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In this paper we solve two problems of Esperet, Kang and
Thomassé as well as Li concerning (i) induced bipartite sub-
graphs in triangle-free graphs and (ii) van der Waerden numbers.
Each time random greedy algorithms allow us to go beyond
the Lovász Local Lemma or alteration method used in previous
work, illustrating the power of the algorithmic approach to the
probabilistic method.
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1. Introduction

The probabilistic method is a widely used tool for proving the existence of hard-to-construct
mathematical objects with certain desirable properties: it works by showing that a randomly chosen
object has the desired properties with non-zero probability. In classical textbook approaches to
the probabilistic method, the underlying random objects are typically generated in a static way,
e.g., by choosing a graph uniformly at random from a prescribed class of graphs, or by independently
including each possible edge.

In this paper we illustrate the power of the algorithmic approach to the probabilistic method,
where the random objects are generated step-by-step in a dynamic way using a randomized
algorithm. To this end we consider two examples from graph theory and additive combinatorics,
and show that each time random greedy algorithms allow us to go beyond classical applications of
the probabilistic method, i.e., prove existence of mathematical objects with better properties. These
algorithmic improvements are key for (i) resolving a problem of Esperet, Kang and Thomassé [8],
and (ii) answering a question of Li [24], see Theorems 1.1 and 1.2.
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For the two combinatorial examples considered in this paper, previous work used the prob-
abilistic method to show that static random objects can avoid certain forbidden substructures,
while maintaining other desired pseudo-random properties. Our technical results show that random
greedy algorithms, which by construction avoid these forbidden substructures, create objects with
superior pseudo-random properties, see Theorems 1.3 and 1.5. With the benefit of hindsight,
earlier work of Rödl [27], Kahn [21], Wormald [34], Spencer [29], Kim [22], Bohman [2], and
others [1,5,10] can be interpreted similarly. This paper thus reveals the following emerging algo-
rithmic paradigm: one can often take proofs based on classical probabilistic method arguments, and
obtain improvements by using an algorithmic approach to the probabilistic method.

1.1. Induced bipartite subgraphs in triangle-free graphs

Our first example is from extremal graph theory, concerning a local refinement of the famous
Max Cut problem. Here the history starts in 1988, when Erdős, Faudree, Pach and Spencer [7]
introduced the problem of searching for large induced bipartite subgraphs in triangle-free graphs.
Around 2018 Esperet, Kang and Thomassé [8] further refined this problem, focusing on induced
bipartite subgraphs with large minimum degree. More precisely, for fixed η ∈ (0, 1) they asked
to determine the behavior of the parameter fη(n), which is defined as the maximum f such that
every n-vertex triangle-free graph with minimum degree at least nη contains an induced bipartite
subgraph with minimum degree at least f . Recent results of Kwan, Letzter, Sudakov and Tran [23]
and Cames van Batenburg, de Joannis de Verclos, Kang and Pirot [6] show that

fη(n) = Θ
(

max
{

log n, n2η−1
})

for fixed η ∈ (0, 1) \ (1/2, 2/3], (1)

and also determine fη(n) up to logarithmic factors in the remaining range η ∈ (1/2, 2/3]. Illustrating
the conceptual punchline of this paper, we use a ‘dynamic’ randomized greedy algorithm to improve
existing upper bound constructions [6,23], which were based on classical probabilistic method tools
applied to the binomial random graph G(n, p). This algorithmic improvement allows us to close
the logarithmic gap for η ∈ (1/2, 2/3], and determine the order of magnitude of fη(n) for any
fixed η ∈ (0, 1). The following result in particular resolves [8, Problem 4.1] of Esperet, Kang and
Thomassé up to constant factors.

Theorem 1.1. For fixed η ∈ (0, 1), we have fη(n) = Θ(max{log n, n2η−1}).

In comparison to the previous upper bounds [6,23] based on the probabilistic analysis of G(n, p)
via the alteration method or the Lovász Local Lemma, our key improvement stems from the fact that
via the so-called semi-random triangle-free process we are able to algorithmically construct pseudo-
random triangle-free graphs with higher edge density (see Theorem 1.3), confirming speculations
from [8, Section 4] and [6, Section 3].

1.2. Van der Waerden numbers

Our second example is from additive combinatorics, concerning a well-known Ramsey-type
parameter for arithmetic progressions. The van der Waerden number W (r, k) is defined as the
smallest integer n such that every red and blue coloring of numbers in [n] := {1, 2, . . . , n} contains
either a monochromatic red r-term arithmetic progression (r-AP) or a monochromatic blue k-AP.
The celebrated van der Waerden’s theorem guarantees that W (r, k) is finite for all integers r, k ≥ 2,
making it a natural and interesting problem to determine the asymptotic behavior of W (r, k),
see [11,14]. The ‘off-diagonal’ case, where r ≥ 3 is fixed and k tends to infinity, was of particular
interest to Graham (note that W (2, k) = Θ(k) holds trivially). Indeed, in the mid 2000s Graham
conjectured thatW (3, k) ≤ kO(1), and mentioned that numerical evidence suggestsW (3, k) = k2+o(1),
see [12,13,16]. Around 2015 Graham even started offering a $250 reward for his conjecture, see
[13, p. 19]. In terms of lower bounds, in 2008 Li and Shu [25] showed that

W (r, k) = Ω
(

(k/log k)r−1
)

for fixed r ≥ 3,
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by applying the Lovász Local Lemma to a random subset of the integers [n]. Subsequently, Li raised
in 2009 the natural question [24] whether this probabilistic lower bound can be improved via a
randomized greedy algorithm that ‘dynamically’ constructs an r-AP free subset of the integers [n].
The proof of the following theorem answers Li’s question affirmatively, see also Sections 1.4.2 and
3.

