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Abstract
Temporal action proposal generation (TAPG) is a challenging task, which requires localizing action intervals in an untrimmed
video. Intuitively, we as humans, perceive an action through the interactions between actors, relevant objects, and the surround-
ing environment. Despite the significant progress of TAPG, a vast majority of existing methods ignore the aforementioned
principle of the human perceiving process by applying a backbone network into a given video as a black-box. In this paper,
we propose to model these interactions with a multi-modal representation network, namely, Actors-Objects-Environment
Interaction Network (AOE-Net). Our AOE-Net consists of two modules, i.e., perception-based multi-modal representation
(PMR) and boundary-matching module (BMM). Additionally, we introduce adaptive attention mechanism (AAM) in PMR
to focus only on main actors (or relevant objects) and model the relationships among them. PMR module represents each
video snippet by a visual-linguistic feature, in which main actors and surrounding environment are represented by visual
information, whereas relevant objects are depicted by linguistic features through an image-text model. BMM module pro-
cesses the sequence of visual-linguistic features as its input and generates action proposals. Comprehensive experiments
and extensive ablation studies on ActivityNet−1.3 and THUMOS-14 datasets show that our proposed AOE-Net outperforms
previous state-of-the-art methods with remarkable performance and generalization for both TAPG and temporal action detec-
tion. To prove the robustness and effectiveness of AOE-Net, we further conduct an ablation study on egocentric videos, i.e.
EPIC-KITCHENS 100 dataset. Our source code is publicly available at https://github.com/UARK-AICV/AOE-Net.

Keywords Temporal action proposal · Temporal action detection · Human perceiving process · Attention mechanism ·
Human · Objects · Environment · Interaction · Video understanding
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1 Introduction

Given an untrimmed video, TAPG targets localizing tempo-
ral segments with specific starting and ending timestamps
for each action or activity appearing in the video. TAPG has
emerged as one of the most important problems in video
analysis and understanding (Shou et al., 2016; Gao et al.,
2017, 2018a, b). More specifically, TAPG is a key mod-
ule for other downstream tasks including temporal action
detection (TAD) (Fabian Caba Heilbron and Niebles, 2015;
Jiang et al., 2014), video captioning (Krishna et al., 2017),
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action recognition (Kay et al., 2017), etc. In general, TAPG
approaches can be divided into two main categories i.e.
anchor-based approaches and boundary-based approaches.
Inspired by anchor-based object detection in 2D images,
anchor-based TAPGmethods (Richard and Gall, 2016; Chao
et al., 2018;Heilbron et al., 2016; Shou et al., 2016;Gao et al.,
2017) pre-define a set of anchor segments and try to fit them
into groundtruth action segments in videos. Even though a
regression network has been applied to refine the propos-
als, anchor-based TAPG methods cannot fit all groundtruth
actions with diverse lengths by a finite number of anchors.
Boundary-based TAPG methods (Lin et al., 2018; Su et al.,
2020; Lin et al., 2019, 2020; Xu et al., 2020; Vo-Ho et al.,
2021; Vo et al., 2021) address the previous limitations by
first separately localizing starting and ending timestamps of
exiting actions and then fusing them by a follow-up action
evaluation module.

Despite good achievements on benchmarking datasets,
boundary-based approaches (Lin et al., 2018; Su et al., 2020;
Lin et al., 2019, 2020; Xu et al., 2020) still have some
limitations, in which the most major one is the overlooked
video representation. In such designs, a video is split into
consecutive snippets (or clips, chunks) of δ frames; then, a
3D convolutional backbone network (Ji et al., 2013; Car-
reira and Zisserman, 2017; Simonyan and Zisserman, 2014;
Feichtenhofer et al., 2019) is simply applied to the entire
spatial domain of each snippet to extract its visual repre-
sentation. However, not all spatial regions in a snippet are
relevant nor contribute to the formation of an action. Specif-
ically, as shown in Fig. 1a, an actor itself rather than spatial
environment influences the action i.e. jogging can be cre-
ated anywhere regardless of environment. To address those
limitations, Vo-Ho et al. (2021), Vo et al. (2021) recently pro-
pose to separately represent each snippet by both local actors
features and global surrounding environment features. Both
features are combined by a self-attention module to flexi-
bly balance between local and global visual representation.
Although the improvements reported (Vo-Ho et al., 2021; Vo
et al., 2021) are very promising, those paradigms are unable
to discriminate main actors who actually commit actions
from the inessential actors, as shown in Fig. 1b. Addition-
ally, both AEN and ABN may not be helpful in many videos
where actions are not dependent on the presence of humans,
i.e., egocentric videos, as shown in Fig. 1c.

Intuitively, besides actors and the environment, we, as
human beings, also perceive an action through the presence
of relevant objects and their interactions with the surround-
ings. However, unlike actors, relevant objects are often tiny
with few pixels (e.g., less than 20 × 20 pixels). This causes
the problem of vanishing information if we obtain objects
from visual feature maps extracted by some typical CNN-
based backbone. A possible solution is to leverage “vision
and language” methods (Mei et al., 2020; Anderson et al.,

2018; Radford et al., 2021) to represent objects by linguis-
tic features. By this way, information about the presence of
every object is fully preserved. We leverage CLIP (Radford
et al., 2021), which is a powerful model to associate both
vision and language, to extract linguistic features from rele-
vant objects existing in video snippets. As a result, relevant
objects are represented by linguistic features whereas envi-
ronment and main actors are represented by visual features.
Figure 1d illustrates our intuition for video representation.

In this paper, we propose a novel Actors-Objects-
Environment Interaction Network (AOE-Net) as a simulation
of human perception in modeling the video by visual fea-
tures from main actors and environment as well as linguistic
features from relevant objects. Our AOE-Net consists of two
main modules, i.e., (i) Perception-based multi-modal repre-
sentation (PMR) to extract visual-linguistic (V-L) feature and
model actors-objects-environment relations in each snippet,
(ii) Boundary-matching module (BMM) to localize and gen-
erate action proposals. To select only main actors along with
choosing relevant objects and extract mutual relationships
among each of these entities, we propose a novel adaptive
attention mechanism (AAM).
Our contributions are summarized as follows:

• We propose a novel network, AOE-Net, which fol-
lows the human perception process to understand human
actions.

• We introduce a novel and effective attention module,
AAM, which simultaneously selects main actors (or
relevant objects) and eliminates inessential actor(s) (or
objects), then, extracts semantic relations between main
actors (or relevant objects).

• Our proposed AOE-Net achieves the SOTA performance
on common benchmarking datasets of ActivityNet−1.3
and THUMOS-14 in both TAPG and TAD tracks with a
large margin compared to previous works.

• We investigate the robustness of AOE-Net while working
on egocentric videos of EPIC-KITCHENS 100, in which
the main actor is absent from the video views.

• We provide ablation studies on the contribution of each
entity type (i.e., main actors, relevant objects, and envi-
ronment) as well as various combinations among them.

• Extensive ablation studies and qualitative analysis of
AAM are also provided to investigate its effectiveness.

