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Abstract—Power wheelchairs (PWC) are essential for people
with mobility impairment, and many research studies have
been reported to ease their operations. However, the existing
approaches either rely on extra hardware components or demand
complex software that incurs high costs. In this work, we propose
a low-cost, computer-vision-based assistive driving system that
runs on a smartphone with the objective of safely driving a
PWC in a hands-free manner with reduced attention in an
indoor environment to relieve the arduous operations of disabled
users and reduce their stress. The system adopts a modified
and pre-trained ResNet-50 model running on a smartphone to
derive the driving instructions using the images captured in real-
time with its built-in camera. The smartphone interacts with a
control interface to send the driving instructions to the PWC. A
prototype of the proposed driving assistive system is implemented
on a Pixel-6 Android phone and evaluated on a mobile robot
as the proof-of-concept design. The experiments show that the
smartphone can process input at up to 3.4 images per second
to generate driving instructions in time to safely navigate the
mobile robot at reasonable speeds in the testing environment
with minimal intervention from the user.

I. INTRODUCTION

The US Census Bureau reported in 2013 that around 3.6
million individuals over the age of 15 used wheelchairs to
assist with mobility in day-to-day tasks'. Power wheelchairs
(PWCs) have been widely utilized to improve the inde-
pendence of people with disabilities. In order to alleviate
the operation difficulties, PWCs usually provide convenient
joystick-type interfaces which can be easily operated with
hands. Recently, new technologies have enabled a variety of
hands-free controls, including using a headrest attached to a
wheelchair, using breath by inhaling (sip) and exhaling (puff),
or using face and mouth movement, to operate a PWC.

However, for people with severe cognitive, motor, or sensory
issues, it is still a difficult task to operate PWCs to their
fullest extent. In particular, 17% of PWC users have reported
severe pain, where over 50% of them attributed the pain to the
operations of PWCs [6]. Furthermore, many PWC users com-
plain about fatigue, insecurities, and general inconvenience

while navigating through (mostly indoor) public spaces for
an extended period. A fully-automated PWC with navigation
system would offer a more ideal solution. Unfortunately, such
navigation systems are still in design and development phases
in labs and are prohibitively expensive’. Furthermore, they
often require specific types of wheelchairs to accommodate
the navigation software and related hardware components to
ensure compatibility for a wheelchair to navigate through
spaces safely.

With the advancement of computer-vision technology, there
have been many research studies focused on hands-free inter-
faces for PWCs such as the use of head movements [19] to
ease the operation of PWCs and enable different navigation
schemes for indoor environments [8], [24], [27]. However,
there is limited research on low-cost, assistive driving systems
that can control PWCs in a semi-automatic fashion with
reduced attention from users beyond hands-free operations.
To this end, we propose a low-cost, semi-autonomous assis-
tive driving system for PWCs. The system is designed with
availability and safety as top priorities.

Our work addresses the above concerns by focusing on the
design and development of an affordable, mobile application-
based assistive driving solution that can be used on existing
power wheelchairs to significantly reduce the need of man-
ual operations. The system harnesses the affordability and
availability of mobile devices with the automation enabled by
deep learning models. Mobile applications (apps) running on
smartphones have become increasingly useful, enabling users
to simplify their lives in various ways such as sharing media,
making purchases, ordering food, and navigating maps thanks
to the cameras and other sensors available on mobile devices.
Similarly, deep-learning-based innovations have been shown to
outperform human beings in areas such as image classification,
object detection, and voice recognition. For example, Man
et. al. [3] compared the performance of a CNN model and
human observers for detecting lesions and concluded that the
CNN model outperformed the human observers in general.
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Our framework integrates the success of deep learning image
classification with the availability of feature-rich smart phones
to provide wheelchair users assistance in moving through
indoor spaces safely.

In this paper, we present the following contributions: (1) a
vision-based model to assist the operation of PWCs in indoor
environments; (2) the deployment of a deep learning model on
an Android smartphone and successful use of images captured
by the built-in camera to provide real-time driving instructions;
(3) the design of an Android app that interfaces with the
PWC user, the deep learning model, and the PWC to safely
facilitate navigation. To evaluate this vision-based low-cost
PWC assistive driving system, we measure the accuracy and
response time of the system using modified ResNet models,
as well as the (reduced) attention time, and hands-free period
of PWC users.