Theorem 1.2. For fixed r ≥ 3, we have W (r, k) = Ω
(

kr−1/(log k)r−2
)

.

This result was announced in October 2020, see [17]. While preparing this paper, Green [15]

made a breakthrough and showed W (3, k) ≥ k(log k)
1/3−o(1)

using very different techniques, which in
view of W (r, k) ≥ W (3, k) disproves the earlier belief that W (r, k) = kO(1) for fixed r ≥ 3. The best
known upper bound W (3, k) ≤ exp

(

k1−Ω(1)
)

was obtained by Schoen [28].

1.3. Organization

In Section 1.4 we state our main technical results, which will imply Theorems 1.1 and 1.2 for
induced bipartite subgraphs and van der Waerden numbers, respectively. In Sections 2 and 3 we
then prove these technical results using an algorithmic approach to the probabilistic method, i.e., by
analyzing randomized algorithms that construct pseudo-random triangle-free graphs and r-AP free
subsets of the integers, respectively.

1.4. Main technical results

1.4.1. Construction of pseudo-random triangle-free graphs
To prove the upper bound on the parameter fη(n) claimed by Theorem 1.1 for η ∈ (1/2, 2/3],

our strategy is to construct a pseudo-random triangle-free graph Gn with Θ(n) vertices, where
pseudo-randomness will intuitively ensure the desired minimum degree properties (in suitable
constructions that are based on Gn). Following the conceptual punchline of this paper, we shall
construct the desired graph Gn using a semi-random variant of the triangle-free process, which is a
randomized greedy algorithm that sequentially adds more edges to Gn without creating a triangle,
see Section 2 for the full details. This algorithmic approach to the probabilistic method is key
for obtaining our improved upper bound on fη(n) via the following auxiliary result, since earlier
approaches based on the binomial random graph G(n, p) were only able to prove a weaker version of
Theorem 1.3, where the triangle-free graph Gn is sparser, i.e., with minimum and maximum degree
bounds δ(Gn), ∆(Gn) = Θ(

√
n); see [23, Lemma 5.1] and [6, Theorem 3.1]. Note that we recover

these earlier results, by sampling each edge of the graph Gn from Theorem 1.3 independently with
probability 1/

√
log n.

Theorem 1.3. There are constants c, C, C ′ > 0 such that for any 0 < β < 1/14 the following holds
for any integer n ≥ n0 = n0(β). There exists a triangle-free graph Gn with v(Gn) ∈ [n/3, n] vertices,

c
√

βn log n ≤ δ(Gn) ≤ ∆(Gn) ≤ C
√

βn log n, (2)

and the property that any induced bipartite subgraph F ⊆ Gn has minimum degree δ(F ) ≤ C ′ log n.

We defer the proof of Theorem 1.3 to Section 2: it is based on a careful refinement2 of the
semi-random triangle-free process analysis of Guo and Warnke [19]. Using Theorem 1.3 we shall
in fact establish improved bounds for the more general parameter g(n, d), which denotes the
maximum g such that every n-vertex triangle-free graph with minimum degree at least d contains
an induced bipartite subgraph with minimum degree at least g . Extending [6,23], the following
result establishes a phase transition of g(n, d) when the minimum degree d is around

√
n log n, and

it also implies Theorem 1.1 since fη(n) = g(n, nη).

2 In the proof of Theorem 1.3 we mainly use the semi-random variant instead of the standard triangle-free

process [2,4,9] for technical convenience, since in Section 2 this leads to conceptually simpler proofs of certain pseudo-

random properties (i.e., where the necessary refinements of existing proofs require less technical work for the semi-random

variant).
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Theorem 1.4. For any fixed γ ∈ (0, 1), we have g(n, d) = Θ
(

max{log d, d2/n}
)

for all nγ ≤ d ≤ n/2.

Similar to fη(n) = g(n, nη), the cases nγ ≤ d ≤
√
n and n2/3 ≤ d ≤ n/2 of Theorem 1.4 follow

from [23]. Furthermore, for
√
n ≤ d ≤ n2/3 we obtain g(n, d) = Ω(max{log d, d2/n}) by combin-

ing [23, Theorem 1.3] with the fact that g(n, d) is monotone increasing in d. We now close the gap
for

√
n ≤ d ≤ n2/3 by mimicking the upper bound constructions from [6,23] using the semi-random

triangle-free process based graphs Gn from Theorem 1.3, which have better degree properties than
the G(n, p) based graphs used in [6,23].

Proof of Theorem 1.4 based on Theorem 1.3. Writing c, C ′ > 0 for the constants of Theorem 1.3,
let β := 10−2 and A := c

√
β/3. As discussed, it suffices to prove g(n, d) = O(max{log d, d2/n})

for
√
n ≤ d ≤ n2/3. To this end we may always assume that n is sufficiently large (whenever

necessary), as usual.
We start with the case

√
n ≤ d ≤ A

√
n log n, where we set α := 2/(c2β) and n′ := ⌈αd2/log n⌉.

Note that n2/3 ≪ n′ ≤ ⌈αA2n⌉ ≤ n/2 and n′ ≪ d2. By taking the disjoint union of ⌊n/n′⌋ copies
of Gn′ , we obtain a triangle-free graph Hn with v(Hn) = ⌊n/n′⌋ · v(Gn′ ) ∈ [n/6, n] vertices and
minimum degree

δ(Hn) = δ(Gn′ ) ≥ c
√

βn′ log n′ ≥
√

c2βα · d2 · 2/3 > d.

