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Abstract

The gravitational three-body problem is a fundamental problem in physics and has significant applications to
astronomy. Three-body configurations are often considered stable as long the system is hierarchical; that is, the two
orbital distances are well-separated. However, instability, which is often associated with significant energy
exchange between orbits, takes time to develop. Assuming two massive objects in a circular orbit and a test particle
in an eccentric orbit, we develop an analytical formula estimating the time it takes for the test particle’s orbital
energy to change by an order of itself. We show its consistency with results from N-body simulations. For eccentric
orbits in particular, the instability is primarily driven not by close encounters of the test particle with one of the
other bodies, but by the fundamental susceptibility of eccentric orbits to exchange energy at their periapsis.
Motivated by recent suggestions that the galactic center may host an intermediate-mass black hole (IMBH) as a
companion to the massive black hole Sgr A*, we use our timescale to explore the parameter space that could harbor
an IMBH for the lifetime of the S-cluster of stars surrounding Sgr A*. Furthermore, we show that the orbit of an
S-star can be stable for long timescales in the presence of other orbital crossing stars, thus suggesting that the
S-cluster may be stable for the lifetimes of its member stars.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Galaxies (573); Galactic center (565);
Intermediate-mass black holes (816); Supermassive black holes (1663); Three-body problem (1695); Black holes
(162); Exoplanets (498)

1. Introduction

The stability of triple-body systems is a pervasive problem in

astrophysics. The three-body problem describes the dynamics

of systems ranging from planetary systems to the orbits of stars

and compact objects. A stable bound three-body system is

loosely defined as one in which the energy of each orbit stays
roughly the same, and instability is associated with systems in

which the two orbits exchange energy. As a dramatic example,

a bound orbit in a three-body system becomes unbound if its

energy changes from negative to positive, and such systems are

said to be unstable. Another example for instability can be

considered an exchange process between the two orbits, which

also dramatically changes the energy of each orbit.
The general approach in the literature often relies on a

criterion by which the system could be considered stable in the

long run. A common approach to developing such criteria is to

designate hierarchical systems, or those in which the two

orbital distances are well-separated, as long-term stable. The

question of stability is then equivalent to determining a critical

distance between the two orbits, where the system switches
from hierarchical to nonhierarchical.

The most straightforward such criterion involves the Hills

mechanism (Hills 1988). For a system composed of a binary

and a tertiary, the Hills critical distance is the separation
between the tertiary and the inner binary at which the tertiary’s

gravitational potential exceeds the primary’s gravitational

potential. In this case, the secondary body in the inner binary

may hop between the primary and the tertiary, yielding a new
configuration of a tertiary–secondary and a primary. In the

coplanar case, the functional expression of this place represents

the first Lagrange point, which indicates the position where the

gradient of the potential in the rotating frame is zero (e.g.,
Murray & Dermott 2000; Binney & Tremaine 2008). A

stability criterion may be obtained by requiring that the tertiary

is never closer to either of the other bodies than the Hills

critical distance. The criterion has been improved by Hamilton
& Burns (1991), Grishin et al. (2016).
The stability of three massive objects has a generalized,

hierarchy-based stability condition often used in the literature

(e.g., Mardling & Aarseth 2001), and similar stable–unstable

boundaries were derived by Eggleton & Kiseleva (1995),

Petrovich (2015), Tory et al. (2022), Vynatheya et al. (2022),
and Hayashi et al. (2022). Considering hierarchical systems,

where one mass orbits on a tight configuration about the

primary and a tertiary is on a wider orbit, a condition is often

used to estimate the long-term stability against high-eccen-
tricity excitations due to secular dynamics (e.g., Ivanov et al.

2005; Lithwick & Naoz 2011; Katz & Dong 2012; Antonini

et al. 2014; Bode & Wegg 2014; Naoz & Silk 2014) and

nonsecular perturbations to secular dynamics (e.g., Antognini
et al. 2014; Luo et al. 2016; Grishin et al. 2018; Bhaskar et al.

2020).
However, instability is a time-sensitive concept, and not

every nonhierarchical system is instantaneously unstable.

Mylläri et al. (2018) noted the dependence of stability on

time, albeit without an explicit timescale. Additionally,
Mushkin & Katz (2020) developed a stability timescale for
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the outer orbit in hierarchical systems, based on formulae for
secular energy exchange (e.g., Roy & Haddow 2003). Further
studies on the time-dependence of stability were done by
Hayashi et al. (2022, 2023), using N-body simulations of
mildly hierarchical triples.

In this paper, we develop an analytical stability timescale,
expanding the parameter space to nonhierarchical systems. We
consider three-body systems consisting of a primary and
companion of masses mp and mc, respectively, on a circular
orbit, and a test particle mt (mp>mc?mt), on a highly
eccentric orbit either about the primary body or about the
massive binary as a whole, such that the system is not
necessarily hierarchical. We denote these two cases the
external companion and internal companion cases, respec-
tively. Interestingly, the stability of such systems is primarily
sensitive to a single parameter, α, defined as the ratio of the
periapsis distance of the test particle to the companion’s
semimajor axis:

r
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a e

a

1
, 1

c

t t
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( )

where at and et are the semimajor axis and eccentricity of the

test particle’s orbit. The system is most unstable for α= 1,

when the companion orbits at the same distance as the test

particle’s periapsis.
We derive our stability timescale based on how long it takes

for the test particle’s orbital energy to change. We also show
that the changes in energy are driven by the fundamental
susceptibility of the eccentric test particle to energy changes at
its periapsis, and not by close encounters with the companion
or the primary. Notably, we do not use the secular approx-
imation, in which the phases of each orbit are averaged over
timescales much longer than each orbital period, or any
perturbations to the secular approximation. In that approx-
imation, often used to describe the evolution of hierarchical
systems, the long-term change in the energy of each orbit is
zero. Thus, in order to explore the instability associated with
orbital energy exchange, which is a feature of nonhierarchical
systems, we must describe systems by other means.

