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Abstract

We study the relationship between metric thickenings and simplicial complexes asso-
ciated to coverings of metric spaces. Let I/ be a cover of a separable metric space
X by open sets with a uniform diameter bound. The Vietoris complex V() con-
tains all simplices with vertex set contained in some U € U, and the Vietoris metric
thickening V™ (I/) is the space of probability measures with support in some U € U,
equipped with an optimal transport metric. We show that V™ (/) and V({) have iso-
morphic homotopy groups in all dimensions. In particular, by choosing the cover I/
appropriately, we get isomorphisms between the homotopy groups of Vietoris—Rips
metric thickenings and simplicial complexes 7rx (VR™(X; r)) = w1 (VR(X; r)) for all
integers k > 0, where both spaces are defined using the convention “diameter < r”
(instead of < r). Similarly, we get isomorphisms between the homotopy groups of
Cech metric thickenings and simplicial complexes nk(ém(X i) = (C(X ; 7)) for
all integers k > 0, where both spaces are defined using open balls (instead of closed
balls).
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1 Introduction

Given only a partial sampling X from an unknown metric space M, how can one
recover properties of the entire metric space M? Questions of this kind frequently
arise in topological data analysis, where one would like to understand the “shape” of a
dataset X, which is sometimes defined using the shape of the larger underlying metric
space M from which the data set X was sampled (Carlsson 2009).

Vietoris—Rips and Cech simplicial complexes are useful tools for questions along
these lines. The idea is to “thicken” the dataset X, obtaining a Vietoris—Rips simplicial
complex or a Cech simplicial complex, each of which have X as their vertex set.
These constructions depend on the choice of a real-valued scale parameter r > 0
that quantifies the degree to which X has been thickened: more and more simplices
are added as r increases. Indeed, the Cech complex C(X ; r) is the nerve of the open
balls of radius r centered at points in X, and so when the nerve theorem applies, the
Cech complex is homotopy equivalent to the union of these balls. The Vietoris—Rips
complex instead contains as its simplices all finite subsets of X of diameter less than
r. The Vietoris—Rips complex is closely related to the Cech complex, but is easier to
compute since as a clique or flag complex it is completely determined by its underlying
1-skeleton graph.

Let us explain how Vietoris—Rips and Cech complexes of a partial sampling X
help recover properties of the entire metric space M. When M is a sufficiently nice
manifold, when X is sufficiently close to M, and when the scale parameter r is chosen
carefully, results by Latschev (2001), Hausmann (1995), Virk (2021b), Virk (2022c)
and Niyogi et al. (2008) say that the Vietoris—Rips simplicial complex VR(X; r) and
Cech simplicial complex C(X; r) have the same homotopy type as M. Though these
results apply in slightly different settings, they all share related assumptions that the
scale parameter r needs to be small compared to the curvature of the manifold M.
Unfortunately, since M is unknown, so is its curvature! One is therefore left without
clear guidance as to how to choose the scale parameter r. Fortunately, persistent
homology (Edelsbrunner et al. 2000; Edelsbrunner and Harer 2010; Zomorodian and
Carlsson 2005) enables some tools for avoiding this choice of scale r. Indeed, the
idea of persistent homology is to allow the scale r to vary from small to large, and to
track the topological changes of VR(X; r) or C(X; r) as r increases. An important
result is the stability of persistent homology (Cohen-Steiner et al. 2007; Chazal et al.
2009, 2014), which in this context implies that if X is close to M, then the persistent
homology of X is close to the persistent homology of M. Furthermore, as more and
more data points are sampled from a manifold M, then the persistent homology of the
growing dataset converges to the persistent homology of the manifold M.

The question thus naturally arises: what is the persistent homology of Vietoris—Rips
and Cech complexes of manifolds, as the scale parameter r increases? The Vietoris—
Rips complexes of the circle obtain the homotopy types of the circle, the 3-sphere,
the 5-sphere, the 7-sphere, etc., as the scale r increases, until finally the complex is
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contractible (Adamaszek and Adams 2017; Adamaszek 2013; Adamaszek et al. 2016).
These odd-sphere homotopy types have consequences for the persistent homology of
spaces containing geodesic loops (Virk 2022a). Much less is known about the persistent
homology of Vietoris—Rips complexes of n-spheres (Adamaszek et al. 2018; Adams
etal. 2022a; Lim et al. 2020; zaremsky 2018). The 1-dimensional persistent homology
of Vietoris—Rips and Cech complexes of geodesic spaces is completely classified by
Virk (2019), Virk (2020) and Gasparovic et al. (2018). It is possible to put bounds on
the length of higher-dimensional persistent homology bars by relating Vietoris—Rips
complexes to the spread of a metric space and Gromov’s filling radius (Lim et al.
2020), or instead to notions from geometric topology (Adams and Coskunuzer 2021).
However, very little is known in general about the persistent homology of Vietoris—
Rips complexes VR(M; r) or Cech complexes C(M; r) of a manifold M.

One reason why so little is known is that the topology of a Vietoris—Rips or Cech
simplicial complex is at times difficult to work with. For example, if M is a manifold
of dimension at least one, then the inclusion map M < VR(M;r) or M — é(M 3 T)
is not continuous since the vertex set of any simplicial complex is equipped with
the discrete topology. This situation is improved by considering instead the metric
thickenings VR™(M; r) and ém(M ;) (Adamaszek et al. 2018), which are in nat-
ural bijection with the geometric realizations of VR(M; r) and C(M ; ), but which
are equipped with a more natural topology (indeed a metric) arising from ideas in
optimal transport. The inclusion maps M < VR™(M;r) or M — ém(M . r) are
now continuous, and in fact isometric embeddings onto their images. It has recently
been proven in Adams et al. (2022b) and Moy (2021) that the Vietoris—Rips and Cech
metric thickenings have the same persistent homology barcodes as the corresponding
simplicial complexes,! enabling one to use either simplicial or metric techniques. At
times, the metric thickening allows one to go further; for example we can describe the
first new homotopy type that appears in Vietoris—Rips metric thickenings of n-spheres
for all n, even though the first new homotopy type for Vietoris—Rips simplicial com-
plexes of n-spheres is only known for n < 2 (Adamaszek and Adams 2017, Lim et al.
2020, Katz 1989 and Katz 1991). An additional motivating reason to better under-
stand the relation between Vietoris—Rips simplicial complexes and metric thickenings
is as follows. In Lim et al. (2020), the authors prove that the Vietoris—Rips filtration
VR(X; —) is isomorphic to the tubular neighborhoods thickening of X inside an ambi-
ent injective metric space. Hence, a better understanding of the relationship between
VR™(X; r) and VR(X; r) may point to a deeper connection between Wasserstein
spaces and injective (or hyperconvex) metric spaces.

