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PARC: Physics-aware recurrent convolutional neural
networks to assimilatemeso scale reactivemechanics of
energetic materials
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The thermo-mechanical response of shock-initiated energetic materials (EMs) is highly influenced by their mi-
crostructures, presenting an opportunity to engineer EMmicrostructures in a “materials-by-design” framework.
However, the current design practice is limited, as a large ensemble of simulations is required to construct the
complex EM structure-property-performance linkages. We present the physics-aware recurrent convolutional
(PARC) neural network, a deep learning algorithm capable of learning the mesoscale thermo-mechanics of
EM from amodest number of high-resolution direct numerical simulations (DNS). Validation results demonstrat-
ed that PARC could predict the themo-mechanical response of shocked EMs with comparable accuracy to DNS
but with notably less computation time. The physics-awareness of PARC enhances its modeling capabilities and
generalizability, especially when challenged in unseen prediction scenarios. We also demonstrate that visualiz-
ing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an
additional lens for conceptualizing EM.
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INTRODUCTION
Energetic materials (EMs) such as propellants, explosives, and py-
rotechnics are key components in many military and civilian appli-
cations. EMs are composites of organic crystals, plasticizers, metals,
and other inclusions, forming complex microstructural morpholo-
gies, which strongly influence the properties and performance char-
acteristics of these materials (1). For instance, the sensitivity to
affect and shock loading—one of the key performance parameters
for the design of safe and reliable EMs—is strongly influenced by
their microstructures (2–4). Voids, cracks, and interfaces in EMmi-
crostructures are potential sites for energy localization, i.e., the for-
mation of high-temperature regions called “hotspots” (5–8). Such
hotspots are considered to be critical if they grow and produce
steady deflagration fronts (9). If a sufficient number of such critical
hotspots are generated in the microstructure, chemical energy
release can be rapid enough to couple with the incident shock
wave, initiating a detonation. Therefore, microstructural features lo-
calize energy release at hotspots, and shock-microstructure interac-
tions can lead to a shock-to-detonation transition in EMs.

Many mechanisms for hotspot formation have been identified
(10), including void collapse, plastic dissipation, intergranular or in-
terface frictions, etc. Among these, under strong shock conditions,
void collapse (8) and shear-induced localization (6) are predomi-
nating mechanisms for hotspot formation and therefore will be
the focus of this paper. Experiments (5) and simulations (7) have
shown that the collapse of microscale voids in an EM can generate
strong hotspots that can grow to combust the surrounding materi-
als. Hotspots that are large enough and reach sufficiently high

temperatures can initiate chemical reactions to release energy,
strengthening the traveling shock and triggering a self-sustaining
detonation (10). Since there is a strong correlation between micro-
structural morphologies and initiation sensitivity, in principle, one
can engineer the sensitivity of EMs by manipulating their micro-
structures (11). This insight has inspired an active area of research
to discover quantitative relationships between EM microstructures
and their thermo-mechanical properties and performance. The dis-
covered relationships are then used to engineer EMs with targeted
sensitivity and energy delivery characteristics in a “materials-by-
design” paradigm (12–14).

The design loop for such a materials-by-design framework can
be accelerated by using predictive multiscale simulations to obtain
structure-property-performance (SPP) linkages for general EMs.
Highly resolved molecular (15–17) or continuum simulations
(18–20) are usually necessary for accurate modeling of the energy
localization phenomena in complex microstructures. However,
such direct numerical simulations (DNS) can be computationally
intensive, and extracting useful quantities of interest (QoI) to
inform the design may present challenges (2, 21). In this work,
we propose a deep learning model called physics-aware recurrent
convolutional (PARC) neural network to predict the microscale re-
active mechanics of shock-initiated EMs with quantitative fidelity
comparable to the DNS of shocked microstructures but at a mark-
edly reduced computational cost.

Establishing SPP linkages is a central component in the materi-
als-by-design framework for EMs. In the current practice, the prop-
erties and performance of microstructures are determined
experimentally (22, 23) or calculated using multiscale numerical ex-
periments (21). In the latter approach, a large number of mesoscale
simulations are conducted using imaged or synthetic microstruc-
tures (11, 24, 25) to develop surrogate models (26, 27) for the
subgrid energy localization rate (property), which is then used to
produce macroscale predictions of sensitivity (performance) by
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bridging the micro- and macro-length scales (21). In previous
works, surrogate models for mesoscale energy localization were
constructed using the Gaussian Random Process techniques (28).
Training data were obtained from ensembles of simulations per-
formed with canonical void shapes (circular/elliptical) and other
simplifying assumptions to reduce the model complexity and com-
putational efforts. In this vein, Nassar et al. (26) developed a
machine learning (ML)–based surrogate model in which hotspot ig-
nition and growth rates were expressed as a function of void size and
applied shock loading. Roy et al. (27) developed a more sophisticat-
ed surrogate model spanning a larger parameter space, including
not only the void sizes but also the aspect ratios of voids, their ori-
entations, and volume fractions. Other approaches to quantifying
hotspot dynamics have also relied on idealized synthetic micro-
structures with voids represented by circles (4), ellipses (27), and
rectangles (18). Surrogate models derived in this manner (29, 30)
were used to close the macroscale system of equations modeling
the shock-to-detonation transition to determine the critical
energy for initiation (31) and the run-to-detonation distances
(21). Using this multiscale framework, the relationships among mi-
crostructural parameters, mesoscale dynamics (e.g., the evolution of
the hotspot temperature or hotspot area), and the macroscale QoI
(32, 33) for EM sensitivity were determined.