In particular, we are motivated by the configuration at the
center of our galaxy, which includes many crossing orbits. As
an example, we focus on the hypothetical existence of an
intermediate-mass black hole (IMBH) that may orbit around
the supermassive black hole (SMBH). The existence of such
an IMBH has been investigated based on a combination
of theoretical and observational studies (e.g., Hansen &
Milosavljević 2003; Maillard et al. 2004; Gürkan & Rasio 2005;
Gualandris & Merritt 2009; Chen & Liu 2013; Fragione et al.
2020; Generozov & Madigan 2020; GRAVITY Collaboration
et al. 2020; Naoz et al. 2020; Zheng et al. 2020; Rose et al.
2022). The IMBH may have a crossing orbit with the well-
studied star, S0-2. This star is located close to the SMBH Sgr
A*. It has an orbital period of 16 yr and an eccentricity of about
0.88. The recent closest approach of this star has been used to
test and confirm the prediction of general relativity for the
relativistic redshift (e.g., GRAVITY Collaboration et al. 2018;
Do et al. 2019) and the advance of the periapsis (GRAVITY
Collaboration et al. 2020). Thus, in principle, S0-2 may be used
to constrain the possibility of the existence of such an IMBH.
In addition, much of the S-star cluster orbits Sgr A* at similar
distances, with many potential orbital crossings (e.g., Ghez
et al. 2005; Gillessen et al. 2009; Yelda et al. 2014). One may

wonder how unstable these orbits truly are, and if the S-star
cluster is in fact a stable configuration.
The paper is organized as follows: We develop in Section 2

an analytic timescale Tstab for the time it takes for the energy of
the test particle to change significantly. In Section 3, we then
adopt, as a proof of concept, the possible existence of an
intermediate-mass black hole (IMBH) at the center of our
galaxy, which we treat numerically, and compare the results
with the analytic timescale. In Section 4, we discuss
applications of our timescale to various astrophysical settings.
Finally, in Section 5, we summarize our results.

2. Analytic Stability Timescale

In this section, we present an analytic derivation of the
stability timescale. For pedagogical purposes, we derive the
timescale using two approaches: via the test particle’s energy
evolution, and via its semimajor axis evolution. The two
quantities are defined by the equation

vE
GM

r

GM

a

1

2 2
, 2

t

2= - = - ( )

where E is the (specific) energy6 of the test particle’s orbit, at is

the test particle’s semimajor axis, M is the mass of the central

body or system, r is the distance between the test particle and

the central body, and v is the velocity vector of the test particle

relative to the central body. By this relation, the energy and

semimajor axis contain the same information, so that the a

change in one of the quantities by a given factor necessarily

accompanies a change in the other by the same factor.
Throughout the derivation, and the remainder of the paper,

we adopt the following notation: the masses of the primary,
companion, and test particle will be denoted by mp, mc, and mt

respectively. The semimajor axis, eccentricity, inclination,
longitude of ascending node, argument of periapsis, and true
anomaly of both orbits will be denoted by a, e, ι, Ω, ω, and f,
with a subscript c indicating the companion’s orbital elements,
and the subscript t indicating the test particle’s orbital elements.
The companion’s and test particle’s orbital periods are denoted
Pc and Pt, respectively.
We fix the origin at the center of mass of all three bodies.

Note that, as mt→ 0, this is equivalent to the center of mass of
the primary and companion. Position vectors of each of the
bodies will be denoted by r, and velocity vectors will be
denoted by v, with subscripts p, c, and t for the primary,
companion, and test particle. The relative position and vectors
between bodies are denoted by rij= ri− rj, where i and j are the
subscripts of the bodies. The relative velocity vectors are
similarly denoted by vij. We will write r and v for the
magnitudes of these vectors.
As stated in the introduction, we assume a mass hierarchy

between the three bodies, mp>mc?mt, with mt→ 0 as it is a
test particle. We assume a highly eccentric7 test-particle orbit
and a circular companion orbit (ec= 0).
Because we are working in the nonhierarchical regime,

where the orbital distances are not well-separated, defining the
orbits of the companion and the test particle can be ambiguous.

6
This definition of the energy includes only the binding energy between the

test particle and the central body, and ignores the interaction energy with other
bodies. This definition of the orbital energy allows the second equality,
involving the osculating semimajor axis at, to hold.
7

et  0.5; see Appendix A for a discussion of the low-eccentricity regime.
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In particular, the mass of the central body, M, defined in
Equation (2), depends on the configuration of the system. We
define the companion’s orbit to be external (internal) to the test
particle’s orbit if its semimajor axis,8 ac, is greater (less) than
the test particle’s periapsis distance, rperi= at(1− et). If the
companion is external, then the test particle’s orbit is calculated
with respect to the primary, and the central mass is M=mp. If
the companion is internal, then the test particle’s orbit is
calculated with respect to the center of mass of the primary and
the companion, i.e., the origin, and the central mass is
M=mp+mc. Figure 1 shows the two possible configurations.

2.1. Energy Approach

Our derivation is based on the realization that, when the test
particle has a highly eccentric orbit, its energy is especially
susceptible to gravitational perturbations near its periapsis.
Accordingly, to evaluate the effect of these encounters, we
approximate the energy evolution as a series of discrete, small
jumps, where the jumps occur at each periapsis passage. The
energy may either increase or decrease at each jump, depending
upon the location of the companion body at that time, and so
we treat its evolution as a random walk. We justify these
assumptions analytically later in this section, and numerically
in Section 3.

Indeed, it is possible for the test particle to undergo a large
change in its energy while it is not at its periapsis, such as in the
case of a close encounter between the test particle and the
companion, e.g., if the test particle enters within a few Hill radii
of the companion. However, for the purposes of our analytic
derivation, we will ignore the effect of such events, which are
arguably much rarer than periapsis passages. In principle, this
assumption could cause our analytic timescale to overestimate
the stability of the system, but our numerical results in
Section 3 indicate that this is, in general, not the case.

Considering only small jumps in the energy, the energy
evolves in a diffusive manner, as previously assumed.
Although the expected overall energy change after N jumps
averages to zero, the mean-square energy change is nonzero.
This behavior leads to a spread in the distribution of possible
energies after N periapsis passages, so that, for sufficiently

large N, it is probable that the energy has changed significantly,
and thus, the system has become unstable. In particular, we say
that the energy has changed significantly when the standard
deviation σ of the distribution of energy changes ΔE after N
periapsis passages is comparable to the initial energy itself—in
other words, when

E N E E, 3s s dD = ~( ) ( ) ( )

where σ(δE) denotes the standard deviation of the distribution

of energy jumps δE over a single periapsis passage.
The change in energy over any short time interval is given by

v
v v fE

E
t, 4pertd d d=

¶
¶

=· · ( )

where fpert is the perturbing force (per unit test mass) due to the

companion’s presence. From this equation, we see that the

energy change over any short time interval depends only on

two quantities: the test particle’s speed (or magnitude of its

velocity), and the component of the perturbing force directed

along the velocity vector, f
pert
 . For highly eccentric orbits, the

speed will be much greater near periapsis than at other times in

the orbit. On the other hand, the force component f
pert
 depends

strongly on the relative position of the test particle and

companion, which varies quasi-randomly so that f
pert
 does not

peak reliably. In particular, the parallel component of the force

takes on essentially random values each time the test particle

approaches its periapsis. Thus, our initial assumptions are

justified; jumps primarily drive the change in energy at

periapsis, and such jumps will behave like a random walk.