Furthermore, every induced bipartite subgraph F ⊆ Hn is a disjoint union of induced bipartite
subgraphs from copies of Gn′ and thus has minimum degree at most δ(F ) ≤ C ′ log n′ ≤ 2C ′ log d.
By ‘blowing up’ each vertex of Hn into an independent set of suitable sizes between one and six
(i.e., after replacing each vertex of Hn by an independent set, we add a complete bipartite graph
between every pair of independent sets that correspond to an edge in Hn), we thus obtain an
n-vertex triangle-free graph Gn,d with δ(Gn,d) ≥ δ(Hn) ≥ d, where furthermore every induced bi-
partite subgraph F ⊆ Gn,d has minimum degree at most δ(F ) ≤ 6 · 2C ′ log d (by analogous disjoint
reasoning as before), establishing that g(n, d) = O(log d).

Finally, in the remaining case A
√
n log n ≤ d ≤ n2/3 we set α := c2β/18 and n′ := ⌊α(n/d)2 log n⌋.

Note that n2/3 ≪ n′ ≤ αn/A2 ≤ n/2. By ‘blowing up’ each vertex of Gn′ into an independent set of
size ⌊n/n′⌋, we obtain a triangle-free graph Hn with v(Hn) = ⌊n/n′⌋ · v(Gn′ ) ∈ [n/6, n] vertices and
minimum degree

δ(Hn) = ⌊n/n′⌋ · δ(Gn′ ) ≥
n

2n′ · c
√

βn′ log n′ ≥
√

c2βn2 log(n2/3)

4n′ ≥
√

c2β · d2 · 2/3
4α

> d.

Furthermore, every induced bipartite subgraph F ⊆ Hn has minimum degree at most δ(F ) ≤
⌊n/n′⌋ · C ′ log n′ ≤ 2α−1C ′ · d2/n. By blowing up each vertex of Hn into an independent set
of suitable sizes between one and six, we then obtain an n-vertex triangle-free graph Gn,d that
establishes g(n, d) = O(d2/n). □

1.4.2. Construction of pseudo-random r-AP free sets of integers

To prove the lower bound on the van der Waerden number W (r, k) claimed by Theorem 1.2, our
strategy is to construct a large subset I ⊆ [n] of the integers that is r-AP free and pseudo-random,
where pseudo-randomness will intuitively ensure that [n] \ I is k-AP free for fairly large k = k(n).
For technical reasons, it will be convenient to work with the field Z/NZ for a prime number N ,
where a set of numbers {a1, . . . , ar} ⊆ Z/NZ is formally called an r-term arithmetic progression
(r-AP) in Z/NZ if |{a1, . . . , ar}| = r and ai ≡N a1 + (i − 1)d for some d ̸≡N 0. Following the
conceptual punchline of this paper, we shall construct the desired pseudo-random r-AP free subset
I ⊆ Z/NZ using the so-called random greedy r-AP free process, which is a randomized greedy
algorithm that step-by-step adds more random numbers to I without creating an r-AP, see Section 3
for the full details. This algorithmic approach to the probabilistic method is key for obtaining
our improved lower bound on W (r, k) via the following result, since earlier approaches based on
random subsets the integers were only able to prove Theorem 1.5 with the weaker parameter
choice k = Θ(N1/(r−1) logN), see [25]. Note that we recover these earlier results, by observing that
the set I ⊆ Z/NZ from Theorem 1.5 also satisfies |I ∩ K | ≥ 1 for all k-APs K in Z/NZ of size k ≥ kN .
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Theorem 1.5. For any fixed r ≥ 3, there are constants C,N0 > 0 such that the following holds

for any prime number N ≥ N0. There exists a set I ⊆ Z/NZ which (i) is r-AP free in Z/NZ and

(ii) satisfies |I ∩ K | ≥ 1 for all k-APs K in Z/NZ of size k = kN := ⌈C(N/logN)1/(r−1) logN⌉.

Proof of Theorem 1.2 based on Theorem 1.5. Assuming that k is sufficiently large (as we may),
we pick the largest prime number N ≥ max{2,N0} satisfying k ≥ kN = ⌈C(N/logN)1/(r−1) logN⌉.
Using Bertrand’s postulate it follows that n := N − 1 = Θ(kr−1/(log k)r−2). For I ⊆ Z/NZ as given
by Theorem 1.5, we color I ∩ [n] red and [n] \ I blue. Properties (i)–(ii) of Theorem 1.5 and k ≥ kN
ensure that this coloring contains no red r-APs or blue k-APs in [n], since any AP in [n] corresponds
to an AP in Z/NZ (and any blue k-AP contains all numbers of at least one blue kN -AP). It follows
that W (r, k) > n = Θ(kr−1/(log k)r−2). □

We defer the proof of Theorem 1.5 to Section 3: it is based on the differential equation method
and results of Bohman and Bennett [1] for the so-called random greedy independent set algorithm.
Noteworthily, in our analysis we need to ensure that all of the polynomially many k-APs are ‘hit’ by
the set I produced by the r-AP process. This is in great contrast to the analysis of the H-free process
arising in graph Ramsey theory, where one typically needs to ensure that an exponential number
of substructures are hit [2–4,9,26,31,32].

2. Semi-random triangle-free process

In this section we prove Theorem 1.3 by showing that a semi-random variant of the so-called
triangle-free process typically finds a triangle-free graph Gn ⊆ Kn with the desired properties.
Intuitively, this process starts with an empty graph, and then iteratively adds a large number of
carefully chosen edges (instead of just adding a single edge as in the original triangle-free process)
such that the resulting graph stays triangle-free.