The use of idealized, canonical microstructures (27) or void col-
lapse calculations on isolated single voids (26) led to simplified ap-
proaches, allowing for the reduction in the dimensionality of the
material design space. In addition, such approaches also facilitate
the investigation of SPP linkages of EMs with a tractable computa-
tional effort. However, such idealized representations are unable to
capture the full complexity of morphological structures (e.g., large,
elongated cracks, tortuous voids) that influence the energy localiza-
tion phenomena at the mesoscale (34). Furthermore, simplified sur-
rogates may not adequately model the interactions among
microstructural features, such as void-void interactions (27), con-
torted/branched voids, and cracks. In addition, most surrogate
models estimate the mesoscale QoI through an effective scalar
value obtained by averaging or homogenization techniques; there-
fore, such approaches cannot represent high-fidelity details and
spatiotemporal variations of the hotspot dynamics. Hence, detailed
local phenomena such as the initiation of hotspots or the combina-
tion of multiple hotspots cannot be properly modeled.

An alternative to such simplified representations of microstruc-
tural dynamics is to assimilate SPP linkages directly from non-ide-
alized, high-resolution DNS performed on real, imaged
microstructures (18). However, because of the highly transient
thermo-mechanics of shocked heterogeneous EMs, DNS with
non-idealized microstructures are computationally intensive and
require extremely fine grid resolutions (35). For instance, a single,
well-resolved mesoscale simulation of the reactive response of mi-
crostructures can take hours to days on high-performance comput-
ing facilities. Moreover, since there is a large parameter space of
stochastic micromorphology that needs to be examined during
the design process, a vast number of experiments and simulations
are required, leading to formidable costs for analyzing, modeling,
and designing new material microstructures.

To overcome these limitations, in this work, we propose a deep
learning–based approach called PARC. PARC is trained to assimi-
late the behavior of evolving temperature and pressure fields of
shocked heterogeneous EMs in time, using a small dataset obtained

from DNS of high-resolution, image-derived microstructures (35).
In this approach, no simplification of microstructural morphology,
data reduction, or simplifying assumptions is required. Also, the
proposed method does not include any spatial and temporal aver-
aging to assimilate the mesoscale dynamics. To achieve such a ca-
pability, PARC is designed to model governing differential
equations of the material state (temperature and pressure) using
convolutional neural networks (CNNs) in a recurrent formulation
which are solved via data-driven integration. Such a differentiator-
integrator architecture makes PARC “physics-aware” and interpret-
able, as its mathematical formulation is reminiscent of typical DNS
solvers. The architecture design also separates PARC and typical
input-output mapping approaches of common ML-based
methods in materials science.

After training, PARC can assimilate the hotspot dynamics of
complex microstructural morphologies in shocked EM and
provide a high-fidelity time-evolving prediction of temperature
and pressure with an accuracy comparable to DNS. Moreover,
PARC achieves a steep reduction of computation time, providing
predictions nearly three orders of magnitude faster than DNS.
Last, PARC can illuminate the mechanisms of hotspot formation
and growth in shocked EM microstructures and identify the mor-
phological features contributing most to hotspot formations via
neural network visualization techniques as demonstrated later.
This PARC-enabled capacity to run high-throughput, high-fidelity
simulations, when combined with synthetic microstructure genera-
tion methods (11, 24, 25), can accelerate the EM characterization
processes. In addition, these capabilities enable rapid explorations
of the vast configuration space of EM microstructures and thereby
facilitate the discovery of better functional structures.

RESULTS
PARC neural network
Figure 1 illustrates the overall architecture of PARC. The inputs to
PARC include a binarized microstructure image (white pixels: ma-
terials; black pixels: voids), a position field, and initial conditions for
temperature and pressure fields. The U-Net (36) subnetwork
encodes the input microstructure image and position field into
the microstructure shape descriptor μ. This shape descriptor,
along with the initial temperature and pressure fields, is the input
to the differentiator CNN (purple boxes in Fig. 1), which estimates
the rates of change of the temperature and pressure field at each
time step. The predicted rates of change are then integrated over
time by the integrator CNN (orange boxes in Fig. 1) to compute
the temperature and pressure fields at the next time step. The
process is repeated recursively until the simulation ends.

The state vector of the material system at a given position r = (x,
y) and time t is denoted as X(r; t) ≔ [T(r; t), P(r; t)]T, where T(r; t)
and P(r; t) are the temperature and pressure fields in the shocked
EMmicrostructure sample. PARC models the evolution of the state
vector, which contains the energy localization and the ignition and
growth of hotspots generated by shock passage through an EM mi-
crostructure, via the following governing differential equation with
initial conditions

dX
dt ¼ f ðX; μÞ

Xðr; t ¼ 0Þ ¼ ½T0ðrÞ; P0ðrÞ�

�

ð1Þ
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In Eq. 1, the shape descriptor, μ, is introduced to account for the
effect of microstructural morphology on the thermo-mechanical
evolution of the stateX. Here, t = 0 refers to the instant when a tran-
sient shock enters themicrostructure, at which time the temperature
field T(r; t = 0) and the pressure field P(r; t = 0) are assumed to be
constant everywhere in the domain with the value of T0(r) = 300K
and P0(r) = 1ATM. Solving Eq. 1 over a time interval t ∈ [0, τ] gives
the temperature and pressure values X(r; τ) at a time instance t = τ