The standard deviation of the distribution of energy changes is

estimated by the scale of these changes, i.e.,

fE v t. 5peri perts d d~( ) ∣ ∣ ( )

We note that this depends only on the vector magnitudes, since

the relative orientation of the vectors controls the sign and the

relative strength of each energy jump, but not their overall

scale.
Then Equation (3) can be solved for N to obtain the number

of test-particle orbits before a significant energy change occurs.
Noting that the stability timescale Tstab is of order NPt, we may

Figure 1. An illustration of the possible configurations. Left panel: a system where the companion orbits external to the test particle’s periapsis. The central body is the
primary, so that the test particle’s orbital elements are defined via the position vector r = rtp, and the velocity vector v = vtp. Right panel: an internal companion. The
effective central body is at the center of mass of the primary and the companion, and is fixed at the origin. The test particle’s orbit is calculated using r = rt, and v = vt.

8
Since the companion’s orbit is circular, ac is the same as the orbital distance,

which is constant.
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find Tstab via the expression

f

T

P

E

v t
, 6

t

stab
2

peri
2

pert
2 2d
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from which we may obtain Tstab in terms of known orbital

parameters by estimating each of the terms E, vperi, fpert∣ ∣, and

δt for various regimes.
The energy, E, is given by Equation (2), and vperi can be

estimated by the periapsis velocity of the test particle in a
standard Keplerian orbit, given by

v
GM
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e
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t
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where, as in Equation (2), M=mp for external companions,

and M=mp+mc for internal companions.
Depending on whether the companion is external or internal,

there are two possible expressions for the perturbing force, fpert.
When the companion is external, the perturbing force is given
by

f
r rGm

r

Gm

r
, 8

c c

pert
tc

tc
3

cp

cp
3

= - - ( )

where the first term is the gravitational force on the test particle

from the companion, and the second term is due to the

noninertial motion of the primary about the primary-companion

mutual center of mass. Under the approximation that the

majority of the encounters are weak, and noting that ac> rperi
for external companions, the distance between the two bodies,

rtc, will typically be on the order of ac. In particular,

rtc∼ rcp∼ ac, so that the magnitude of the total perturbing

force can be estimated as

f
Gm

a
. 9

c

c
pert 2

~∣ ∣ ( )

When the companion is internal, we calculate the test
particle’s orbit with respect to the center of mass of the primary
and companion. In this case, fpert is

f
r r rGm

r

Gm

r

G m m

r
, 10
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3

tc
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where the first two terms are the total gravitational force on the

test particle, and the third term subtracts the nonperturbing

component from the total force from the primary and

companion, respectively. The magnitude of the perturbing

force is best estimated by the leading-order multipole term of

the force, which is the quadrupole force. Thus, we can

approximate the magnitude of Equation (10) as9

f
Gm m a
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. 11

p c c
pert

2
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Roughly speaking, one can consider two possible cases for
the interaction interval δt. The first is the aforementioned
periapsis interval, under the approximation that the most
significant perturbations (though still weak) occur over some
interval of time at which the test particle is near its periapsis,
Tperi. Since the test particle’s susceptibility to energy exchange

is determined by its velocity (as per Equation (4)), we estimate
the length of this interval by the time integral of the cross-track
component of the relative test-particle velocity, vf, over one
period of its orbit, divided by its maximum value, i.e.,

T
v

v
dt e P1 . 12

P

t tperi
0 ,max

t

ò= = -f

f
( ) ( )

If the companion does not move significantly during the
interval of periapsis passage, then the perturbing force can be
treated as constant over Tperi. In this case, the energy change
over the whole periapsis passage is well described by an
impulse approximation, and the interaction interval δt is the
same as Tperi.
On the other hand, if the companion moves during the test

particle’s periapsis passage, we can no longer use the impulse
approximation. In particular, if the companion’s period is
sufficiently short, it may complete a significant fraction of its
orbit while the test particle is at periapsis, so that the perturbing
force fpert cannot be regarded as constant over the interval Tperi.
In this case, the impulse approximation is, strictly speaking,
invalid. Nonetheless, an interaction timescale δt can still be
estimated. In this case, we evaluate the change in energy per
periapsis passage by dividing the interval of periapsis passage
into shorter intervals, dt, for which the perturbing force is
constant. Then, by integrating over each of these intervals, the
total energy change, δE, is

v fE dt v f dt, 13
t

t

t

t

pert peri pert
i

f

i

f

ò òd = =· ( )

where [ti, tf] is the interval of periapsis passage, and f
pert
 is the

component of the perturbing force parallel to the test particle’s

velocity during the interaction. Thanks to the companion’s

circular orbit, this component of the force varies roughly

sinusoidally with the companion’s mean anomaly, so that it

may be approximated as

ff n tcos , 14cpert pert~ ∣ ∣ ( )

where nc is the mean motion of the companion. Then

Equation (13) can be approximated as

f
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where the sine term represents the dependence on the

orientation and thus causes the spread in the distribution of

possible δE. From Equation (15), it follows that the interaction

timescale when the companion’s period is short is

t n
P

2
. 16c

c1d
p

~ =- ( )

In general, the interaction timescale is given by the shorter of

the two cases,

t T
P

min ,
2

, 17
c

peri⎛⎝ ⎞⎠d
p

~ ( )

so that the former (latter) value is used if the companion’s

movement is (is not) negligible over the periapsis interval.
There are three regimes to consider when evaluating

Equation (6): (1) external companion with a long period, (2)
external companion with a short period, and (3) internal9

A more detailed derivation of this estimate can be found in Appendix B.2.
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companion with a short period. The three possible cases are

summarized in Table 1. Note that Kepler’s law P ac c
3 2µ

forbids the case of an internal companion with a long period.
Evaluating Equation (6) for the two external companion

cases and the one internal companion case then gives

T

P

q

e
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e q T P

e q

4 1
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where q is the mass ratio mc/mp, and α= at(1− et)/ac (see

Equation (1)).

