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Abstract—Power wheelchairs (PWC) are essential for people
with mobility impairment, and many research studies have
been reported to ease their operations. However, the existing
approaches either rely on extra hardware components or demand
complex software that incurs high costs. In this work, we propose
a low-cost, computer-vision-based assistive driving system that
runs on a smartphone with the objective of safely driving a
PWC in a hands-free manner with reduced attention in an
indoor environment to relieve the arduous operations of disabled
users and reduce their stress. The system adopts a modified
and pre-trained ResNet-50 model running on a smartphone to
derive the driving instructions using the images captured in real-
time with its built-in camera. The smartphone interacts with a
control interface to send the driving instructions to the PWC. A
prototype of the proposed driving assistive system is implemented
on a Pixel-6 Android phone and evaluated on a mobile robot
as the proof-of-concept design. The experiments show that the
smartphone can process input at up to 3.4 images per second
to generate driving instructions in time to safely navigate the
mobile robot at reasonable speeds in the testing environment
with minimal intervention from the user.

I. INTRODUCTION

The US Census Bureau reported in 2013 that around 3.6

million individuals over the age of 15 used wheelchairs to

assist with mobility in day-to-day tasks1. Power wheelchairs

(PWCs) have been widely utilized to improve the inde-

pendence of people with disabilities. In order to alleviate

the operation difficulties, PWCs usually provide convenient

joystick-type interfaces which can be easily operated with

hands. Recently, new technologies have enabled a variety of

hands-free controls, including using a headrest attached to a

wheelchair, using breath by inhaling (sip) and exhaling (puff),

or using face and mouth movement, to operate a PWC.

However, for people with severe cognitive, motor, or sensory

issues, it is still a difficult task to operate PWCs to their

fullest extent. In particular, 17% of PWC users have reported

severe pain, where over 50% of them attributed the pain to the

operations of PWCs [6]. Furthermore, many PWC users com-

plain about fatigue, insecurities, and general inconvenience

1US Census Bureau. “US Disability Statistics: Facts and
Figures.” Disabled World, 29 May 2013, https://www.disabled-
world.com/disability/statistics/info.php. Accessed 12 July 2022.

while navigating through (mostly indoor) public spaces for

an extended period. A fully-automated PWC with navigation

system would offer a more ideal solution. Unfortunately, such

navigation systems are still in design and development phases

in labs and are prohibitively expensive2. Furthermore, they

often require specific types of wheelchairs to accommodate

the navigation software and related hardware components to

ensure compatibility for a wheelchair to navigate through

spaces safely.

With the advancement of computer-vision technology, there

have been many research studies focused on hands-free inter-

faces for PWCs such as the use of head movements [19] to

ease the operation of PWCs and enable different navigation

schemes for indoor environments [8], [24], [27]. However,

there is limited research on low-cost, assistive driving systems

that can control PWCs in a semi-automatic fashion with

reduced attention from users beyond hands-free operations.

To this end, we propose a low-cost, semi-autonomous assis-

tive driving system for PWCs. The system is designed with

availability and safety as top priorities.

Our work addresses the above concerns by focusing on the

design and development of an affordable, mobile application-

based assistive driving solution that can be used on existing

power wheelchairs to significantly reduce the need of man-

ual operations. The system harnesses the affordability and

availability of mobile devices with the automation enabled by

deep learning models. Mobile applications (apps) running on

smartphones have become increasingly useful, enabling users

to simplify their lives in various ways such as sharing media,

making purchases, ordering food, and navigating maps thanks

to the cameras and other sensors available on mobile devices.

Similarly, deep-learning-based innovations have been shown to

outperform human beings in areas such as image classification,

object detection, and voice recognition. For example, Man

et. al. [3] compared the performance of a CNN model and

human observers for detecting lesions and concluded that the

CNN model outperformed the human observers in general.

2https://innovationorigins.com/en/smart-wheelchair-corrects-involuntary-
movements-using-ai/
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Our framework integrates the success of deep learning image

classification with the availability of feature-rich smart phones

to provide wheelchair users assistance in moving through

indoor spaces safely.