Xðr; τÞ ¼ X0ðrÞ þ

ðτ

0
f ðX; μÞdt ð2Þ

In Eq. 2, the computation of the integral
Ð τ
0f ðX; μÞdt is prone to

numerical integration errors, as the dynamics is violent and highly
transient. There are also spatiotemporal discontinuities (material-
void interfaces, shocks, and reactive fronts) and large deformations
(void collapse and material advection) inherent to the thermo-me-
chanics of shocked EMs. Therefore, during the shock-induced reac-
tion of EMs, temperature and pressure fields exhibit high
spatiotemporal gradients, resulting in temporal and spatial nonlin-
earities in the evolution described in Eq. 2, particularly for a long
simulation time. For large values of τ, predictions from Eq. 2 may
diverge from the ground truth (taken to be the corresponding DNS
fields). To circumvent this, the integral in Eq. 2 is decomposed into

discrete time intervals, in the form

Xðr; tkÞ ¼ X0ðrÞ þ

ðtk�1

t0
f ðX; μÞdt þ

ðtk

tk�1

f ðX; μÞdt

¼ Xðr; tk�1Þ þ

ðtk

tk�1

f ðX; μÞdt:
ð3Þ

Here, to relieve the notational burden, we represent the integral
over the interval [tk−1, tk] by the functional S

Sðf Þ :¼

ðtk

tk�1

f ðX; μÞdt: ð4Þ

Note that both the time derivative f(X, μ) and the integral S( f )
are mathematical operators, which can be modeled by CNNs as sug-
gested by the universal approximation theorem (37). Therefore, Eq.
3 can be rewritten as

Xðr; tkÞ ¼ Xðr; tk�1Þ þ S½f ðX; μ j θÞ j φ� ð5Þ

where θ and ϕ are neural network parameters (weights and biases)
for f and S, respectively. Here, we refer to the neural networkmodel f
as the differentiator CNN (purple boxes in Fig. 1) and the other
model S as the integrator CNN (orange boxes in Fig. 1). During
the training of neural networks, the objective is to find the

Fig. 1. Overview of the PARC architecture. Initially, the microstructure intensity field I and the position field U are encoded into the microstructure shape descriptor μ
using the U-Net. The shape descriptor is sent to the differentiator CNN (purple box) along with the initial temperature and pressure fields to estimate the rate of change
over time of the temperature and pressure at each grid point. The predicted temperature and pressure time derivatives are integrated over time using the integrator CNN
(orange box) and added to the current temperature and pressure values to derive the QoI in the next time step. The process is repeated recursively, and the network
parameters of the differentiator and the integrator are shared across all time steps. The temperature and pressure fields computed at each time step are combined to
create time-evolving fields which assimilate the hotspot ignition and growth within shock-initiated EM microstructures.
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optimal parameters θ* and ϕ* yielding the most accurate prediction
of the evolution of the state X(r; t).

The PARC architecture (Fig. 1) is the realization of the above
neural network models in Eq. 5. First, the morphology parameter
μ is derived from the microstructure image I(x, y) and the position
map U(x, y). Here, the position map U : (x, y) ↦ x is introduced to
encode the relative position of each grid location with respect to the
left boundary of the image domain where the shock enters. The in-
clusion of the position map is to account for the inherent transla-
tional equivariance (38) of CNNs, which makes them incapable of
distinguishing the relative position of grid locations with respect to
the shock front. The vertical coordinate y is dropped as the shock
travels horizontally in our setting. To encode the morphology pa-
rameter μ, we use the U-Net architecture (36), informed by previous
success in using the U-Net as a morphology descriptor (39). The U-
Net architecture takes the microstructure image I and the position
map U and returns a morphology descriptor μ ∈ ℝ128 as an output
at each grid location (see fig. S1A for more details).

At each time step tk>0, the differentiator network f(X, μ ∣ θ) takes
the morphology descriptor μ and the temperature and pressure
fields Xk = [Tk, Pk]T of the current time step as inputs and calculates
the time derivatives of temperature and pressure fields dXk/dt =
[dTk/dt, dPk/dt]T. The differentiator CNN is composed of two
ResNet blocks (40) and a 7 × 7 convolution layer for feature extrac-
tion, followed by two 1 × 1 convolution layers and a 3 × 3 convolu-
tion layer for enhancing the details (super-resolution) (41) (see fig.
S1B for more details). The outputs of the differentiator, i.e., the time
derivatives of temperature and pressure fields, are then sent to the
integrator network S( f ∣ ϕ), which calculates the total variation of
temperature and pressure at each grid location after a time interval
Δt. The outputs of the integrator are then added to the current tem-
perature and pressure fields Xk to derive the future state Xk+1 at the
next time step tk+1. The integrator CNN has a similar architecture to
the differentiator CNN (see fig. S1C).

The above-described computation of the differentiator and the
integrator is repetitively applied in a recursive fashion, in which
the resultant temperature and pressure fields at each time step
serve as the inputs for the next time step. The recurrent solution
in Eq. 5 starts with tk = t1 and follows through until the final time
step tk = tP is reached. Through this recurrent computation, PARC
returns the predictions of temperature and pressure fields X1, ⋯,XP
at discrete time instants t1, ⋯, tP, respectively. Note that the same
neural network parameters θ and ϕ of the differentiator and integra-
tor are shared across time steps, making the PARC architecture re-
current. Such a recurrent convolutional architecture modeling of
the differential equation f and the integral S resembles the way in
which dynamic systems are simulated in typical DNS solvers for
time-dependent problems and thus makes PARC physics-aware.
This physics-aware architecture makes PARC more interpretable
compared to other black-box ML methods. That is, in a typical
black-box ML model, the prediction mechanism is mostly input-
output regression without any involved physics-awareness, and
such an approach leads to unexplainable and unreliable prediction
results. This issue can be overcome by our proposed PARCmodel as
demonstrated later. For more details on the PARC architecture
design and implementation, please see the Supplementary
Materials.