2.1. More details and heuristics

The formal details of the semi-random triangle-free process given in [19, Section 2] are rather
involved, so here we shall only introduce those aspects that are important for the upcoming
arguments of this paper (keeping the notation from [19] to minimize notational differences). The
semi-random process starts with

E0 = T0 := ∅ and O0 := E(Kn), (3)

and the rough plan is to step-by-step build up a ‘random’ set of edges Ei ⊆ E(Kn), a triangle-free
edge subset Ti ⊆ Ei, and a set of ‘open’ edges Oi ⊆ E(Kn) \ Ei, each of which can still be added to Ei
without creating triangles. More precisely, in step i+1 ≥ 1 of the semi-random triangle-free process
we sample a random edge subset Γi+1 ⊆ Oi, where each edge e ∈ Oi is included independently with
probability

p := σ/
√
n for σ := (log n)−2, (4)

and update the random set of edges by setting

Ei+1 := Ei ∪ Γi+1. (5)

To determine the new triangle-free edge subset Ti+1 ⊆ Ti ∪ Γi+1, the idea is to delete a suitable
set Di+1 ⊆ Γi+1 of edges from Γi+1 with |Γi+1 \ Di+1| ≈ |Γi+1|, such that

Ti+1 := Ti ∪
(

Γi+1 \ Di+1

)

(6)

remains triangle-free, see [19, (13)–(14) in Section 2.1] for the precise definition of Di+1 (this
construction intuitively works since only few new triangles are created in Ei ∪ Γi+1 due to the fact
that Γi+1 is fairly small). To determine the new open edge set Oi+1 ⊆ Oi \ Γi+1, we certainly have
to remove the set C ′

i+1 of ‘newly closed’ edges, which simply contains all edges e ∈ Oi that form

5
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a triangle with some two edges of Ei+1 = Ei ∪ Γi+1. For technical reason we also remove an extra
random edge subset Si+1 ⊆ Oi and set

Oi+1 := Oi \
(

Γi+1 ∪ C ′
i+1 ∪ Si+1

)

, (7)

see [19, (15)–(20) in Section 2.1] for the precise definition of C ′
i+1 ∪ Si+1 (the removal of extra edges

is a technical twist that intuitively makes it easier to prove certain concentration statements).
Stopping this iterative construction after I ≈ nβ steps, the pseudo-random intuition from

[19, Section 2] suggests that, with respect to various edge statistics, the resulting n-vertex triangle-
free graph

H :=
(

[n], TI
)

with I :=
⌈

nβ
⌉

(8)

heuristically resembles a binomial random graph G(n, ρ) with edge probability

ρ :=
√

β(log n)/n, (9)

but with the notable exception that it by construction contains no triangles (such a random graph
would typically contain many triangles). This heuristic makes it plausible that Gn = H satisfies
the degree properties claimed by Theorem 1.3, since routine arguments show that the random
graph G(n, ρ) typically has these degree properties. To keep the modifications of [19] minimal, we
shall in fact find an induced subgraph Gn ⊆ H with the desired degree properties (this extra step is
convenient but not necessary, see Remark 2.1).

2.2. Setup and proof of Theorem 1.3

We now turn to the technical details of our proof of Theorem 1.3, which extends [19, Sections 2–
3]. Here our setup is guided by the pseudo-random heuristic discussed in [19, Section 2.2], which
loosely suggests that

P(e ∈ Ei) ≈ πi/
√
n and P(e ∈ Oi) ≈ qi, (10)

where the parameters πi and qi defined in [19, Section 2.3] satisfy the technical properties

πi := σ +
∑

0≤j<i

σqj, 0 < qi ≤ 1 = q0 and πI/
√
n = (1 + o(1))ρ, (11)

see [19, Section 2.3 and Lemma 17] for the full details, which formally justify that we may indeed
use the parameters πi and qi and their properties (11) in this paper (in contrast to the heuristic
approximations (10), which we of course may not use in our proofs). In particular, to get a handle
on the number of edges between large sets of vertices, consistent with (10)–(11) we introduce the
pseudo-random events

T
∗
I :=

{

|TI (A, B)| ≥ (1 − δ)|A||B|ρ for all disjoint A, B ⊆ [n] with |A| = |B| = s

}

, (12)

T
+
I :=

{

|TI (A, B)| ≤ (1 + δ)2s|B|ρ for all disjoint A, B ⊆ [n] with 1 ≤ |A| = |B| ≤ 2s
}

, (13)

where we write S(A, B) := {ab ∈ S : a ∈ A, b ∈ B} for the set of edges from S that go between A and
B, and use the carefully chosen (see [19, Section 2.3 and Theorem 9]) size parameter

s :=
⌈

D(log n)/ρ
⌉

with D := 108/δ2 and δ := 1/10. (14)

To eventually get a handle on the maximum degree, we also introduce the auxiliary event

N≤I :=
{

|NΓi
(v)| ≤ 2σqi−1

√
n for all v ∈ [n] and 0 < i ≤ I

}

, (15)

writing NS(v) := {w ∈ [n] : vw ∈ S} for the set of neighbors of v in a given edge set S.
Results of Guo and Warnke, see [19, Theorem 9], imply that

P

(

T
∗
I ∩ N≤I

)

≥ 1 − n−ω(1). (16)

6
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As we shall show next, Theorem 1.3 then follows from the claim

P

(

T
+
I

)

≥ 1 − o(1), (17)

whose stochastic domination based proof we defer to Section 2.3.

