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Challenges and Opportunities for
Machine Learning in Multiscale
Computational Modeling
Many mechanical engineering applications call for multiscale computational modeling and
simulation. However, solving for complex multiscale systems remains computationally
onerous due to the high dimensionality of the solution space. Recently, machine learning
(ML) has emerged as a promising solution that can either serve as a surrogate for, accel-
erate or augment traditional numerical methods. Pioneering work has demonstrated that
ML provides solutions to governing systems of equations with comparable accuracy to
those obtained using direct numerical methods, but with significantly faster computational
speed. These high-speed, high-fidelity estimations can facilitate the solving of complex mul-
tiscale systems by providing a better initial solution to traditional solvers. This paper pro-
vides a perspective on the opportunities and challenges of using ML for complex multiscale
modeling and simulation. We first outline the current state-of-the-art ML approaches for
simulating multiscale systems and highlight some of the landmark developments. Next,
we discuss current challenges for ML in multiscale computational modeling, such as the
data and discretization dependence, interpretability, and data sharing and collaborative
platform development. Finally, we suggest several potential research directions for the
future. [DOI: 10.1115/1.4062495]
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1 Introduction
Multiscale computational modeling has emerged as a central part

of many mechanical engineering applications in recent years. The
need for multiscale models arises from the limitations of single-
scale models in describing physical laws and phenomena at differ-
ent spatial and/or temporal scales. Larger-scale models alone cannot
capture the fine-scale features or resolve key details of complex
mechanical systems, while smaller-scale models are computation-
ally inefficient for simulating physical phenomena that manifest at
a larger system scale [1]. Multiscale modeling addresses this trade-
off between physical fidelity and efficiency by using different
numerical models to represent physical laws and phenomena at dif-
ferent scales and bridging scales using closure models. Over the
past decade, a growing number of studies have adopted multiscale
modeling and successfully demonstrated its ability to predict
complex phenomena in areas such as fluid mechanics [2,3], materi-
als modeling and design [4,5], and manufacturing and process mod-
eling [6,7].
Broadly speaking, there are two main strategies for linking

models at different scales. Hierarchical multiscale modeling
approaches [6,8–10], also known as sequential or decoupled multi-
scale modeling, precompute constitutive relations (e.g., elasticity
constants, energy release rate) using fine-scale models. These

fine-scale quantities of interest (QoIs) are typically computed
“offline” and then utilized during system-scale computations that
seek to model observable and measurable larger-scale phenomena.
On the contrary, concurrent multiscale modeling approaches
compute the required QoIs for coarse-scale models “on-the-fly,”
as needed, by coupling with the fine-scale models [11–14]. While
hierarchical approaches require large amounts of memory and
storage space to store pre-computed QoIs, concurrent approaches
face formidable computation costs as the problem size increases.
These challenges limit the scalability and practicality of multiscale
computational modeling in real-world applications.
Recent works suggest that machine learning (ML) has the poten-

tial to overcome the limitations of traditional multiscale modeling
methods (Fig. 1). For instance, to address the issue of memory
and storage requirements in hierarchical modeling, ML techniques
can be applied to learn a coarse, low fidelity, and low-cost represen-
tation, referred to as representation learning, of pre-computed QoIs
[15]. This allows for fast retrieval of information without the need
for large memory and storage spaces. Concurrent multiscale model-
ing can also benefit from modern deep learning (DL) [16] models,
which can replace traditional numerical solvers for “on-the-fly”
computation of QoIs. Previous studies have demonstrated that
ML-based simulation can achieve comparable fidelity to direct
numerical simulation while being considerably faster in computa-
tion time [17]. Moreover, ML can accelerate the solution
of inverse problems, providing direct design solutions that meet
design constraints without requiring the traditional iterative optimi-
zation process [18].
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Despite the promise of using ML in multiscale modeling, several
critical challenges have emerged from pioneering works. One of the
most significant obstacles is the data dependency of ML, particu-
larly with modern DL models. ML/DL has achieved remarkable
success in computer vision by leveraging massive datasets with
high-quality annotations, such as image labels and captions.
However, this is not typically the case for multiscale modeling
problems, which require intensive calculations and laborious data
collection. Therefore, alongside the development of fast and effi-
cient data generation methods, the research community may
benefit from “small data learning” techniques, such as transfer
learning and meta-learning (Secs. 3.1.1 and 3.1.2), and collabora-
tive/shared learning methods (Sec. 3.4).
Additionally, the majority of ML models are dependent on the