In this paper, we present the following contributions: (1) a

vision-based model to assist the operation of PWCs in indoor

environments; (2) the deployment of a deep learning model on

an Android smartphone and successful use of images captured

by the built-in camera to provide real-time driving instructions;

(3) the design of an Android app that interfaces with the

PWC user, the deep learning model, and the PWC to safely

facilitate navigation. To evaluate this vision-based low-cost

PWC assistive driving system, we measure the accuracy and

response time of the system using modified ResNet models,

as well as the (reduced) attention time, and hands-free period

of PWC users.

The remainder of the paper is organized as follows. In

Section II, we review the closely related work and background

upon which we base our approach. Section III presents the

novel design of a vision-based, low-cost assistive driving

system which can be deployed on smartphones. Section IV

describes the evaluation of the assistive driving system and

Section V discusses the possible enhancement of the model.

Finally, we conclude the paper and present plans for future

work in Section VI.

II. RELATED WORK AND BACKGROUND

In this section, we survey closely related work and provide

the background information necessary to understand our ap-

proach.

A. Closely Related Works

Many works exist regarding the use of image classification

for navigation. We describe the most closely related works to

ours here.

Automated driving vehicles (ADVs) have drawn much atten-

tion in the past decade, and many industry leaders, including

Google, Tesla, and Mobileye, have invested in ADVs. Al-

though many research works in the area of ADVs have been

published [4], [11], [14], [26], [35], automated or assistive

driving for PWCs has not been well studied. Some closely

related works are described below.

Kutbi et al. studied a hands-free wheelchair control ap-

proach based on Egocentric computer vision and evaluated the

scheme with 21 subjects [19]. Compared to joystick control

and chin-based control, their quantitative and qualitative eval-

uation results show that the vision-based control approach is

viable for hands-free indoor use. However, their approach re-

quires an Egocentric camera and an on-board laptop to support

the complex computation to detect head movement. Similarly,

other hand-free driving systems for power wheelchairs were

developed [18], focusing on alternative means than joysticks to

operate a PWC. Notable examples include voice control [5],

chin-operated joystick [25], and head-tilt control [2], which

significantly improved the usability of power wheelchairs

for specific groups of people with disabilities. Unlike our

approach, all of the above approaches require users to operate

the power chairs 100% of the time during driving.

Navigation systems have been developed to assist the vision

impaired while walking in indoor environments [7], [15],

[23], [28]. These approaches utilize techniques such as sign

recognition, obstacle detection, and object positioning to im-

prove user navigation. Working toward similar goals, Ohya et

al. [30] proposed a vision-based navigation system for mobile

robots in 1998. That approach was based on traditional image-

processing algorithms without the use of modern deep learning

models. To our knowledge, such works have not been adapted

to PWCs.

Our approach deploys a deep learning model directly on

a mobile device. Such a combination has been successfully

implemented for other works such as for navigation and speech

recognition [20], [29], [36]. To our knowledge, ours is the

first which incorporates the Android platform to address the

specific constraints inherent to PWCs.

Kulhanek et al. proposed a reinforcement learning-based

approach to navigate a robot to a target location in a virtual

environment [17]. The model was trained to find a way to

arrive at the destination given by a image. Our approach is

different from this path planning approach in that it does

not require a path map or similar instrumentation to the

environment being navigated.

Lane-detection-based driving assistance systems for auto-

mobiles has been well-studied [13], [22], [31] and, at a cursory

level, is similar to driving a PWC along corridors inside a

building. However, unlike highways, indoor environments do

not follow strict rules and regulations (e.g., lane width, road

markings, etc.), so fewer assumptions can be made about the

environment in the context of PWCs.

B. Image Classification

The use of neural networks to classify images has been

studied for decades. In 1998, LeCun et al. presented the first

convolutional neural network, LeNet-5, to classify images of

handwritten digits and achieved great success [21]. LeNet-5

consists of two convolution layers, three fully-connect layers,

and an input layer taking 28x28x1 images. The success of

LeNet-5 resulted in great interest in studying neural networks.