In this paper we will define the Vietoris—Rips complex VR(X; r) and metric thick-
ening VR™(X; r) using the inequality < r, though there are analogous versions
VR<(X;r) and VRZ(X; r) defined using the inequality < r. It is known that the

' so long as one ignores whether an endpoint of a bar is open or closed.
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homotopy types of VR<(X; r) and VRZ (X; r) need not be the same.? Nevertheless,
it is reasonable to conjecture that if we return to using the inequality < r, then we have
homotopy equivalences VR(X; r) >~ VR™(X; r) and é(X; r) ~ ém(X; r) for all sep-
arable metric spaces X and scales r > 0; see Adamaszek et al. (2018, Remark 3.3)
and Question 7.1 in this paper. This conjecture is known to be true if X is a discrete
metric space (Adamaszek et al. 2018, Proposition 6.6), or if X is a compact man-
ifold and the scale r is sufficiently small compared to the manifold (in which case
VR(X;r), VR™(X; r), é(X; r), and ém(X; r) are each homotopy equivalent to the
manifold (Hausmann 1995; Adamaszek et al. 2018; Adams and Mirth 2019)), or if
X = S' is the circle and r is arbitrary by recent work of Moy (2022). The portion
of the conjecture that remains open is when X is not discrete and the scale r is arbi-
trary, and for example the conjecture is open when X is any manifold of dimension
> 2. In this paper we provide positive results in the direction of this conjecture. In
our main result (Theorem 1), we prove that if X is a separable metric space and if
r > 0, then VR™(X; _r) and VR(X; r) have isomorphic homotopy groups, and sim-
ilarly C™(X; r) and C(X; r) have isomorphic homotopy groups. In other words, we
prove that ; (VR™(X: r)) = mi(VR(X; ) and 7 (C™(X; r)) = mi(C(X; r)) for
all integers k > 0. Our main result is in fact more general:

Theorem 1 If U is a uniformly-bounded open cover of a separable metric space X,
then the Vietoris thickening V™ (U) and the Vietoris complex V(U) have isomorphic
homotopy groups mp (V™ (U)) = m; (VU)) in all dimensions k > 0.

Here, the Vietoris simplicial complex V(U) has X as its vertex set, and a finite
subset 0 € X as a simplex when there exists some U € U with 0 C U. The Vietoris
metric thickening V™ (U) of all finitely-supported probability measures supported in
some U € U is equipped with a different topology, which furthermore is induced by
an optimal transport metric extending the metric on X; see Sect. 2.

By choosing U to be the open cover of X by all sets of diameter < r, we obtain
the previously mentioned isomorphisms between the homotopy groups of V™(U) =
VR™(X; r) and V(U) = VR(X; r). Similarly, by choosing I/ to be the open cover
of X by all balls of radius < r, we obtain the previously mentioned isomorphisms
between the homotopy groups of V™ (Uf) = C™(X:r) and VU) = C(X; r).

The organization of our paper is as follows. In Sect. 2 we describe necessary pre-
liminaries and we set notation. In Sect. 3 we describe a cover of V™ (i) that is good but
not open—one can think of the fact that this cover is not open as an obstacle towards
attempted proofs of the (still-open) conjecture that V™ (Uf) and V(U/) have the same
homotopy type. In Sect. 4 we modify this good cover that is not open in order to obtain
an open cover that is only “good up to level n.” This open cover is what we need in
Sect. 5 to prove Theorem 1 that V™ (U/) and V(I/) have isomorphic homotopy groups.

2 For example, whenr = 0, then VR<(X; 0) is X equipped with the discrete topology, whereas VR‘;1 (X;0)
is the metric space X equipped with its standard topology. A less trivial example is that if st is the geodesic
circle of circumference 27, then VR<(S 2” ) =~ \/*® 52 is an uncountably infinite wedge sum of 2-
dimensional spheres (Adamaszek and Addms 2017), whereas VRm(Sl 2” ) >~ §° 3 obtains the expected
homotopy type of a 3-sphere (Adamaszek et al. 2018; Adams et al. 2020). We say “expected” since we do
have VR<(S"; L.y~ §3 for all . <r < 4—” . This entire footnote has analogues for Cech complexes and
thickenings, as well.
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Indeed, the main tool we use in our proof is different versions of the nerve theorem,
including versions by Nagérko (2007) and the third author (Virk 2021b). The proof
of Theorem 1 relies on the fact that V™ (Uf) is locally contractible, which we prove in
Theorem 2 in Sect. 6. We conclude and pose open questions in Sect. 7.

2 Preliminaries

Let us define the main objects of study: the nerve and Vietoris complexes of an open
cover, Vietoris—Rips and Cech simplicial complexes, and metric thickenings.

2.1 Topological spaces and metric spaces

Let X = (X, d) be a metric space. For x € X and r > 0, we let Bx(x;r) := {x' €
X | d(x,x’) < r} be the open ball of radius r about x in X. This ball is empty if
r = 0. The diameter of a subset 0 C X is defined as diam(o) = sup, /¢, d(x, x).
For two nonempty subsets A, B C X, we define d(A, B) := inf,ca pep d(a, b) to be
the distance between the two sets.

If (X,dx) and (Y, dy) are two metric spaces, if f: X — Y is a map between
them, and if L is a nonnegative real number, then we say that f is L-Lipschitz if
dy(f(x), f(x")) < Ldx(x,x’) forall x, x" € X.