2 RelatedWorks

2.1 Temporal Action Proposal Generation (TAPG)

As stated above, prior works can be categorized into two
groups: anchor-based and boundary-based. Anchor-based
methods (Heilbron et al., 2016; Chao et al., 2018; Heil-
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(b)

(c)

(d)

Fig. 1 Most existing TAPG methods (Lin et al., 2018; Su et al., 2020;
Lin et al., 2019, 2020; Xu et al., 2020) apply a 3D backbone network to
entire spatial domain. However, as shown in a, actors contribute more
importance to an action than environment itself. The SOTA inTAPG (Vo
et al., 2021; Vo-Ho et al., 2021) extract both local humans features and
global environment feature; however, they are unable to either distin-

guish between main actors who actually commit actions and inessential
actors b or address egocentric videos where actors are not visible in
the scene c. Our proposed AOE-Net, as illustrated in d, consists of
the global visual environment, local visual main actors features, and
linguistic relevant objects features
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bron et al., 2016; Shou et al., 2016; Gao et al., 2017) are
inspired by anchor-based object detection methods (Ren et
al., 2015; Lin et al., 2017; Redmon and Farhadi, 2018), i.e.,
they pre-define a set of fixed segments and learn to fit them
into groundtruth action segments in the video. Among them,
Heilbron et al. (2016) uses space-time interest points and dic-
tionary learning. Shou et al. (2016) makes use of C3D (Tran
et al., 2015) to build a binary classification task to gener-
ate proposal segments. TURN (Gao et al., 2017) divides a
video into units and employs unit-level features with a tem-
poral regression. In some of those anchor-based approaches,
a regression network is also applied to refine the propos-
als. However, the groundtruth proposals vary a lot in terms
of duration, which discourages the performance of anchor-
based methods. Boundary-based methods (Zhao et al., 2017;
Lin et al., 2018; Su et al., 2020; Liu et al., 2019; Lin et al.,
2019, 2020; Xu et al., 2020; Vo-Ho et al., 2021; Vo et al.,
2021) resolve this problem by initially localizing the start-
ing and ending timestamps of all actions appearing in the
video and then matching them by an action evaluation mod-
ule, which estimates the actionness score of every possible
pair of boundaries. Among them, Zhao et al. (2017) adopts a
watershed algorithm to group contiguous high-score as pro-
posals. Lin et al. (2018) first predicts each temporal point as
either starting or ending point of an action and then evaluates
proposals. Gao et al. (2018a) combines both anchor-based
and boundary-based approaches to reorganize the candidate
set. Liu et al. (2019) employs a bilinear matching module to
perform TAPG at two distinct granularities. Generally, the
boundary-based methods provide superior performance over
anchor-based methods.

Our AOE-Net belongs to the second category. Different
fromexisting boundary-basedmethods,AOE-Net is based on
V-L feature by leveraging the human perception principle.

2.2 AttentionModule

Attention Models (Atts) have a long history (Itti et al.,
1998) and have become an important concept in neural net-
works (Chaudhari et al., 2021). Atts can be divided into two
main groups: Soft-Attention Models (Soft-Atts) and Hard-
Attention Models (Hard-Atts). Bahdanau et al. (2014) was
one of the first Soft-Atts that was applied to machine transla-
tion. Because of its differentiable architecture, which helps
the whole model learn in an end-to-end fashion, Soft-Atts
has become an essential component in a large number of
applications (e.g., speech (Cho et al., 2015), NLP (Galassi et
al., 2020), computer vision (Chaudhari et al., 2019)). Because
self-attention networks (Vaswani et al., 2017) are able to learn
the relations between input elements regardless of their quan-
tity, their popularity is increasing in not only languagemodels
but also in computer vision. Hard-Atts was first introduced
in Xu et al. (2015) and Elsayed et al. (2019) for digit and

object classifications, respectively. Hard-Atts aims to mask
out irrelevant elements of the inputs by sampling the input
elements with probabilities to reduce the distractions. This
is an advanced benefit over Soft-Atts; however, Hard-Att
in Xu et al. (2015) is indifferentiable. Recently, Patro and
Namboodiri (2018) proposes a Hard-Att that can be trained
by normal gradient back-propagation, with a fundamental
observation that the L2-norm values of more important fea-
tures are usually higher than those of less important features
in a feature map.

In this work, we propose an adaptive attention model
(AAM), which leverages both the differentiable Hard-Att
(Patro and Namboodiri, 2018) and the self-attention network
(Vaswani et al., 2017).

3 Our Method

Given an input video V = {vi }Ni=1, where N is the number of
frames, we follow the standard settings from existing works
to divideV into a sequence of δ−frame snippets si |Ti=1. Each
snippet si consists of δ consecutive frames, therefore, V has a
total of T =⌈ N

δ

⌉
snippets. Let φ(.) be an encoding function

to extract the visual feature fi of a δ-frame snippet si ; the
video V can be represented as F as follows:

F = { fi }Ti=1, where fi = φ(si ) (1)

Different from the existing works (Su et al., 2020; Lin et
al., 2020; Long et al., 2019; Xu et al., 2020; Liu et al., 2020;
Lin et al., 2019, 2018; Xu et al., 2020; Bai et al., 2020; Tan et
al., 2021),which simply defineφ(.) as a pre-trainedbackbone
network (e.g., C3D (Ji et al., 2013), 2Stream (Simonyan and
Zisserman, 2014), Slow-fast (Feichtenhofer et al., 2019)), we
model φ(.) by the proposed PMR, which is capable of repre-
senting visual information of the snippet in both global and
local perspectives, using both visual and linguistic informa-
tion.

Given the feature sequence F , the boundary-matching
module (BMM) has a role of localizing action proposals.
In this section, we introduce PMR in Sect. 3.1. Then, we
present the boundary-matching module in Sect. 3.3.

3.1 Perception-basedMulti-modal Representation
(PMR)

PMR aims to extract features based on the principle of
how a human perceives an action (i.e., identify the main
actors at each temporal period, recognize relevant objects
and understand interactions between main actors, relevant
objects, and the environment) to specify when the action
starts and ends. In this paper, we are interested in discovering
two modalities of vision and language to extract V-L feature.
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Fig. 2 The architecture of our proposed PMR. Given a δ-snippet si , the
V-L feature is obtained by four modules: (i) Actors beholder to extract
local visual action feature f a ; (ii) Environment beholder to extract
global visual environment feature f e; (iii) Objects beholder to extract

linguistic object feature f o, and (iv) Actors-objects-environment inter-
action beholder to model V-L feature as the interaction between actors,
objects and the environment

PMR consists of four main components: (i) Environment
beholder; (ii) Actors beholder; (iii) Objects beholder; and (iv)
Actors-objects-environment interaction beholder. The over-
all architecture of PMR is shown in Fig. 2.

3.1.1 Environment Beholder

This component has the role of capturing the global visual
information of an input δ-frame snippet. To extract the spatio-
temporal information of the snippet, we adopt a 3D network
pre-trained on action recognition benchmarking datasets as
a backbone feature extractor. First, the snippet is processed
through all convolutional blocks of the 3Dnetwork to obtain a
feature map FM at the final block; then, an average pooling
operator is employed to produce a spatio-temporal feature
vector f e.

3.1.2 Actors Beholder

This component semantically extracts visualmain actors rep-
resentation f a . In most cases, an action cannot happen if a
human (main actor) is absent notwithstanding environments
(Fig. 1a). However, when an action occurs, it does not nec-
essarily signal that every actor in the scene has committed
the action (Fig. 1b). Herein, the actors beholder first local-
izes all existing actors in a δ-frame snippet. To do so, we
apply a human detector onto the middle frame assuming
that the actors would not move fast enough to be mislocated
with a small δ. We denote B = {bi }NB

i=1 as a set of detected
human bounding boxes, where NB ≥ 0. Afterwards, each
of the detected bounding boxes, bi , is aligned onto feature
map FM, which is obtained by the 3D network backbone

from environment beholder, usingRoIAlign (He et al., 2017).
Then, each bounding box feature is average-pooled into a sin-
gle feature vector f ai . Finally, we obtain a set of actor features

Fa = { f ai }NB
i=1.

To adaptively select an arbitrary number of main actors
and extract their mutual relationships, we apply our proposed
AAM (described in Sect. 3.2), which is elaborately explained
in Sect. 3.2 and illustrated in Fig. 5.

