0

6: while mac_index < dataframe.length do

7: mac < dataframe[mac_column][mac_index]

8: prediction <— predictions[mac_index]

9: buffer «— {benign: 0, malicious: 0}

10: buffer[mac][prediction] += 1

11: if buffer[mac].benign > CN_BENIGN_THRESH then

12: result < {mac : buffer[mac].benign_count}

13: buffer.flush_benign(FULL)

14: end if

15: if buffer[mac].malicious > CN_MAL_THRESH then

16: result < {mac : buffer[mac].malicious_count}

17: buffer.flush_benign(ONE_HALF)

18: buffer.flush_malicious(ONE_HALF)

19: end if

20: mac_index += 1

21: end while

22: return result

23: end function

24:

25: function RESULTS

26: while not shutdown do

27: dask_future <— DASK_FUTURE_QUEUE.dequeue()
28: if dask_futue.status == PENDING then

29: DASK_FUTURE_QUEUE.enqueue(dask_future)
30: end if

31: result <— dask_future.result()

32: mac < result[0]

33: prediction <— result.prediction_type

34: type_count <— result[prediction].count

35: master_buffer[mac][prediction] += type_count

36: if buffer[mac].benign > MN_BENIGN_THRESH then
37: /I Report benign judgment

38: buffer.flush_benign(FULL)

39: end if

40: if buffer[mac].malicious > MN_MAL_THRESH then
41 /I Report malicious judgement

42: buffer.flush_malicious(FULL)

43: end if

44: end while

45: end function

B. Datasets and Feature Engineering

To achieve differentiation between malicious and benign
traffic, we selected two datasets provided by the Canadian
Institute for Cyber Security (CIC): CIC-IDS 20172 and CSE-
CIC-IDS 20183. These contain organized network attacks
commonly used by adversaries. We restrict our scope to these
datasets for simplicity and defer external datasets to future
work. Since many IoT devices are connected on the Wi-
Fi network, all attacks conductible on non-IoT devices are
applicable to 10T devices as well.

We implement a preprocessing phase which ensures the

2https://www.unb.ca/cic/datasets/ids-2017.html
3https://registry.opendata.aws/cse-cic-ids2018

TABLE I

FEATURES SELECTED FROM CIC DATASETS

Feature Name

Description

Destination Port

Flow Duration

Total Fwd Packets
Total Backward Packets

ets
Total
Packets
Fwd Packet Length Max
Fwd Packet Length Min

Length

Fwd Packet Length Std

Bwd Packet Length Min
Bwd Packet Length Std

Flow Bytes per second
Flow Packets per second
Flow IAT Mean

Flow TAT Max

Flow IAT Min

Fwd IAT Total

Fwd IAT Mean

Fwd IAT Std

Fwd IAT Max
Fwd IAT Min

Bwd IAT Total
Bwd IAT Mean

Bwd IAT Std

Bwd IAT Max

Bwd IAT Min

Fwd Packets per second
Bwd Packets per second
Min Packet Length

Max Packet Length
Packet Length Mean
Packet Length Std
Packet Length Variance

RST Flag Count
Average Packet Size

Total Length of Fwd Pack-

of Bwd

Fwd Packet Length Mean

Bwd Packet Length Max

Bwd Packet Length Mean

Communication Protocol Port.
Duration of a flow.

Total forward packets.

Total backward packets.

Total length of forward packets.

Total length of backward packets.

Maximum length of forward packets.
Minimum length of forward packets.

Mean length of forward packets.

Standard deviation length of forward pack-
ets.

Maximum length of backward packets.
Minimum length of backward packets.
Mean length of backward packets.
Standard deviation length of backward
packets.

Number of bytes transmitted per second.
Number of packets transmitted per second.
Mean inter-arrival time in the flow.
Maximum inter-arrival time in the flow.
Minimum inter-arrival time in the flow.
Total inter-arrival time of forward packets.
Mean inter-arrival time of forward packets.
Standard deviation inter-arrival time of for-
ward packets.

Maximum inter-arrival time of forward
packets.
Minimum inter-arrival time of forward
packets.

Total inter-arrival time of backward packets.
Mean inter-arrival time of backward pack-
ets.

Standard deviation inter-arrival time of
backward packets.

Maximum inter-arrival time of backward
packets.