discretization used during training, which can limit their scalability
and practicality for multiscale problems where different discretiza-
tion settings are used. This issue can be addressed by developing
discretization-independent ML models such as those that employ
continuous convolution or neural operators (Sec. 3.2), which are
promising and warrant further investigation.
Lastly, the “black-box” nature of MLmodels poses a challenge to

their trustworthiness and interpretability in practical applications.
While ML predictions can be accurate, the assimilated information
during training that drive predictions may not always reflect the
underlying physical phenomena. Hence, it is important to explain
how predictions were derived and examine the physics-awareness
of a model, in addition to the evaluation of their statistical perfor-
mance. To achieve this, the development of techniques for interpret-
ing ML predictions, such as neural network visualization (Sec. 3.3),
is crucial and demands additional efforts.
This paper examines the promise of ML in accelerating the devel-

opment of multiscale computational modeling and offers potential
solutions to address the challenges. The paper is organized as
follows. In Sec. 2, we present several examples of successful applica-
tions of ML in multiscale modeling. Section 3 discusses the chal-
lenges that previous works have revealed, as well as our
perspective on potential solutions. Finally, we provide conclusions
and remarks in Sec. 4.

2 Examples of Machine Learning in Multiscale
Computational Modeling
2.1 Computational Mechanics

2.1.1 Fluid Modeling. The intersection of ML and fluid
mechanics presents a natural synergy, owing to their similarity in

dealing with large and complex datasets. In traditional fluid
mechanics, one has to deal with a large amount of data coming
from various sources, including experiments, field measurements
or large-scale simulations. The analysis of fluid mechanics data
still relies largely on domain expertise and traditional statistical
analysis, which involve many simplifying assumptions [19].
Recently, the rise of ML, especially DL, has been a significant
driving force in fluid mechanics research, rendering opportunities
for tackling more difficult fluid mechanics problems such as turbu-
lent flows and its modeling. By leveraging the computational effi-
ciency of ML, advancements in fluid flow modeling can be
achieved, which can have a profound impact on a wide range of
applications, such as biomedical engineering, aerospace engineer-
ing, and aerial/hydro-robotics and autonomous systems, among
others.
In fact, DL techniques such as artificial neural networks have

been employed to simulate fluid dynamics very early, since the
1990s [20,21] and are still being developed [19]. Along with the
breakthrough in DL architecture development, the progress in
fluid flow modeling has been significantly accelerated. ML
approaches such as recurrent neural networks (RNNs) have been
utilized to model flows in extreme environments [22,23]. Unlike
traditional feedforward neural networks, RNNs have loops that
allow information to be passed from one step of the network to
the next, enabling them to maintain information about previous
inputs, and influence the current output. This characteristic makes
RNNs capable of considering the inherent order of data and there-
fore well-suited to fluid mechanics modeling, where the data on the
evolving flow fields are supplied to the machine learning algorithm
in the form of sequences of images, videos, or time series.
Another DL technique that has also demonstrated success in fluid

modeling is generative adversarial networks (GAN). The GAN
framework is composed of two neural networks, namely the gener-
ator and the discriminator, that are trained in adversarial manner to
generate high-quality synthetic data. Motivated by the capability of
GAN to capture and generate realistic complex geometric patterns,
Kim et al. [24] have applied GAN to model various complex fluid
behaviors. These authors demonstrated that GAN is capable of
accurately capturing the velocity field enabling many opportunities
for further application including fast reconstruction of fluid flow,
time-resampling, or fluid data compression.
Although current DL-based approaches have achieved several

successes, they have a limitation that trained models are typically
only effective for interpolating data points and may not be as reli-
able when extrapolating beyond the known data range [19]. This
reduces the generalizability and applicability of trained models
and hinders their use in real-world applications. To address this lim-
itation, it is crucial not only to expand the training dataset to ensure
that most future prediction tasks fall within the interpolation of the
training data but also to develop new modeling methods with better
extrapolation capabilities.