However, given the limited computational power of the time,

the architectures of the neural networks in the early 2000s

remained shallow. As a result, the error rate of image clas-

sification with those models remained high until 2012 when

Alex Krizhevsky’s team built the famous AlexNet [16] which

leveraged the power of GPUs to train the network consisting

of eight layers, including five convolutional layers and three

fully-connected layers. AlexNet achieved a top-5 error rate

(the rate at which a model includes incorrectly labeled images

in its five most confident predictions) of 15.3% and won the

ILSVRC 2012 competition3. Before AlexNet, models typically

achieved a top-5 error rate no lower than 25% [16]. As a result

3https://machinelearningknowledge.ai/popular-image-classification-models-
in-imagenet-challenge-ilsvrc-competition-history/
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Fig. 1. Building Block of a Residual Network.

of this breakthrough, AlexNet is considered as the starting

point of the Deep Neural Network (DNN) boom. In later

competitions, ZFNet [34], considered as the extended version

of Alexnet, won in 2013 with a top-5 error rate of 11.2%.

Inception V1 (GoogLeNet), a 22-layer DNN using 1x1-sized

filters and Relu to reduce the computation costs, won the

competition in 2014 with a top-5 error rate of 6.67%. In the

same competition of 2014, VGG [32], won the second place

with a top-5 error rate of 7.3% and became one of the most

popular models for image classification.

Although researchers realized that network depth is critical

to improving model accuracy, a very deep neural network

is difficult to train because of how gradient explosion and

vanishing issues hinder model convergence [10]. Many works

have been done to address the issues [1], [10]. However,

even if a very deep neural network converges, simply adding

more layers to a network will decrease the accuracy rapidly

when the depth reaches certain level [33]. He et al. effectively

solved the problems of gradient explosion / vanishing and

accuracy degradation through the use of a Residual Network

(ResNet) framework [12]. In this framework, they introduced

the concept of residual building block with a shortcut connec-

tion, as shown in Figure 1, guaranteeing the deeper version

of a neural network performs no worse than the shallow

counterparts. ResNet assemble won ILSVRC 2015 in image

classification, detection, and localization. In that competition,

ResNet archived a validation top-5 error rate of 3.57%, which

surpasses the average human classification error. Given this

performance, we base our model on ResNet as described in

Section III-B.

III. APPROACH

As shown in Figure 2, the proposed system consists of two

applications deployed within an Android platform: a Pydroid4

application which includes the pre-trained ResNet-50-based

model and a Java application (the typical Android program-

ming language) which handles image processing, interfacing

4https://pydroid-3-ide-for-python-3.en.softonic.com/android

Fig. 2. Overview of the vision-based assistive driving system for PWC.

with the PWC, and input from the user. The Java application

accesses the necessary Android sensors (camera and wireless

interface) through the Android platform API.

Flow from the PWC’s environment through the pre-trained

model to the PWC can be seen in Figure 2. Starting from the

top right, images of the environment are captured in real-time

by the Java app via the Android device’s physical camera. The

app then performs the necessary cropping (Section III-A) and

downsampling for the model before it is relayed to the DNN

model. Our model is implemented in Python, so we utilize

Pydroid to facilitate a Python environment on the Android

system. The Pydroid application feeds the data to the model

which produces a direction (left, right, forward, stop) based

on its training. This direction is then relayed back to the

Java app and signaled to the PWC through an implementation

of a generic device interface for the specific PWC the app

is configured to communicate with. Communication is done

through the Android API using the appropriate sensor for the

PWC. As a proof of concept, our experiments are conducted

using WiFi to connect to a REST API implemented on a

Pioneer 3-AT robot5.

Fig. 3. Vision-based assistive driving model based on ResNet-50

Figure 3 shows the derivation of driving directions by train-

ing a DNN model. We train the model using images captured

by a smartphone to automatically generate the four driving

instructions, turning left, turning right, moving forward, and

stop moving.