Let X be a metric space. For U C X, let U C=Xx \U denote the complement of
U in X. If U is open in X, then there exists a 1-Lipschitz map ¢: X — [0, 1] with
¢_1 (0) = U€. For example, if U¢ # () then one can let ¢ (x) = min(d(x, U%), 1),
and if U¢ = @ then one can simply let ¢ be the constant function 1.

For Y a topological space, we let 4 (Y) denote its k-th homotopy group. For two
topological spaces Y and Y’, we write “m(Y) = mp(Y’) for all integers k > 07 to
mean that the spaces Y and Y’ have the same number m of path-connected components,
and that there exist points yi, ..., y, and yj, ..., y,, from distinct components in ¥
and Y’ along with a bijection /2 {y1, ..., ym} — {¥], ..., y,} such that m (Y, y;) =
7 (Y', h(y;)) for all integers k > 0 and for all 1 < i < m. We say that a space Y is
n-connected if wy(Y) is the trivial group for all 0 < k < n.

2.2 Nerve and Vietoris complex of a cover

Let U be a cover of the metric space X by nonempty sets. Therefore, each point x € X
satisfies x € U for at least one set U € U. We may write Y = {U,}qe7, Where the
index set Z could be finite, countably infinite, or uncountably infinite. We allow the
possibility that U, = U, for a # a', but we require U, # @ for all o € Z. We say
that the cover U is open if each U € U is an open set in X. We say that the cover U is
uniformly bounded if there exists some constant D < oo such that diam(U) < D for
eachU € U.

For example, if I/ is the open cover of X consisting of all open sets of diameter less
than r, then U/ is r-bounded. Similarly, if ¢/ is the cover of X by open balls of radius
r, then U is 2r-bounded.
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Fig.1 This figure is taken from Virk (2022b, Fig. 5.15). (Left) A cover U of six points by four colored sets,
(center) its Vietoris complex V(U), and (right) its nerve complex N (If)

The nerve simplicial complex N'(U) has T as its vertex set, and has a finite subset
o C T as asimplex if Nyes Uy # @ (Borsuk 1948). The Vietoris simplicial complex
V(U) has X as its vertex set, and has a finite subset o C X as a simplex if there exists
some U € U with o C U. By Dowker duality (Dowker 1952, Zeeman 1962 and Virk
2021b), the complexes N (U) and V() are homotopy equivalent. See Fig. 1.

For o0 C 7, we let U, := Nyeo Uy denote the intersection of the sets from o. If
U, is contractible for each o € 7, and if U, is either contractible or empty for each
o C 7, then we say that the cover U/ is a good cover. The nerve theorem provides
relatively mild point-set topology assumptions on X and on U/ so that if / is a good
cover of X, then the nerve A/ () is homotopy equivalent to the space X . This theorem
applies, for example, if ¢/ is an open cover of a paracompact space X, or if i is a cover
of a simplicial complex by subcomplexes (Borsuk 1948, Dieck 1971, Weil 1952 and
Hatcher 2002).

If U, is contractible for each « € 7, and if U, is either contractible or empty for
each o C 7 of size |o| < n, then we say that the cover U is a good cover up to level
n. There are generalized versions of the nerve lemma which, when U/ is only a good
cover up to a certain level, can still imply that the nerve N'(I/) and X have matching
homotopy groups up to a certain dimension (Bjorner 2003). We will use such a result
by Nagoérko (2007).

2.3 Vietoris-Rips and Cech simplicial complexes

For X a metric space and for r > 0, the Vietoris—Rips simplicial complex VR(X; r)
contains X as its vertex set, and a finite subset 0 C X as a simplex if diam(o) < r.
If U is chosen to be the open cover of X consisting of all open sets of diameter less
than r, then the Vietoris—Rips complex is the Vietoris complex of this cover, namely
VR(X;r) = V(U) (Virk 2021b). By convention, VR(X; 0) is the empty simplicial
complex (with no vertices).

Forx € X and r > 0, we let B(x,r) := {x’ € X | d(x, x") < r} denote the open
ball of radius r centered at the point x. For 7 > 0, the Cech simplicial complex é(X i)

3 To see that point-set topology assumptions are needed, consider a cover of a connected space X by two
disjoint sets.
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contains X as its vertex set, and a finite subset o € X as asimplex if Ny B(x, 1) # 0.
Equivalently, if i/ = {B(x, r)}xex is defined to be the cover of X by open balls of
radius r, then the Cech complex is equal to the nerve complex of this cover, namely
C(X ; r) = N (U). Interestingly, one can also see that the Cech complex is the Vietoris
complex of this same cover, namely é(X ;) = V(U). This is true since balls of radius
r in X intersect at a common point if and only if their centers are all contained in a
ball of radius » about the intersection point. Note the equality N (/) = V() here is
possible only since the vertex sets of these two simplicial complexes agree, which is
the case since U = {B(x, r)}xex is a cover of X whose sets are also indexed by the
points in X.

We have seen that one can realize both Vietoris—Rips complexes and Cech com-
plexes, two of the most popular simplical complexes in applied topology, as Vietoris
complexes of different covers. Therefore, Vietoris complexes will be the main simpli-
cial complexes of interest in the rest of this paper.

2.4 Optimal transport

For X a metric space, let Pi"(X) be the set of all probability measures on X with finite
support. In other words, each measure ;2 € P1"(X) can be written as ;. = Zf‘(:o a;dy,
with k > 0,a; > 0,) a; = 1, and x; € X for all i. We define the support of
this finitely supported measure to be supp(u) = {xo, ..., xx}. Here 4, is the Dirac
probability measure with unit mass at the point x € X. A coupling between two
measures /, v € PiM(X) is a probability measure y € Pi"(X x X) whose marginals
on the first and second factors are u and v. Note that y has finite support since u and
v do. Let Cpl(u, v) denote the set of all couplings between these two measures. Then,
for a real number g > 1, the g-Wasserstein distance between p and v is

1/q
dw.q(u,v) := inf </ d(x, y)y(dx x dy)) .
y€eCpl(u,v) \Jxxx

Itis easy to see that this infimium is realized since y has finite support. In particular, we
have dw 4(3x, 8y) = d(x, y) forany x, y € X. The Wasserstein metric on the space of
probability Radon measures has many names: the Kantorovich, optimal transport, or
earth mover’s metric (Vershik 2013; Villani 2003, 2008). It is known that in a variety
of different contexts, the g-Wasserstein metric induces the same (weak) topology for
any g € [1, 00); see Bogachev (2018) and Bogachev (2022b, Appendix A).