2.1.2 Materials Microstructure Modeling. Materials micro-
structure modeling is another domain of application that has bene-
fited from the advancement of ML. ML can greatly facilitate the
materials microstructure modeling process by providing efficient
and accurate methods for predicting materials properties and beha-
vior of given material compositions [25] or microstructure [26]. ML
can achieve this modeling capability due to its ability to identify and
learn from data complex patterns that may be difficult to capture
using traditional statistical methods. This modeling capability
allows ML algorithms to learn complex relationships between a
wide range of microstructure morphology parameters (e.g., grain
size, grain orientation, or distribution of defects) and the output
material properties or mechanical response. These rapid and accu-
rate predictions then can be used to design new materials with spe-
cific properties or to optimize the currently available materials with
improved performance [27,28].
Recent advances in DL, with the increase in approximation

power of neural networks, have further accelerated progress in

Fig. 1 Machine learning can be applied to accelerate multiscale
computational modeling. Examples of applications include com-
putational mechanics, design optimization, and manufacturing
modeling.
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ML-based materials microstructure modeling. Modern DL methods
such as convolutional neural networks (CNNs) can produce high-
fidelity estimation of materials microstructure response to
loads with an accuracy comparable to traditional numerical
methods but with multiple order faster computation time [17,29].
Physics-informed ML (PIML) [30–32] is another branch of the
DL method that has been widely adopted to simulate complex gov-
erning equations in multiscale materials modeling with increasing
success. In PIML, prior physics knowledge is embedded in the
design of DL algorithms, either via learning objectives [30], or
architecture design [17,31]. As reported in pioneering works [17],
the embedded prior physics knowledge helps reduce the need
for large datasets while maintaining the prediction accuracy and
generalizability of the DL model. The strong predictive capabilities
and computational efficiency of DL-based methods make them
ideally suited as surrogates for design optimization [33], multiscale
structure-properties-performance (SPP) linkage modeling [34,35],
and uncertainty quantification tasks [36].

2.1.3 Reducing the Nonlinearity of Dynamical Systems. Many
complex mechanical systems are highly nonlinear, posing a signifi-
cant challenge for obtaining stable and reliable numerical solutions,
which often requires an extremely fine grid resolution to resolve
physics at features like shocks, interfaces, and reactive fronts. The
presence of nonlinearities and the potential for emergence of fea-
tures at spatial and temporal hierarchies of scales renders the com-
putation of such problems time-consuming. To address these
challenges, the Koopman operator theory [37,38] has been
drawing attention recently. This theory is based on the idea that
any highly nonlinear dynamical system can be represented in
terms of an infinite-dimensional linear operator, called the
Koopman operator. This linear representation of nonlinear dynami-
cal systems facilitates the analysis, design, and control of complex
system via well-established methods for linear system. Here, the
challenge is in approximating the Koopman operator from data.
This has led to improved numerical methods such as dynamic
mode decomposition (DMD) [39], which utilized linear observ-
ables, and its extended version (eDMD) [40], which augments the
original DMD with nonlinear observables. These methods have
demonstrated successes in modeling nonlinear flows [39], the
Duffing oscillator, and the Kuramoto–Sivashinsky partial differen-
tial equation [40], among many others. DMD extracts rich and
physically meaningful basis functions, which can notably improve
the prediction accuracy of numerous classification and forecasting
tasks involving time-series data [40,41]. In addition to DMD and
its variants, DL with the representation power of neural networks
has been applied exclusively to model the Koopman-invariant sub-
spaces of observables [38,42,43]. The advantage of the Koopman-
based methods is that they do not require prior knowledge or an
explicitly defined model, and therefore can be scalable to various
applications with unknown physics.

2.2 Topology Optimization. Topology optimization (TO) is
another a group of computational design problems that benefit
greatly fromML. TO determines the optimal distribution of material
in a given design domain to achieve design objectives (e.g., high
strength) while satisfying design constraints (e.g., low weight)
[44]. With such capabilities, TO plays crucial role in many materials
and structural design applications [4,37–39]. However, many TO
methods face the challenge of repeatedly computing an expensive
objective function, which involves finite element (FE) solvers at
each iteration [18]. These computational processes can be time-
consuming and demand significant computational resources, espe-
cially for problems that involve nonlinear analysis, such as plastic-
ity, viscoelasticity, and dynamics. To this end, ML models can act
as surrogates to replace computationally expensive FE calculations
in the objective function, thereby accelerating design optimization
processes [45–47]. Moreover, ML-based models are computation-
ally inexpensive and differentiable, making them suitable for