Last, the training of PARC is cast as an optimization problem in
which the goal is to accurately model the spatiotemporal evolution

of both temperature and pressure fields in shock-initiated reaction
simulations of EM microstructures

Lðθ;φ j X̂Þ

¼
X

tk

kX̂ðr; tÞ � Xk�1 � S½f ðX; μ j θÞ j ϕ�k2

þ
X

tk

k _̂Xðr; tÞ � f ðX; μ j θÞk2 ð6Þ

Here, the quantities with the hat represent the ground truth data
derived from DNS.

Prediction performance
The ability of PARC to accurately predict the evolution of the tem-
perature and pressure fields was evaluated in comparison with the
corresponding DNS predictions. As depicted in Fig. 2 (and figs. S4
to S11 for more examples), PARC-predicted temperature and pres-
sure fields were qualitatively comparable to those derived from the
DNS. Notably, the locations, spatial patterns, and evolution of hot-
spots aligned well with those obtained from DNS. Similarly, the
propagation of shock waves in the microstructure during the simu-
lation was well captured, as indicated in both temperature and pres-
sure field predictions.

For a more quantitative assessment, we evaluated the prediction
accuracy of PARC via several EM sensitivity metrics that are known
to be crucial for the design of EMs. Specifically, we measured the
average hotspot temperature Ths, the total hotspot area Ahs, and

their respective rates of change over time, _T
hs
and _Ahs. The four

QoIs are closely related to EM sensitivity. While the average
hotspot temperature denotes the intensity of void collapse and the
likelihood of the formation of “critical” hotspots, the total hotspot
area shows the contribution of hotspots to energy localization in a
control volume. Meanwhile, their rates of change over time are used
to quantify the rate of energy deposition at the mesoscale. These
four sensitivity QoIs are defined as

Ths
ðtkÞ ¼

XM

i¼1

XN

j¼1
½Ths

ij ðtkÞAhs
ij ðtkÞ�

AhsðtkÞ
ð7Þ

AhsðtkÞ ¼
XM

i¼1

XN

j¼1
Ahs
ij ðtkÞ ð8Þ

_T
hs

ðtkÞ ¼
Ths

ðtkÞ � Ths
ðtk�1Þ

tk � tk�1
ð9Þ

_Ahs
ðtkÞ ¼

AhsðtjÞ � Ahsðtj�1Þ

tk � tk�1
ð10Þ
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where

Ths
ij ðtkÞ ¼

TijðtkÞ if TijðtkÞ � 875 K;

0 otherwise;

�

ð11Þ

Ahs
ij ðtkÞ ¼

AijðtkÞ if TijðtkÞ � 875 K;

0 otherwise:

�

ð12Þ

In Eqs. 7 to 12, the subscript ij indicates quantities specific to the
grid location (i, j) on a M × N grid. The superscript hs indicates
quantities specific to hotspots. Aij is the area of the grid cell occu-
pied in the hotspot region, which is constant since a uniform grid
was used.

Fig. 3 illustrates the time evolution of the average hotspot tem-
perature Ths and total hotspot area Ahs as well as their rate of change

over time, _T
hs
and _Ahs, derived from the PARC prediction illustrated

in Fig. 2. As depicted in Fig. 3, all four sensitivity QoIs derived from
PARC agreed with those obtained from DNS at all observed time
steps, with the exception of the average hotspot temperature,
which was generally lower than values derived from DNS
simulations.

We tested three statistical metrics, namely, root mean squared
error (RMSE), Pearson’s correlation coefficient (PCC) (42), and
Kullback-Leibler divergence (KLD) (43), between the PARC-pre-
dicted sensitivity QoIs and the DNS-generated values. The above
metrics were derived from the sensitivity prediction results of all
nine test samples. Details on the derivation of such metrics are
given in the Supplementary Materials. As reported in Table 1,
across the nine test samples, the RMSE of PARC prediction was
low for all sensitivity QoIs, having the value of 374.09 K, 91.48 K/
ns, 18.03 μm2, and 3.92 μm2/ns for Ths, _T

hs
,Ahs, and _Ahs, respective-

ly. In particular, the PARC-predicted results for Ahs and _Ahs dis-
played low KLD (0.039 and 0.051, respectively), as well as high
PCC (0.884 and 0.849, respectively), indicating strong statistical
agreement. This, however, was not the case for the temperature

QoIs (Ths, _T
hs
). This indicates that PARC can successfully predict

the evolution of hotspots that is consistent with DNS, with a
caveat that hotspot temperatures are slightly underpredicted.

Computational time
Table 2 reports the average computational times for making a pre-
diction using PARC, on different hardware configurations. As re-
ported, PARC was able to make predictions with only small
computational times, approximately 0.5 s on a graphics processing
unit (GPU)–enabled system and 9.2 s on a central processing unit
(CPU), which contrasts with hours of computational time for the
DNS solver on multiprocessor HPC systems. Hence, the small com-
putational effort involved in PARC predictions makes it suitable for
being used in microstructural design optimization in a materials-
by-design framework.