Minimum inter-arrival time of backward
packets.

Number of forward packets transmitted per
second.

Number of backward packets transmitted
per second.

Minimum packet length for a flow.
Maximum packet length for a flow.

Mean length of packets in a flow.

Standard deviation length of Packets in a
flow.

Variance in the length of packets in a flow.
Number of RST flags transmitted for a flow.
Average packet size transmitted in a flow.

quality and performance of the models. In Figure 1, this phase
is summarized in the training process’ data preprocessing box.
Our feature set is listed in Table I. The original datasets
are also merged to create a new, larger one, resulting in
organic upsampling. Table II shows each of the datasets’ class
distributions after processing.

The NIDS is designed to differentiate between benign and
potentially malicious traffic. However, each of the flows in
the datasets is labelled as one of seven network-based attack
categories: Brute Force (FTP/SSH), DoS/DDoS, Heartbleed,
Web Attacks, Infiltraion, Botnet, Portscan. Hence, each at-

396

TABLE II
DATASET CLASS DISTRIBUTIONS
CIC-IDS17 | CIC-IDS18 | CIC17+18
Total 851,482 2,702,734 3,554,216
Malicious 425,741 1,351,367 1,777,108
Benign 425,741 1,351,367 1,777,108

tack flow is relabeled as malicious while flows labeled
benign are unchanged. This strategy allows the NIDS to
easily inter-operate between datasets and aggregate them
without accommodating change in class sizes. Additionally,
this allows the datasets to be used for binary classification.

C. Machine Learning Models

Five widely-utilized machine learning models [9], [13] are
chosen for the proposed NIDS, which are trained using the
three processed datasets as discussed in the last section.
Implemented in Sklearn, we use: The Support Vector Ma-
chine (SVM), Logistic Regression (LR), K-Nearest Neighbors
(KNN), and Random Forest (RF). We implemented the Neural
Network (NN) using PyTorch. Each of the models are trained
using federated learning with the average strategy.

D. Network Architecture of the Testbed

Router

Network: 192.168.0.0/24

 192.168.0.51
% Ubuntu OS
192.168.0.1 Computing Nodes

B 192168052

il Kali OS 1P address:
fl Attacker DHCP

192.168.0.21 192.168.0.22|
OpenWRT
Access Poil 192.168.0.41
Nvidia Xavier
Master node

10T Devices

TP addresses:

DHCP RasPwn OS

Actuator Victim

Sensor Reported

state

Fig. 3. Network architecture of the IoT Network Testbed.

Figure 3 shows the basic network topology for the IoT
network testbed designed to simulate a real-world smart home
environment upon which the NIDS system is implemented.
For the router, the testbed utilizes an ASUS RT-AC1200GE
disconnected from the Internet to prevent unwanted traffic.
An NVIDIA Jetson Xavier with a 6-core 64-bit CPU and 8
GB Memory running Ubuntu 18.04 serves as the master node
for our cluster. Two Raspberry Pi (RPI) devices act as access

TABLE III
DISTRIBUTED SYSTEM REACTION TIMES (S)

Network Discovery DoS Brute Force Vuln. Discovery Port Scan Medusa Brute Fuzzing

Relaxed Load Relaxed | Load | Relaxed | Load | Relaxed | Load | Relaxed | Load | Relaxed | Load | Relaxed | Load
LR (2017) F F 2 4 4 4 6 7 6 11 1 1 1 1
SVM (2017) F F 1 1 2 2 12 12 4 4 1 1 1 1
KNN (2017) F F 2 3 4 4 7 7 F F 3 2 2 3
NN (2017) F F 1 2 2 2 2 2 14 17 2 2 1 2
RF (2017) F F F F 30 50 F F F F 1 20 F F
LR (2018) F F 2 3 1 2 11 12 1 2 1 2 1 2
SVM (2018) 1 1 1 1 1 1 12 12 1 1 1 1 1 1
KNN (2018) F F 4 7 3 4 13 14 6 6 2 3 2 5
NN (2018) F F 2 3 3 3 12 13 1 2 1 2 1 2
RF (2018) F F 1 2 2 5 13 15 3 3 1 1 1 2
LR (17+18) F F 1 2 2 2 12 13 1 1 1 2 1 1
SVM (17+18) F F 1 2 2 2 12 12 1 2 2 2 1 2
KNN (17+18) F F 3 4 4 7 13 14 6 10 3 3 2 8
NN (17+18) F F 1 4 2 2 13 13 2 2 2 2 1 1
RF (17+18) F F 2 2 2 3 13 16 2 2 1 2 1 1
Snort F F F F 2 F 11 42 F F F F F F