gradient-based TO methods, which can further facilitate the optimi-
zation processes [48].
In addition to being used as surrogate models to replace expen-

sive numerical models, ML can also be used to directly model the
topology optimization process. In this approach, ML models take
the design objective and constraints as input and give the final
topology design as output. Various topology optimization prob-
lems, ranging from structures under static load [49] to conductive
heat transfer [50], have been effectively tackled using CNN-based
approaches. Deep generative models, such as GAN, can also be
used to predict the optimal topology design, given design objectives
and constraints. As reported in the literature, GAN-based methods
have demonstrated great success in the optimization of material
microstructures for desired properties [18,51,52]. Finally, reinforce-
ment learning has also shown several successes for recurrent opti-
mization problems, as documented in prior research [28,53].

2.3 Design for Manufacturing. ML-based methods are also
advantageous in design for manufacturing (DFM) due to their
strong modeling capability and computational efficiency. Assimilat-
ing process-structure-property linkages is a crucial task in computa-
tional modeling for DFM but remains challenging. Advanced
manufacturing techniques, such as metallic additive manufacturing,
involve various physical and chemical processes that occur across
multiple scales during the transformation of raw materials. As
these processes are complex, traditional numerical approaches
such as finite element analysis or cellular automata can be expensive
and inadequate for process optimization, monitoring, and control. In
such cases, ML can be used to simplify the computational models
by serving as surrogates or even replace the expensive numerical
models entirely [54].
For instance, Tapia et al. [55] employed the Gaussian process

(GP) to predict the depth of the melt pool in laser powder bed
fusion of 316L stainless steel. The GP model was trained using
data from high-fidelity physics-based numerical simulations and
was able to accurately predict the melt pool depth of single-track
prints based on inputs including laser power, velocity, and spot
size. Furthermore, the use of GP allows for the assessment of uncer-
tainty in predictions, which facilitates the making of robust and reli-
able design and control decisions [56]. In the same vein, Wang et al.
[57] proposed a physics-informed data-driven modeling framework
that can connect multiple data-driven surrogate models at different
levels, allowing for the effective estimation of manufacturing
uncertainty.

3 Challenges in Machine Learning for Multiscale
Computational Modeling and Potential Solutions
As we have seen so far, there have been notable successes

reported in the literature regarding the application of ML to multi-
scale computational modeling. However, there are still several crit-
ical obstacles that need to be surmounted before ML can be used in
real-world applications. In this section, we discuss these challenges
and offer potential solutions.

3.1 Data Dependency. The use of ML for multiscale compu-
tational modeling presents several challenges that require attention.
Although modern ML techniques like DL can achieve high predic-
tive performance, they necessitate a considerable amount of training
data. However, collecting such training data is often an expensive
and tedious process, especially when dealing with experimental
data. Synthetic data generated from numerical simulation may
offer an alternative, but producing them can also be computationally
demanding due to the complexity of multiscale problems [17,58].
Insufficient training data can result in erroneous predictions or over-
fitting, reducing the generalizability, and trustworthiness of ML
algorithms.
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Besides the amount of training data, the quality of data is also
crucial for the success of ML algorithms. Training data with
missing values or many outliers/noises can cause ML models to
learn incorrect patterns, resulting in poor prediction performance,
and preventing the application of ML for real-world practice.
In the following subsections, we discuss several potential direc-

tions in this regard, including transfer learning and meta-learning.

3.1.1 Transfer Learning: Utilizing Prior Knowledge From
Previous Training. Training ML models for computational model-
ing requires a large amount of data, which can take a lot of time and
effort to collect. Unfortunately, when a new problem arises, the
same data collection process must be repeated, and the ML model
needs to be retrained with the newly collected dataset. However,
repeating this long and tedious data collection process is not desir-
able because collecting data for ML models used in multiscale com-
putational modeling is often expensive. Moreover, retraining an ML
model from scratch (Fig. 2(a)) may not always yield similar statis-
tical performance compared to previously trained results. In such
cases, one may consider utilizing prior knowledge gained from pre-
vious training sessions to reduce the need for obtaining a large train-
ing dataset for a new problem.
In this vein, transfer learning [59] (Fig. 2(b)) has proven to be suc-