We will frequently use the following lemma in order to construct continuous homo-
topies.

Lemma 2.1 Suppose A € P (X). If f: A — P™(X) is continuous, then so is the
homotopy H: A x [0, 1] — Pi(X) given by H(u,t) = (1 — ) + 1 ().

This follows, for example, from Bogachev (2022b, Proposition 2.4) or Adams et al.
(2018, Lemma 3.9); see also (Bogachev 2018).

For convenience, for the remainder of this paper we will use the 1-Wasserstein
metric, which we denote simply by dy . We will also use finitely-supported measures. If
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pw=Y"%_ya;is, andv = le=0 b8y, are two finitely-supported probability measures,
then a coupling between them is a collection of nonnegative real numbers {c; ;} for
l<i<kandl <j < lsuchthatzj ¢i,j = a;foralli,andsuchthat) ", ¢; j = bj for
all j; it follows that Zi,j ¢i,j = 1. The cost of such a coupling is Zi’j ci jdx (xi, yj),
and the 1-Wasserstein distance is the infimal cost over all possible couplings. In our
setting of finitely-supported measures, an infimal coupling is always attained.

2.5 Partial couplings

We will need the following lemma related to partial couplings. A partial coupling
between two measures it = ) ; ;8 and v = Zj bjdy, is collection {c; ;} of non-
negative real numbers such that ) ¢; ; < a; and }_; ¢; j < b;. It gives incomplete
information about how the mass is transported from p to v, but any partial coupling
from p to v can be completed to a coupling from p to v. That is, given a partial
coupling {c; ;}, there exists a coupling {¢; ;} such that ¢; ; < ¢; ; forall i, j. Indeed,
we can simply extend {c; ;j} by using the product measure on any unmatched mass.
To be explicit, we define

(ai =3 ¢i,)bj— 3 cij)
- ,  where c::Zc,-,j.
ij

Cij=cij+
Indeed, we then have
ZEi,j = Z (ci,j + @ =2, Ci’lj)_(bcj -2 Ci.,j)>

J j

J J

ai—ici

ZZCi*j_'_l]fjc.”(l_c)
J
=dai.

A similar computation shows ), ¢; ; = b;, and therefore {c; ;} is a coupling between
w and v.

The following lemma will allow us to bound the Wasserstein distance between two
measures, even if we only construct a partial coupling between them.

Lemma 2.2 (Partial coupling lemma) If {c; ;} is a partial coupling between p =
>.iaidy andv =73 ;b;s,,, then

dw(u,v) <Y cijdx(xi, y) + | 1=y cij | diam (supp(ue) U supp(v)).
ij ij
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Proof Choose any coupling {¢; ;} between p and v with ¢; ; < ¢; ;; this is possible
(for example) by extending {c; ;} using the product measure on any unmatched mass.
We have

dw(u,v) < Y& jdx (xi, y))
ij
= cijdx(xi, y) + Y (@) — cidx(xi, y))

i,j i,j

<Y cijdx (i y) + | 1= cij | diam (supp(u) U supp(v)) .
i,j ij

2.6 Metric thickenings

Let X be ametric space, and let K be a simplicial complex with vertex set X . The metric
thickening K™ is defined in Adamaszek et al. (2018) as the space of all probability
measures that are supported on the vertex set of some simplex in K, equipped with a
Wasserstein metric. More explicitly, K™ is the metric space

K™= {1 e PP | supp() € K |

equipped with the 1-Wasserstein metric.* We note that there is a natural bijection
between the geometric realization of K and K™, obtained by assigning a point in the
geometric realization of K associated to the simplex {xo, ..., xx} with barycentric
coordinates (ao, ..., ay) to the measure Zf:o a;6y, € K™. By Adamaszek et al.
(2018, Proposition 6.1) the map K — K™ given by this bijection is continuous,
but the inverse map K™ — K may be discontinuous when X is infinite. When the
simplicial complex K is of the form V(U/), VR(X; r), or C(X; r), then we denote K™
by V™(U), VR™(X; r), or C™(X; r), respectively.

3 A good cover that is not open

We describe how to use a cover U of a metric space X (that is not necessarily a good
cover) to build a good cover of the Vietoris metric thickening V™ (IA).

For Y C X, let My C P"(X) be the set of all finitely supported probability
measures with support contained in Y. If Y is empty then so is My. If Y is nonempty
then My =~ % is contractible. Indeed, choose any x € Y and define the deformation
retraction H: My x [0, 1] — My, with H(-, 0) the identity map on My and with
H (-, 1) the constant map to 8y, via H(D_ a;8x;, 1) = (1 —1) Y a;8y; + t5x.

4 As any g-Wasserstein metric for 1 < ¢ < oo induces the same topology, we make the choice ¢ = 1 for
convenience.
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LetU = {Uy}qe7 be a cover of the metric space X. Note that My, := {Mylycy =
{My,}qez is a cover of the Vietoris metric thickening V™ (/). For « € 7 we have
that My, is contractible. For o C Z we have Nyeo My, = My, . Note that My, is
contractible if U, # ¥, i.e. if o € N(U), and My, is empty if U, = @, i.e. if o ¢
N (U). Therefore My, is a good cover of V™ (), and furthermore N (M) = N U).
Applying the homotopy equivalence from Virk (2021b, Proposition 3.7), we get that
N (My) = N(U) >~ VWU). In summary, we have constructed a good cover of V™ (Uf)
whose nerve is homotopy equivalent to the Vietoris complex V().