3.1.3 Objects Beholder

Different from the environment and actors, objects may be
tiny with a few pixels and therefore may vanish in the feature
map FM. Hence, in this objects beholder, we propose to
use linguistic information from relevant objects, which is
considerably more informative than visual information. We
leverage CLIP (Radford et al., 2021) as a pre-trained model
to extract linguistic information.

CLIP (Radford et al., 2021) is trained with a large num-
ber of image and description pairs, thus, CLIP effectively
learns the correlation between the global scene information
and local scene elements.Many scene elements are presented
as small objects in the scene and they are hardly captured by
an object detector.With CLIP, scene elements can be inferred
byglobally encoding the entire scene information.Thus, once
the entire scene is captured, the small objects of scene ele-
ments are obtained accordingly.

For example, given an image of people playing tennis
shown in Fig. 3 as below, it is unfeasible to detect a small
object such as a tennis ball using an object detector. As
shown in Fig. 3 (left), Mask-RCNN [49] is only able to
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Fig. 3 An example of objects detected by Mask-RCNN (He et al., 2017) (left) vs. CLIP (right), where the most relevant objects selected by our
AAM are highlighted in bold red) (Color figure online)

Fig. 4 Illustration of object text
extraction where Encoding,
Embedding, and CLIP are
pre-trained models from
Vaswani et al. (2017),
Dosovitskiy et al. (2021),
Radford et al. (2021),
respectively

detect humans and tennis racket while the tennis ball is not
captured. Whereas, CLIP already encoded tennis scene ele-
ments including tennis ball when modeling tennis games. As
shown in Fig. 3 (right), CLIP captures tennis ball and other
related objects such as basket, court, fence, etc. In this exam-
ple, we choose top K = 40 detected objects by CLIP. The
most relevant objects selected by AAM are shown in bold
red.

Object text extraction is the first step of this component as
illustrated in Fig. 4. However, our task just focuses on human
activities and their related objects. Therefore, we utilize the
corpus of ActivityNet Captioning dataset (Krishna et al.,
2017) to construct the object text vocabulary T = {Ti }Di=1.

ActivityNet Captioning dataset (Krishna et al., 2017)
annotates the same set of videos in ActivityNet−1.3 (Fabian
Caba Heilbron and Niebles, 2015). In its training split, there
are a total of 37,447 sentences to densely describe every event
in each video, these captions is composed by a vocabulary
of up to 10,648 words. In order to create a vocabulary which
majorly contains objects and human activities, we eliminate
stopwords, pronouns, numbers, and infrequentwords (which
appears 5 times or lower in the whole dataset). Afterwards,
we remove words that do not present in the vocabulary used
by CLIP (Radford et al., 2021). Fortunately, thanks to the

byte pair (Sennrich et al., 2016) encoding used in CLIP (Rad-
ford et al., 2021), there are very few words that are removed
after in this step. To this end, the vocabulary for our objects
beholder consists of D = 3, 544 words is extracted from the
ActivityNet Captioning dataset (Krishna et al., 2017).

Each word Ti ∈ T is encoded by a Transformer net-
work (Vaswani et al., 2017) into a text feature T f

i . Let Wt

be a text projection matrix pre-trained by CLIP, the embed-
ding text vocabulary is computed as T e = Wt · T f , where
T f = {T f

i }Di=1. Let Wi be an image projection matrix pre-
trained by CLIP, a middle frame I of the δ-frame snippet
is first encoded by Vision Transformer (Dosovitskiy et al.,
2021) to extract visual feature I f , and then embedded byWi ,
i.e., I e = Wi · I f . The pairwise cosine similarities between
embedded I e and T e is then computed. Top K similarity
scores are chosen as output objects text represented by fea-
ture Fo = {T f

i }Ki=1. Ablation study on K will be discussed
in Sect. 4.5.3. Similar to the actors beholder, we apply the
proposed AAM (described in Sect. 3.2) to select relevant
objects from Fo, then model the semantic relations among
them, and finally obtain linguistic feature f o.
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Algorithm 1 AAM to extract the representation of main
actors in a snippet.
Data: Feature vector f e and features set Fa represent environment

and all actors that appear in an input snippet, respectively.
Result: Feature vector f a represents main actors.
1: f̂ e ← MLPθe ( f

e)

2: set F̃a , Ha to empty list � Fa stores selected main actors, Ha stores scores
of every actor

3: for each f ai in Fa do

4: f̂ ai ← MLPθa ( f ai )

5: hai ←|| f̂ ai ⊕ f̂ e ||2 � ⊕: element-wise addition
6: append hai to Ha

7: end for
8: Ha ← so f tmax(Ha )

9: τ ← 1
|ha |

10: for each hai in Ha do
11: if hai > τ then

12: append f ai to F̃a

13: end if
14: end for
15: f a ← sel f _attention(F̃a )

3.1.4 Actors-Objects-Environment (AOE) Beholder

This component aims to model the relations between global
visual environment feature f e, local visual of main actors
features f a , and linguistic relevant objects features f o.
Firstly, we stack three types of features together as Faoe =
[ f a, f o, f e]. Then, we employ the self-attention model
(Vaswani et al., 2017) followed by an average pooling layer
to fuse the stack of features Faoe into fi . fi is a V-L fea-
ture that represents the input snippet si through both visual
(environment and actors modalities) and linguistic (objects
modality) ways.

3.2 Adaptive AttentionMechanism (AAM)

Given M actors (or objects) obtained in the input snippet,
only a few of those, i.e., M̂ main actors (or relevant objects),
actually contribute to an action. Because M̂ is unknown and
continuously changes throughout the input video,wepropose
AAM that inherits the merits from adaptive hard attention
(Malinowski et al., 2018) to select an arbitrary number of
main actors (or objects) and a soft self-attention mechanism
(Vaswani et al., 2017) to extract relationships among them.
Take actors beholder as an instance, AAM is described by
the pseudocode in Algorithm 1 and illustrated in Fig. 5.

To begin, the environment feature f e and actors features
Fa are embedded into the same dimensional space by a
multi-layer perceptrons (MLPs) parameterized by θe and θa ,
respectively:

f̂ e = MLPθe ( f
e) (2)

F̂a = { f̂ ai }Mi=1 where f̂ ai = MLPθa ( f
a
i ) (3)

Fig. 5 Illustration of proposed AAM. We choose actors features Fa

and environment feature f e as an example. AAM aims to select main
actors features, followed by fusing arbitrary main actors features, to
obtain visual main actors representation f a

Then, f̂ e is combined with each feature f̂ ai of F̂a by
element-wise addition (i.e., ⊕) to form a collaborative fea-
ture. Afterwards, we can compute the attention score hai
corresponding to f̂ ai using the L2-norm of its correspond-
ing collaborative feature. These computational steps can be
presented through the following equation:

hai =|| f̂ ai ⊕ f̂ e ||2 (4)

It is proven in Malinowski et al. (2018) that features with
the greater L2-norm values carry more meaningful informa-
tion and better contribute to later modules.

Next, we re-scale all L2-norm values by softmax func-
tion to be summed up to 1.0, because L2-norm values are
unbounded:

Ha = {hai }Mi=1, where h
a
i = eh

a
i

�M
i=1e

hai
(5)

To obtain the features of an arbitrary number of main
actors, we create an adaptive threshold based on the total
number of actors τ = 1

|Fa | and retrieve only features f ai ∈
Fa with corresponding score higher than τ :

F̃a = { f ai | hai ≥ τ } (6)

After that, we fuse a set of main actors feature vectors F̃a

into a single feature vector f a by leveraging the self-attention
Transformer Encoder proposed in Vaswani et al. (2017).

In the case of objects beholder, the input actors features
Fa is replaced by the objects features Fo.