Proof of Theorem 1.3 assuming inequality (17). Combining (16)–(17) we infer that P(T ∗
I ∩

N≤I ∩ T
+
I ) > 0 for all sufficiently large n, so by the probabilistic method we may henceforth fix

a graph H = ([n], TI ) for which the event T ∗
I ∩ N≤I ∩ T

+
I holds. We then construct the induced

triangle-free subgraph Gn ⊆ H by iteratively deleting vertices of degree at most δ/4 · nρ, and now
verify that it has the claimed properties, starting with the degree bound (2). Noting eH (A, B) =
|TI (A, B)|, the event T ∗

I implies, via a double-counting argument for e(H) analogous to the proof
of [19, Theorem 5], that the number of edges of H is at least

e(H) =
∑

A⊆[n]:|A|=s

∑

B⊆[n]\A:|B|=s |TI (A, B)|
2
(

n−2

s−1

)(

n−s−1

s−1

) ≥
(

n

s

)(

n−s

s

)

· (1 − δ)s2ρ

2
(

n−2

s−1

)(

n−s−1

s−1

) = (1 − δ)

(

n

2

)

ρ. (18)

Furthermore, by the recursive definition (6) of the edge set TI ⊆
⋃

0≤i<I Γi+1, using the proper-
ties (11) of πi we infer, for all sufficiently large n ≥ n0(β), that the event N≤I implies the maximum
degree bound

∆(H) = max
v∈[n]

|NTI (v)| ≤ max
v∈[n]

∑

0≤i<I

|NΓi+1
(v)| ≤

∑

0≤i<I

2σqi
√
n ≤ 2πI

√
n ≤ (2 + δ)ρn.

By construction of Gn ⊆ H , using δ = 1/10 we thus infer, for all sufficiently large n ≥ n0(β), that

v(Gn) ≥
2e(Gn)

∆(Gn)
≥

2
[

e(H) − n · δ/4 · nρ
]

∆(H)
≥

2(1 − 2δ)
(

n

2

)

ρ

(2 + δ)nρ
>

n

3
,

and so the claimed degree bound (2) follows with c := δ/4 and C := 2 + δ.
Next, suppose that F ⊆ Gn is an induced bipartite subgraph with two parts A and B, where we

may assume that |A| ≥ |B| ≥ 1. Since F ⊆ Gn and Gn ⊆ H are both induced subgraphs, we have

eF (A, B) = eGn (A, B) = eH (A, B) = |TI (A, B)|.

Furthermore, since A and B are both independent sets in F , we have |B| ≤ |A| ≤ α(F ) ≤ α(H) ≤ 2 · s,
where the last inequality holds because the event T ∗

I implies that in H there is at least one edge
between any two disjoint s-vertex sets. Using a double counting argument similar to (18), the
event T +

I then implies that

|TI (A, B)| =
∑

A′⊆A:|A′|=|B| |TI (A′, B)|
(|A|−1

|B|−1

) ≤
(|A|
|B|

)

· (1 + δ)2s|B|ρ
(|A|−1

|B|−1

) = (1 + δ)2s|A|ρ.

The definitions (14) of s ≈ D(log n)/ρ and δ = 1/10 give (1 + δ)2sρ ≤ 3D log n for sufficiently
large n. By averaging it follows that δ(F ) ≤ eF (A, B)/|A| ≤ 3D log n, completing the proof with C ′ :=
3D. □

Remark 2.1. For any δ > 0 one can in fact show that the minimum and maximum degree of the
n-vertex graph H = ([n], TI ) satisfy (1 − δ)nρ ≤ δ(H) ≤ ∆(H) ≤ (1 + δ)nρ with high probability (by
adapting [19, Sections 3.1–3.5]), which would allow us to directly use Gn = H in the above proof
of Theorem 1.3. However, the coarser bounds used above suffice for our purposes, and require less
technical modifications of [19].

2.3. Pseudo-randomness: deferred proof of inequality (17)

This subsection is devoted to the deferred proof of inequality (17), i.e., P(T +
I ) ≥ 1 − o(1). To

this end we shall adapt the strategy from [19, Sections 3.4–3.5] to our setting, i.e., use estimates

7
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on the number of open edges |Oi(A, B)| to eventually get a handle on the total number of added
edges |TI (A, B)|.

Turning to the details, let S denote the set of all pairs of vertex disjoint A, B ⊆ [n] with
1 ≤ |A| = |B| ≤ 2s. To keep the changes to [19] minimal, for each pair (A, B) ∈ S we enlarge A to A+

by adding the lexicographic first 2s − |A| vertices from [n] \ (A ∪ B). Note that the vertex set A+ is
determined by A. Consistent with the heuristic approximations (10), we then introduce the ‘open
edges’ related pseudo-random events

Q̃
+
i :=

{

⏐

⏐Oi(A
+, B)

⏐

⏐ ≤ qi|A+||B| for all (A, B) ∈ S

}

and Q̃
+
≤I :=

⋂

0≤i≤I

Q̃
+
i . (19)

Note that 1 ≤ |B| ≤ |A+| = 2s for all pairs (A, B) ∈ S . Furthermore, there are at most n2j

pairs (A, B) ∈ S with |B| = j. With these two key properties in mind, the proof of [19, Lemma 24]
carries over to the pairs (A+, B) virtually unchanged (that proof merely exploits that |A| is large, and
only uses |A| = |B| to control the final union bound estimate over all pairs (A, B) of vertex subsets),
giving

max
0≤i<I

P

(

¬Q̃
+
i+1 | Q̃

+
≤i ∩ X≤i

)