2.2. Semimajor Axis Approach

The energy of the test-particle orbit is proportional to the
inverse of its osculating semimajor axis; that is, E at

1µ - .
Thus, a change in E by an order of itself necessarily means that
at has changed by an order of itself as well. Similar to
Equation (4), a significant change in the test particle’s
semimajor axis occurs when

a N a a . 19t t ts s dD = ~( ) ( ) ( )

The change in semimajor axis at each periapsis passage, δat,
can be estimated by

a
da

dt
t, 20t

t
perid d» ∣ ( )

where dat/dt, given by the Lagrange planetary equation for

semimajor axis evolution (e.g., Murray & Dermott 2000;

Poisson & Will 2014; where we adopt similar notation to

Will 2021), is as follows:

f i f j
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where î and ĵ are the radial and cross-track unit vectors of the

test particle with respect to the central body.
Given the interaction timescale mentioned above

(Equations (12) and (16)), δat is, at periapsis,

f ja
a e

GM e
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. 22t
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Information about the relative orientation of the two orbits is

contained by the f jpert · ˆ term. The standard deviation of the

distributions of possible δat is then on the order of

fa
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GM e
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, 23t
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which, when plugged into Equation (19), for the various cases

of fpert∣ ∣ and δt, yields the same timescale as Equation (18).

3. Comparison with Numerical Results

3.1. Description of the Initial Conditions and the Numerical
Approach

As a proof of concept, we consider a system consisting of the
galactic center black hole Sgr A* as the primary mass mp, a star
in orbit around Sgr A* as the test particle mt, and a hypothetical
IMBH companion to Sgr A* as the companion mc. Using
HNBody (Rauch & Hamilton 2002), we directly integrate over
26,000 variations of this system assuming Newtonian gravity.10

From the results, we may calculate Tstab numerically by finding
the first time at which the test particle’s semimajor axis
(energy) changes by a factor of 2 from its initial value.
Comparing this value to the analytic prediction then provides a
test of the analytic timescale. We note that not every
destabilization, as defined above, necessarily leads to an
ejection of the particle from the system. An ejection occurs
when the energy changes from negative to positive (i.e.,
ΔE>+ E), and is thus a subset of destabilization.
We run a grid of systems, varying the IMBH mass and

separation. In all runs, we use mp= 4× 106Me, and
mt= 10Me, and set the companion’s eccentricity to
ec= 10−3

≈ 0.11 We present two sets of numerical runs, as
summarized in Table 2. In the runs labeled DiffComp, we set
the test particle’s initial orbital parameters to be the same in all

Table 1

A Summary of Estimates of M, fpert∣ ∣, and δt for Each Regime

Regime Companion Orbit Companion Period M fpert∣ ∣ δt

rperi < ac, Tperi = Pc External Long mp Gm ac c
2 Tperi

rperi < ac, Tperi  Pc External Short mp Gm ac c
2 Pc/2π

rperi > ac, Tperi  Pc Internal Short mp + mc Gm m a Mrp c c
2

peri
4 Pc/2π

Note. fpert∣ ∣ is given by Equations (9) and (11), and δt is given by Equation (17).

Table 2

The Relevant Numerical Initial Conditions

Label mc (Me) ac (au) rperi (au) et No. Runs

DiffComp 50–106 10–104 118.32 0.884 8308

DiffTestP 5000 100 16–4000 0.2–0.997 18,440

Note. The results are shown in Figures 3 and 5. Note that in these figures the

square points represent an average over 10 realizations in terms of the initial

orbital angles, ωc,t, Ωc,t, ic,t, and fc,t.

10
We do not include any post-Newtonian (pN) precession for the purposes of

this comparison. The first pN precession can stabilize the system against
secular perturbations (e.g., Naoz et al. 2013b) even in the cases where the orbits
are more compact than that of the hierarchical limit (e.g., Faridani et al. 2022;
Wei et al. 2021). However, the purpose of this numerical analysis is to test our
analytical timescale.
11

When ec = 0 exactly, the argument of periapsis ωc is ill-defined.
Eccentricities of exactly zero are unlikely in practice, so we avoid this
pathological case by setting ec = 10−3.
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runs, namely those of the star S0-2, i.e., at= 1020 au,
et= 0.884, and mt= 10 Me, and vary the companion’s mass
and semimajor axis systematically. The test particle’s argument
of periapsis, ωt, longitude of ascending node, Ωt, and
inclination, ιt, are chosen such that they will have the observed
values of S0-2 on the sky, and then projected into the invariable
plane. The companion for this set of runs is varied on a grid of
mc ä [50, 106] Me, and ac ä [10, 104] au.

In the second set of runs (labeled DiffTestP), we set the
companion’s mass and semimajor axis to be mc= 5000 Me,
and ac= 100 au, respectively, and its eccentricity to be
ec= 10−3. In this case, we arbitrarily choose the inclination
of the companion’s orbit to be close to zero12 (0.001 rad). This
choice eliminates dependencies on the companion’s argument
of periapsis and longitude of ascending nodes. In this set of
runs, the test particle’s initial periapsis distance is then
systematically varied from at(1− et) ä [16, 4000], and its
eccentricity from et ä [0.2, 0.997].

When the orbital configurations are varied, in runs DiffComp
or DiffTestP, we chose the initial longitudes of ascending
nodes, arguments of periapsis, and mean anomalies from a
uniform distribution between 0 and 2π, and the mutual
inclination from an isotropic distribution (i.e., uniform in
cosine).

In Section 3.2, we discuss the numerical time evolution of
the test-particle orbit, and how it justifies the assumptions used
in deriving the analytic timescale. In Sections 3.3 and 3.4, we
separately analyze each set of numerical runs and compare
them to the analytic timescale predictions.

3.2. Time Evolution of the Test-particle Orbit

The numerical results justify our approximation of the test
particle’s energy evolution as a series of discrete, random
jumps occurring each time the test particle reaches its periapsis.
Figure 2 depicts two representative cases of the test particle’s

time evolution in the presence of an external and internal
companion (left and right panels, respectively). In particular,
the inset panels show a zoom-in on the part of the evolution
that exhibits the energy jumps described in Section 2. These
jumps occur at the test particle’s periapsis, as indicated by the
peaks in its true anomaly evolution. Moreover, Figure 2
demonstrates that over time the test particle’s semimajor axis
(energy) can increase and decrease in a diffusive manner so that
its evolution is well described by a random process. We
provide additional examples of the time evolution of the test
particle’s orbit in Appendix B (see Figure 8).