Is there some version of the nerve theorem that we could apply to the good cover
My;? If there were, then we would be able to conclude that V™ (/) is homotopy
equivalent to the nerve A/ (M), which is homotopy equivalent V(If). Unfortunately,
we don’t know if the cover My, satisfies the point-set topology conditions needed to
apply any version of the nerve theorem that we are aware of.

In particular, even if i is an open cover of X, the cover My, of V™ (U) is not an open
cover in general.’ One can think of the fact that this cover is not open as an obstacle
towards attempted proofs of the (still-open) conjecture that V™ (/) and V(I/) have the
same homotopy type; see Question 7.1.

The goal of the remainder of the paper, in some sense, is to overcome the obstacle
that the cover My, is not open. We will construct a modified cover Mz, of V™ (I/) that
is open, while maintaining as many nice properties as possible. In particular, though
A7Iu will not be a good cover in general, it will be good up to level n for some fixed
but arbitrary integer n. This will be enough for us to prove that all of the homotopy
groups of V™ () and V(UA) agree.

4 An open cover, good up to level n

Let U be a uniformly bounded open cover of a metric space X. In this section we show
how to produce a cover My, of V™ (U) that is open and good up to level n. We begin
with some preliminaries.

Deﬁnitiqn 4.1 Let X be a metric space, let U € X, and let 0 < p < 1. A subset
A C P(X) has the mass concentration property MCP(p, U) if for each u € A,
more than p of its mass is contained in U, i.e. u(U) > p.

Definition 4.2 Let X be a metric space and U C X. We say that A C Pﬁ“(X) is
U-pumping convex if for any u € A, any v € P"(X) with supp(v) < supp(u) N U,
and any ¢ € [0, 1], we have that (1 — )i + tv € A.

Note that an intersection of U-pumping convex sets is U-pumping convex, and a
union of U-pumping convex sets is U-pumping convex.

The following pumping lemma shows how to continuously deform a measure that
has some of its mass in U to instead have all of its mass in U see Fig.2.

5 For example, if x, y € X and U, U’ € U satisfy x € UN U’ and y € U’ \ U, then §, € My . Any open
ball in Bym g4y (8x; €) contains points of the form (1 — &")8x + &'y ¢ My for &’ > 0 sufficiently small.
This shows that My is not open.
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Fig. 2 A drawing of the pumping lemma when X = R, with map ¢ in gray, measure p in purple, and
measure f(u) in blue

Lemma 4.3 (Pumping lemma) Let X be a metric space, and let the open set U € X
have finite diameter. Suppose A C P™(X) has MCP(p, U) for some 0 < p < 1, and
let : X — [0, 1] be an L-Lipschitz map with ¢_1(O) = UC. Then fiA—> My C
plincx) defined as

ai¢(x;)
H(as) - 3 (£,
Xi: LYX Xl: ZJ aj¢(xj) X,
is continuous. If A is furthermore U-pumping convex, then the homotopy H: A X
[0, 1] — A defined by H(i,t) = (1 —t)pu + tf () is well-defined and continuous.

Proof We will prove the continuity of f at an arbitrary point © = ), ¢;8y, € A.
Define a := ), a;¢(x;) > 0, which is positive since A has MCP(p, U) and since
¢(x) > 0 for all x € U. Since U has finite diameter, there exists some constant
D < oo such that diam(U) < D.

Lete > 0.Choose 0 < § < min(%, ) sufficently small so that (1—ZJ_F—IL‘§)D <4
Suppose v := }_; b;8y; € A with dw(u,v) < 8. This means there exist g; ; > 0
with Zj qi,j = ai, with Zi qi,j = bj, and with Zi,j qi,jdx(xi, yj) < 8. We will
bound the 1-Wasserstein distance between the measures f (1) and f (v) by describing
how to transport only part of the mass, and then using the partial coupling lemma.

Define b := Zj bi¢p(y;) > 0. We define a partial transport plan {c; ;} between

J(w) and f(v) via

(66 0
i,.j = di,j P ,—b .

We have

Zc,"j = Z%’j min <¢(:l)’ %ﬂ) < Zqi,jqb(:i) = @ and
J J ]

J

f . i b .
Zci,j = Zé]i,j min <¢(; ), —¢(Z])) < Zq,',j—qj(by ) = _]qbb(y])'

1
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This shows that {c; ;} is indeed a partial transport plan from f(u) = >_; a;qbaﬂax’_

to f(v) = Zj bi ¢b(’vj )Byj. Note that the cost of this partial transport plan is small,
namely

. [ PCxi) @(y))
Zci’fd(xi* yj) = Z‘bﬁj min (Tl, Tj d(xi, yj)
i.j ij
1 8
= ;Zqz',jd(xz‘,yj) <
ij

To apply the partial coupling lemma, we also need a lower bound on the amount of
mass ) ;. j €i,j we have transported. For this, we will need the bound

la—bl =Y aip(i) = Y bip(p| =D dij(@(x) — $(y))

i J i,j
<Y qijleGi) —¢ONI LY gijdx(xi.y)) < L8,
i.J i,J

where the second-to-last step is since ¢ is L-Lipschitz. Now, the amount of mass
transported by our partial transport plan is at least

B . (P d(y))
ZC[’j—qu"jmln P ,T

i,J i,j

v

quwmm P (). B ()))

= a —|—L8 qu j min ¢(x,) d)(yj))
Z o xLs izj:qtlj (¢(xi) = Ldx (xi, y))) since ¢ is L-Lipschitz
1
= TLs iz;qz',jd)(xi) - lej:q,-,jdx(xi, ¥j)
1
Z o T Ls (Zai¢(xi) —L3>
1
_ a—L3$§
T a+ LS

By definition, both f (1) and f(v) have their supports in U, which has diameter at
most D. Hence we apply the partial coupling lemma (Lemma 2.2) to get
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dw (f(), f0)) <Y cijdxGioyp) + | 1= cij
i,j i,j
diam (supp(f (1)) U supp(f (1))
Sra-££p
=5+5

=Eé.

IA

A

Hence f is continuous.