The remainder of the paper is organized as follows. In
Section II, we review the closely related work and background
upon which we base our approach. Section III presents the
novel design of a vision-based, low-cost assistive driving
system which can be deployed on smartphones. Section IV
describes the evaluation of the assistive driving system and
Section V discusses the possible enhancement of the model.
Finally, we conclude the paper and present plans for future
work in Section VI.

II. RELATED WORK AND BACKGROUND

In this section, we survey closely related work and provide
the background information necessary to understand our ap-
proach.

A. Closely Related Works

Many works exist regarding the use of image classification
for navigation. We describe the most closely related works to
ours here.

Automated driving vehicles (ADVs) have drawn much atten-
tion in the past decade, and many industry leaders, including
Google, Tesla, and Mobileye, have invested in ADVs. Al-
though many research works in the area of ADVs have been
published [4], [11], [14], [26], [35], automated or assistive
driving for PWCs has not been well studied. Some closely
related works are described below.

Kutbi et al. studied a hands-free wheelchair control ap-
proach based on Egocentric computer vision and evaluated the
scheme with 21 subjects [19]. Compared to joystick control
and chin-based control, their quantitative and qualitative eval-
uation results show that the vision-based control approach is
viable for hands-free indoor use. However, their approach re-
quires an Egocentric camera and an on-board laptop to support
the complex computation to detect head movement. Similarly,
other hand-free driving systems for power wheelchairs were
developed [18], focusing on alternative means than joysticks to
operate a PWC. Notable examples include voice control [5],
chin-operated joystick [25], and head-tilt control [2], which
significantly improved the usability of power wheelchairs
for specific groups of people with disabilities. Unlike our

1980

approach, all of the above approaches require users to operate
the power chairs 100% of the time during driving.

Navigation systems have been developed to assist the vision
impaired while walking in indoor environments [7], [15],
[23], [28]. These approaches utilize techniques such as sign
recognition, obstacle detection, and object positioning to im-
prove user navigation. Working toward similar goals, Ohya et
al. [30] proposed a vision-based navigation system for mobile
robots in 1998. That approach was based on traditional image-
processing algorithms without the use of modern deep learning
models. To our knowledge, such works have not been adapted
to PWCs.

Our approach deploys a deep learning model directly on
a mobile device. Such a combination has been successfully
implemented for other works such as for navigation and speech
recognition [20], [29], [36]. To our knowledge, ours is the
first which incorporates the Android platform to address the
specific constraints inherent to PWCs.

Kulhanek et al. proposed a reinforcement learning-based
approach to navigate a robot to a target location in a virtual
environment [17]. The model was trained to find a way to
arrive at the destination given by a image. Our approach is
different from this path planning approach in that it does
not require a path map or similar instrumentation to the
environment being navigated.

Lane-detection-based driving assistance systems for auto-
mobiles has been well-studied [13], [22], [31] and, at a cursory
level, is similar to driving a PWC along corridors inside a
building. However, unlike highways, indoor environments do
not follow strict rules and regulations (e.g., lane width, road
markings, etc.), so fewer assumptions can be made about the
environment in the context of PWCs.

B. Image Classification

The use of neural networks to classify images has been
studied for decades. In 1998, LeCun et al. presented the first
convolutional neural network, LeNet-5, to classify images of
handwritten digits and achieved great success [21]. LeNet-5
consists of two convolution layers, three fully-connect layers,
and an input layer taking 28x28x1 images. The success of
LeNet-5 resulted in great interest in studying neural networks.
However, given the limited computational power of the time,
the architectures of the neural networks in the early 2000s
remained shallow. As a result, the error rate of image clas-
sification with those models remained high until 2012 when
Alex Krizhevsky’s team built the famous AlexNet [16] which
leveraged the power of GPUs to train the network consisting
of eight layers, including five convolutional layers and three
fully-connected layers. AlexNet achieved a top-5 error rate
(the rate at which a model includes incorrectly labeled images
in its five most confident predictions) of 15.3% and won the
ILSVRC 2012 competition. Before AlexNet, models typically
achieved a top-5 error rate no lower than 25% [16]. As a result