≤
∑

(A,B)∈S
n−ω(|B|) ≤

∑

1≤j≤2s

n2j−ω(j) ≤ n−ω(1),

where X≤i is a ‘good’ event determined by (Oj, Ej, Tj, Γj, Sj)0≤j≤i that is formally defined in
[19, Section 2.4]; here we shall only use that the event X≤i+1 implies X≤i, and that P(¬X≤I ) ≤ n−ω(1)

by [19, Theorem 9]. In view of q0 = 1, see (11), it is straightforward to check that the event Q̃+
0 =

Q̃
+
≤0 always holds. Since the event X≤I implies X≤i for all 0 ≤ i < I , using Q̃

+
≤i+1 = Q̃

+
i+1 ∩ Q̃

+
≤i

and I ≈ nβ it follows that

P

(

¬Q̃
+
≤I

)

≤ P

(

¬X≤I

)

+ P(¬Q̃
+
i+1 ∩ Q̃

+
≤i ∩ X≤i for some 0 ≤ i < I)

≤ P

(

¬X≤I

)

+
∑

0≤i<I

P

(

¬Q̃
+
i+1 | Q̃

+
≤i ∩ X≤i

)

≤ (I + 1) · n−ω(1) ≤ n−ω(1). (20)

Turning to the total number of added edges |TI (A, B)| for (A, B) ∈ S , using A ⊆ A+ and TI ⊆ EI
together with the recursive definition (5) of the edge set EI =

⋃

0≤i<I Γi+1, it follows that

|TI (A, B)| ≤
⏐

⏐EI (A
+, B)

⏐

⏐ =
∑

0≤i<I

⏐

⏐Oi(A
+, B) ∩ Γi+1

⏐

⏐. (21)

Recall that the event Q̃
+
i implies |Oi(A

+, B)| ≤ qi|A+||B|, and that Γi+1 ⊆ Oi is the random subset
where each edge e ∈ Oi is included independently with probability p. Combining these properties,
by mimicking the stochastic domination arguments from the proof of [19, Claim 30] it then follows
that

P

(

|EI (A+, B)| ≥ t and Q̃
+
≤I

)

≤ P

(

Z+ ≥ t
)

with Z+ d= Bin
(

∑

0≤i<I

⌊

qi|A+||B|
⌋

, p

)

.

Using p = σ/
√
n, the properties (11) of πi and |A+| = 2s, similar to [19, Section 3.5] we have

µ+ := EZ+ ∼
∑

0≤i<I

σqi/
√
n · |A+||B| = (πI − σ )/

√
n · |A+||B| ∼ 2s|B|ρ.

Using the definitions (14) of the parameter s ≈ D(log n)/ρ and the constant D = 108/δ2, for
sufficiently large n it follows that (1 + δ)2s|B|ρ ≥ (1 + δ/2)µ+ and δ2µ+/12 > 12|B| log n, say.
Similar to [19, (97)–(98)], standard Chernoff bounds such as [20, Theorem 2.1] thus routinely give

P

(

|EI (A+, B)| ≥ (1+ δ)2s|B|ρ and Q̃
+
≤I

)

≤ P

(

Z+ ≥ (1+ δ/2)µ+)

≤ exp
(

−δ2µ+/12
)

≤ n−12|B|.

Recalling that the vertex set A+ is determined by A, and that there are at most n2j pairs (A, B) ∈ S

with |B| = j, in view of inequality (21) it then follows via a standard union bound argument that

P

(

¬T
+
I ∩ Q̃

+
≤I

)

≤
∑

(A,B)∈S
n−12|B| ≤

∑

1≤j≤2s

n2j−12j = o
(

n−9
)

,

8
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which together with (20) implies P(T +
I ) ≥ 1− o(1). This completes the proof of inequality (17) and

thus Theorem 1.3, as discussed. □

3. Random greedy r-AP free process

In this section we prove Theorem 1.5 by showing that the random greedy r-AP free process

typically finds an r-AP free subset I ⊆ Z/NZ with the desired properties. Intuitively, this process

starts with an empty set I = ∅, and then iteratively adds new random numbers from Z/NZ such

that the resulting set I stays r-AP free. More formally, fixing r ≥ 3, the random greedy r-AP free

process starts with

I(0) := ∅ and S(0) := Z/NZ. (22)

Here I(i) denotes the growing r-AP free set found after i steps, and S(i) denotes the set of ‘available’

numbers in Z/NZ \ I(i), i.e., that can be added to I(i) without creating an r-AP. In step i + 1 ≥ 1 of

the random greedy r-AP free process, we then choose xi+1 ∈ S(i) uniformly at random and update

the r-AP free set and available set via

I(i + 1) := I(i) ∪ {xi+1}, (23)

S(i + 1) := S(i) \
(

{xi+1} ∪ Yxi+1
(i)

)

, (24)

where we write Yxi+1
(i) for the set of numbers that become ‘unavailable’ when xi+1 is added, i.e.,

Yx(i) :=
{

y ∈ S(i) \ {x} : there is A ∈ AN,r such that x, y ∈ A and A \ {x, y} ⊆ I(i)
}

, (25)

in which AN,ℓ is a shorthand for the collection of all ℓ-APs in Z/NZ.