We note that for any measure u© € A we have supp(f(r)) € supp(r) N U since
¢~1(0) = UC. Therefore, if A is U-pumping convex, then the homotopy H: A x
[0, 1] = Adefinedby H (i, t) = (1—t)u+tf () is well-defined since supp(f (1)) <
supp(u) N U. This homotopy is also continuous by Lemma 2.1. O

Let U be a uniformly bounded open cover of a metric space X. We now define the
open cover JVIM of V™ (U), before showing that it is good up to level n.

Choose 0 < p < 1. Fix U € U. We will define an open neighborhood A7[U of My
in Y™ () in the following inductive manner. We construct an increasing sequence

My=0Q0SN CO1SENMCOC...

so that each element of the sequence has the mass concentration property MCP(p, U),
each Ny is open, and each Q is U-pumping convex. Consequently ]VIU = Uk Ok =
Ui Ny will be open, be U-pumping convex, and have the mass concentration property
MCP(p, U) (since if u € MU, then we have i € Qy for some k, and hence u(U) >
D).

Let us now inductively define the sets Qy and Ni. We set Q¢ := My, which has
MCP(p, U) and which is U-pumping convex. Fix k£ € N. By induction, each Qx_1 has
MCP(p, U), meaning any u € Q1 satisfies u(U) > p.Noted (supp(u)NU, U¢) >
0 since supp(y) is finite and U is open. If v € V™ () is a measure with v(U) < p,
then the cost of a transport plan from p to v must be at least as large as the amount of
mass from p that needs to be moved outside of U times the distance from supp(u) NU
to the complement of U, which is (u(U) — p) d(supp(n) N U, U©). Therefore, if we
choose r;, > 0 so that r;, < (u(U) — p)d(supp(u) N U, U©), then any measure
with Wasserstein distance less than r;, from p has mass totaling more than p(U) —
(u(U) — p) = p inside of U. In other words, the r,-neighborhood of u, denoted by
Bymq) (i3 ry), also has MCP(p, U). Define Ny = U, Bvmas) (1; 7). Note
that Ni is open and has MCP(p, U). Define

Or={(1—0Du+1v | we N, vePX) with supp(v)
S supp(w) NU, 1 € [0, 17} € V"W).

It follows tll:jlt QO has MCP(p, U) and is U -pumping convex. Then, as we mentioned,

we define My = U Qx = Ui N, which is open, 13 U—pumging convex, and has the
mass concentration property MCP(p, U). Define My, := {My}ucu.
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Proposition 4.4 Let U be a uniformly bounded open cover of a metric space X, let
n € Nwithn > 2, and fix 1 —1/n < p < 1. If My is constructed using this choice
of p, then My, is an open cover of V™ (U) that is good up to level n. Furthermore, the
n-skeleta of the nerve complexes N (1\711/{) and N (U) coincide.

Proof Recall that each set My is open and has MCP(p, U) by construction.
Note 1 —1/n < p < 1 implies that0 < n(1 — p) < 1. We claim that for any k < n
and U, U, ..., Uy €elU,

My, N ...0 My, hasMCP(l—n(l—p),Urﬁ...ﬂUk>. (1)
Indeed, choose any i € 1\7IU] N...N Myk. Since ;J,(Ul.c) < 1 — p foreach i, we have

w((UrN...NUYS) = wWF U...uUE) <k(l - p) <n( - p).

Next, we show that Mu is a good cover up to level n. For k < n and for arbitrary
sets Uy, ..., Ur € U, assume that MUI Nn...N Myk is nonempty. Since the finite
intersection of open sets Uy N ... N Uy is open, we can choose a 1-Lipschitz function
¢: X — [0, 1] for which ¢~'(0) = (U1 N ... N Ux). By (1) and Lemma 4.3, the
map f: My, N...N My, = My, N...N My, defined as

(Za’ "t) - Z (Zalfj(;(l,) %

is continuous. Each M v; is U;-pumping convex and therefore (U1 N...NUy)-pumping
convex, and so it follows that 117IU1 .N ]l7IUk isalso (U N...N Uk) pumping
convex. Hence Lemma 4.3 furthermore 1mp11es that the homotopy H: MU1 ...N
MUk x [0, 1] — V™ (U) defined by H(u, t) (1 —tu + tf(n) is well-defined
and continuous. Therefore, the identity on MUl ..N MUk is homotopic to the
map_f, whose image lies in the contractible space My, N ... N My, = My,n..nu;-
So M uyN...N M v, 1s contractible. This shows that My, is a good cover up to level n.
Lastly, we show that the n-skeleta of the nerve complexes N (Mu) and NV ()
coincide. Let k < n and consider arbitrary sets U1, Lo UrelU IfxeUn...NU
then the Dirac measure at X is contalned in M vyN...N M U~ On the other hand, if
Uy N...N U, = @ then MU1 .N MUk contains no measure by (1) and by the
deﬁnltlon of the mass concentration property, asl—n(—p)>0. O

5 Vietoris thickenings and complexes have isomorphic homotopy
groups

We are now prepared to use the open cover from Sect. 4, which is good up to level n,
to prove that V() and V™ (U) have isomorphic homotopy groups.
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Theorem 1 If U is a uniformly-bounded open cover of a separable metric space X,
then the Vietoris thickening V™ (U) and the Vietoris complex V(U) have isomorphic
homotopy groups (V™ (U)) = m V(U)) in all dimensions k > 0.

Proof The organization of the proof is as follows. Fix an arbitrary integer n > 0. We
can construct a cover My, of V™ () that is good up to level n, and we know from
Proposition 4.4 that this cover is open. In Lemma 5.1 which follows, we will apply a
result from Nagérko (2007) to conclude that the first n — 1 homotopy groups of V™ (i)
and N(A7Iu) are isomorphic, i.e. T (V™ (U)) = nk(N(]Vlu)) forall0 <k <n-—1.
Since the n-skeleta of A/ (Mu) and V' (U) coincide by Proposition 4.4, it follows from
cellular approximation that the first » — 1 homotopy groups of N (M) and N (U) are
isomorphic, i.e. 7w (N (M) = 7 (N (U)) forall 0 < k < n— 1. Finally, we conclude
using the fact that N’ (/) ~ V(U) by Dowker Duality (Dowker 1952, Zeeman 1962
and Virk 2021b). Stringing these facts together, we get that

(VN U)) = me(N (My)) = m N U) = m(VWU)) for0 <k <n— 1.