Physics-awareness of PARC
The physics-awareness is an essential trait of PARC that separates
the model from conventional “black-box” ML models used in ma-
terials science. Currently, there are three common ways to achieve
physics-awareness of anMLmodel, viz., observational bias, learning
bias, and inductive bias approaches (44). Observational bias ap-
proaches aim to embed physics into an ML model by training it
with observational data reflecting underlying physical principles
(45). While straightforward to implement, observational bias ap-
proaches require a large amount of data to reinforce the physics
bias and to produce predictions that follow the required physical
laws (44). Such a large data dependency makes them prohibitive

Fig. 2. Temperature and pressure fields predicted by PARC displayed in comparison to DNS results. The physics-aware architecture of PARC provides predictions of
hotspot ignition and growth in good agreement with DNS.
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to apply to many materials science applications, given that generat-
ing data via either numerical or physical experiments is generally
expensive. On the other hand, learning bias approaches inject
physics knowledge into an ML model via custom physics-based
loss functions (training objectives) (46). These approaches tend to
be model-agnostic, as they rely only on the definition of loss func-
tions and therefore are more scalable and generalizable. However, as
physics is embedded via soft constraints or penalties, these ap-
proaches can only produce a rough approximation of physical
laws and, therefore, are not capable of producing accurate and
high-fidelity results (44). Last, inductive bias approaches embed

physics into an ML model by tailoring the mathematical formula-
tion and the architecture of the ML model to reflect the underlying
physics (47, 48). Similar to the way in which PARC models the gov-
erning differential equations of EM thermo-mechanics, inductive
bias approaches attempt to express the underlying physical laws
in the form of ML model parameters or architectural design (44).
Compared to the other two approaches, ML models designed in
such a manner do not generally require a large quantity of data
and can be trained with a small number of training samples [e.g.,
only 30 simulation instances in the case of PARC or 28 simulation
instances in the case of Long et al. (47)], as the physics embedded in
the model architecture and formulation serves as a strong prior for
the learning process. Moreover, this method of embedding physics
into ML models enables enhanced modeling capabilities that
cannot be attained by physics-naïve models. These modeling capa-
bilities enabled by the physics-aware architecture will be further
demonstrated in the following subsections.

Comparison with other physics-naïve benchmarks
To provide more quantitative evidence for the physics-awareness of
PARC, we first investigated the roles of its differentiator and

Table 1. Evaluation of sensitivity QoI predicted by PARC.

T
hs _T

hs
Ahs _A

hs

RMSE 374.09 K 91.48 K/ns 18.03 μm2 3.92 μm2/ns

KLD 8.377 3.654 0.039 0.051

PCC 0.399 0.131 0.884 0.849

Fig. 3. EM sensitivity QoIs calculated fromPARC predictions. (A) Average hotspot temperature. (B) Average hotspot temperature rate of change. (C) Total hotspot area.
(D) Total hotspot area rate of change. Overall, these metrics are in good agreement with the DNS results, with the exception that the average hotspot temperature values
are on average 352 (K) lower in PARC predictions.
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integrator networks by comparing PARC predictions to the results
of other physics-naïve models. In this experiment, two different
baseline models were selected as benchmarks, namely, the U-Net
(36) and the ImaGINator (49). U-Net is a physics-naïve version
of PARC in which there are no recurrent differentiator-integrator
layers. Note that the U-Net baseline is identical to the shape descrip-
tor subnetwork in PARC, which consists of 15,384,870 parameters,
accounting for 86.18% of the total number of parameters in PARC.
Therefore, if PARC was not physics-aware and just simply memo-
rized how hotspots evolve based on different void shapes, then a
direct regression of the temperature and pressure fields from the
U-Net outputs should have roughly the same accuracy as the
PARC predictions. The second benchmark, namely, the ImaGINa-
tor, is an archetype of a video generation algorithm in the computer
vision community, which is capable of generating realistic videos of
human motions. Briefly, ImaGINator is a generative adversarial
network that is equipped with a spatiotemporal fusion mechanism
that enables the generation of a realistic and smooth video sequence
from a given image input. ImaGINator was originally designed to
solve more advanced video generation problems, such as the gener-
ation of videos describing human facial expressions or human ac-
tivities. These are problems that are orders of magnitude more
difficult than the problem of generating the temperature and pres-
sure fields. If the physics-awareness architecture of PARC has no
influence on its prediction performance, then these more sophisti-
cated algorithms should perform better, or at least on par, with
PARC in predicting the hotspot evolution of shocked EM.

Figure 4 (and figs. S14 and S15 for more samples) illustrates
hotspot evolution prediction made by PARC in comparison with
ones by the U-Net and ImaGINator. Figure 4A shows the temper-
ature and pressure field predictions made by PARC and the two
baseline models. Although the U-Net baseline was able to fairly ac-
curately identify hotspot locations, the temperature values were
considerably underestimated, and the hotspot boundaries were
blurry and fuzzy. The predicted hotspot growth was not smooth
in the case of the U-Net baseline, rendering a noisy and discontin-
uous growth of the hotspot total area. Considering the thermo-me-
chanics, the growth rate of hotspots should be smooth and
monotonic, as shown in the ground truth DNS and PARC predic-
tions (Fig. 4B).

However, the U-Net baseline was better than PARC in the pre-
diction of the shock profiles. As can be observed from Fig. 4A, the
U-Net baseline was able to predict the curved shape of the shock
fronts, while PARC predictions were mostly flat and slightly
shifted to the right. This, however, counterintuitively indicates

that the U-Net baseline simply memorized the visual appearance
of temperature fields at a given time step and was thusmore effective
in predicting shock profiles despite missing hotspot formation and
growth. More closely, the shock loading condition was identical
across all data samples, and thus the speed of the shock traveling
through the microstructure and the resultant shock front shape
were roughly consistent across all samples. On the contrary,
hotspot formation and growth are complex functions of microstruc-
tures and their interactions. As a result, “one-to-one correspon-
dence” memorizing approaches between a given microstructure
and its corresponding temperature field evolution would be easily
biased toward features that are common across training data
samples (such as the shock profile) and would be incapable of pro-
ducing good predictions of physically more critical and complex
features (such as hotspot formation).