3https://machinelearningknowledge.ai/popular-image-classification-models-
in-imagenet-challenge-ilsvrc-competition-history/
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Fig. 1. Building Block of a Residual Network.

of this breakthrough, AlexNet is considered as the starting
point of the Deep Neural Network (DNN) boom. In later
competitions, ZFNet [34], considered as the extended version
of Alexnet, won in 2013 with a top-5 error rate of 11.2%.
Inception V1 (GooglLeNet), a 22-layer DNN using 1x1-sized
filters and Relu to reduce the computation costs, won the
competition in 2014 with a top-5 error rate of 6.67%. In the
same competition of 2014, VGG [32], won the second place
with a top-5 error rate of 7.3% and became one of the most
popular models for image classification.

Although researchers realized that network depth is critical
to improving model accuracy, a very deep neural network
is difficult to train because of how gradient explosion and
vanishing issues hinder model convergence [10]. Many works
have been done to address the issues [1], [10]. However,
even if a very deep neural network converges, simply adding
more layers to a network will decrease the accuracy rapidly
when the depth reaches certain level [33]. He et al. effectively
solved the problems of gradient explosion / vanishing and
accuracy degradation through the use of a Residual Network
(ResNet) framework [12]. In this framework, they introduced
the concept of residual building block with a shortcut connec-
tion, as shown in Figure 1, guaranteeing the deeper version
of a neural network performs no worse than the shallow
counterparts. ResNet assemble won ILSVRC 2015 in image
classification, detection, and localization. In that competition,
ResNet archived a validation top-5 error rate of 3.57%, which
surpasses the average human classification error. Given this
performance, we base our model on ResNet as described in
Section III-B.

III. APPROACH

As shown in Figure 2, the proposed system consists of two
applications deployed within an Android platform: a Pydroid*
application which includes the pre-trained ResNet-50-based
model and a Java application (the typical Android program-
ming language) which handles image processing, interfacing

“https://pydroid-3-ide-for-python-3.en.softonic.com/android
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Fig. 2. Overview of the vision-based assistive driving system for PWC.

with the PWC, and input from the user. The Java application
accesses the necessary Android sensors (camera and wireless
interface) through the Android platform API.

Flow from the PWC’s environment through the pre-trained
model to the PWC can be seen in Figure 2. Starting from the
top right, images of the environment are captured in real-time
by the Java app via the Android device’s physical camera. The
app then performs the necessary cropping (Section III-A) and
downsampling for the model before it is relayed to the DNN
model. Our model is implemented in Python, so we utilize
Pydroid to facilitate a Python environment on the Android
system. The Pydroid application feeds the data to the model
which produces a direction (left, right, forward, stop) based
on its training. This direction is then relayed back to the
Java app and signaled to the PWC through an implementation
of a generic device interface for the specific PWC the app
is configured to communicate with. Communication is done
through the Android API using the appropriate sensor for the
PWC. As a proof of concept, our experiments are conducted
using WiFi to connect to a REST API implemented on a
Pioneer 3-AT robot’.
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Fig. 3. Vision-based assistive driving model based on ResNet-50

Modified
ResNet50

Figure 3 shows the derivation of driving directions by train-
ing a DNN model. We train the model using images captured
by a smartphone to automatically generate the four driving
instructions, turning left, turning right, moving forward, and
stop moving.

Shttps://sites.google.com/a/nd.edu/discoverlab/robot-platform/ugv/pioneer-
robots-1
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TABLE I
IMAGE SI1ZE VS MODEL ACCURACY
Model Layers | Full-size | Half-size | Quarter-size
50 Layers 96.05% 99.7% 99.21%
40 Layers 95.66% 99.87% 98.42%
22 Layers 94.61% 98.8% 94.87%
10 Layers 92.63% 96.45% 82.50%
2 Layers 69.21% 74.87% 76.18%

A. Data Collection and Pre-processing

Images taken by a mobile phone generally have a 4:3
aspect ratio. We initially used the full images to train the
model resulting in non-ideal accuracy. We hypothesized that
the upper portion of the images was less relevant in providing
the driving directions, potentially introducing false correlations
to the model. Based on this observation, we evaluated the use
of three differently-cropped versions of images to determine
how the different portion of the images may affect the model’s
accuracy.