points running OpenWRT, an open-source router OS. Various
IoT devices such as smart phones, speakers, and cameras
are connected to these RPI access points. Two other RPI 4B
devices act as compute nodes in our IDS: 4-core CPU, with
2GB and 4GB of memory. Finally, we have two RPI devices
for pen-testing. One RPI runs Kali Linux as the attacker, the
other runs a RasPwn OS web server as the victim.

A Netgear (GS305E) switch is placed between the router
and the rest of the network, including the NIDS nodes. There
are five ports to which the router, all RPI devices, and the
master node are connected and have been assigned static IP
addresses as shown in Figure 3. All traffic flowing to and from
port 3 (router) is also mirrored to port 5 (master node). We
assume that the attacker has no knowledge of the IDS system
to prevent unwanted interference as discussed in Section V.

IV. EVALUATION AND RESULTS

In this section, we address the research questions (RQ)
below by evaluating the performance of the proposed NIDS.

e RQI1: Is a collaborative, inference-based NIDS viable
compared to the state of the art?

o RQ2: Is the distributed, collaborative design of the NIDS
system beneficial?

« RQ3: How well do different machine learning algo-
rithms balance performance and resource consumption
when deployed in the NIDS?

1) Baseline: Snort was chosen as the baseline to evaluate
the performance of the proposed, as it supports multiple
platforms [20]. The GPLv2 Community rules were used for
the deployment of Snort. To detect all the traffic flows, Snort
was configured to alert when it detects malicious activity
instead of blocking it. To evaluate RQ2, a centralized version
of the proposed NIDS was also designed which runs data
collection and performs model inferences solely on the master
node (i.e., no parallelism or distribution is exploited). This
centralized NIDS acts on all generated flows immediately.

2) Time Calibration: NTP settings were configured on all
nodes in the system such that their local time is synchronized.

This enables the approximate calculation of response times by
obtaining the difference from the time of starting attacks and
the time of detecting malicious flows.

3) Attack Design: We conducted seven different types of
attacks to test successful detection and how long it will take
to detect, described in Section III-B. The attack types are
identical to those present in the CIC datasets. All attacks were
launched using the Kali RPI device. We list them below along
with the tools and commands we used to launch them:

¢ Network Discovery: nmap

e Denial of Service (DoS): hping3

e Brute Force: nmap

o Vulnerability Discovery: nmap

e Port Scan: nmap

o SSH/FTP Brute Force: medusa with SecLists*
e Web Fuzzing: £fuf with SecLists

Each of these attacks were conducted five times to measure
the best response time overall. We divide our measurements
into a Relaxed state, where the NIDS is running under nor-
mal conditions, and a Load state where the NIDS is running
under a highly-loaded CPU using the stress command-
line tool. We measure response times as (detection_time —
attack_start_time) using NTP synchronization. Entries in
Table III and Table IV contain a response time if the attack
was successfully detected at any point in the experiment. If
Snort, the centralized, or distributed systems were unable to
successfully detect the attacks by their completion, the entries
are marked as F (failed detection).

4) Offline Benchmark Design: To stress-test the models
and simulate a network under load, we processed a 7.73 GB
packet capture with the trained models loaded. As with our
real-time design, we use NFStream to read the capture from
disk quickly and generate the flowtable data structure. An
adjustable limit of 5,001 entries was placed on the flowtable,
which takes 1.4 MB of memory. As shown in Table V, a
growth of disk space, prediction time, and load time is present

“https://github.com/danielmiessler/SecLists

397

TABLE IV
CENTRALIZED SYSTEM REACTION TIMES (S)