5https://sites.google.com/a/nd.edu/discoverlab/robot-platform/ugv/pioneer-
robots-1
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TABLE I
IMAGE SIZE VS MODEL ACCURACY

Model Layers Full-size Half-size Quarter-size

50 Layers 96.05% 99.7% 99.21%

40 Layers 95.66% 99.87% 98.42%

22 Layers 94.61% 98.8% 94.87%

10 Layers 92.63% 96.45% 82.50%

2 Layers 69.21% 74.87% 76.18%

A. Data Collection and Pre-processing

Images taken by a mobile phone generally have a 4:3

aspect ratio. We initially used the full images to train the

model resulting in non-ideal accuracy. We hypothesized that

the upper portion of the images was less relevant in providing

the driving directions, potentially introducing false correlations

to the model. Based on this observation, we evaluated the use

of three differently-cropped versions of images to determine

how the different portion of the images may affect the model’s

accuracy.

Table I shows the results for three different image cropping

strategies over models of different sizes that are based on

ResNet-50 (Section III-B. The cropping strategies include the

full-size image, only the lower half of the image, and only the

lower quarter of the image. The experiment results show that

the use of the lower-half of images produces the best training

result for almost all models except for the simple two-layer

model, where the lower quarter images perform slightly better

than lower-half images (76.15% vs. 74.87%).

Based on the results of the experiment, all images are

cropped in half for our approach; only the lower half is kept

for both model training and actual operation, as shown in

Figure 4. After the cropping, the image aspect ratio becomes

2:3. It is essential for all images collected for both training

and actual operation to keep this ratio to ensure that the deep

learning model produces a high accuracy result. This pre-

processing step significantly improves the accuracy of the deep

learning model. We believe this is likely because the edges of

corridors (i.e., where the floor meets the wall) are the strongest

indicators of orientation.

Fig. 4. Image Cropping

The collected images are labeled based on the directions

the phone camera faces with respect to its surroundings.

Specifically, if the camera faces to the left side of the corridor,

the collected images are labeled as “right”, meaning the PWC

would need to turn right to avoid colliding with the wall; if

the phone faces to the right side the corridor, the collected

images are labeled “left”, meaning the PWC needs to turn

right to avoid colliding with the wall; if the phone faces to

the direction parallel to the corridor, the collected images

are labeled as “forward”, meaning PWC can move forward

without any direction changes; if there are any obstacles or

stairs in front of the phone, the images are labeled as “stop”

meaning the PWC needs to stop to avoid collisions. Figure 5

demonstrates some examples of these labels.

Fig. 5. Labeled Training Images

For this proof of concept, approximately 10,000 images

were collected for training and testing. 80% of them from

different locations were used to train the model, and 20% of

them were used to test the model. The images in the training

set and test set were taken in different buildings with different

architectural styles to better demonstrate the generalizability

of the system.

B. The Deep Learning Model

Based on our background research on image classification

models (Section II-B), we chose the ResNet architecture as a

basis for our model. Unlike the previous deeper DNN models

where layers are simply stacked, a residual network consists

of several building blocks allowing for more layers in the

DNN without a loss of accuracy. Our deep learning model

is based on the 50-layer ResNet and consists of five stages.

Stage 1 consists of a convolution layer with 64 7*7 filters.

Stage 2 includes 3 building blocks, stage 3 includes 4 building

blocks, stage 4 includes 6 building blocks, and stage 5 includes

3 building blocks. Each building block consists of one 1x1

convolution layer, one 3x3 convolution layer, and one 1x1

convolution layer. Ultimately, there are a total of 50 layers,

including the final output layer.

ResNet was originally designed to classify images into

1,000 categories; therefore the final output layer consists of

1,000 fully-connected nodes. We modify the ResNet-50 model

by removing the output layer and adding a global average

pooling 2D layer and a fully-connected layer with four nodes

as the final prediction layer, corresponding to “left”, “right”,

“forward”, and “stop”.

With 10,000 training images (80% in the training set and

20% in the test set), the training with 50 epochs takes about

1982
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Fig. 6. Model Accuracy

TABLE II
MODEL PERFORMANCE

Model Layers Accuracy Second per Image

50 Layers 99.7% 0.51

40 Layers 99.87% 0.41

22 Layers 98.8% 0.29

10 Layers 96.45% 0.18

2 Layers 74.87% 0.11

two hours on a computer with an NVIDIA V100 GPU. With

a learning rate of 0.001, the test accuracy reached 99.7%.