Table I shows the results for three different image cropping
strategies over models of different sizes that are based on
ResNet-50 (Section III-B. The cropping strategies include the
full-size image, only the lower half of the image, and only the
lower quarter of the image. The experiment results show that
the use of the lower-half of images produces the best training
result for almost all models except for the simple two-layer
model, where the lower quarter images perform slightly better
than lower-half images (76.15% vs. 74.87%).

Based on the results of the experiment, all images are
cropped in half for our approach; only the lower half is kept
for both model training and actual operation, as shown in
Figure 4. After the cropping, the image aspect ratio becomes
2:3. It is essential for all images collected for both training
and actual operation to keep this ratio to ensure that the deep
learning model produces a high accuracy result. This pre-
processing step significantly improves the accuracy of the deep
learning model. We believe this is likely because the edges of
corridors (i.e., where the floor meets the wall) are the strongest
indicators of orientation.

Original Image Cropped Image

Fig. 4. Image Cropping

The collected images are labeled based on the directions
the phone camera faces with respect to its surroundings.

1982

Specifically, if the camera faces to the left side of the corridor,
the collected images are labeled as “right”, meaning the PWC
would need to turn right to avoid colliding with the wall; if
the phone faces to the right side the corridor, the collected
images are labeled “left”, meaning the PWC needs to turn
right to avoid colliding with the wall; if the phone faces to
the direction parallel to the corridor, the collected images
are labeled as “forward”, meaning PWC can move forward
without any direction changes; if there are any obstacles or
stairs in front of the phone, the images are labeled as “stop”
meaning the PWC needs to stop to avoid collisions. Figure 5
demonstrates some examples of these labels.

left

right forward

Fig. 5. Labeled Training Images

For this proof of concept, approximately 10,000 images
were collected for training and testing. 80% of them from
different locations were used to train the model, and 20% of
them were used to test the model. The images in the training
set and test set were taken in different buildings with different
architectural styles to better demonstrate the generalizability
of the system.

B. The Deep Learning Model

Based on our background research on image classification
models (Section II-B), we chose the ResNet architecture as a
basis for our model. Unlike the previous deeper DNN models
where layers are simply stacked, a residual network consists
of several building blocks allowing for more layers in the
DNN without a loss of accuracy. Our deep learning model
is based on the 50-layer ResNet and consists of five stages.
Stage 1 consists of a convolution layer with 64 7*7 filters.
Stage 2 includes 3 building blocks, stage 3 includes 4 building
blocks, stage 4 includes 6 building blocks, and stage 5 includes
3 building blocks. Each building block consists of one 1x1
convolution layer, one 3x3 convolution layer, and one 1x1
convolution layer. Ultimately, there are a total of 50 layers,
including the final output layer.

ResNet was originally designed to classify images into
1,000 categories; therefore the final output layer consists of
1,000 fully-connected nodes. We modify the ResNet-50 model
by removing the output layer and adding a global average
pooling 2D layer and a fully-connected layer with four nodes
as the final prediction layer, corresponding to “left”, “right”,
“forward”, and “stop”.

With 10,000 training images (80% in the training set and
20% in the test set), the training with 50 epochs takes about
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TABLE II
MODEL PERFORMANCE

Model Layers | Accuracy | Second per Image
50 Layers 99.7% 0.51
40 Layers 99.87% 0.41
22 Layers 98.8% 0.29
10 Layers 96.45% 0.18
2 Layers 74.87% 0.11

two hours on a computer with an NVIDIA V100 GPU. With
a learning rate of 0.001, the test accuracy reached 99.7%.