Network Discovery DoS Brute Force Vuln. Discovery Port Scan Medusa Brute Fuzzing
Relaxed Load Relaxed | Load | Relaxed | Load | Relaxed | Load | Relaxed | Load | Relaxed | Load | Relaxed | Load
LR (2017) 1 2 1 I 4 3 11 1 F F I 1 I I
SVM (2017) 2 2 1 1 2 1 12 12 1 1 1 1 1 1
KNN (2017) 1 2 1 1 4 3 11 11 F F 1 1 1 1
NN (2017) 1 1 1 1 1 2 11 12 1 1 1 1 1 1
RF (2017) F F F F 6 8 F F F F 1 1 F F
LR (2018) 1 1 1 1 1 2 11 11 1 1 1 1 1 1
SVM (2018) 1 1 1 1 2 2 12 11 1 1 1 1 1 1
KNN (2018) 1 1 1 1 2 2 11 11 1 1 1 1 1 1
NN (2018) 1 1 1 1 2 2 11 11 1 1 1 1 1 1
RF (2018) 1 1 1 1 1 2 14 11 1 1 1 1 1 1
LR (17+18) 2 1 1 1 1 1 11 11 1 1 1 1 1 1
SVM (17+18) 1 1 1 1 2 2 12 12 1 1 1 1 1 1
KNN (17+18) 1 1 2 1 1 1 11 12 1 1 1 1 1 1
NN (17+18) 1 1 1 1 1 1 11 12 1 1 1 1 1 1
RF (17+18) 1 1 1 1 2 1 12 11 1 1 1 1 1 1
Snort F F F F 2 F 11 42 F F F F F F
TABLE V TABLE VI
OFFLINE BENCHMARK TESTS FALSE POSITIVE RATE COMPARISON
Disk Model Prediction Centralized (%) | Distributed (%)
Space Init. Time (s) Time (s) LR (2017) 15 8
LR (2017) 1.02 KB 0.114 0.0008 SVM (2017) 93 3
SVM (2017) 926 Bytes 0.00087 0.0003 K-NN (2017) 3 2
KNN (2017) 164.68 KB 0.355 6.34 NN (2017) 4 3
NN (2017) 9.02 KB 0.007 0.06 RF (2017) 0 0
RF (2017) 162.19 KB 0.355 0.016 LR (2018) 32 16
LR (2018) 1.02 KB 0.08 0.0006 SVM (2018) 38 28
SVM (2018) 926 Bytes 0.001 0.0013 K-NN (2018) 2 0.9
KNN (2018) 522.72 MB 0.76 19.58 NN (2018) 6 4
NN (2018) 9.022 KB 0.007 0.06 RF (2018) 2 0.3
RF (2018) 185.11 KB 0.31 0.02 LR (17+18) 13 4
LR (17+18) 1.02 KB 0.07 0.001 SVM (17+18) | 20 12
SVM (17+18) 926 Bytes 0.0011 0.00039 K-NN (17+18) | 5 3
KNN (17+18) | 685.01 MB 0.9 24.69 NN (17+18) 27 4
NN (17+18) 9.022 KB 0.01 0.046 RF (17+18) 1.4 0.2
RF (17+18) 185.81 KB 0.21 0.016

for some models. This gives a primary indication of how the
model will scale in real-time.

5) False Positive Rate Comparisons: To measure the false
positive rates, one computing device generated passive benign
traffic. During this time, no attacks, malicious activity, or ex-
ternal interventions took place. We ran all models for 30 min-
utes each to obtain how much of the benign traffic was flagged
as malicious for an extended period of time. The rates were
calculated relative to the number of individual flows generated
for that system (distributed system and centralized system):
(system_malicious_flags + system_total_flags) * 100

Next we discuss our research questions.

RQ1: We compared our distributed collaborative NIDS
to Snort using the same attacks from Section V-3 and the
standard community rules. In the normal state, Snort detected
two of the seven attack types: brute force in two seconds and
vulnerability discovery in 11 seconds, while the other types
were undetected. When under stress, Snort only detected one
attack: vulnerability discovery in 42 seconds. Tables III and
IV display Snort’s performance for each attack under these
states. In contrast, the distributed NIDS system, shown in

Table III, detected all of the attack types with faster response
times when relaxed and stressed. For instance, the SVM
(2018) model detected all of these attacks in one second, and
only 12 seconds for vulnerability discovery. This shows that,
in comparison to state of the art, the proposed NIDS is viable.

RQ2: We compared our distributed collaborative NIDS
to its centralized counterpart in addition to measuring the
distributed system’s overhead times.