3.3 Boundary-MatchingModule (BMM)

BMM is responsible for localizing action boundary and gen-
erating action proposals in videos. In our AOE-Net, BMM
module is adopted from previous works i.e. BSN (Lin et al.,
2018), BMN (Lin et al., 2019), ABN (Vo-Ho et al., 2021),
AEN (Vo et al., 2021), AEI (Vo et al., 2021) because of its
standard and simple design. BMM takes the output V-L fea-
tures sequence F = { fi }Ti=1 from PMR module as its input.
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Fig. 6 The overall architecture of our proposed AOE-Net, consisting of perception-based multi-model representation module (PMR) and boundary-
matching module (BMM)

Table 1 The detailed architecture of BMM with three components.

Layers Input Output

1DConv. 256 × 3/1, ReLU F : F × T O1 : 256 × T

1DConv. 128 × 3/1, ReLU O1 : 256 × T O2 : 128 × T

1DConv. 256 × 3/1, ReLU O2 : 128 × T O3 : 256 × T

1DConv. 2 × 3/1, Sigmoid O3 : 256 × T OT : 2 × T

Matching layer O2 : 128 × T O5 : 128 × 32 × D × T

3DConv. 512 × 32 × 1 × 1/(32, 0, 0), ReLU O5 : 128 × 32 × D × T O6 : 512 × 1 × D × T

Squeeze O6 : 512 × 1 × D × T O7 : 512 × D × T

2DConv. 128 × 1 × 1/(0, 0), ReLU O7 : 512 × D × T O8 : 128 × D × T

2DConv. 128 × 3 × 3/(1, 1), ReLU O8 : 128 × D × T O9 : 128 × D × T

2DConv. 2 × 1 × 1/(0, 0), Sigmoid O9 : 128 × D × T OP : 1 × D × T

F is the input feature obtained from PMR. T and D are the temporal length of the video and maximum duration of proposals in terms of the number
of snippets

Our BMM contains three components: semantic modeling,
temporal estimation (TE), and proposal estimation (PE) as
illustrated in Fig. 6. The first component models the semantic
relationship between snippets. The TE component assesses
each snippet si |Ti=1 to evaluate probabilities of action start-
ing (PS

i ) and action ending (P
E
i ) that exist in si . Meanwhile,

the PE component evaluates every interval [i, j] in the video
to estimate its actionness score PA

i,d , where d = j − i . The
detailed architecture of BMM is provided in Table 1. The
semantic modeling component is implemented by two 1-D
Conv. layers and outputs a feature map O2 ∈ R128×T . The
later components, TE and PE, take O2 as their input and
generate OT ∈ R2×T and OP ∈ R1×D×T , respectively. The
output OT presents probabilities of action starts (PS ∈ RT )
and action ends (PE ∈ RT ). The output OP contains action-
ness scores PA ∈ RD×T .

At the inference stage, we search through PS and PE to
select temporal locations i whose PS

i or PE
i are local maxi-

mums to form sets of potential starting and ending temporal
locations, respectively. Then, starting and ending locations
(s, e) (e.g. s ≤ e ≤ T ) are paired and become a candidate
proposal with the score s = PS

s · PE
e · PA

s,e−s . Based on

the timestamps and scores of candidate proposals, we finally
applyNMS(Bodla et al., 2017;Neubeck andVanGool, 2006)
to produce the final set of temporal action proposals.

3.4 TrainingMethodology

3.4.1 Training Labels Generation from Groundtruth

We follow (Lin et al., 2019, 2018) to generate the ground
truth labels for training process including starting labels, end-
ing labels for Ls,Le and duration labels for Lact .

The starting and ending labels are generated for every
snippet of the video, which are called LS = {lsn}Tn=1 and
LE = {len}Tn=1, respectively. The boundary timestamps (start-
ing and ending) of every action instance ai = (si , ei ) are
rescaled into T -snippet range by multiplying themwith T ·fps

L
where fps is the frame rate of the video and the action instance
ai ∈ A, A = {ai }Mi=1. After rescaling, the action instance ai
becomes a new action instance aδ

i = (sδ
i , e

δ
i ). For every snip-

pet tn ∈ T , we denote a temporal region rn = [tn −1, tn +1].
Analogously, for every pair of boundaries (sδ

i , e
δ
i ) of action

aδ
i , we denote regions rsi = [sδ

i − 3
2 , s

δ
i + 3

2 ] and rei =
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[eδ
i − 3

2 , e
δ
i + 3

2 ] as their corresponding starting region and end-
ing region. By this formulation, we have two sets of regions
RS = {rsi }Mi=1 and RE = {rei }Mi=1 for starting and ending
boundaries, respectively. Finally, starting label lsn and end-
ing label len of a snippet tn are calculated by the following
functions:

lsn =

⎧
⎪⎨

⎪⎩

1,
M∑

i=1

|rn∩r si ||r si | ≥ 0.5

0, otherwise
len =

⎧
⎪⎨

⎪⎩

1,
M∑

i=1

|rn∩rei ||rei | ≥ 0.5

0, otherwise

The duration labels for a video are gathered into a matrix
LD ∈ {0, 1}D×T where D is the maximum length of propos-
als being considered in number of snippets, as suggested in
Lin et al. (2019),we set D = T in all of our experiments.With
an element at position (ti , t j ) stands for a proposal action

ap = (ts = t j ·T
tv

, te = (t j+ti )·T
tv

), it will be assigned by 1
if its Interaction-over-Union with any ground truth action in
A = {ai }Mi=1 reaches a local maximum, or 0 otherwise.

3.4.2 Loss Functions

To train our AOE-Net with the groundtruth labels, we define
the loss function LAOE as in Eq. (7) where Ls , Le, and Lact

are loss functions corresponding to starting boundary, ending
boundary and actionness score.

LAOE = Ls(P
S, LS) + Le(P

E , LE ) + Lact (P
A, L A) (7)

We use weighted binary log-likelihood loss Lwb for Ls

and Le, which is defined as follows:

Lwb(P, L) =
N∑

i=1

[
Li

N+ log Pi + (1 − Li )

N− log(1 − Pi )

]

(8)

where N+ and N− are the number of positives and negatives
in groundtruth labels, respectively. Conversely, Lact (P, L)

is defined as follows:

Lact (P, L) = Lwb(P, L) + λL2(P, L), (9)

where L2 is the mean squared error loss and λ is set to 10.
To reduce time cost in the training phase of our proposed

AOE-Net, actors features Fa , objects features set Fo and
environment feature f e are extracted in advance. Then,AAM
andAOE Interaction beholder of PMRmodule is trainedwith
BMM module in an end-to-end framework.

4 Experiments

4.1 Datasets andMetrics

4.1.1 Datasets

Our experiments on TAPG and TAD are carried out using
both ActivityNet−1.3 (Fabian Caba Heilbron and Niebles,
2015) and THUMOS-14 (Jiang et al., 2014) datasets. The
former features 20K videos and 200 activities that have been
annotated, whereas the latter has 414 videos and 20 types
of actions. We follow prior works (Lin et al., 2018, 2019,
2020) for videos preprocessing with the snippet length set to
δ = 16 in all experiments. To prove the effectiveness of our
proposed AOE-Net on egocentric videos, we also conduct an
experiment on TAPG task of EPIC-KITCHENS 100 dataset
(Damen et al., 2021),which consists of 100 video hours, 20M
frames, 90K actions in 700 variable-length videos captured
in 45 environments using head-mounted cameras.