3.3. Dependence of the Timescale on the Companion
Parameters

In the DiffComp set of runs, we integrated a total of 8308
configurations, initially starting with the same test-particle
orbital configuration and varying systematically the orbit of the
companion. All integrations are stopped at 107 yr.
As stated above, we record the time at which the test

particle’s energy has changed from its initial value by a factor
of 2. The results are shown in the left-hand side of Figure 3,
where the color coding shows the time at which the test
particle’s energy changed by a factor of 2, ranging from 1 to
107 yr. The systems whose test-particle energy never changes
by a factor of 2 within 107 yr are depicted as a gray square. We
depict this value as a function of the companion’s semimajor
axis ac and mass mc (filled circles in Figure 3). For each point
on the grid, we initially run one system with a value of mc and
ac. The top panel shows systems with an external companion
(ac> rperi), and the bottom panel shows systems with an
internal companion (ac< rperi).
On the right-hand side of Figure 3, we plot the fractional

change in angular momentum (i.e., ΔL/L) at t= Tstab. The
symbols have the same meaning as those from the left-hand
side panel.
Note that, in the part of the parameter space where the

system is very nonhierarchical (ac∼ rperi) and where mc=mp,

Figure 2. Sample time evolution of the test particle’s semimajor axis. The semimajor axis evolution contains the same information as the energy evolution. Left panel:
external companion. An external companion IMBH of 9000 Me orbiting Sgr A* at 380 au, and a test-particle star orbiting Sgr A* with an initial semimajor axis of
1020 au and eccentricity of 0.884. The semimajor axis can increase and decrease with no clear bias, thus justifying the approximation of the energy evolution as a
random process. We also show a zoomed in time evolution of the same system. Substantive changes to the semimajor axis of the star only occur during the peaks in the
true anomaly evolution, corresponding to the periapsis passage of the star. Right panel: internal companion. An internal companion IMBH of 27,000 Me orbiting Sgr
A* at 64 au, and a test-particle star orbiting the Sgr A*-IMBH binary with an initial semimajor axis of 1020 au and eccentricity of 0.884. The system’s behavior is
similar to the external case.

12
When ιc = 0 exactly, the longitude of ascending node Ωc is ill-defined.
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the dynamical behavior is rather chaotic (e.g., Stone &

Leigh 2019; Ginat & Perets 2021a, 2021b; Kol 2021;

Manwadkar et al. 2021). Therefore, in this part of the

parameter space, we ran an additional 10 configurations with

the same values of mc and ac, and numerically calculated Tstab
for these values by taking the geometric mean of the times at

which the energy changes by a factor of 2. These grid points

are marked as boxes in Figure 3. Overplotted are the contours

of the analytic timescales from Equation (18).
For the majority of the parameter space, in particular where

the system is least hierarchical (α∼ 1), we find good

agreement between the analytic and numeric results. This

suggests both that our analytic result is a good estimate of the

stability timescale and also that the instability is sufficiently

explained by energy jumps at periapsis. Close encounters of the

test particle with the other two bodies, while possible in

principle, are evidently not frequent enough to drive the

instability of the system in this regime.
There are two regions of the parameter space for which there

is disagreement between the analytic and numerical results:

systems above the black dashed line in Figure 3, which are

more stable than predicted, and some systems to the left of the

blue Tstab= 106 yr line, which are less stable than expected.

In the former region, the semimajor axes of the two orbits are

not well-separated, but the secular approximation is none-

theless somewhat applicable. Thus, the semimajor axis

evolution of these systems cannot be treated as random walks,

as in Figure 2, but oscillations that are roughly consistent with

secular behavior (i.e., quasi-secular).
As an example, we show the evolution of such a system in

Figure 4. In this system, the energy (i.e., the semimajor axis)

evolves not as a random walk, but as an oscillation, never

straying far from its initial value.13 As expected, thanks to the

eccentric Kozai–Lidov mechanism (Kozai 1962; Lidov 1962;
Naoz et al. 2013a), the system also exhibits large oscillations in
the test particle’s angular momentum, shown in the upper
region of the top right panel of Figure 3. These angular
momentum oscillations take place roughly on the timescale of

T
m m m
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P
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e
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30
1 24
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Figure 3. Stability timescale as a function of companion parameters. Left: Tstab as a function of the companion’s semimajor axis ac and its mass mc, as determined by
direct N-body integration. The upper (lower) panels describe an external (internal) companion. A colored dot represents a change in S0-2ʼs energy by a factor of more
than 2 within the maximum integration time of 107 yr, where the color determines Tstab. A colored square represents 10 systems with the same mc and ac, such that all
10 systems have a change in the test-particle energy of more than a factor of 2 within the integration time. The color of the square is the geometric mean of Tstab over
all 10 systems. A gray square represents no such change in the test-particle energy within the integration time. Overlaid are lines of constant Tstab, as predicted by
Equation (18). Some systems outside the regime where Tstab < 107 yr still exhibit significant change in their orbit, if they are within the region where the test particle
can enter the Hill sphere of the companion, i.e., below the solid black line. The dashed black line marks where the Kozai quadrupole timescale is 10 times greater than
the test-particle period. Secular approximations are reasonably applicable for systems above this line, causing them to exhibit angular momentum oscillations, which
can suppress the random walk nature of the energy evolution, leading to more stable systems than those predicted by the analytic timescale. Right: the normalized
change in test-particle angular momentum at t = Tstab. As predicted by the quadrupole timescale, systems above this line exhibit significant changes in angular
momentum.

13
These energy oscillations are similar to those noted by Antognini et al.

(2014), Luo et al. (2016), Grishin et al. (2016), Grishin et al. (2018), and
Bhaskar et al. (2020), which take place roughly on an orbital timescale and may
eventually cause nonsecular evolution.
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(e.g., Antognini 2015). The systems for which this timescale is

much longer than the test particle’s period, i.e., by a factor of

10 (Tquad> 10Pt), are typically governed by quasi-secular

rather than random walk behavior. Thus, their stability is better

described by secular criteria (e.g., Ivanov et al. 2005; Lithwick

& Naoz 2011; Katz & Dong 2012; Antognini et al. 2014;

Antonini et al. 2014; Bode & Wegg 2014; Naoz & Silk 2014;

Luo et al. 2016; Grishin et al. 2018; Bhaskar et al. 2020). On

the upper right panel of Figure 3, these systems are shown to

have changes in angular momentum 50% and lie above the

black dashed line.
For sufficiently large α (bottom panel, internal companion),

the system is also hierarchical, so that secular approximations
can likewise be applied, and the energy does not behave like a
random walk. Here, we expect that the secular inverse eccentric
Kozai–Lidov mechanism (Naoz et al. 2017, 2020) or the
hierarchical stability timescale of Mushkin & Katz (2020)
provides a better stability criterion.