For our purposes, the ResNet-50-based model achieved an

accuracy of 99.7%. However, it took an average of 0.5 seconds

to process an image on a Pixel6 phone to generate a driving

instruction. To try to achieve a better balance of speed and

accuracy, we built four more models also based on ResNet-

50: attaching the two new layers to the output of stage 4 to

form a 40-layer model; attaching the two new layers to the

out of stage 3 to form a 22-layer model; attaching the two

new layers to the output of stage 2 to form a 10-layer model;

and attaching the two new layers to the output of stage 1

to form a simple 2-layer model with one convolution layer.

The accuracy and image processing speed of each model are

shown in Table II. We considered the 22-layer model to have

the best balance of accuracy and speed at 98.8% and 0.29

seconds respectively. As a result, the system would be able

to process one more image per second with minimal cost to

accuracy. Furthermore, it is likely that increasing the number

of training images would further improve accuracy and thus

the performance of the system.

Figure 6 shows the training accuracy vs. test accuracy over

the number of epochs, and Figure 7 shows the training loss

vs. test loss over the number of epochs, for our selected 22-

layer model. There is no obvious overfitting in the training

process, except the test loss increases slightly at epoch 43.

Therefore, our final target model is trained for 43 epochs with

an accuracy of 98.8%, as shown in Table II.

Fig. 7. Model Loss

C. Model Deployment to Android Phone

As a proof of concept, we evaluated the use of the navi-

gational application on a Pioneer 3-AT robot. The robot was

configured to run at a speed up to 700mm/s to simulate the

approximate speed of a wheelchair and a bracket to hold the

phone with the camera facing the front of the robot.

We have designed an Android app that takes the images at a

fixed rate of ten images per second and saves the images to the

phone’s filesystem. While our model only handles up to three

images per second, the Android app is able to accommodate

future improvements to performance. The pre-trained deep

learning model is deployed to the phone via a Pydroid3 app

that provides a full Python environment with all necessary

packages such as Tensorflow, Keras, OpenCV, etc. The Python

code runs in parallel with the Android app, taking the images

saved by the app to the pre-trained model to produce the

driving instructions such as turning left, turning right, moving

forward, and stopping. The instructions are sent to the robot

via the RESTful API.

D. Safety

Safety is of utmost importance for any driving assistance

system. Besides model accuracy, we consider response time,

which is directly related to the PWC’s velocity, to be a

major indicator of safety. There is a speed limit for Powered

wheelchairs in most countries. For example, PWCs must not

travel faster than 4mph (1.79 m/s) in the UK6; in the USA,

most of PWCs cannot go faster than 5mph (2.24 m/s)7. With

a process rate of 3 images/second, the system could theoret-

ically react to obstacles as close as 0.60 and 0.75 meters,

respectively. Our model is trained to recognize an obstacle

within two meters. The process rate is more than enough to

guarantee that a PWC will receive a “stop” instruction in front

of an obstacle if the PWC travel is at top speed, which is very

unlikely in an indoor environment.

6https://www.gov.uk/guidance/the-highway-code/rules-for-users-of-
powered-wheelchairs-and-mobility-scooters-36-to-46

7https://www.wheelchairjunkie.com/speedselection/
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Safety is further improved by the app’s control override

feature. The user can always override the instructions given

by the model by operating the joy-stick-like buttons of the

app.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we report our experimental evaluation to

address the following research questions.

• RQ1: Can the proposed system offer hands-free, and

reduced-attention control in operating wheelchairs?

• RQ2: Can the vision-based assistive-driving system with

deep learning models make timely and safe decisions to

control the wheelchair’s movement?

We have implemented a prototype mobile application that

integrates the modified and pre-trained ResNet50 models,

the image capturing function, and the control interface for

a mobile robot as the proof-of-concept design. The mobile

application runs on a Google Pixel 6 smartphone, which has a

2.8GHz Octa-core CPU and a Mali-G78 MP20 GPU with 8GB

memory. The Pioneer 3-AT mobile robot has three 12V/9Ah

batteries that can power the robot to reach speeds up to 0.8

m/s. To simulate the normal operation speed of wheelchairs

for in-door spaces, where the regulation permits to run up to

4mph (1.79 m/s) in an outdoor environment8, we adjust the

control of the mobile robot to make it run at a speed up to

0.7 m/s.