cessful in many generic ML applications, such as image recognition
[60] and language modeling [61]. In transfer learning, model param-
eters of a pre-trained ML model, trained on a similar but different
dataset, are used as the starting point for the current training
session. In the new training session, relatively minor changes are
applied to a subset of model parameters, while a big portion of
model parameters can be “frozen” and not updated. This allows the
ML model to fine-tune its model parameters to learn the new
problem with only a small number of newly added data. Transfer
learning can reduce the need for a large dataset while maintaining the
prediction performance of the ML models. Previous studies have
shown that transfer learning is effective in training ML models to
predict the deformation of structures under static loads in new
loading scenarios [62]. Transfer learning has also been found to be
successful in predicting the response of energetic material micro-
structures when subjected to new shock loading conditions [35].

3.1.2 Meta-Learning: Learning Generalized Knowledge for
Quick Adaptations. A step further from the idea of transfer learning
is the more generalizable concept of “meta-learning” (Fig. 2(c)).
Meta-learning allows ML algorithms to quickly learn and adapt to
new tasks by leveraging experience gained from solving similar

tasks. In this context, transfer learning can be considered as a spe-
cific case of meta-learning.
Conceptually, in meta-learning, a meta-learner is constructed to

learn generalized knowledge (meta-knowledge) across different
learning tasks and utilize it as a prior to learn specific knowledge
for each task, thereby maximizing the likelihood

P(θi|Di, D0) =
∫
ϕ

P(θi|ϕ, Di)P(ϕ|D0)dϕ ≈ P(θi|ϕ∗, Di)P(ϕ
∗|D0)

(1)

In Eq. (1), the meta-learner is represented by meta-learning
parameters ϕ and the knowledge on a specific task σi can be repre-
sented as a combination of the meta-knowledge ϕ and the specific
knowledge θi|ϕ. The meta-knowledge is acquired via training on
the reference dataset D0 which maximizes the posteriori
ϕ∗= argmax

ϕ
P(ϕ|D0). In more detail, given the reference dataset

D0, the algorithm will first learn generalizable knowledge by lever-
aging the richness of the reference dataset D0, and then use it as a
basis to learn the specific knowledge θ∗i for the specific task σi
using only a small data set Di.
Previous works showed that meta-learning approaches could

provide good prediction performance on unseen tasks despite
being trained with relatively small datasets. For instance, Liu
et al. [63] initialized physics-informed neural networks (PINN)
with the Reptile algorithm, a meta-learning initialization method.
The authors demonstrated that PINN can be trained more quickly
with initialization guided by meta-learning algorithms than with
the conventional randomized initialization methods. This new
PINN training paradigm was successfully validated with a variety
of forward and inverse test problems. In another study, Li et al.
[64] proposed a PIML model for tool wear prediction problems in
milling process modeling. The authors incorporated a physics-
informed loss term that ensured the meta-learner learned the
robust relationship between tool wear-rate and cutting forces,
thereby facilitating parameter estimation and enhancing the inter-
pretability of the PIML model.
Previous examples have demonstrated that meta-learning is

well-suited for the small-data context of ML in the computational
modeling of multiscale problems. Meta-learning allows for rapid
adaptation to new operating conditions, such as new materials, geo-
metric domains, or boundary conditions, without requiring a large
training dataset. In addition, the “learning-to-learn” procedure can
also aid to bridge the knowledge gap between simulations and
real-world experiments. Currently, ML models are commonly

Fig. 2 Three types of trainingMLmodels: (a) training from the scratch for each task, (b) transfer learning, and (c) meta-learning
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trained with simulation data, as observational data from physical
experiments are typically limited and expensive. However, there
is a substantial difference between the idealized environment of
numerical simulations and the real-world environment of physical
experiments, which may cause ML models to perform poorly in
real-world settings. In such situations, meta-learning can be
used to rapidly adapt pre-trained ML models from numerical sim-
ulations to real-world environments. Specifically, a meta-learner
can be trained to learn both meta-knowledge representing under-
lying physics laws and specific knowledge representing the oper-
ating environment of datasets, i.e., ideal assumptions of numerical
simulation or real-world environments. At the deployment stage,
meta-learning can then be utilized to quickly adapt ML models
on ideal environment assumptions to real-world environments,
using just a small amount of real-world experiment data. With
this approach, ML models exclusively trained with numerical
simulations can be quickly adapted to operate in real-world
environments.