In the latter region, some systems undergo changes in their
orbital energy on shorter timescales than those predicted by our
analytical criterion. In such cases, close encounters between the
test particle and another body are important to the system’s
evolution. Such close encounters may only occur if the star’s
apoapsis is within a few Hill radii of the IMBH’s orbit. This
condition can be expressed as

a a e kR1 , 25c t t Hill< + +( ) ( )

where RHill is the Hill radius of the companion, defined as

R a
m

m
, 26c

c

p
Hill

1 3
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⎝

⎞
⎠

= ( )

and k is a factor of order unity (similarly to planet–planet

scattering, e.g., Chatterjee et al. 2008). In Figure 3, this

condition is shown as the solid black curve (where we adopt

k= 3). Indeed, systems above this curve very rarely exhibit a

large change in energy. While such systems in which close

encounters are important do exist, they are relatively few and

far between in Figure 3, whereas the general trend in Figure 3

obeys the timescale as predicted by energy jumps at periapsis.

This provides further evidence that energy jumps at periapsis,

not close encounters, are the primary drivers of instability.

3.4. Dependence of the Timescale on the Test-particle
Parameters

In this set of runs, DiffTestP, we integrated a total of 18,440
configurations, this time starting with the same companion
parameters (see Table 2) and systematically varying the
parameters of the test particle. We again record the first time
at which the test particle’s energy changes by a factor of 2, and
depict this time as a function of the initial test-particle periapsis
distance rperi and its eccentricity et. We integrated each system
for 104Pt, where Pt is the initial test-particle period. Similarly,
as for the DiffComp run, we run an additional 10 realizations
for systems that have α∼ 1. The results are shown in Figure 5.
The color code here represents the time for changing the energy
by an order of itself, normalized by the test-particle period, i.e.,
Tstab/Pt. In Figure 5, the internal case is shown in the top panel,
and the external case is shown in the bottom panel.
We again find good agreement between the analytic and

numerical results. As in DiffComp, we find that the analytic
and numerical timescales agree for a majority of the parameter
space. Similarly to the DiffComp set of runs, the agreement
with the analytic timescale is best in the regime α∼ 1, while
the analytic timescale begins to fail in the regimes α? 1 or

Figure 4. Time evolution of a sufficiently hierarchical system. A system
consisting of an external IMBH with mass 9000 Me orbiting Sgr A* at
ac = 980 au, and a test-particle star with at = 1020 au, et = 0.884. Although
the system is not strictly hierarchical, the system exhibits behavior predicted by
the secular approximation. The test particle’s semimajor axis does not evolve
like a random walk, but instead oscillates. Large eccentric Kozai–Lidov
oscillations in the test particle’s angular momentum occur as well. Because the
system does not behave like a random walk, the analytic timescale fails.

Figure 5. Stability timescale as a function of test-particle parameters. Note that,
unlike in Figure 3, we vary the test particle’s orbital parameters, not the
companion’s parameters, and thus, the positions of the external and internal
cases are flipped. The meaning of the symbols is the same as in Figure 3. The
solid black line shows the Hill sphere boundary; very few systems below this
line exhibit a significant energy change within the maximum integration time of
104 test-particle periods.
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α= 1, i.e., when the system is hierarchical. Additionally, we
see systems to the right of the blue Tstab= 103 Pt line, which
become unstable much faster than the analytic timescale
predicts, which we attribute to close encounters between the
companion and the test particle.

4. Applications

4.1. The S-cluster in the Presence of an IMBH

Recent gravitational-wave observations by the LIGO-Virgo
collaboration have now confirmed the existence of IMBHs
(e.g., GW190521; The LIGO Scientific Collaboration et al.
2020a, 2020b). Specifically, our galactic center may harbor
IMBHs as the result of a possible minor merger with a low-
mass or dwarf galaxy, or even with a globular cluster. Such a
scenario was considered by Rashkov & Madau (2014), who
suggested that, if IMBHs serve as the seeds of SMBHs in the
center of galaxies, hierarchical galaxy evolution would yield
many IMBHs in our galaxy. Additionally, a combination of
theoretical and observational arguments suggests that an IMBH
is expected to exist in the central parsec of our galaxy (e.g.,
Hansen & Milosavljević 2003; Maillard et al. 2004; Gürkan &
Rasio 2005; Gualandris & Merritt 2009; Chen & Liu 2013;
Fragione et al. 2020; Generozov & Madigan 2020; Naoz et al.
2020; Zheng et al. 2020). Of particular interest are the proposed
efficient formation of IMBHs as a result of black hole mergers
(e.g., Fragione et al. 2022), or via black holes collisions with
main-sequence stars (e.g., Rose et al. 2022).

To constrain the parameter space of mass and semimajor axis
of a hypothetical IMBH, Naoz et al. (2020) used the long
baseline of observations of the star S0-2, located close to the
SMBH Sgr A*. S0-2 has been observed for more than two
decades, and its orbit is sufficiently regular that, if there is a
companion to Sgr A*, it is either quite close to the main black
hole or well outside the orbit of S0-2.

The stability analysis done here (see Figure 3) suggests that
the parameter space for which the orbit of S0-2 will be stable
over its lifetime (6Myr, Lu et al. 2013) is constrained to the left
side of Figure 3. Another way to visualize the parameter space
is depicted in Figure 6. In the top panel of Figure 6, we
consider S0-2 parameters for a wide range of a companion
semimajor axis and mass ratio (with respect to the SMBH’s
mass), depicted as the color-coded lines. The y-axis represents
the stability timescale normalized to the period of S0-2. As
shown in the figure, the stable regime for a given mass ratio q is
wherever the corresponding colored line lies above the gray
line denoting the age of S0-2. Thus, for example, for q= 0.1
(mc= 4× 105Me), the allowed regions are α 10−2

(compa-
nion IMBH well outside the periapsis of S0-2), and α 10
(companion well inside the periapsis of S0-2). For q= 10−4

(mc= 400Me) (very low-mass companion), the orbit of S0-2 is
stable for essentially any value of α.