A. Test Cases and Hands-free Driving

To answer RQ1, we considered seven different test cases

for the assistive-driving application described in Section III-C

with or without various obstacles in a 20-meter-long corridor

(as detailed below). We collected the respective total travel

time, the ratio of hands-free time (i.e., total travel time minus

the manual operation time over the total travel time), and

attention time (i.e., the time requiring user attention due to

stops at obstacles, though the user may not need to manually

operate the robot). The results are shown in Table III.

- Test Case 1: The user operated the web-based robot

control interface to manually operate the robot at its highest

speed of 0.7 m/s where there is no obstacle in the corridor.

It took 24 seconds to reach the spot about 3 meters before

the corridor end. Here, the robot has the safety distance of 3

meters to avoid bumping into walls. This is the baseline case

for comparison, where the user needs to operate the robot all

the time (i.e., 0% hands-free time) with full attention.

- Test Case 2: In this case, the robot was positioned in

parallel with the corridor initially and there is no obstacle

in the corridor. The assistive-driving application running on

the Pixel 6 controled the robot’s movement based on the

derived driving instructions from the images captured in real-

time through the phone’s camera. The robot also took 24

seconds to reach the same location about three meters before

the corridor’s end and stopped. Here, the assistive-driving

8https://www.nidirect.gov.uk/articles/rules-users-powered-wheelchairs-and-
mobility-scooters-36-46

TABLE III
TRAVEL TIME, HANDS-FREE RATIO AND ATTENTION TIME OF THE

ASSISTIVE APP UNDER DIFFERENT TEST CASES

Test Case Travel Time (s) Hands-free (%) Attention Time (s)

1 (baseline) 24 0% 24

2 24 100% 0

3 27 100% 3

4 35 100% 11

5 31 83.8% 7

6 26 100% 0

7 26 100% 0

application running on Pixel 6 could navigate the robot at the

same speed as a human operator in Test Case 1 without any

collision and stop in the middle of the operation. In this ideal

case, no manual operation is needed (i.e., 100% hands-free)

and no attention of the user is called since there is no obstacle

and no stop.

- Test Case 3: This case used the same parameters as in

Test Case 2 except that a stationary obstacle (trash can) was

positioned at the middle of the corridor, 10 meters from the

end. In this case, the assistive-driving application controlled

the robot until the application detected the trash can and

made the robot stop about two meters before the obstacle.

We assume that the user will realize and react when the robot

stops, at which time the user could ask for help to move the

obstacle away or manually drive the robot around it. In this

case, the trash was moved away and the robot resumed moving

forward under the control of the application without the user’s

manual operation. It took 27 seconds for the robot to reach the

target destination before the corridor’s end, where the extra

3 seconds were due to the robot stopping and requiring the

attention of the user.

- Test Case 4: This case used the same parameters as in

Test Case 2 except that the stationary obstacle was replaced

with a moving obstacle (person) moving across the corridor

three times where the distances from the robot were 1, 1.5,

and 2 meters. In this case, the assistive-driving application

detected all three occurrences of moving obstacles and directed

the robot to stop safely without collision. Once the person

walked away (beyond the two-meter range), the application

continued driving the robot forward. It took 35 seconds for

the robot to reach the target destination. The attention of the

user was called each time the robot stopped for a total of 11

seconds. However, as with Test Case 3, no manual operation

was required.

- Test Case 5: This case used the same parameters as in

Test Case 3 where the stationary obstacle (trash can) was

positioned in the middle of the corridor, 10 meters from the

end. Differently from Test Case 3, after the robot is stopped

under the control of the assistive-driving application, instead of

moving the trash can away, we emulated the case where the

user takes control and manually operates the robot to move

around the trash can. After manual intervention, the assistive-

driving application took control again and navigated the robot

to the destination. It took 31 seconds in total in this case where
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the user was called to attention for 7 seconds with 5 seconds

used to manually navigate the robot around the obstacle.