3.2 Discretization Matters: The Need for Discretization-
Independent Models. Applying ML for multiscale computational
modeling also presents another challenge that is the dependence of
ML algorithms on the discretization of the analyzed domain. Once
trained, most of the common ML techniques, such as CNNs, are
limited to a specific discretization setting (Fig. 3(a)) and do not
generalize well for settings that differ from the discretization of
the training data. This issue of discretization dependence poses a
significant challenge for training ML models for multiscale compu-
tational modeling.
The dependency of ML algorithms on the discretization requires

efforts to determine the optimal discretization setting that ensures
convergence properties for all data samples in the dataset.
However, the convergence property of a domain under examination

heavily depends on its geometric characteristics, which notably
vary across all data samples in the training dataset. There-
fore, finding the optimal discretization setting is extremely costly
and time-consuming. For this reason, developing discretization-
independent (Fig. 3(b)) ML models is preferable as these models
can make predictions regardless of the discretization of the exam-
ined domain.
Initial efforts have been devoted to developing discretization-

independent ML models for computational modeling of physical
problems. For instance, Wandel et al. [65] transformed the discre-
tized representation of state variable fields into continuous repre-
sentations by interpolation with Hermite spline kernels. The
Hermite spline constants were stored for each discrete grid point
and could be handled by a CNN. This method successfully
modeled several complex flow phenomena, such as Karman
vortex streets, the Magnus effect, the Doppler effect, interference
patterns, and wave reflections. Quantitative assessment also
showed that using CNN on a continuous representation of state
variables can improve the accuracy of ML models while still
maintaining their computational efficiency advantage. In another
work, Sun et al. [66] proposed the use of a continuous convolution
kernel based on the Zernike polynomial for scalar field regression.
This method exhibited an increase in prediction performance
compared to the conventional approach with discrete graph con-
volutions, as well as the capability of making predictions on arbi-
trary geometric domains with different discretization settings. The
utilization of neural operators is another approach that can feature
discretization-independent characteristics [67–71]. In this
approach, neural networks are trained to learn operators, namely
neural operators, that map between infinite-dimensional input
and output function spaces. Since neural operators are trained to
operate on function spaces, their predictions are not affected by
discretization settings of examined domain while the accuracy
of prediction is still assured [71].

Fig. 3 The difference between discretization (a) variant and (b) invariant models. The discretization variant
models are not generalized beyond the discretization setting of training data. Meanwhile, discretization invariant
model can be trained onmultiple discretization settings and its prediction is not dependent on the discretization of
input fields.
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3.3 Interpretability of Machine Learning Models. ML has
demonstrated great potential in multiscale computational modeling,
as discussed in previous sections. However, there is still a signifi-
cant concern about the trustworthiness of these predictions, which
prevents their use in real-world applications. This concern arises
from the “black-box” nature of ML predictions. ML models are
often trained to optimize predefined objective functions that may
not fully describe the real-world physics, leading to the possibility
of ML models merely “memorizing” observed data but not being
aware of or representing the underlying physical phenomena. As
reported by Nguyen et al. [17], the physics-naïve architecture of
ML models developed for generic purposes, despite having rela-
tively high prediction performance, often fails to capture the under-
lying physical laws. Due to these reasons, it is crucial to ensure the
trustworthiness and physics-awareness of ML predictions before
utilizing these models for practical computational modeling.
The need to justify the trustworthiness of ML predictions necessi-

tates the development of methods to interpretMLmodel predictions,
i.e., understanding of the rationale behind ML predictions. Several
initial efforts have been made to develop method for interpreting
ML predictions in physical science. For instance, Nguyen et al.
[17] used saliency map visualization to highlight “critical” micro-
structure locations that have a high impact on the creation of
energy localization in energetic materials modeling. The interpreta-
tion results were compared to previous findings, and a high level
of agreement between the saliency map identification and the litera-
ture on the characteristics of “critical” energetic materials micro-
structure was demonstrated. In another work, Lellep et al. [72]
utilized Shapley additive explanation algorithms to investigate the
main factors that affect the ML prediction in fluid dynamics. The
authors demonstrated the applicability of the method in various
fluid dynamic datasets, including the evaluation of plane Couette
flow.