4.1.2 Metrics

In TAPG, we use two common metrics, i.e., AR@AN and
AUC, to evaluate the proposed AOE-Net as well as compare
it with SOTA approaches. The former metric is the average
recall (AR) calculated at a specific average number of propos-
als (AN) preserved by each video. The latter one is the area
under the AR versus the AN curve score. AR@100 and AUC
are the most commonly used metrics in ActivityNet−1.3. In
THUMOS-14, however, just AR@AN is utilized to compare
approaches; nonetheless, multiple AN are chosen from a list
of [50, 100, 200, 500, 1000].

In TAD, we use mean Average Precision (mAP) to bench-
mark approaches. Following the common settings (Lin et al.,
2018, 2020, 2019; Liu et al., 2020; Zhao et al., 2020), we
evaluate TADmethods in ActivityNet−1.3 with tIoU thresh-
olds of {0.5, 0.75, 0.95}, and average mAP. Whereas, TAD
methods in THUMOS-14 are evaluated with tIoU thresholds
of {0.3, 0.4, 0.5, 0.6, 0.7}.

4.2 Implementation Details

To extract visual features from videos, we use a C3D (Ji
et al., 2013) network pre-trained on Kinetics-400 (Kay et
al., 2017) as the backbone network in all experiments on
both ActivityNet−1.3 (Fabian Caba Heilbron and Niebles,
2015) and THUMOS-14 (Jiang et al., 2014) (unless stated
otherwise). The dimensions of the features extracted from
the C3D backbone are 2048.

In the objects beholder, to extract object text, we use
CLIP (Radford et al., 2021) that was pre-trained on a large-
scale dataset of 400M image-text pairs crawled from the
Internet. The text feature and image feature are encoded by
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Table 2 TAPG comparisons on ActivityNet−1.3 (Fabian Caba Heilbron and Niebles, 2015) in terms of AR@100 and AUC on validation set and
AUC on testing set

Methods Venue & Year Feature AR@100 AUC(val) AUC(test)

TCN Dai et al. (2017) ICCV17 2Stream – 59.58 61.56

MSRA Yao et al. (2017) CVPRW17 P3D – 63.12 64.18

SSTAD Buch et al. (2017) BMVC17 C3D 73.01 64.40 64.80

CTAP Gao et al. (2018a) ECCV18 2Stream 73.17 65.72 –

BSN Lin et al. (2018) ECCV18 2Stream 74.16 66.17 66.26

SRG Eun et al. (2019) IEEE-TCSVT19 2Stream 74.65 66.06 –

MGG Liu et al. (2019) CVPR19 I3D 74.54 66.43 66.47

BMN Lin et al. (2019) ICCV19 2Stream 75.01 67.10 67.19

DBG Lin et al. (2020) AAAI20 2Stream 76.65 68.23 68.57

BSN++ Su et al. (2020) ACCV20 2Stream 76.52 68.26 –

TSI++ Liu et al. (2020) ACCV20 2Stream 76.31 68.35 68.85

MRZhao et al. (2020) ECCV20 I3D 75.27 66.51 –

AEN Vo-Ho et al. (2021) ICASSP21 C3D 75.65 68.15 68.99

ABN Vo et al. (2021) IEEE-Access21 C3D 76.72 69.16 69.26

SSTAP Wang et al. (2021) CVPR21 I3D 75.54 67.53 –

TCANet Qing et al. (2021) CVPR21 2Stream 76.08 68.08 –

Zheng, et.al. Zheng et al. (2021) NPL21 2Stream 74.93 65.20 –

AEI Vo et al. (2021) BMVC21 C3D 77.24 69.47 70.09

AOE-Net C3D 77.67 69.71 70.10

2Stream 76.32 68.35 69.00

SlowFast 76.95 68.95 69.86

Transformer (Vaswani et al., 2017) and Vision Transformer
(Dosovitskiy et al., 2021) networks, respectively. In the actors
beholder, to detect humans, we use a Faster-RCNN model
(Ren et al., 2015) that has been pre-trained on the COCO
dataset (Lin et al., 2014). Adam optimizer was used to train
our AOE-Net, and the initial learning rate is set to 0.0001 for
ActivityNet−1.3 and 0.001 for THUMOS-14.

On ActivityNet−1.3, Soft-NMS (SNMS) (Bodla et al.,
2017) is used in post-processing for all experiments in
TAPG and TAD. On THUMOS-14, following (Lin et al.,
2018, 2019), both Soft-NMS (Bodla et al., 2017) and NMS
(Neubeck andVanGool, 2006) are utilized in post-processing
of TAPG, whereas only NMS is applied in TAD. In the
following experimental results,we emphasize the best perfor-
mance in bold and the second-best performance in underline.

4.3 Performance and Comparison on TAPG

Table 2 presents TAPG comparison on both validation and
testing sets of ActivityNet−1.3 (Fabian Caba Heilbron and
Niebles, 2015). The experimental results demonstrate that
our approach AOE-Net with C3D (Ji et al., 2013) feature out-
performs the existingmethods in terms ofAR@100 andAUC
by an adequate margin. Table 3 shows the TAPG comparison
on THUMOS-14. Compared to the existing TAPG methods,

our AOE-Net performs very competitive on AR@ANs met-
ricswith both SNMSandNMS.OnSNMS,AOE-Net obtains
the second best on all AR@ANs, except AR@100 where it
is competitive to the best ones (50.26 vs. 50.67). On NMS,
AOE-Net obtains the best onAR@100 and the second best on
AR@200 and AR@500 with very close gap with the SOTA,
57.49 vs. 57.74 and62.40 vs. 62.74, respectively.Notably, the
performance on TAPG in both datasets of our AOE-Net are a
very competitive with AEI-B (Vo et al., 2021) and followed
closely by ABN (Vo et al., 2021), both of which also incor-
porate local actors and global environment. This experiment
strongly supports our observation and motivation on using
the human perception principle to analyze human actions in
untrimmed videos.

Beside solely evaluating AOE-Net on TAPG and TAD
tasks, the effects of different backbone features to our
AOE-Net also worth an investigation. The performance of
our proposed AOE-Net network on different features, i.e.,
C3D (Ji et al., 2013), 2Stream (Simonyan and Zisserman,
2014) and Slowfast (Feichtenhofer et al., 2019), with the
features dimensions are 2048, 2314 and 400, respectively,
are reported in the bottom part of Table 2 on TAPG task of
ActivityNet−1.3 dataset (FabianCabaHeilbron andNiebles,
2015). As demonstrated, we notice that the performance with
C3D (Ji et al., 2013) features are state-of-the-art, while the
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Table 3 TAPG comparisons on THUMOS-14 in terms of AR@AN, where SNMS represents Soft-NMS (Bodla et al., 2017)