The comparison between PARC and ImaGINator also support-
ed the above observations. In theory, ImaGINator is a more ad-
vanced, state-of-the-art video prediction algorithm that can
generate more sophisticated videos than what PARC can generate.
However, ImaGINator was not able to predict the hotspot forma-
tions and growths anywhere near the accuracy that PARC could
predict. The discontinuous shape of the shock fronts and the
delayed and discontinuous hotspot area growth (Fig. 4) clearly in-
dicated that the physics-naïve ImaGINator did not assimilate the
thermo-mechanical principles of hotspot formation and growth.

In summary, the above benchmarking results demonstrate that
PARC, with its physics-aware architecture, can achieve enhanced
modeling capabilities that are not feasible with generic, physics-
naïve ML models. This physics-aware architecture also enables
PARC to generalize its knowledge to make predictions in previously
unseen scenarios, as will be discussed in the following subsection.

Predictions extended beyond the time period of the
training datasets
To further attest the physics-awareness of PARC, we examined the
model’s ability to predict hotspot evolution beyond the time steps
for which it was originally trained. Initially, PARC was trained for
19 time steps (which is equivalent to 15.01 ns). In this experiment,
we allowed PARC to continue predicting the temperature and pres-
sure fields for an additional 17 discrete time steps. Therefore, the
extended simulation contained a total of 36 discrete time steps of
shocked EM hotspot thermo-mechanics prediction (or 28.44 ns).
Since PARC had not seen training examples beyond 19 time
steps, we hypothesize that if PARC lacked physics-awareness and
simply memorized the hotspot patterns at each time step, then it

Table 2. Computational efficiency comparison between PARC and DNS. PARC drastically reduces the computation time (more than 9000 times) while
requiring fewer computational resources. RAM, random-access memory.

PARC (on CPU) PARC (on GPU) DNS

Computation
time (average)

∼9.2 s ∼0.5 s ∼24 hours

Hardware capacity Intel Core i9-11900 CPU at 2.50 GHz (16 cores;
1 was used for the experiment)

Intel Core i9-11900 CPU at 2.50 GHz (16 cores;
1 was used for the experiment)

Intel Xeon E5-2699v4 CPU at 2.80
GHz (1320 processors)

RAM: 64 GB DDR4 RAM: 64 GB DDR4 RAM: 128 GB DDR4

GPU: Not Applicable GPU: Nvidia RTX A5000 GPU: Nvidia P100
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would not be able to make physically meaningful predictions for
future time steps.

Figure 5 (figs. S12 and S13 for more examples) shows that PARC
was able to maintain accurate predictions over these previously
unseen time steps. Visually, the hotspot growth rate and pattern
were in good agreement with the DNS results, although there was
a delay in reaching the equilibrium state (i.e., the plateauing of the
hotspot temperature) and the equilibrium temperature was slightly
higher than the DNS predicted values. Figure 5B also confirms this
inspection, showing good agreement between PARC predictions
and ground truth DNS for all sensitivity metrics, although the
PARC-predicted average hotspot temperature is saturated at a
later time and at a higher temperature. Thus, this experiment indi-
cates that PARC has assimilated the physics of growth and coales-
cence of hotspots in the limited time period covered by the training

dataset and is able to carry forward physically meaningful forward
in time.

Interpretability of PARC
The physics-aware architecture of PARC also brings another advan-
tage of being more interpretable compared to black-box ML ap-
proaches. As shown in Fig. 1, PARC incorporates a U-net–
encoded microstructure shape descriptor, μ, for the prediction of
the time derivatives of temperature and pressure fields. This
physics-aware architecture of PARC allows us to understand the
effect of microstructure morphology on the formation of hotspots
by using the saliency map technique (50). As explained in the Sup-
plementary Materials, the saliency map visualizes regions in the mi-
crostructure that make a predominant contribution to the
prediction of high-temperature regions (hotspots). PARC can

Fig. 4. Comparison between PARC and other physics-naïveML benchmarks. (A) As illustrated in the temperature field predictions made by PARC (second row), U-Net
(36) (third row), and ImaGINator (49) (last row), in comparison with the DNS results (first row), with its physics-aware architecture, PARC could predict the hotspot for-
mation and growth accurately, in contrast to the other two baselines. (B) The hotspot area (left) and hotspot area growth rate (right) predicted by PARC are also in better
agreement with the ground truth DNS compared to the other baselines. There is a discontinuous and fluctuated growth of hotspot area in the case of the U-Net baseline.
Meanwhile, the ImaGINator prediction is noisy and delayed compared to the ground truth DNS.

Nguyen et al., Sci. Adv. 9, eadd6868 (2023) 28 April 2023 8 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on A

ugust 17, 2023



Fig. 5. PARC predictions on unseen time steps. (A) Temperature field evolutions in unseen time steps predicted by PARC. PARC had originally been trained for a total of
15.01 ns of simulation time. However, when we let it continue to predict time steps for a longer time frame, it was still able to predict the growth patterns well, although it
reached the equilibrium state a little late and at a higher temperature. (B) Predicted sensitivity QoI in unseen time steps. PARC-predicted sensitivity QoI in unseen time
steps also well agreed with DNS ground truth, despite the delayed and higher saturated temperature
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identify microstructural features within such regions as critical and
quantify the spatial features in the microstructure that lead to
energy localization. Figure 6 highlights microstructural features
with high influence on the hotspot formation as visualized by
using the saliency map. The saliency map shows that the regions
highlighted by high saliency values are colocated with a subset of
the microstructure’s voids and cracks. This finding is in line with
prior knowledge in the EM research community (5–8) that hotspots
are formed due to the energy localization at sites of cracks and voids
in EM microstructures.