3.1. Proof strategy

In this subsection we discuss our proof strategy for Theorem 1.5. To this end, let us first record

the basic observation that each number x ∈ Z/NZ is contained in exactly

D := r|AN,r |/N = Θ(N) (26)

many r-APs A ∈ AN,r . Our strategy is then to analyze the random greedy r-AP free process for

m := ξ · ND− 1
r−1 (logN)

1
r−1 (27)

steps, and show that the r-AP free set I := I(m) ⊆ Z/NZ typically satisfies I ∩ K ̸= ∅ for all k-APs

K ∈ AN,k of size

k := 9ξ−1 · (D/logN)1/(r−1) logN = Θ
(

(N/logN)1/(r−1) logN
)

, (28)

deferring the choices of the sufficiently small constants 0 < ξ, δ < 1/(2r). As usual, we are

henceforth treating both m and k as integers (since rounding has an asymptotically negligible effect

on our arguments).

The outlined proof strategy is consistent with the pseudo-random heuristic that I = I(m)

resembles a random m-element subset of Z/NZ. Indeed, noting km = 9N logN , this heuristic

suggests that

P

(

I ∩ K = ∅

)

≈
(

N−k

m

)

(

N

m

) =
∏

0≤j<k

(

1 −
m

N − j

)

≤ exp
(

−
km

N

)

≪ N−2,

which is small enough to employ a union bound argument over the at most N2 many k-APs K ∈
AN,k. In (37) and Section 3.3 we will essentially make this heuristic reasoning rigorous, albeit in a

slightly roundabout way (via several pseudo-random events and the differential equation method).

9
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3.2. Setup and proof of Theorem 1.5

We now turn to the technical details of our proof of Theorem 1.5, which require some setup.
In order to relate the discrete steps of the process to continuous trajectories, we introduce the
convenient scaling

ti := i/M with M := ND
− 1

r−1 . (29)

To get a handle on all k-APs K ∈ AN,k, we denote the number of available numbers in K by

SK (i) := S(i) ∩ K . (30)

Henceforth using the shorthand X = (a± b)x for X ∈ [(a− b)x, (a+ b)x] to avoid clutter (as usual),
we then define K≤j as the pseudo-random event that for all 0 ≤ i ≤ j we have

|SK (i)| =
(

1 ± e(ti)
)

kq(ti) for all K ∈ AN,k, (31)

and similarly define S≤j as the pseudo-random event that for all 0 ≤ i ≤ j we have

|S(i)| =
(

1 ± D−δ
)

Nq(ti) and max
x∈S(i)

⏐

⏐|Yx(i)| − s2(ti)
⏐

⏐ ≤ D
1

r−1
−δ

, (32)

using the deterministic functions

q(t) := e−tr−1
, s2(t) := (r − 1)D

1
r−1 t r−2q(t) and e(t) := e5(t+tr−1) · D−δ. (33)

Note that, by choosing ξ = ξ (r, δ) > 0 small enough compared to r, δ > 0, we may assume that for

all steps 0 ≤ i ≤ m we have 0 ≤ ti ≤ tm = m/M = ξ (logN)
1

r−1 as well as

0 < D−δ ≤ e(t) = o(1) and 0 ≤ t ≤ Do(1) for 0 ≤ t ≤ tm. (34)

Results of Bohman and Bennett (which require N to be prime), see [1, Section 4], imply that for
sufficiently3 small ξ, δ > 0 we have

P(¬S≤m) ≤ exp
(

−NΩ(1)
)

. (35)

Using estimates (32) and (34), we see that the event S≤m implies min0≤i≤m |S(i)| = |S(m)| ≥
Nq(tm)/2 > 0 for all sufficiently large n, which in turn ensures that the random greedy r-AP free
process does not terminate before step m (since the process is always able to select a new number
in each of the first m steps). As we shall show next, Theorem 1.5 then follows easily from the claim

P(¬G≤m) = o(1) for G≤i := S≤i ∩ K≤i, (36)

whose differential equation method based proof we defer to Section 3.3.

Proof of Theorem 1.5 assuming inequality (36). For any k-AP K ∈ AN,k in Z/NZ, whenever the
event G≤i holds, by combining the concentration bounds (31)–(32) with the error estimate (34) we
infer that

P(xi+1 ̸∈ S(i) ∩ K | Fi) = 1 −
|SK (i)|
|S(i)|

≤ 1 −
1
2
kq(ti)

2Nq(ti)
= 1 −

k

4N
,

where Fi denotes the natural filtration associated with the process after i steps (which intuitively
keeps track of the ‘history’ of the process, i.e., all the information available up to and including
step i). Since the event G≤m implies the event G≤i for all 0 ≤ i ≤ m, using km= 9N logN it routinely
follows that

P

(

I(m) ∩ K = ∅ and G≤m

)

≤
∏

0≤i≤m−1

(

1 −
k

4N

)

≤ exp
(

−
km

4N

)

≪ N−2. (37)

3 For example, the explicit choices δ = 1/(40r2), ξ = δ/500 satisfy all constraints of this paper and [1].

10
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Taking a union bound over the at most N2 many k-APs K ∈ AN,k in Z/NZ then completes the proof
of Theorem 1.5 with I := I(m), since P(¬G≤m) = o(1) by the assumed inequality (36). □

3.3. Dynamic concentration: deferred proof of inequality (36)

This subsection is devoted to the deferred proof of inequality (36), i.e., P(¬G≤m) = o(1), which
in view of the probability estimate (35) and the definition of the event K≤i requires us to establish
the dynamic concentration estimate (31) for |SK (i)|. To this end, following the differential equation
method approach to dynamic concentration [2,30,34], for all k-APs K ∈ AN,k, steps 0 ≤ i ≤ m and
sign-parameters σ ∈ {+, −} we introduce the auxiliary random variables

Xσ
K (i) := σ [|SK (i)| − kq(ti)] − kq(ti)e(ti). (38)

The point is that the desired estimate (31) follows when the inequalities X+
K (i) ≤ 0 and X−

K (i) ≤ 0
both hold. In the following we shall use supermartingale arguments to establish these inequalities,
by analyzing the (expected and worst-case) one-step changes of Xσ

K (i) and |SK (i)|.