4.2. The Stability of the S-star Cluster

The S-star cluster is a collection of stars on nearly isotropic
orbits, within the innermost arcsecond of Sgr A*

(e.g., Lu et al.
2009; Gillessen et al. 2012; Sabha et al. 2012). These stars are
eccentric and orbit-crossing, and are estimated to be relatively
young (e.g., Ghez et al. 2004, 2005; Gillessen et al. 2009; Lu
et al. 2009; Gillessen et al. 2012; Lu et al. 2013; Yelda et al.
2014; Gillessen et al. 2017; Do et al. 2019). Thus, in the
context of this investigation, the question of the stability of the
S-cluster translates to the timescale of the stability. We simplify
the question by considering perturbations to S0-2ʼs orbit by
other stars, one at a time.
Examining the top panel of Figure 6, we see that the low

mass ratio curve (q= 10−4
) implies that even an object as

massive as 400Me will be able to lurk in the presence of S0-2
without destabilizing its orbit during its lifetime. Thus, other
stars, naturally, will not destabilize S0-2ʼs orbit as well. We
thus suggest that, during the lifetime of the S-cluster, star–star
interactions do not change the stellar orbits’ energies by order
of themselves.14

4.3. Stellar and Planetary Systems

Since the stability timescale developed here depends only on
products of ratios and other unitless parameters, it is not limited
to galactic nuclei and may be applied in a wide range of
systems. Consider, for example, a planetary system. Interest-
ingly, the forces between the S-stars and the SMBH are similar
to those in a planetary system with a Sun-like star in the
presence of a companion. In particular, the mass ratio between
Sgr A* and the stars in the S-cluster is similar to that of a star
and its planetary system. Further, the distance scales at the
galactic center (SMBH and S-Star, and SMBH-companion) are
roughly the square of those for a star–planet, and a star–
companion. Thus, our stability timescale is also relevant in the
case of planetary systems.
Significantly, observations suggest that most of the massive

stars reside in binaries or higher multiples (e.g., Raghavan et al.
2006; Sana et al. 2012; Moe & Di Stefano 2017; Moe &
Kratter 2021). In the planetary field, one also often considers

Figure 6. Stability parameter. Top: number of stable orbits of S0-2 as a
function of α, for companion-primary mass ratios between 10−4 and 10−1,
assuming an eccentricity of 0.884 for S0-2. The gray line shows the age of S0-
2. Regions where the gray line lies above a chosen colored line (corresponding
to a given companion-primary mass ratio) are excluded values for α, as, in
these cases, S0-2ʼs orbit would be too unstable to survive to its current age.
Bottom: number of stable orbits of a test particle with the same semimajor axis
as S0-2 as a function of α for test-particle eccentricities ranging from 0 to
0.999, assuming a companion-primary mass ratio of 0.01 (mc = 4 × 104 Me).
The star in the bottom panel represents the approximate position of Kepler-419
(see text for discussion).

14
Note that other processes such as collisions and tidal capture also take place

on longer timescales than the S-cluster lifetime (e.g., Rose et al. 2020, 2022);
thus, the conclusion here can be extended to other physical processes beyond
two-body interactions.

9

The Astrophysical Journal, 952:103 (13pp), 2023 August 1 Zhang, Naoz, & Will



orbital crossing as a sign of instability (e.g., Chatterjee et al.
2008; Nagasawa & Ida 2011; Denham et al. 2019; Faridani
et al. 2022; Wei et al. 2021). However, we suggest that the
stability question needs to be cast as the timescale to instability
in exoplanetary systems as well.

As an example, consider the bottom panel of Figure 6. This
figure depicts a system with mass ratio of q= 0.01 between the
primary and the companion, and varies the test-particle
eccentricity. Consider a system of a star and a brown dwarf
companion on a circular orbit. It is thus easy to see that a
circular planet (the test particle), or even a planet with a
nonnegligible eccentricity on a crossing orbit, will not have its
energy changed by a factor of itself for a timescale between
2000 and 109 orbital periods of the planet, depending on the
value of α. This implies that some planetary systems may even
be observed near instability. Of course, a smaller companion
results in an even longer stability timescale.

A potentially relevant example may reside in the observed
Kepler-419 system. This system has two massive Jupiters
orbiting a 1.4Me star, with mt= 2.5MJ, et= 0.83,
at= 0.37 au, and mc= 7.3MJ, ec= 0.18, ac= 1.7 au, respec-
tively. (e.g., Dawson et al. 2012, 2014). The system’s stability
has been questioned recently by Denham et al. (2019), Jackson
et al. (2019). For this system, Pt= 0.19 yr, Pc= 1.84 yr,
Tperi= 0.11(Pc/2π), and our hierarchical parameter is
α= 0.037. Thus, we may ask on what timescale the system’s
energy will change by an order of itself. Using the first line of
Equation (18), we obtain Tstab∼ 7× 104 yr. This is shown as
the red star on the bottom panel of Figure 6. Therefore, at face
value, this suggests that a major change in the inner planet’s
energy could occur within fewer than 105 yr.

We note that the inner planet cannot really be considered as a
test particle in this system. However, our numerical invest-
igation was done for a nonnegligible mass inner star and is
roughly consistent with the analytical criterion (for comparable
masses, our criterion underestimates the stability timescale).
Thus, our stability timescale for Kepler-419 may not be far
from reality.

5. Conclusion

The long-term stability of three-body systems is a funda-
mental problem in astrophysics with many applications, from
clusters of stars in galactic nuclei to planetary systems.
Furthermore, the instability of the triple systems is associated
with energy exchange between the two orbits, and is a time-
sensitive concept. In this paper, we develop an analytic
timescale at which instability sets in for nonhierarchical triple
systems. We find that numerical N-body experiments corrobo-
rate this analytic result. The following is a summary:

1. The timescale for which the system is stable, Tstab, is
given by Equation (18), assuming a circular companion
and highly eccentric test-particle orbit in a nonhierarch-
ical configuration. This analytic result is validated
numerically in Figures 3 and 5.

2. For systems with such nonhierarchical configurations, the
instability is primarily driven by the high susceptibility to
energy change that the test particle experiences near its
periapsis, rather than by close encounters between the
companion and the test particle. The evolution of the test
particle’s orbital energy behaves like a random walk, as
in Figure 2.