To further highlight the physical implications of the saliency
map visualization, we analyzed the microstructural features that
lead to critical hotspot formation. We first classified the voids and
cracks in the microstructure into critical and “noncritical” ones and
analyzed the shape of both groups. Figure 7 shows some samples of
critical and noncritical voids, randomly selected from the saliency
map visualization results. We found that most of the critical voids
were elongated in shape, and the predominant orientation of these
voids was parallel to the direction of shock propagation (from left to
right in the domain), as can be surmised by visual inspection of the
samples in Fig. 7A. These findings align with the observations in the
prior works of Roy et al. (27), Rai and Udaykumar (18), Nguyen
et al. (34), and others, which demonstrated the strong influence
of void aspect ratios and void orientations on the formation of
hotspots.

To further elucidate this insight gained from the saliency map,
we fit an effective ellipsoid to these voids and cracks to compute the
void size, aspect ratio, and orientation (Fig. 8). This morphometry
analysis showed that voids with an average diameter of 0.761 μm
(±0.224), aspect ratio of 2.37 (±0.69), and angle of inclination of
12.752β (±8.699) with respect to the shock direction were most
likely to form critical hotspots, whereas noncritical regions of the
microstructures had average void diameters of 1.247 μm (±0.383),
aspect ratio of 2.373 (±0.826), and orientation of 59.192β (±24.49)
with respect to the shock direction. Two-sample t test (51) also con-
firmed the clear differences in the morphometry distributions of

critical and noncritical regions with small P values of 8.6 × 10−12

and 2.7 × 10−22 for the average void diameter and orientation, re-
spectively, indicating their statistically meaningful tendencies.
Meanwhile, there was no clear distinction in the void aspect ratio
between critical and noncritical voids, as the two-sample t test re-
sulted in a high P value of 0.9959.

The above morphometry analysis again agrees with the previous
findings on the effect of elongated void orientation on the hotspot
formation using DNS, i.e., that voids with their major axis aligned
parallel to the direction of shock propagation are the potential sites
for energy localization (18); on the other hand, voids oriented
nearly perpendicular to the shock direction fail to produce sus-
tained hotspots (34). Also, the analysis result also agrees with the
conclusion of Nguyen et al. (34) that the orientation of voids has
a stronger impact on the energy localization that causes hotspot ig-
nition compared to their aspect ratio. This agreement between the
analysis provided by the saliency map of PARC and previous DNS-
based physical insights demonstrates the possibility of examining
the PARC neural network to inform EM designers regarding the
SPP linkages for EMs.

DISCUSSION
This work presented a deep learning approach to assimilate the
thermo-mechanics of shock-initiated heterogeneous EMs with
complex microstructures. The PARC neural network model was de-
veloped on the basis of the recurrent differentiator-integrator archi-
tecture, which resembles the way in which physics equations are
modeled and solved in numerical simulations. The PARC model
was then trained using grid-collocated field data in the form of dis-
crete video frames produced by DNS of hotspot evolution in
shocked microstructures. Following training, PARC developed the
capability to predict the hotspot dynamics for an unseen micro-
structure that was not included in the training dataset.

The predictive capability of PARC was validated against DNS in
two classes of pressed EM [cyclotetramethylene-tetranitramine

Fig. 6. Saliency maps to visualize critical voids. The saliency maps are derived by computing the derivative of the corresponding temperature field with respect to
input microstructure image. Consequently, the saliency map is registered to the corresponding microstructure image. The voids that are highlighted by the saliency map
are classified as critical.
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(HMX)] microstructures, viz., class V and fluid energy milled
(FEM) materials. The results showed that PARC could deliver
high-fidelity and accurate predictions of temperature and pressure
field evolutions in shocked heterogeneous EM microstructures. In
addition, the PARC-predicted EM sensitivity QoIs, including
hotspot temperature, hotspot area, and their rate of change over
time, showed good agreement with those derived from the
ground truth DNS. The computational cost of using PARC was
multiple orders of magnitude lower than the case of DNS. PARC
could produce prediction results in compute times in the order of
a few seconds on a standard laptop, while DNS occupied hours to
days on multiprocessor machines. Therefore, while it is infeasible to
use DNS as part of a concurrent multiscale modeling framework to
connect subgrid (mesoscale) dynamics with macroscale hydroco-
des, PARC opens the possibility of intercalating macro-calculations
with on-the-fly training and interrogation of the mesoscale
dynamics.

In addition, the physics-awareness of PARC was demonstrated
through multiple experiments. Compared with other physics-
naïve baselines, PARC showed a better and more reliable perfor-
mance. In particular, the comparison against the U-Net baseline
implied that PARC did not just memorize the correspondences
between microstructural elements (i.e., voids) and hotspot forma-
tion but assimilated the underlying thermo-mechanics of hotspot
formation in shocked EM. Similarly, the benchmarking against a
generic, state-of-the-art video generation network called ImaGINa-
tor revealed that the physics-aware architecture of PARC enabled
the prediction results to be physically plausible. Furthermore,
when challenged to predict scenarios beyond what it had originally
been trained for, PARC was able to make physically meaningful and
reliable predictions. All of these results are indicative of the physics-
awareness of the differentiator-integrator architecture of PARC.