Methods Venue & Year Feature @50 @100 @200 @500 @1000 Average

SNMS CTAP Gao et al. (2018a) ECCV18 2Stream 32.49 42.61 51.97 – – –

BSN Lin et al. (2018) ECCV18 2Stream 37.46 46.06 53.21 60.64 64.52 52.38

MGG Liu et al. (2019) CVPR19 I3D 39.93 47.75 54.65 61.36 64.06 53.55

BMN Lin et al. (2019) ICCV19 2Stream 39.36 47.72 54.70 62.07 65.49 53.87

DBG Lin et al. (2020) AAAI20 2Stream 37.32 46.67 54.50 62.21 66.40 53.42

Rapnet Gao et al. (2020) AAAI20 C3D 40.35 48.23 54.92 61.41 – –

TSI++Liu et al. (2020) ACCV20 2Stream 42.30 50.51 57.24 63.43 – –

MRZhao et al. (2020) ECCV20 I3D 44.23 50.67 55.74 – – –

BC-GNN Bai et al. (2020) ECCV20 2Stream 40.50 49.60 56.33 62.80 – –

TCANet Qing et al. (2021) CVPR21 2Stream 42.05 50.48 57.13 63.61 66.88 56.03

SSTAP Wang et al. (2021) CVPR21 2Stream 41.01 50.12 56.69 – 68.81 –

ABN Vo et al. (2021) IEEE-Access21 C3D 40.87 49.09 56.24 63.53 67.29 55.40

AEI-B Vo et al. (2021) BMVC21 C3D 44.97 50.13 57.34 64.43 67.78 56.93

AOE C3D 44.56 50.26 57.30 64.32 68.19 56.93

NMS BSNLin et al. (2018) ECCV18 C3D 27.19 35.38 43.61 53.77 59.50 43.89

BSNLin et al. (2018) ECCV18 2Stream 35.41 43.55 52.23 61.35 65.10 51.53

BMNLin et al. (2019) ICCV19 C3D 29.04 37.72 46.79 56.07 60.96 46.12

BMNLin et al. (2019) ICCV19 2Stream 37.15 46.75 54.84 62.19 65.22 53.23

DBGLin et al. (2020) AAAI20 C3D 32.55 41.07 48.83 57.58 59.55 47.92

DBGLin et al. (2020) AAAI20 2Stream 40.89 49.24 55.76 61.43 61.95 53.85

ABNVo et al. (2021) IEEE-Access21 C3D 44.89 51.86 57.36 61.67 62.59 55.67

AEI-B Vo et al. (2021) BMVC21 C3D 45.74 52.39 57.74 62.49 63.38 56.35

AOE C3D 44.78 52.41 57.49 62.40 63.40 56.10

performance with SlowFast (Feichtenhofer et al., 2019) fea-
tures are closely behind. Whereas, the performance with
2Stream (Simonyan and Zisserman, 2014) features is the
worst in three types of backbone features.

In TAPG, generalizability is also a significant criterion to
evaluate a method. Following the same experiment setup in
Lin et al. (2018), Lin et al. (2019), Lin et al. (2020), Liu
et al. (2020), Vo et al. (2021), we conduct this study on
ActivityNet−1.3 with two subsets, i.e., Seen: “Sports, Exer-
cises, and Recreation” and Unseen: “Socializing, Relaxing,
and Leisure”. Our AOE-Net is trained on Unseen+Seen and
Seen training sets, separately, and then evaluated on the Seen
and Unseen validation sets. Figure 7 provides the perfor-
mance comparison and visualization between AOE-Net with
other SOTA methods. In each chart on the right, the per-
formance of AOE-Net is shown in the last columns, which
demonstrates that AOE-Net is superior to other SOTA meth-
ods. Figure 7 also shows that our AOE-Net achieves good
performances on Seen validation set with an acceptable drop
onUnseen validation set on both training configurations, sug-
gesting that our AOE-Net is highly generalizable to unseen
action types.

4.4 Performance and Comparison on TAD

For a fair comparison, we follow the experiment settings in
Lin et al. (2018), Lin et al. (2019), Lin et al. (2020), Xu
et al. (2020), Bai et al. (2020), Liu et al. (2019), Tan et al.
(2021), Vo et al. (2021) to produce labels for action proposals
produced by our AOE-Net. On AcitivityNet−1.3, we adopt
the top-1 video-level classification results generated by the
method in Xiong et al. (2016) for our proposals. Whereas
on THUMOS-14, we instead label our action proposals with
eitherUntrimmedNet (Wanget al., 2017) (top-2 classification
results) or P-GCN (Zeng et al., 2019).

Table 4 shows TAD performance comparison between
AOE-Net and other SOTA methods on ActivityNet−1.3
validation set. The results emphasize that our method out-
performs SOTA methods on multiple tIoU thresholds. The
experiment results on THUMOS-14 test set in Table 5
demonstrate that our AOE-Net is superior to other SOTA
methods on most of the metrics with both classifiers.

4.5 Ablation Study

We further conduct a rich ablation study to show the effec-
tiveness of each component in the proposed AOE-Net as well
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Fig. 7 Generalizability
evaluation and comparisons on
Activity
Net−1.3 in terms of AR@100
and AUC. Methods are trained
on Unseen+Seen and Seen
training sets, respectively; and
are evaluated on Seen (first two
charts) and Unseen (last two
charts) validation sets. Top:
Detailed performance of
individual experiment setting of
various methods. Bottom:
Visualized generalizability
comparison between our
proposed AOE-Net and other
methods

Methods
Evaluation

Seen Unseen
Training AR@100 AUC AR@100 AUC

BSN [1] Seen + Unseen 72.40 63.80 71.84 63.99
Seen 72.42 64.02 71.32 63.38

BMN [3] Seen + Unseen 72.96 65.02 72.68 65.05
Seen 72.47 64.37 72.46 64.47

TSI++ [45] Seen + Unseen 74.69 66.54 74.31 66.14
Seen 73.59 65.60 73.07 65.05

DBG [4] Seen + Unseen 73.30 66.57 67.23 64.59
Seen 72.95 66.23 64.77 62.18

ABN [6] Seen + Unseen 74.58 66.96 75.25 67.49
Seen 74.40 66.69 73.66 65.49

AOE-Net
Seen + Unseen 76.36 68.31 77.31 69.07
Seen 76.43 68.42 74.90 66.92

Table 4 TAD comparisons on
ActivityNet−1.3 in terms of
mAP@tIoU and mAP, where the
proposals are combined with
video-level classification results
generated by Xiong et al. (2016)

Methods Venue & Year Feature 0.50 0.75 0.95 Average

BSN Lin et al. (2018) ECCV18 2Stream 46.45 29.96 8.02 30.03

GTAN Long et al. (2019) CVPR19 P3D 52.61 34.14 8.91 34.31

BMN Lin et al. (2019) ICCV19 2Stream 50.07 34.60 8.29 33.85

GTAD Xu et al. (2020) CVPR20 2Stream 50.36 34.60 9.02 34.09

P-GCN Zeng et al. (2019) CVPR20 I3D 42.90 28.14 2.47 26.99

MR Zhao et al. (2020) ECCV20 2Stream 43.47 33.91 9.21 30.12

TSI++ Liu et al. (2020) ACCV20 2Stream 51.18 35.00 6.59 34.15

BC-GNN Bai et al. (2020) ECCV20 2Stream 50.56 34.75 9.37 34.26

RTD Tan et al. (2021) ICCV21 2Stream 47.21 30.68 8.61 30.83

ABN Vo et al. (2021) IEEE-Access21 C3D 51.78 34.18 10.29 34.22

AEI-B Vo et al. (2021) BMVC21 C3D 52.3 34.5 9.7 34.7

AOE C3D 54.42 35.43 10.35 34.48

as the robustness of AOE-Net to egocentric videos. We also
report the network efficiency andAOE-Net performancewith
different settings of hyper-parameter K. Additional ablation
study will be included in supplementary.

4.5.1 Contribution of each Beholder

We examine TAPG performance on THUMOS-14 with dif-
ferent network settings as given in Table 6. While the
performance of each individual beholder is shown in the
Exps.#1-3, different combinations of features are given in
Exps.#4-7. This emphasizes the important contribution of
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Table 6 TAPG comparisons on
different network settings. Act.,
Env., Obj. denote actors,
environment, objects beholders

Table 7 TAPG compare between AAM with attention(Malinowski et al., 2018; Vaswani et al., 2017)

Attention THUMOS-14 ActivityNet−1.3

@50 @100 @200 @500 @1000 AR @100 AUC (val) AUC (test)

Hard Malinowski et al. (2018) 43.74 49.24 56.63 63.46 67.25 77.11 69.02 69.56

Soft Vaswani et al. (2017) 42.60 49.86 56.87 63.76 67.60 76.93 69.06 69.23

AAM 44.56 50.26 57.30 64.32 68.19 77.67 69.71 70.10

actors and objects in understanding human action. Compar-
isons between Exps.(#4 vs. #6) and (#5 vs. #7) highlight the
strong impact of AAM.