The centralized system was designed with no parallelism
or distribution, thus it infers on incoming flows immediately.
As shown in Table IV, the slowest reacting models were
trained on the 2017 dataset: KNN detected six out of the
seven attacks and RF only detected two attack types. These
response times were also the highest in difference of the three
datasets for the brute force attack. For the 2018 dataset and
the combined dataset, all of the attacks were detected, with
a maximum of a one second shift in response times between
the two sets. Furthermore, load factors for each experiment
added no overhead resulting in +1s differences.

The thresholds set for the master and compute nodes
control the strength of deliberation prior to flags being raised.
As a result, the thresholds will also affect false positive

398

TABLE VII
REAL-TIME METRICS

RAM Average
Reference | Map | Inference | Memory | CpPU
(ms) (ms) (ms) (MB) (%)
LR (2017) 2E-3 2E-1 8.0E-1 112 4
SVM (2017) 2E-3 4E-1 9.0E-1 123 5
KNN (2017) 2E-3 2E-1 9.1E1 649 20
NN (2017) 2E-3 2E-1 1E0 197 4
RF (2017) 2E-3 2E-1 4.9E0 123 9
LR (2018) 1E-3 1E-1 7E-1 132 4
SVM (2018) 6E-3 4E-1 1EO 121 5
KNN (2018) 2E-3 4E-1 6.2E2 631 39
NN (2018) 2E-3 2E-1 1.9E0 198 6
RF (2018) 2E-3 3E-1 7EQ 138 6
LR (17+18) 2E-3 3E-1 9E-1 135 5
SVM (17+18) 2E-3 6E-1 9E-1 134 5
KNN (17+18) 2E-3 2E-1 7.1E2 794 54
NN (17+18) 1E-3 3E-1 1.6E0 198 4
RF (17+18) 1E-3 3E-1 9.7E0 139 6

rates. In practice, these thresholds can be adjusted to suit the
desired sensitivity of the NIDS. We seek to find a balance
between rapid detection and strong deliberation. We used two
compute nodes with the malicious threshold set to 10 and
the benign threshold set to 26. Our master node’s malicious
threshold was set to two and 20 for benign. Similar to the
centralized system, the slowest reacting models are present
in the 2017 dataset: RF only detected one attack of seven,
and the KNN detected five, shown in Table III. None of
the models detected network discovery, which is expected
since this attack was not present in the original datasets;
this particularly differentiates the false positive rates present
in Table VI. Our distributed collaborative system exhibited
a large reduction in false positive rates due to the stronger
deliberation the framework imposes. As displayed in Table III,
reaction times remained low and rarely had a shift larger
than £2s as compared to centralized results. This implies that
our system remains efficient and responsive. Furthermore, our
distributed system provides a reduction in false positive rates
through the stronger deliberation.

Finally, we limited our captures to 90 packets per round,
which averaged 0.704s on steady traffic. Importantly, this is
unavoidable overhead. The total overhead added from writing
to, and reading captures from, RAM was 0.0824s on average,
with the maximum capture being 105KB. The longest amount
of time taken is converting these flows into a flow table data
structure (dataframe), at an average of 0.13s. Overall, the
expected overhead is 0.2214s to submit real-time flow tables
to our cluster.

RQ3: To evaluate the different models, we compared the
metrics obtained by the models during training on each dataset
in tandem with how each of them perform in real-time.
Further, we observed their offline stress test performance.

Our real-time metrics (Table VII) represent the metrics that
correspond to each component of the NIDS taken by a task
on the compute nodes: RAM indicates the time it takes to
reference the model from memory each time, Map indicates
the time the algorithm takes to map from predictions to the
evidence buffer, Average Inference is the amount of time

399

TABLE VIII
TRAINING METRICS AND RESULTS
Accuracy Precision | Recall
(%) F1 (%) (%)
LR (2017) 91.62 0.91 88.28 95.84
SVM (2017) 91.66 0.92 87.91 96.64
KNN (2017) 99.05 0.99 98.63 99.47
NN (2017) 90.95 0.91 87.69 95.29
RF (2017) 98.52 0.98 99.17 97.86
LR (2018) 86.35 0.86 83.43 90.69
SVM (2018) 81.70 0.82 80.21 84.11
KNN (2018) 94.97 0.94 97 92
NN (2018) 88.75 0.88 86.75 90.28
RF (2018) 93.33 0.93 97 89.42
LR (17+18) 85.72 0.86 82.60 90.60
SVM (17+18) 82.11 0.8 79.67 86.38
KNN (17+18) 95.9 0.95 97.24 94.52
NN (17+18) 84.56 0.85 81.23 90.06
RF (17+18) 93.81 0.93 96.199 91.24

on average for a model to predict on the incoming flows,
Memory usage and CPU represent the resource utilization of
the compute node. For the Sklearn models, a 35% train/test
split is applied. For the neural network, a train/test split of
25% is applied.