For our purposes, the ResNet-50-based model achieved an
accuracy of 99.7%. However, it took an average of 0.5 seconds
to process an image on a Pixel6 phone to generate a driving
instruction. To try to achieve a better balance of speed and
accuracy, we built four more models also based on ResNet-
50: attaching the two new layers to the output of stage 4 to
form a 40-layer model; attaching the two new layers to the
out of stage 3 to form a 22-layer model; attaching the two
new layers to the output of stage 2 to form a 10-layer model;
and attaching the two new layers to the output of stage 1
to form a simple 2-layer model with one convolution layer.
The accuracy and image processing speed of each model are
shown in Table II. We considered the 22-layer model to have
the best balance of accuracy and speed at 98.8% and 0.29
seconds respectively. As a result, the system would be able
to process one more image per second with minimal cost to
accuracy. Furthermore, it is likely that increasing the number
of training images would further improve accuracy and thus
the performance of the system.

Figure 6 shows the training accuracy vs. test accuracy over
the number of epochs, and Figure 7 shows the training loss
vs. test loss over the number of epochs, for our selected 22-
layer model. There is no obvious overfitting in the training
process, except the test loss increases slightly at epoch 43.
Therefore, our final target model is trained for 43 epochs with
an accuracy of 98.8%, as shown in Table II.
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Fig. 7. Model Loss

C. Model Deployment to Android Phone

As a proof of concept, we evaluated the use of the navi-
gational application on a Pioneer 3-AT robot. The robot was
configured to run at a speed up to 700mm/s to simulate the
approximate speed of a wheelchair and a bracket to hold the
phone with the camera facing the front of the robot.

We have designed an Android app that takes the images at a
fixed rate of ten images per second and saves the images to the
phone’s filesystem. While our model only handles up to three
images per second, the Android app is able to accommodate
future improvements to performance. The pre-trained deep
learning model is deployed to the phone via a Pydroid3 app
that provides a full Python environment with all necessary
packages such as Tensorflow, Keras, OpenCYV, etc. The Python
code runs in parallel with the Android app, taking the images
saved by the app to the pre-trained model to produce the
driving instructions such as turning left, turning right, moving
forward, and stopping. The instructions are sent to the robot
via the RESTful APIL.

D. Safety

Safety is of utmost importance for any driving assistance
system. Besides model accuracy, we consider response time,
which is directly related to the PWC’s velocity, to be a
major indicator of safety. There is a speed limit for Powered
wheelchairs in most countries. For example, PWCs must not
travel faster than 4mph (1.79 m/s) in the UK®; in the USA,
most of PWCs cannot go faster than Smph (2.24 m/s)’. With
a process rate of 3 images/second, the system could theoret-
ically react to obstacles as close as 0.60 and 0.75 meters,
respectively. Our model is trained to recognize an obstacle
within two meters. The process rate is more than enough to
guarantee that a PWC will receive a “stop” instruction in front
of an obstacle if the PWC travel is at top speed, which is very
unlikely in an indoor environment.

Shttps://www.gov.uk/guidance/the-highway-code/rules-for-users-of-
powered-wheelchairs-and-mobility-scooters-36-to-46
https://www.wheelchairjunkie.com/speedselection/
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Safety is further improved by the app’s control override
feature. The user can always override the instructions given
by the model by operating the joy-stick-like buttons of the

app.
IV. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we report our experimental evaluation to
address the following research questions.

« RQI1: Can the proposed system offer hands-free, and
reduced-attention control in operating wheelchairs?

o RQ2: Can the vision-based assistive-driving system with
deep learning models make timely and safe decisions to
control the wheelchair’s movement?

We have implemented a prototype mobile application that
integrates the modified and pre-trained ResNet50 models,
the image capturing function, and the control interface for
a mobile robot as the proof-of-concept design. The mobile
application runs on a Google Pixel 6 smartphone, which has a
2.8GHz Octa-core CPU and a Mali-G78 MP20 GPU with 8GB
memory. The Pioneer 3-AT mobile robot has three 12V/9Ah
batteries that can power the robot to reach speeds up to 0.8
m/s. To simulate the normal operation speed of wheelchairs
for in-door spaces, where the regulation permits to run up to
4mph (1.79 m/s) in an outdoor environment®, we adjust the
control of the mobile robot to make it run at a speed up to
0.7 m/s.