In Exp.#1 and Exp.#3, as Environment Beholder is not
presented, AAM consequently cannot be applied because it
requires environment feature as one of its input. Therefore,
we replace AAM by a simple soft self-attention layer fol-
lowed by an average pooling operation to fusemultiple actors
together. Likewise, in Exp.#4 andExp.#5we also perform the
above replacement strategy to emphasize the effectiveness of
AAM.

4.5.2 Effectiveness of AAM

Wecontinue studying the effectiveness of the proposedAAM
in TAPG task on both ActivityNet−1.3 and THUMOS-14 by
comparing AAM with different attention mechanisms, i.e.,
soft self-attention (Vaswani et al., 2017) (Soft), hard attention
(Malinowski et al., 2018) (Hard) as shown in Table.7.

For soft self-attention mechanism, we simply remove the
actors hard attention part at the beginning of our AAM,
which is defined in Eqs. (2–6), and directly feed the input
set of actors features Fa (or objects features Fo) into a self-
attention mechanism.

In contrast, for hard-attention mechanism, we replace the
self-attention part at the end of our AAMby a simple average
pooling operation to average the selected actors features F̃a

(or selected objects features F̃o) into a single representation
f a (or f o).
With the higher performances on both datasets shown in

Table 7, AAM proves its appealing advantages over soft self-
attention and hard attention mechanisms.

Table 8 TAPG comparison between our AOE-Net with BMN (Lin et
al., 2019) on egocentric videos (Damen et al., 2021)

AR@10 AR@100 AUC

BMNLin et al. (2019) 11.59 34.26 25.14

AOE-Net 15.99 37.40 29.20

4.5.3 Performance of AOE-Net with Different Number of
Objects

The number of input objects K for objects beholder
(Sect. 3.1.3) is also a hyper-parameter that may affect the
performance of our AOE-Net. If we use a large K , the over-
all model may receive more noisy information due to the
increasingly incorrect detected objects. Whereas, if we use a
small K , the objects beholder will not present enough signif-
icant information with a few objects. Thus, the contribution
of objects beholder to understand actions is insufficient.

In this ablation study, we benchmark our AOE-Net
on various number of objects K with TAPG task and
ActivityNet−1.3 (Fabian Caba Heilbron and Niebles, 2015)
dataset. The comparison is reported in Table 9.

Table 9 shows that as we increase K , the TAPG perfor-
mance of AOE-Net also tend to improve. However, when
K > 20, the performance starts fluctuating and is not robust
due to more wrongly detected objects in each snippet. There-
fore, we conclude that K = 20 gives the best trade-off
between performance and robustness.
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Table 9 TAPG performance of our AOE-Net on ActivityNet−1.3
(Fabian Caba Heilbron and Niebles, 2015) with various settings of K

Number of Objects (K) AR@100 AUC (val) AUC (test)

0 77.02 68.98 69.72

1 77.15 69.17 69.95

5 77.45 69.43 69.96

10 77.24 69.26 69.56

20 77.67 69.71 70.10

30 77.55 69.63 69.96

40 77.67 69.86 70.22

50 77.24 69.17 69.81

4.5.4 Robustness of AOE-Net to Egocentric Videos

To benchmark the robustness of AOE-Net on egocentric
videos, we use EPIC-KITCHENS 100 (Damen et al., 2021)
to benchmark TAPG task. Table 8 provides the TAPG com-
parison between our AOE-Net with BMN (Lin et al., 2019).
Even actors are not shown in the egocentric videos, our AOE
still obtains good TAPG performance with a big improve-
ment compare to BMN. This proves the effectiveness of the
objects beholder.

4.5.5 Network Efficiency

Table 10 reports the efficiency of AOE-Net and previous
SOTA with #parameters in millions (M), computational cost
(GFLOPs), inference time on a 3-minute video with either
an Intel Core i9-9920X CPU or a single NVIDIA RTX 2080
Ti.

4.6 Qualitative Analysis of AAM

4.6.1 Qualitative Results of AAMwith Actors Beholder

Fig. 8 shows qualitative performances of AAM in select-
ing main actors in the set of detected ones. The videos are
retrieved from ActivityNet−1.3 (Fabian Caba Heilbron and
Niebles, 2015). In the case ofmultiple actors detected (Fig. 8a

and Fig. 8c, our proposed AAM can effectively select main
actors in the scene and remove the insignificant actors. This
aims to eliminate redundant information as well as select
the most relevant information to feed into the boundary-
matching module. Figure 8b illustrates the scenario where
the environment is tedious andmay not contribute to perceive
the action. However, the local information at the bounding
box around the main actor can help highlight the action. In
Fig. 8b, AAM one again shows its merit when selecting the
main actor who actually commits the action.

4.6.2 Performance of AAM Affected by Human Detector

The human detector we used is Faster-RCNN (Ren et al.,
2015) trained on COCOdataset (Lin et al., 2014). In practice,
the human detector is not completely perfect in the videos
due to motion blurs or low resolutions. Therefore, the AAM
is also affected by the quality of detected human bounding
boxes.

In Fig. 9, we visualize frames of 4 videoswhere the human
detector poorly produces human bounding boxes. In Fig. 9a,
the green bounding box is localized around two athletes in
the pool beside two separate bounding boxes for each ath-
lete. Although the green bounding box is incorrect because it
contains two humans (even three if we count the one behind),
it is intuitively better than the individual boxes of each ath-
lete because it contains richer information of the scene. This
proves that our AAM effectively learnt to select the best
bounding boxes detected regardless of its quality in terms
of human detection.

In Fig. 9b, c and d, we notice that there are badly detected
bounding boxes which is just a body part of the humans
instead of a whole. However, AAM could learn to eliminate
these bad bounding boxes to only select the correct ones.

From the above observations, we can see that AAM can
learn to avoid selecting bad bounding boxes which do not
fully contain the humans. Oppositely, AAM also learns to
select somebadly detected bounding boxes but containsmore
meaningful information than the correct ones.

However, we conclude that relying on the human detector
in providing locations to attend on is preventing AAM to

Table 10 Network efficiencies
of AOE-Net and several of
previous works

#Params (M) FLOPs (G) Inference time (s)

GPU CPU

BMN Lin et al. (2019) 4.9 71.22 0.128 4.15

DBG Lin et al. (2020) 2.9 47.52 0.03 -

GTAD Xu et al. (2020) 5.6 150.28 0.14 -

ABN Vo et al. (2021) 6.9 87.88 0.07 0.21

AEI Vo et al. (2021) 6.9 90.62 0.08 0.21

AOE-Net 8.8 94.02 0.12 0.27
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Fig. 8 Visualization of main actors selection resulting by AAM on
ActivityNet−1.3 (Fabian Caba Heilbron and Niebles, 2015). a, b, and
c are three different videos. The background is blacked out, the bound-

ing boxes of main actors are outlined by green line and the bounding
boxes of insignificant actors are outlined by grey line (Color figure
online)

achieve its highest potential. Therefore, in the future, it would
be more beneficial if we have a better module to localize
interesting spatial locations in the video frames instead of
the human detector.

4.6.3 Qualitative Analysis of Objects Beholder

Figure 10 visualizes how AOE-Net can take advantage of
Objects Beholder. In this figure, we showcase two video for
two distinct categories of (A) visible actors and (B) non-
visible actors. in (A), the actors are visible and commits the
action of tightrope walking, therefore, our AOE-Net can take
advantage of all the beholders. Whereas in (B), the actors are
not visible in the video frame and commits the action of
cooking, therefore, our AOE-Net can only relies on Objects
Beholder.
In each illustration of (A) and (B), we visualize either when
the action does not happen (A.i and B.i) and when the action
is happening (A.ii and B.ii).