CIC-IDS 2017 is the smallest dataset when balanced, which
is well-indicated by the performance of the models. Shown in
Table VIII, each of these models achieved high accuracy and
F1-Score; precision remained high with the lowest being 87%
and recall reaching 99%. When referenced with Table VII, we
see that each of the metrics took less than a millisecond. KNN
used the highest amount of resources and time, with RF being
second highest, exceeding a millisecond.

For the 2018 dataset and the combined dataset, the RAM
and Map metrics were unchanging with the best at one-
thousandth of a millisecond each. The impact of the datasets
on the models was such that accuracy fell below 90% with
the worst reaching 81%. F1 fell as low as 0.82, with precision
reaching 79% and recall reaching 84%. In general, increasing
dataset size slightly degrades overall training performance;
however, this is also indicative of less potential to overfit.
KNN did not scale well in our system: as the dataset in-
creases, so too did the resource consumption. In addition,
this is further evident by our offline benchmark where this
particular model takes the most disk size, initialization time,
and prediction times reaching 25 seconds as the dataset
size increases. The most efficient model with the highest
prediction performance was Random Forest, also yielding the
lowest false positive rates.

V. THREATS TO VALIDITY

In our framework, there are two separate thresholds for
the master node and the compute nodes. Depending on what
these thresholds are, detection rates and false positives may
vary. With a higher threshold, false positives are fewer and
detection rates are slower. With a lower threshold, the false
positives are more frequent and detection rates are quicker.
We do not reset the malicious buffer entries in the compute

nodes at first since it ensures a level of suspicion remains for
when attacks do occur. Therefore, it is important to find a
balance for these numbers to maintain efficiency and fairness
in the system.

Flows are non-deterministic in real-time, causing predic-
tions to vary. This is not an issue with our implementation,
but rather an important observation. This is exhibited when we
launch attacks multiple times (as seen in the tables in Section
1V). Often malicious flows are detected and some others can
be missed. This is based on when the flows start forming,
and how closely the patterns resemble malicious or benign
activity.

There are three categories of memory that can be measured:
process, managed, and unmanaged (old & recent). Memory
use may increase to a point of high consumption. This is due
to unused memory being out of our manual control: unused
memory in Dask may not be released back to the operating
system immediately. We seek to improve on this constraint in
future work.

Finally, when attacks begin to target the NIDS itself, Dask
notices incoming connections and reports them. Transmission
of information on the cluster may be interrupted, so we make
the assumption that the adversary is unaware of the NIDS, as
this is beyond the scope of the current work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a lightweight collaborative dis-
tributed NIDS based on machine learning algorithms specifi-
cally for IoT networks. To evaluate the feasibility of applying
the proposed NIDS, we designed an offline benchmark to
stress-test the models and assess how they scale under load,
then measure their performance in real-time. The results show
that the proposed NIDS uses less memory and CPU, while
not sacrificing response time. In addition, we evaluate the
attack detection ability of the distributed NIDS compared to
the state-of-the-art system (Snort) and a centralized version
of the NIDS. For the seven types of attacks we considered,
both the distributed NIDS and centralized version outperform
Snort. Snort detected two out of seven attacks while the
distributed NIDS detected more attacks on average. The
centralized version could also detect all attacks but it used
more resources on a single node. Furthermore, it could not
perform collaborative detection with other nodes, which limits
its flexibility. The distributed NIDS is shown to largely reduce
false positives while maintaining fair judgments and faster
response times. Considering the resource usage, false positive
rates, response times, and deployment structure, the proposed
distributed NIDS is more applicable to IoT networks.