3. In the hierarchical limit, the random walk assumption on
the energy evolution does not hold, and so the
hierarchical systems are stable for much longer than
predicted by Equation (18). In particular, their stability is
predicted by secular evolution. The systems do not need
to be strictly hierarchical for the random walk assumption
to fail; they only need to be sufficiently well described by
the secular approximation, such as in Figure 4. The large
oscillations in the angular momentum caused by the
eccentric Kozai–Lidov effect are an indicator of secular-
like behavior.
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Appendix A
The Stability Timescale at Lower Eccentricities

Our analytic calculation relies on the assumption that
significant changes to the test particle’s energy occur near its
periapsis. For this assumption to hold, it is necessary to assume
a highly eccentric test-particle orbit, because of the dependence
of dE/dt on the test particle’s velocity, which is sharply peaked
about the periapsis only for eccentric orbits. When these
assumptions are violated, the analytic timescale does not
strictly hold. Nevertheless, we show numerically that the
analytic timescale still has some applicability at lower
eccentricities.
To study the behavior of systems with low test-particle

eccentricity, we integrate two sets of 1554 systems, with fixed
test-particle orbital configuration and systematically varied
companion orbital parameters. In one set of systems, the test
particle has an initial eccentricity of 0.2, and the initial
companion semimajor axis varies from 400 to 4000 au. In the
other set, the test particle has an initial eccentricity of 0.5, and
the initial companion semimajor axis varies from 200 to 4000
au. In both sets, the initial test-particle semimajor axis is 1020
au, the companion mass is varied from 500 to 106 Me, and the
initial orbital angles of both the test particle and companion are
randomly drawn uniformly in Ω, ω, f from [0, 2π] and
uniformly in icos from [−1, 1]. All systems are integrated for
106 yr.
Our numerical results, displayed in Figure 7, show that, for

lower eccentricities, the analytic timescale overestimates the
numerically calculated timescale in regions of the parameter
space where orbital crossing is possible. Thus, the energy
jumps at periapsis, as described in the main body of the paper,
cannot fully explain the instability in the low-eccentricity
regime. For a test-particle eccentricity et= 0.5, this discrepancy
is not major. For et as low as 0.2, the disagreement becomes
more severe, with the analytic result overestimating the
numeric timescale by roughly a full order of magnitude.
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Appendix B
Supplemental Equations and Plots

We present supplemental equations and plots to our analytic
derivation in Section 2. This section will assume familiarity
with the logical framework of Section 2, but will provide
additional rigor and justification for several arguments made in
the section. In particular, we will derive Equation (4), the
energy jump per periapsis passage, and Equations (8) and (10),
the perturbing force vectors, directly from the Newtonian
equations of motion, and provide additional detail for our
estimate of fpert∣ ∣ for internal companions in Equation (11). We

also provide an additional, more detailed, description of the
time evolution of the systems studied in the paper.

B.1. The Perturbing Force

The time derivative of E, as defined by Equation (2), is, by
direct differentiation,

v
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where r and v are the position and velocity vectors of the test

particle relative to the central body, and r is the magnitude of r.
The first term in brackets is the relative acceleration of the

test particle, and the second term is equivalent to the
acceleration of the test particle due to the central body. Thus,
the entire quantity in brackets, which is the difference of the
two, is the component of the test-particle acceleration that is not
due to the central body. We call this term the perturbing force
(per test mass), i.e.,
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When the perturbing force is defined this way, Equation (B1) is

equivalent to Equation (4).

Equations (8) and (10) then follow immediately from the
Newtonian equations of motion for r. For an external
companion, r= rtp, and the corresponding equation of motion
is
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For an internal companion, r= rt, and
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B.2. Estimating |fpert| for Internal Companions

When the companion is internal, the gravitational potential
experienced by the test particle can be expanded in a multipole
series, by
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where Pl is the Legendre polynomials, θ is the angle between
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The l= 0 term is the potential due to the central body, so the

perturbing force is the negative spatial gradient of all remaining

terms, which is
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Figure 7. Stability timescale for low eccentricities. Tstab as a function of mc and ac as determined by direct N-body integration, for a test-particle star of semimajor axis
1020 au, and with eccentricities 0.2 and 0.5. The analytic timescale overestimates the numerical timescale.
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where ξl is a vector, with magnitude of order unity, specifying

the direction of the force, given by

i I I i I i i I iP l P1 , B8l l lx = ¢ - - +(ˆ · ˆ)[ ˆ (ˆ · ˆ) ˆ] ( ) (ˆ · ˆ) ˆ ( )

where Î is the unit vector of the companion’s position, and î is

the unit vector of the test particle’s position.
The leading term of the remaining series is the l= 2 or

quadrupole term, since η1= 0. Then fpert∣ ∣ is well estimated by

the leading-order coefficient, Ga rc
2

2
4h , evaluated at r= rperi,

yielding Equation (11). This estimate is only good to an order
of magnitude; the higher order terms, while decreasing, are not
negligible since the ratio in which the series is expanded in,
ac/r, is less than unity but not small. Thus, the higher order
terms contribute nontrivially to the total force, but not at a
larger scale than the leading order.

B.3. The Time Evolution

Figure 8 shows additional examples of the time evolution of
the test particle’s orbit, for various regimes.

As was shown in Section 3.2, in all regimes, significant
changes in the test particle’s semimajor axis occur when its
velocity peaks; that is, in a short interval near its periapsis.
However, as discussed in Section 3.3, such jumps need not
behave like a random walk. The two right columns in Figure 8
show systems in the quasi-secular regime. In the first system,
the changes in the semimajor axis are dominated by periapsis
jumps, but these jumps behave in an oscillatory manner. In the
second system, the jumps are small as the companion is distant
from the test particle’s periapsis, so that the semimajor axis
evolution is dominated by quasi-secular effects.

The bottom panels of each column indicate that the ratio
between f ∥, the component of fpert parallel to the relative

test-particle velocity v, and our estimate fpert∣ ∣ of the perturbing
force, given by Equations (9) and (11), is of order unity. This
indicates that fpert∣ ∣ is indeed a good order-of-magnitude
estimate of the perturbing force. Note that, for external
companions, the estimate is valid at all points in the test
particle’s orbit, but for internal companions (represented by the
leftmost panel in Figure 8), the estimate is only valid near
periapsis, since it was derived with that assumption.
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