Since the integer n can be made arbitrarily large (although with different covers Mu
for different values of n), we get that V™ (/) and V(I/) have isomorphic homotopy
groups 7ty for all integers k > 0. O

It remains to prove Lemma 5.1, which states that first n — 1 homotopy groups of
V™(U) and N (My,) are isomorphic.

Lemma 5.1 Let U be a uniformly-bounded open cover of a separable metric space
X, letn = 2, fix1 —1/n < p < 1, and construct My using this choice of p. Then
(V™ U)) = (N (My)) forall0 <k <n — 1.

Proof We will apply Theorem 3.4 of Nagérko (2007), which says that if F is an open
cover of a separable space Y, weakly regular for the class of at most n-dimensional
spaces, then each canonical map ¥ — A/ (F) (induced by a partition of unity sub-
ordinated to this cover) produces isomorphisms on homotopy groups of dimensions
less than n. We refer the reader to Nagorko (2007) for the definition of weakly regular
for the class of at most n-dimensional spaces, since we will not need it here. Indeed,
two paragraphs after Theorem 3.4, Nagodrko states that the Excision Theorem implies
that an open cover F of a locally (n — 1)-connected space is weakly regular for the
class of at most n-dimensional spaces if and only if each nonempty intersection of a
collection A C Fis (n — |.A|)-connected. This is the condition we will verify.

We apply Nagérko (2007, Theorem 3.4) to the map V™ (U) — N (My,). First, note
that V™ (Uf) is separable since X is separable; we prove this in Lemma 5.2 which
follows. To see that V™ (/) is locally (n — 1)-connected, note that it is furthermore
locally contractible by Theorem 2 in Sect. 6 since the cover U/ is uniformly bounded.
This is the only place where our assumption that the cover I/ is uniformly bounded is
used. Finally, to see that the nonempty intersection of a collection A C Fis (n — | .AJ)-
connected, note this follows from Proposition 4.4, which says that intersections up to
level n are empty or contractible. O

Let us prove Lemma 5.2 about separability that we used above.
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Lemma 5.2 IfU is a cover of a separable metric space X, then V™ (U) is separable.

Proof Since X is separable, consider a countable dense subset Z C X. Now define
the subset

V7o) = Za,@xi e V"U) | a; € Qand x; € Z for alli} .

Since Z is countable, since Q is countable, and since each measure in VZ Q(Z/{) has
finite support, it follows that V! Q(Z/{ ) is countable. The fact that V7' Q(Z/{ ) is dense in
V™ (U) follows since Z is dense in X and Q is dense in R. O

Finally, in the following section, we explain why V™ ({) is locally contractible
when U is a uniformly-bounded open cover.

6 Vietoris metric thickenings are locally contractible

Five years ago, the first two authors tried to show that the metric thickening VR™ (X; r)
is locally contractible to include as a result in Adamaszek et al. (2018), but they did
not succeed. The following theorem answers this matter in the affirmative, and more
generally holds for any uniformly-bounded open cover.

Theorem 2 IfU is a uniformly-bounded open cover of a metric space X, then V™ (U)
is locally contractible.

Proof Let © € V™) and let s > O be arbitrary. It suffices to show that there
exists some 0 < s’ < 5 such that Bymgy)(u; s') is contractible in Bym g (1; 5).
Let supp(n) = {yo,..., v} € U € U. Choose 0 < ¢ < %dx(supp(,u), U©). Let
Y1 = U;Bx(y;; €) andlet Y» = U; Bx(y;; 2¢). These sets are open in X and are shown
in Fig. 3. The choice of ¢ implies Y, C U, and hence My, € V™). Fix0 < p < 1
large enough so that (1 — p)D < 3, where D < oo is the uniform bound such that
diam(U) < D forall U € U. Choose s < 5 so that Bym ) (11; s”) has MCP(p, Y)).6
Fix a é-LipschitZ function ¢: X — [0, 1] with ¢~ !(1) = ¥; and ¢~ (0) = YZC,
which is possible’ since d (Y7, YZC) > ¢. Define f: Bymqy(u; s') = My, € V™ (U)

by

~ aip(xi)
() —Z(—z,. w(xj))ax,

1

6 One choice that suffices is to pick s/ < % to furthermore satisfy s’ < (1 — p)e, since then v €
Bym ) (143 s’) implies that some transport plan between u and v has cost less than (1 — p)e, which
means that less than 1 — p of the mass in v can be outside of Y| = U; Bx (y;; €).

dx.Y5)

7 ~
F 1 fi = 2"
or example, define ¢ (x) d(x,Y1)+d(x,Y2C)
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> S @

Fig. 3 A drawing for the proof of Theorem 2 when X = R2. Measure y is blue, U is black, Y, is light
gray, and Y7 is dark gray

This function is continuous by Lemma 4.3, and it maps into My, since ¢~ (0) = Y2C .
Also, note that ¢ (x;) < 1 for all x; and ¢ (x;) = 1 if x; € Y1, which together imply
that f(v)(x;) > v(x;) for x; € Y.

Define a homotopy H : Bymgy(i; s”) x [0, 11 — Bymgy (i; s) by

Hw,t) = —=tv+1tf(v).

By Lemma 2.1, the homotopy H is continuous so long as it is well-defined, which
we confirm now. First note that H (v, 1) € My, € V™ (). For H to be well-defined,
we must also show that H (v, t) € Bymgy(u; s), i.e. that dw (H (v, t), u) < s, for all
v € Bymyyy(u; s’) andr € [0, 1]. Since Bymy)(u; s”) has MCP(p, Y1), we know that
v(Y7) > p. Furthermore, f(v)(x;) > v(x;) for x; € Yy implies that H (v, t)(x;) >
v(x;) forallx; € Yy andt € [0, 1]. We claim that dw (H (v, t), v) < (1 — p)D. Indeed,
a transport plan from H (v, t) to v can leave mass v(x;) at each point x; € Y7, and
hence only needs to move mass totaling v(Y. 1C ) < 1 — p some distance at most D
(since supp(H (v, t)) < supp(v) € V for some V € U, which means diam(V) < D).
Therefore,

dw(HW, 1), u) <dw(H(,1),v) +dw(, )
<U-pD+s
<3+3
=s.