A. Test Cases and Hands-free Driving

To answer RQ1, we considered seven different test cases
for the assistive-driving application described in Section III-C
with or without various obstacles in a 20-meter-long corridor
(as detailed below). We collected the respective total travel
time, the ratio of hands-free time (i.e., total travel time minus
the manual operation time over the total travel time), and
attention time (i.e., the time requiring user attention due to
stops at obstacles, though the user may not need to manually
operate the robot). The results are shown in Table III.

- Test Case 1: The user operated the web-based robot
control interface to manually operate the robot at its highest
speed of 0.7 m/s where there is no obstacle in the corridor.
It took 24 seconds to reach the spot about 3 meters before
the corridor end. Here, the robot has the safety distance of 3
meters to avoid bumping into walls. This is the baseline case
for comparison, where the user needs to operate the robot all
the time (i.e., 0% hands-free time) with full attention.

- Test Case 2: In this case, the robot was positioned in
parallel with the corridor initially and there is no obstacle
in the corridor. The assistive-driving application running on
the Pixel 6 controled the robot’s movement based on the
derived driving instructions from the images captured in real-
time through the phone’s camera. The robot also took 24
seconds to reach the same location about three meters before
the corridor’s end and stopped. Here, the assistive-driving

Shttps://www.nidirect.gov.uk/articles/rules-users-powered-wheelchairs-and-
mobility-scooters-36-46
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TABLE III
TRAVEL TIME, HANDS-FREE RATIO AND ATTENTION TIME OF THE
ASSISTIVE APP UNDER DIFFERENT TEST CASES

Test Case Travel Time (s) | Hands-free (%) | Attention Time (s)
1 (baseline) 24 0% 24

2 24 100% 0

3 27 100% 3

4 35 100% 11

5 31 83.8% 7

6 26 100% 0

7 26 100% 0

application running on Pixel 6 could navigate the robot at the
same speed as a human operator in Test Case 1 without any
collision and stop in the middle of the operation. In this ideal
case, no manual operation is needed (i.e., 100% hands-free)
and no attention of the user is called since there is no obstacle
and no stop.

- Test Case 3: This case used the same parameters as in
Test Case 2 except that a stationary obstacle (trash can) was
positioned at the middle of the corridor, 10 meters from the
end. In this case, the assistive-driving application controlled
the robot until the application detected the trash can and
made the robot stop about two meters before the obstacle.
We assume that the user will realize and react when the robot
stops, at which time the user could ask for help to move the
obstacle away or manually drive the robot around it. In this
case, the trash was moved away and the robot resumed moving
forward under the control of the application without the user’s
manual operation. It took 27 seconds for the robot to reach the
target destination before the corridor’s end, where the extra
3 seconds were due to the robot stopping and requiring the
attention of the user.

- Test Case 4: This case used the same parameters as in
Test Case 2 except that the stationary obstacle was replaced
with a moving obstacle (person) moving across the corridor
three times where the distances from the robot were 1, 1.5,
and 2 meters. In this case, the assistive-driving application
detected all three occurrences of moving obstacles and directed
the robot to stop safely without collision. Once the person
walked away (beyond the two-meter range), the application
continued driving the robot forward. It took 35 seconds for
the robot to reach the target destination. The attention of the
user was called each time the robot stopped for a total of 11
seconds. However, as with Test Case 3, no manual operation
was required.

- Test Case 5: This case used the same parameters as in
Test Case 3 where the stationary obstacle (trash can) was
positioned in the middle of the corridor, 10 meters from the
end. Differently from Test Case 3, after the robot is stopped
under the control of the assistive-driving application, instead of
moving the trash can away, we emulated the case where the
user takes control and manually operates the robot to move
around the trash can. After manual intervention, the assistive-
driving application took control again and navigated the robot
to the destination. It took 31 seconds in total in this case where
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the user was called to attention for 7 seconds with 5 seconds
used to manually navigate the robot around the obstacle.