3.4 Centralized Platform for Data Sharing and
Collaborations. Large databases, such as ImageNet [73],
MNIST [74], and others, play a crucial role in the success of ML
in computer vision and language modeling. Similarly, centralized
databases offer a potential solution to the challenge of a shortage
of high-quality training data for ML algorithms in computational
modeling. Moreover, with the advancement of cloud computing
technology, these platforms can be expanded for shared and
collaborative learning, bringing together computational analysts,
experimentalists, and ML researchers to facilitate effective collabo-
ration. Unfortunately, such a platform is currently lacking.
Figure 4 depicts our proposed centralized platform for data

sharing and collaboration in ML for computational modeling,
which is inspired by OpenML [75], an example of a successful

sharing platform in the ML community. The proposed platform
consists of three main components. Similar to several available plat-
forms for scientific data sharing [76,77], our proposed platform
includes an open scientific database for sharing and retrieving
data. Additionally, ML model libraries are included, allowing for
the sharing of previously successful ML models. Finally, the pro-
posed platform includes an interactive environment that allows sci-
entists to collaborate on a particular project. With the above
features, the proposed centralized data sharing platform can create
a common format and protocol to facilitate data and model
sharing. Because engineering data are generally heterogeneous
and can come frommultiple sources, having such a sharing platform
will enrich the dataset that can be used to train ML models, thus
helping to overcome the shortage of training data.
Another important feature of the proposed data sharing frame-

work is its ability to facilitate collaborations via an interactive
platform. In this collaborative platform, several most suitable
datasets and ML models can be suggested to researchers for spe-
cific problems. Researchers can then decide whether to utilize the
suggested datasets and models or work with their own. Addition-
ally, this platform allows ML developers to request or recommend
additional data samples for simulation or experimentation based
on the performance of the model on the current dataset. Conse-
quently, experimentalists or computational analysts can confirm
the validity or suggest alternate data samples based on their
expertise.
Compared to the conventional method of data sharing, this col-

laborative mechanism offers several advantages. First, this mecha-
nism can reduce the time to collect and preprocess training data
since the quality of training datasets suggested by the collaborative
platform has been justified via previous training sessions. Addition-
ally, through this mechanism, ML developers can gain access to
meaningful and valuable data, thereby improving the resulting
ML model’s predictive performance. Finally, this mechanism aids
to justify the robustness of ML algorithms. In computational mod-
eling, ML models are typically trained on a single dataset, which
can cause ML predictions to be biased toward the training
dataset. With this collaborative environment, an ML model can
be trained and validated on multiple different datasets, enhancing
its robustness and generalizability.

4 Conclusion
Multiscale computational modeling plays a critical role in

many mechanical engineering applications, such as computa-
tionalmechanics,mechanical design and optimization, andmanufac-
turing/process modeling. Despite the promise of capturing complex
physics phenomena, the progress in multiscale computational

Fig. 4 A centralized platform is necessary for data and model sharing as well as supporting
collaboration between data providers and model developers
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modeling research is hampered by the high computation cost. To this
end, ML can be a viable option that can aid in the analysis of multi-
scale physical systems by either augmenting or serving as a surrogate
for multiscale computational models.
However, several obstacles must be surmounted to successfully

apply ML to the computational modeling of multiscale physical
systems. The first pressing issue is big data dependency, which
requires immediate attention. Unlike traditional ML problems,
such as image or text classifications, collecting scientific data is dif-
ficult and expensive, particularly for multiscale physical systems.
The lack of large, high-quality training datasets can significantly
reduce the generalizability and robustness of ML models. Investi-
gating the use of prior knowledge through physics-informed ML,
transfer learning, and meta-learning are all viable options to over-
come this challenge. Another issue is dealing with the dependency
of ML algorithms on the discretization setting of the examined
domain. To overcome this issue, developing ML on continuous rep-
resentation or applying neural operators are potential future direc-
tions. In addition to improving the statistical performance of
ML-based computational models, it is equally important to validate
the physics-awareness and trustworthiness of ML predictions.
Finally, the development of a centralized platform for data and
model sharing is necessary to facilitate the development of algo-
rithms and foster collaboration in the field of multiscale computa-
tional modeling.
Aside from a few pioneering works, the above-mentioned issues

are still understudied. Therefore, there is an opportunity for future
research to explore better solutions to these challenges. Once
these obstacles are overcome, ML has the potential to significantly
accelerate the development of multiscale computational modeling
and facilitate the discovery of novel and more effective mechanical
systems.
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