- Test Case 6: This case used the same parameters as in

Test Case 2, except that the robot was initially angled slightly

towards the left of the corridor. The assistive-driving applica-

tion detected that the robot was not parallel with the corridor

at the beginning and navigated the robot to continuously turn

right at reduced speeds until it faced directly parallel within

the corridor. With the reduced turning speeds and refined

driving commands derived by the assistive-driving application,

we observed that there was no over-correcting of the angle

during the experiment. Once the robot corrected its direction,

it proceeded forward to the target destination. The robot took

26 seconds in total in this case. No manual operation was

necessary, since the PWC did not need to stop.

- Test Case 7: This case used the same parameters as in

Test Case 6, except that the robot was initially angled slightly

towards the right of the corridor. As in Test Case 6, the robot

successfully corrected the angle and navigated to the target

destination in 26 seconds.

B. Safety

To answer RQ2, we observed the reaction times of our

system during the test cases where obstacles were placed in

front of the robot. For all the test cases, the robot was able to

stop when it detected an obstacle within 1-3 meters in front

of it. As an eighth test case, we observed that the system

would also stop if it was driving toward stairs. Moreover,

to maintain the user’s awareness in case manual override is

necessary, the mobile application requires the user’s interaction

(e.g., touching the screen) at least every 35 seconds. The app

will issue a warning message if there is no user interaction for

more than 30 seconds, followed by issuing a “stop” command

to the robot if there is still no user interaction for another

five seconds. As part of our future work, we also plan to

incorporate the phone’s screen-side “selfie” camera to measure

user attention.

V. DISCUSSION

In this section, we discuss the results of the evaluation and

potential implications.

A. Results and Model Enhancement

Our modified ResNet model was pre-trained on a server

using images captured in a variety of indoor environments

and deployed to an Android-based smartphone. The results

of the test cases verified the efficacy of our system as the

PWC was successfully navigated to its destination even in the

presence of various obstacles and situations. Furthermore, the

system exhibited adequate response time to ensure safety. In

cases where the model makes incorrect driving decision, our

system will allow users to override the model-derived driving

instructions by manually operating the in-app joystick.

To improve our system in the future, we kept the images

that caused wrong decisions in the experiments to form a new

data set. We plan to utilize the new data set to enhance the

model using three different strategies: 1) combine the training

data set with the pre-trained model with the new data set to

retrain the model; 2) use only the new data set to retrain the

model with a much smaller learning rate; 3) create an ensemble

model [9] to combine the pre-trained model and the new model

trained only with the new data set. We will also consider using

reinforcement learning to train a model.

B. Privacy Protection

Since the introduction of the smartphone, millions of mobile

apps, such as Google Maps, Weather apps, and Fitness apps,

have been widely used to simplify and improve the quality of

human lives. As with the app presented in this paper, many

apps require access to sensors, including GPS and cameras,

which can produce sensitive personal information. To protect

privacy, regulations require mobile apps to inform each user

if such sensitive data is collected and processed. Our assistive

driving system uses the built-in camera of a smartphone to

capture images of hallways, which can include the people

walking in them. Privacy is a natural concern when real-time

images are captured during operation. In our approach, the

risk to privacy is lessened as only the lower portion of the

images are saved for training and test purposes, and those

cropped images contain no personally identifiable info such

as human faces. Furthermore, the images captured in real-time

while assisting the operation of a PWC are also cropped and

discarded immediately after the model produces the driving

instructions.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes an affordable, vision-based assistive

driving system which has the potential to be used in power

wheelchairs to assist those with mobility impairments. We

have demonstrated a proof of concept by applying our deep

learning model to a robot to successfully navigate corridors

in buildings of a university. We demonstrate that a mobile

app-based system could provide a highly accessible, low-cost

solution to assist users to operate PWCs in a hands-free and

attention-free manner.

As a continuation of this work, we first plan to imple-

ment different versions of the app-PWC interface for existing

PWCs. We will also work to incorporate incremental learning

utilizing the data captured as the PWC user overrides the

model decisions as discussed in Section V-A. Effectively, any

signal sent by the user to contradict the system’s decision

serves as a ground truth. By collecting such data, we may

improve the model through techniques such as online and / or

reinforcement learning. We will also expand the training data

to include more obstacles in different environments, including

home and outdoor settings. Finally, we will explore the use of

virtual and augmented reality to improve the system’s training

and user experience.
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