Fig. 9 Visualization of AAM on ActivityNet−1.3 (Fabian Caba Heil-
bron and Niebles, 2015) on cases where the human detector poorly
generates human bounding boxes. The background is blacked out, the
bounding boxes ofmain actors are outlined by green line and the bound-
ing boxes of insignificant actors are outlined by grey line (Color figure
online)
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(a)

(b)

Fig. 10 Qualitative results to illustrate the effectiveness of Objects
Beholder with AAM in (A) videos with visible actors and (B) videos
with non-visible actor. In each case, we illustrate two instances of hav-

ing action and without action. The input frames are shown on the left,
its objects detected by CLIP are shown in the middle, and the most
relevant objects selected by AAM are shown in the right

As we can see in Fig. 10A, the objects detected in non-
action case and action case are very different. Specifically
in Fig. 10(A.i), the non-action scene is captured through
objects like “City”, “Building”, “Tower”, etc. Whereas
in Fig. 10(A.ii), the action scene includes “Rooftop”,
“Tightrope”, “Roof”, and “Hanging”, etc.

Likewise, in Fig. 10B, the objects detected in each cases
of non-action and action are very different. On one hand,
in Fig. 10(B.i), detected objects are “Kitchen”, “Cooker”,
“Oven”, and “Stove” etc. On the other hand, in Fig. 10(B.ii),
the action scene objects consist of “Passata”, “Chorizo”,
“Pan”, and “Salsa”, etc.
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Fig. 11 Qualitative results in
TAPG on ActivityNet−1.3
(Fabian Caba Heilbron and
Niebles, 2015) dataset

(a)

(b)

(c)

4.7 Qualitative Analysis of AOE-Net

Thequalitative results of ourAOE-Net inTAPGofActivityNet−1.3
(Fabian Caba Heilbron and Niebles, 2015) comparing with
previous SOTA works (Lin et al., 2019, 2020; Vo et al.,
2021) are illustrated in Fig. 11. In this figure, we showed
two medium cases and a hard case and case of egocentric
video. In each video, the proposals from all methods with
higher scores than 0.4 are selected to show in the qualitative
examples.

In videos of simple cases (Fig. 11A), the actors who are
receiving pierces (or trimming in video(b)) is easily observed
from the whole frame, however, the piercing action is a bit

difficult to be identified because it’s from the hand of the
doctor (or the taylor in video (b)), who is outside of the
video view. Therefore, BMN (Lin et al., 2019) and DBG (Lin
et al., 2020) completely failed to propose the exact action
intervals. Likewise, ABN (Vo et al., 2021) is tricked by the
video and proposes an interval from the beginning of the
first groundtruth action of piercing until the credit cut. On
the other hand, our proposed AOE-Net can propose inter-
vals that match with the groundtruth actions. This explains a
lot for the contributions of both actors beholder and objects
beholder, which provide more informative features than pre-
vious works to give good results.
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In the video of hard case(Fig. 11A), the actors are hockey
players, who appear very small in the video frames. There-
fore, the “hockey playing” activity, which appear at the
beginning of this video, is very difficult to be distinguished
to “celebrating” activity, which takes place right after the for-
mer. This is explanable because we need to carefully observe
the movements of hockey players carefully to see this dif-
ference. Therfore, all BMN and DBG failed to recognize the
groundtruth action interval.Meanwhile,ABNcan propose an
interval that covers the scene of the field but not necessesar-
ily the groundtruth action. On the other hand, our proposed
AOE-Net can propose an interval that closely matches the
groundtruth action. This again, explains the contributions of
our actors and objects beholders.

In the non-human case (Fig. 11C), an actor shows their
hands doing cooking on a pan in the interval of [13.9−99.17],
while in [0.0−13.9] and [99.17−116.64] the advertisements
are displayed.As the actor only shows their hands in the video
frames to commit the action, they cannot be detected by the
Actors Beholder. However, thanks to our Objects Beholder,
the advertisement intervals at the beginning and the end of
the video are easily perceived, hence the true action interval
is detected in between. Contrarily, a previous SOTA model,
BMN [3], mis-perceived the advertisement intervals as true
actions and classifies them as separate action intervals, or
mistakenly combines them with the true action interval in
between.

5 Conclusion and Discussion

In this paper, we attempt to simulate the human per-
ceiving ability and proposed a novel AOE-Net to locate
actions in untrimmed videos. Our AOE-Net contains two
modules: PMR and BMM. PMR extracts visual-linguistic
representation of each snippet with four beholders. Envi-
ronment beholder and actors beholder capture global and
local visual features of environment and main actors, respec-

tively. Objects beholder extracts linguistic feature from
relevant objects. The last beholder aims to model the rela-
tions betweenmain actors, relevant objects and environment.
To focus on an arbitrary number of main actor(s) or relevant
objects, we introduced AAM. The qualitative and quantita-
tive results conducted onActivityNet−1.3 and THUMOS-14
datasets on both TAPG and TAD tasks evidently suggest
that our proposed AOE-Net outperforms SOTA methods. To
prove the effectiveness of AOE-Net, we provided ablation
studies to show the contribution of each beholder, the effec-
tiveness of proposed AAM, network efficiency, as well as
the robustness of AOE-Net when performing on egocentric
videoswith EPIC-KITCHENS100 dataset.We further inves-
tigate the performance of AOE-Net with various backbone
network configurations. These results prove that replicating
human perceiving ability in video understanding is a promis-
ing track to follow and further explore in the future.

There are several potential future directions from this
research. First, while main actors and relevant objects pro-
vide important impact to both TAPG and TAD tasks, it would
be of great interest to investigate the impact of human body
parts (e.g. hands, legs) and the interaction between themwith
objects in localizing human activities in untrimmed videos.
Finally, integrating our method with human tracking (i.e.
main actors tracking)might result in evenbetter performance.
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Appendix: Notations

The following is a table that summarizes and briefly describes
important symbols that are used throughout this manuscript:
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Table 11 Descriptions of symbols used in our paper

SymbolDescription

V A sequence of all frames from the input video

N Total number of frames in the input video

δ Length of a snippet, a sub-set of consecutive frames

T Total number of snippets from the input video

si The snippet at index i ∈ T

I The frame in the center of snippet si
B A set of human bounding boxes detected in center frame I of

snippet si
φ(.) An encoding function to encode a snippet si into a feature

vector

FM A feature map extracted by a backbone network

Fa A set of actors features in snippet si
Fo A set of objects features in snippet si
T Vocabulary used in Objects Beholder

D Total number of words in vocabulary T
T e A set of embedded features for every word in mathcalT

I e Embedded feature representing center frame I of si
K A hyper-parameter, defines maximum number of words in T to

be selected

Fo Top K embedded features in T e that is best matched with I

f̂ e Encoded feature of f e, used in AAM

F̂a Encoded feature of every actors feature in Fa , used in AAM

Ha A set of scores of every actor feature in Fa

τ An adaptive threshold to filter out actor features that has lower
scores

F̃a A set of main actor features that are selected

f e Output feature vector of Environment Beholder

f a Output feature vector of Actors Beholder

f o Output feature vector of Objects Beholder

Faoe A stack of f a, f o, f e to serve Actors-Objects-Environment
Beholder

f i Output feature vector of Actors-Objects-Environment Beholder

Ls Loss function to optimize for starting points classification

Ls Labels of starting points in the input

Le Loss function to optimize for ending points classification

Le Labels of ending points in the input video

Lact Loss function to optimize for the actions classification and
regression

LD Labels for the actions classification and regression

Lwb Weighted binary cross-entropy loss

L2 Mean squared error loss
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