Furthermore, we showed that the physics-aware architecture of
PARC can circumvent the pitfalls of black-box ML approaches and

enable better modeling capabilities and generalization. Specifically,
through the quantification of the saliency map, PARC enabled the
establishment of correlations between morphological features and
reaction sensitivity. For instance, the indication from PARC that
elongated voids with their major axis aligned parallel to the direc-
tion of shock propagation presents the most favorable sites for crit-
ical hotspots is in good agreement with prior expert knowledge
derived from DNS. Furthermore, the analysis of the saliency map
also indicated that the orientation of elongated voids with respect
to the incident shock has the strongest influence on the criticality
of voids compared to other morphometry parameters such as
void size and void aspect ratio.

We are currently undertaking to extend the capability of PARC
in several directions. One of the immediate challenges is to increase
PARC prediction accuracy to capture details such as the shape of the
shock structure passing through the EM microstructure and the
wave propagation patterns in the pressure field. In addition, the
present work is also limited to a single operating condition
(shock strength of 9.5 GPa), whereas there is a clear practical need
for generalizing the results to other operating conditions.

In the long term, PARC can facilitate the materials-by-design of
EMs by accelerating the determination of SPP linkages. With the
ability to incorporate non-idealized microstructures and provide
rapid predictions of shock-initiated EM thermo-mechanics,
PARC can accelerate the design optimization process and shorten
the time to discover EM microstructures that provide tailored per-
formance characteristics. This warrants further investigation into
how PARC may be integrated into the design process of EMs.

Furthermore, the interpretability of PARC and the correspond-
ing visualization techniques may provide some additional lenses
that can be used to expand our physical knowledge connectingmor-
phology to performance. While the present study is limited to sali-
ency visualization, different neural network visualization methods
for explainable ML may reveal interesting, previously uncovered

Fig. 7. Examples of critical and noncritical voids identified from the saliency map visualization. (A) Critical voids. (B) Noncritical voids.
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correlations between structure, property, and performance. To this
end, exploring more evocative neural network visualization tech-
niques is another avenue for further investigation.

Last, although the scope of the present work was limited to EMs,
the methods developed can be applied to other complex materials
with a strong microstructural influence on properties and perfor-
mance. Hence, the generalization of PARC to a wider range of ma-
terials may yield similar benefits, such as accelerating the discovery
of materials with enhanced properties via microstructure design.
Conversely, different material problems may pose different physical
constraints (e.g., rotational symmetry and conservation of energy),
which may lead to the development of new mathematical founda-
tions and algorithms for deep learning, rendering an opportunity
for multidisciplinary research.

MATERIALS AND METHODS
PARCwas trained on a dataset containing 42 instances of shock-ini-
tiated reaction simulations on two different classes of pressed EMs:
class V (fig. S2A) and FEM (fig. S2B). The microstructures of these
two materials were obtained from scanning electron microscopy
images with spatial dimensions of 25 μm by 25 μm resolved with
240 × 240 pixels (104 nanometers per pixel).

Sequences of temperature and pressure fields evolving over time
were computed fromDNS using themulti-material reactive dynam-
ics code, SCIMITAR3D (18–20). The numerical calculations were
performed using methods and models that are not detailed here
in the interest of brevity but are described in several publications
(52–54). For each DNS, the microstructural sample was loaded
with a shock with the pressure loading of 9.5 GPa, applied at the
left boundary of the domain. The shock then traversed through
the microstructure from the left to right (fig. S2C). The total time

duration of each simulation was 15.01 ns, which was sufficient for
the shock to traverse the entire sample and for the collapse of all
voids in the material. The time evolution of hotspots in a typical
DNS can be visualized in the video files in the Supplementary Ma-
terials. Hotspot ignition and growth ensued in the period of 15.01
ns, creating a field of hotspots that evolve in the postshock region.
The calculated temperature and pressure field data were recorded at
equal time intervals leading to 19 equally spaced time instances at Δt
= 0.79 ns time interval.

During the above numerical simulations, the initial microstruc-
tures were deformed and advected with the postshock flow velocity.
To relate the initial void field in the microstructure to the final
hotspot field in the fixed grid framework, the DNS temperature
and pressure fields were preprocessed so that the hotspot evolution
was correlated to the initial voids in the microstructure. This was
accomplished using a backtracking procedure using the algorithm
described in the Supplementary Materials. Briefly, the backtracking
procedure uses the known (DNS) velocity field at each snapshot of
the temporal evolution and recursively maps the hotspot field back
to the initial configuration of the microstructure. The Supplemen-
tary Materials show videos of the evolving microstructure and the
resulting hotspot fields following the backtracking process for one
example case.

The time-evolving temperature and pressure fields were normal-
ized to produce values at each pixel location ranging from −1 to
1. The original dataset of 42 samples was split into training, valida-
tion, and testing sets, with 30, 3, and 9 samples, respectively. The
neural network parameters were initialized using the normalized
He initialization method (55), and the model was trained using
the ADAM optimizer (56) with a learning rate of 10−4. The codes
for training PARC and predicting EM hotspot dynamics, as well as

Fig. 8. Morphometry analysis of critical voids identified by PARC. The result shows a clear distinction in the average void diameter and the void orientation between
critical and noncritical voids. Their P values were 8.6 × 10−12 and 2.7 × 10−22, respectively. Meanwhile, the distinction in the void aspect ratio was statistically insignificant
(P = 0.9989).
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generating the figures presented in this paper, may be found online
at https://github.com/stephenbaek/parc.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S15
Legends for movies S1 to S10
References

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S10
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