Finally, we show that the inclusion map of im(H (-, 1)) = im(f) into Bym gy (u; 5)
is nullhomotopic to the constant map to u. Indeed, define F: im(f) x [0, 1] —
Bymq)(u; s) by

Flw,t)=(0—-tHw+tu.
Note F(w, t) € My, € V™(U) and

dw(F(w,0), n) < (1 = tdw(w, p) +tdw (e, p) < (I —=1ns <s,
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Fig.4 A measure p with
supp(p) € U € U in blue, and a
measure v € Bym g (14; 57)
with supp(v) € V e U. We
cannot linearly homotope from
w directly to v since there may
be no set in U/ containing

supp (1) U supp(v)

where the first inequality above follows from Adams etal. (2022b, Lemma4.2), or more
generally, from Villani (2008, Theorem 4.8). So F is well-defined, and continuous by
Lemma 2.1.

Together, the homotopies H and F show that Bymy)(u; s’) is contractible in
Bym@gs) (s s), as desired. O

Remark 6.1 The reason why we need two homotopies H and F, and cannot linearly
homotope from  directly to v, is that v € Bym ) (14; s) need not imply that there is
any set in I/ that contains supp(x) U supp(v). Indeed, see Fig. 4.

7 Conclusion

We end with some open questions. By choosing the cover U/ appropriately, all of the
questions in this section have consequences for Vietoris—Rips and Cech complexes
and thickenings.

A continuous map between topological spaces is a weak equivalence if it induces
an isomorphism on all homotopy groups. Even though we show that the Vietoris
thickening V™ (U/) and the Vietoris complex V(I/) have isomorphic homotopy groups
in all dimensions, we do not find a map inducing these isomorphisms.

Question 7.1 If U is a uniformly bounded open cover of a separable metric space
X, then are the Vietoris thickening V™ (U) and the Vietoris complex V(U) weakly
homotopy equivalent? Are they homotopy equivalent? Are more hypotheses on X or
U needed, or do fewer hypotheses suffice?

Theorem 1 states that V(U/) and V™ (/) have isomorphic homotopy groups, and
Question 7.1 asks if they are weakly homotopy equivalent or homotopy equivalent. We
now ask if a particular natural map realizes these relationships. Recall from the end of
Sect. 2 that there is a natural bijection f: V() — V™ (U) from the Vietoris complex
to the Vietoris thickening, obtained by assigning a point in the geometric realization of
V(U) associated to the simplex {xg, . . ., xx} with barycentric coordinates (ao, . . ., ax)
to the measure Zf:o a;8x;, € V™ (U). By Adamaszek et al. (2018, Proposition 6.1) the
map f is continuous, but its inverse f~! may be discontinuous when X is infinite.

Question 7.2 [f U is a uniformly bounded open cover of a separable metric space
X, then does the natural map f: V(U) — V™(U) from the Vietoris complex to the
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Vietoris thickening induce an isomorphism on all homotopy groups, and furthermore
is f a homotopy equivalence?

Whitehead’s theorem states that a weak homotopy equivalencee between CW com-
plexes is a homotopy equivalence. Therefore, an affirmative answer to either of the
following questions would be useful towards showing that if V™ () and V() are
weakly homotopy equivalent, then they are also homotopy equivalent, by using White-
head’s theorem.

Question 7.3 IfU is a uniformly bounded open cover of a separable metric space X,
then is V(U) an absolute neighborhood retract (ANR) (Borsuk 1932 and Nhu and Cu
1989)? Every ANR has the homotopy type of a CW complex (Fritsch and Piccinini
1990,Theorem 5.2.1).

Question 7.4 If X is a metrizable CW complex and if r > 0, then are VR™(X; r) and
C™(X; r) homotopy equivalent to CW complexes?

In this paper we have focused on homotopy groups, but similar questions can be
asked about how the homology groups of V™ (/) and V(Uf) relate. Good covers up to
level n could potentially be included in a Mayer—Vietoris spectral sequence argument
to show that homology groups are isomorphic up to dimension n — 1; see Bott and Tu
(1982, §15) and (Brown 2012; Cardona 2018; Dugger and Isaksen 2004).

Question 7.5 IfU is a uniformly bounded open cover of a separable metric space X,
then do the Vietoris thickening V™ (U) and the Vietoris complex V(U) have the same
homology groups?

This question has recently been answered in the affirmative by Patrick Gillespie, and
moreover the assumption of separability is not needed; we refer the reader to Gillespie
(2022).

In addition to homology, one can ask about persistent homology. For X a totally
bounded metric space, it is shown in Adams et al. (2022b) and Moy (2021) that the
Vietoris—Rips simplicial complex filtration VR(X; —) and the Vietoris—Rips metric
thickening filtration VR™(X; —) are g-interleaved for any ¢ > 0. The same is true for
the Cech filtrations C(X; —) and C™(X; —). It follows that VR(X; —) and VR™(X; —)
have the same persistent homology and persistent homotopy groups, and similarly for
é(X ; —) and ém(X ; —). To be more explicit, in the Vietoris—Rips case, this means
that for any r < r’/, the inclusions VR(X;r) < VR(X;r') and VR™(X;r) <
VR™(X; r’) induce isomorphic images on homology Hj and on homotopy groups 7y
forallk >0, i.e.,

im(Hk(VR(X; r)) — Hi(VR(X; r’))) =
im((Hy (VR™(X: 1)) = Hi(VR™(X; 7)) and
1m<nk VR(X; r)) = m(VR(X; r)))

im( 7 (VR™(X; r)) — me(VR™(X; 7 ))) forany r < r’.
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Question 7.6 Do our results hold for variants of the metric thickening that allow for
infinitely supported measures (see Adams et al. 2022b, for example)?
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