- Test Case 6: This case used the same parameters as in
Test Case 2, except that the robot was initially angled slightly
towards the left of the corridor. The assistive-driving applica-
tion detected that the robot was not parallel with the corridor
at the beginning and navigated the robot to continuously turn
right at reduced speeds until it faced directly parallel within
the corridor. With the reduced turning speeds and refined
driving commands derived by the assistive-driving application,
we observed that there was no over-correcting of the angle
during the experiment. Once the robot corrected its direction,
it proceeded forward to the target destination. The robot took
26 seconds in total in this case. No manual operation was
necessary, since the PWC did not need to stop.

- Test Case 7: This case used the same parameters as in
Test Case 6, except that the robot was initially angled slightly
towards the right of the corridor. As in Test Case 6, the robot
successfully corrected the angle and navigated to the target
destination in 26 seconds.

B. Safety

To answer RQ2, we observed the reaction times of our
system during the test cases where obstacles were placed in
front of the robot. For all the test cases, the robot was able to
stop when it detected an obstacle within 1-3 meters in front
of it. As an eighth test case, we observed that the system
would also stop if it was driving toward stairs. Moreover,
to maintain the user’s awareness in case manual override is
necessary, the mobile application requires the user’s interaction
(e.g., touching the screen) at least every 35 seconds. The app
will issue a warning message if there is no user interaction for
more than 30 seconds, followed by issuing a “stop” command
to the robot if there is still no user interaction for another
five seconds. As part of our future work, we also plan to
incorporate the phone’s screen-side “selfie” camera to measure
user attention.

V. DISCUSSION

In this section, we discuss the results of the evaluation and
potential implications.

A. Results and Model Enhancement

Our modified ResNet model was pre-trained on a server
using images captured in a variety of indoor environments
and deployed to an Android-based smartphone. The results
of the test cases verified the efficacy of our system as the
PWC was successfully navigated to its destination even in the
presence of various obstacles and situations. Furthermore, the
system exhibited adequate response time to ensure safety. In
cases where the model makes incorrect driving decision, our
system will allow users to override the model-derived driving
instructions by manually operating the in-app joystick.

To improve our system in the future, we kept the images
that caused wrong decisions in the experiments to form a new
data set. We plan to utilize the new data set to enhance the
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model using three different strategies: 1) combine the training
data set with the pre-trained model with the new data set to
retrain the model; 2) use only the new data set to retrain the
model with a much smaller learning rate; 3) create an ensemble
model [9] to combine the pre-trained model and the new model
trained only with the new data set. We will also consider using
reinforcement learning to train a model.

B. Privacy Protection

Since the introduction of the smartphone, millions of mobile
apps, such as Google Maps, Weather apps, and Fitness apps,
have been widely used to simplify and improve the quality of
human lives. As with the app presented in this paper, many
apps require access to sensors, including GPS and cameras,
which can produce sensitive personal information. To protect
privacy, regulations require mobile apps to inform each user
if such sensitive data is collected and processed. Our assistive
driving system uses the built-in camera of a smartphone to
capture images of hallways, which can include the people
walking in them. Privacy is a natural concern when real-time
images are captured during operation. In our approach, the
risk to privacy is lessened as only the lower portion of the
images are saved for training and test purposes, and those
cropped images contain no personally identifiable info such
as human faces. Furthermore, the images captured in real-time
while assisting the operation of a PWC are also cropped and
discarded immediately after the model produces the driving
instructions.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes an affordable, vision-based assistive
driving system which has the potential to be used in power
wheelchairs to assist those with mobility impairments. We
have demonstrated a proof of concept by applying our deep
learning model to a robot to successfully navigate corridors
in buildings of a university. We demonstrate that a mobile
app-based system could provide a highly accessible, low-cost
solution to assist users to operate PWCs in a hands-free and
attention-free manner.

As a continuation of this work, we first plan to imple-
ment different versions of the app-PWC interface for existing
PWCs. We will also work to incorporate incremental learning
utilizing the data captured as the PWC user overrides the
model decisions as discussed in Section V-A. Effectively, any
signal sent by the user to contradict the system’s decision
serves as a ground truth. By collecting such data, we may
improve the model through techniques such as online and / or
reinforcement learning. We will also expand the training data
to include more obstacles in different environments, including
home and outdoor settings. Finally, we will explore the use of
virtual and augmented reality to improve the system’s training
and user experience.
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