Additional facets are open to future research. We seek to
study a malicious node within the NIDS itself, where attacks
can interrupt the system. We will expand the deliberations to
more complex models using ensemble approaches and tailor
response actions towards specific attacks. Attacks constantly
evolve and all possible cases are not covered, even with
machine learning. Solutions include addressing concept drifts

400

and aggregating larger datasets along with our own. Finally,
we plan to reduce overhead and memory usage even further
than we currently have, and unifying the NIDS directly onto
network devices (e.g., router, smartphone, etc) for better
responses.

REFERENCES
[1]
[2]

[3]

Z. Aouini and A. Pekar. Nfstream: A flexible network data analysis
framework. Computer Networks, 204:108719, 2022.

L. Babun et al. A survey on IoT platforms: Communication, security,
and privacy perspectives. Computer Networks, 192:108040, 2021.

E. Bertino. Data privacy for IoT systems: Concepts, approaches, and
research directions. In IEEE International Conference on Big Data (Big
Data), pages 3645-3647. IEEE, 2016.

N. Dat-Thinh, H. Xuan-Ninh, and L. Kim-Hung. MidSiot: A multistage
intrusion detection system for internet of things. Wirel. Commun. Mob.
Comput., 2022:1-15, Feb. 2022.

M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli. Passban ids:
An intelligent anomaly-based intrusion detection system for iot edge
devices. IEEE Internet of Things Journal, 7(8):6882-6897, 2020.

S. M. Ghaleb, S. Subramaniam, Z. A. Zukarnain, and A. Muhammed.
Mobility management for iot: a survey. EURASIP Journal on Wireless
Communications and Networking, 2016(1):1-25, 2016.

V. Hnamte, G. Balram, et al. Implementation of Naive Bayes Clas-
sifier for Reducing DDoS Attacks in IoT Networks. JOURNAL OF
ALGEBRAIC STATISTICS, 13(2):2749-2757, 2022.

O. Igbe et al. Distributed network intrusion detection systems: An
artificial immune system approach. In IEEE First International Con-
ference on Connected Health: Applications, Systems and Engineering
Technologies (CHASE), pages 101-106, 2016.

S. U. Jan et al. Toward a lightweight intrusion detection system for the
internet of things. IEEE Access, 7:42450-42471, 2019.

H. Jradi et al. Overview of the mobility related security challenges in
Ipwans. Computer Networks, 186:107761, 2021.

Y. Kayode Saheed et al. A machine learning-based intrusion detection
for detecting internet of things network attacks. Alexandria Engineering
Journal, 61(12):9395-9409, 2022.

M. A. Khan and K. Salah. Tot security: Review, blockchain solutions,
and open challenges. Future Generation Computer Systems, 82:395—
411, 2018.

A. Khraisat et al. Survey of intrusion detection systems: techniques,
datasets and challenges. Cybersecurity, 2(1), Dec. 2019.

H.-J. Liao et al. Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications, 36(1):16-24, 2013.
J. E. Luzuriaga et al. Handling mobility in iot applications using the
mqtt protocol. In Internet Technologies and Applications (ITA), pages
245-250, 2015.

M. Marjani et al. Big iot data analytics: Architecture, opportunities,
and open research challenges. IEEE Access, 5:5247-5261, 2017.

B. McMabhan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273—-1282. PMLR,
2017.

L. Mokry et al. Efficient and privacy-preserving collaborative intrusion
detection using additive secret sharing and differential privacy. In /EEE
International Conference on Big Data (Big Data), pages 3324-3333,
2021.

M. Rocklin. Dask: Parallel computation with blocked algorithms
and task scheduling. In Proceedings of the 14th python in science
conference, volume 130, page 136. Citeseer, 2015.

M. Roesch et al. Snort: Lightweight intrusion detection for networks.
In Lisa, volume 99, pages 229-238, 1999.

K. Scarfone, P. Mell, et al. Guide to intrusion detection and prevention
systems (idps). NIST special publication, 800(2007):94, 2007.

S. Smith. Tot connections to reach 83 billion by 2024, driven by
maturing industrial use cases. Accessed: Apr, 10:2021, 2020.

S. Tomovic et al. Software-defined fog network architecture for iot.
Wireless Personal Communications, 92(1):181-196, 2017.

Y. Zhang et al. Efficient and Intelligent Attack Detection in Software
Defined IoT Networks. IEEE International Conference on Embedded
Software and Systems, ICESS 2020, dec 2020.

[4

=

[3]

[6]

[7

—

(8]

[9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