3.3.1. Expected one-step changes

We start by estimating the expected value of the one-step changes ∆SK (i) := |SK (i + 1)|− |SK (i)|
of the number of available numbers in any k-AP K ∈ AN,k, assuming that 0 ≤ i < m and G≤i hold.
Note that |SK (i)| is monotone decreasing. Furthermore, a number x ∈ SK (i) is removed from the set
of available numbers if the process chooses a number xi+1 from Yx(i)∪{x}. Since xi+1 ∈ S(i) is chosen
uniformly at random, using the estimates (31)–(32) implied by G≤i it follows that

E(∆SK (i) | Fi) = −
∑

x∈SK (i)

|Yx(i)| ± 1

|S(i)|
=

−[1 ± e(ti)]kq(ti) ·
[

s2(ti) ± 2D
1

r−1
−δ

]

[1 ± D−δ]Nq(ti)
. (39)

Recalling that 0 < D−δ ≤ e(ti) = o(1) by (34) and that q(t) = e−tr−1
by (33), using s2(ti)/D

1
r−1 =

(r − 1)t r−2
i q(ti) = −q′(ti) and D

1
r−1 /N = 1/M it follows that

E(∆SK (i) | Fi) = −
(

1 ± 4e(ti)
)(

s2(ti) ± 2D
1

r−1
−δ

) k

N

=
kq′(ti)

M
±

(

4(r − 1)t r−2
i · q(ti)e(ti) + 4D−δ

) k

M
.

(40)

In preparation for the upcoming supermartingale arguments, we now show that the expected
values of the one-step changes ∆Xσ

K (i) := |Xσ
K (i + 1)|−|Xσ

K (i)| of the auxiliary variables are negative,
again assuming that 0 ≤ i < m and G≤i hold. Set f (t) := q(t)e(t). Recalling the shorthand ti = i/M

and the definition (38) of Xσ
K (i), by applying Taylor’s theorem with remainder to the functions q

and f , it follows that

E(∆Xσ
K (i) | Fi) = σ

[

E(∆SK (i) | Fi) − k
[

q(ti+1) − q(ti)
]

]

− k
[

f (ti+1) − f (ti)
]

= σ

[

E(∆SK (i) | Fi) −
kq′(ti)

M

]

−
kf ′(ti)

M
+ O

(

max
0≤t≤tm

k
(

|q′′(t)| + |f ′′(t)|
)

M2

)

.

(41)

Using (40) we see that in (41) the main kq′(ti)/M term cancels up to second order terms. In the
following we shall show that the main error term −kf ′(ti)/M is large enough to make the expected
change (41) negative. Indeed, noting f (t) = q(t)e(t) ≥ D−δ , we have

f ′(ti) =
(

5 + 4(r − 1)t r−2
i

)

q(ti)e(ti) ≥ 5D−δ + 4(r − 1)t r−2
i · q(ti)e(ti).

Furthermore, D = Θ(N) and δ ≤ 1/(2r) imply M = N/D
1

r−1 ≫ D2δ . Recalling that q(t) ≤ 1, f (t) ≤
e(t) ≪ 1 and 0 ≤ t ≤ Do(1), see (34), it then routinely follows that

|q′′(t)| + |f ′′(t)|
M

≤
O
(
∑

0≤j≤2r t
j
)

·
[

q(t) + f (t)
]

M
≤

Do(1)

D2δ
≪ D−δ.

11
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Inserting these estimates and (40) into the expected one-step changes (41) of Xσ
K (i), it follows that

E(∆Xσ
K (i) | Fi) ≤ −

(

1 − o(1)
)

kD−δ/M < 0. (42)

3.3.2. Bounds on the one-step changes

We next bound the expected values of the one-step changes |∆SK (i)| =
⏐

⏐|SK (i + 1)| − |SK (i)|
⏐

⏐,
assuming that 0 ≤ i < m and G≤i hold. Since |SK (i)| is step-wise decreasing, by combining s2(ti) ≤
rD

1
r−1 t r−2

i with the first estimate of the expected one-step changes (40), using e(ti) = o(1) and 0 ≤
ti ≤ Do(1) it follows that

E(|∆SK (i)| | Fi) = −E(∆SK (i) | Fi) ≤ O

(

D
1

r−1 t r−2
i + D

1
r−1

−δ
)

·
k

N
≪ kD

1
r−1

+δ/2
/N. (43)

Turning to the worst-case one-step changes of |SK (i)|, we introduce the auxiliary event

N≤j :=
{

max
x∈S(i)

|Yx(i) ∩ K | ≤ D
1

r−1
−3δ for all K ∈ AN,k and 0 ≤ i ≤ j

}

. (44)

Recalling the reasoning leading to (39), the crux is that when N≤i holds, then we have

|∆SK (i)| ≤ 1 + max
x∈S(i)

|Yx(i) ∩ K | ≤ 2D
1

r−1
−3δ

. (45)

We now claim that the auxiliary event N≤m typically holds, i.e., more precisely that

P

(

¬N≤m and S≤m

)

≤ exp
(

−NΩ(1)
)

. (46)

Turning to the proof details, with an eye on |Yx(i) ∩ K | let

I = I(K , x) :=
{

W : |W | = r − 2, W ∪ {x, y} ∈ AN,r for some y ∈ K
}

. (47)

Note that |I| ≤ kr2, as there are at most r2 many r-APs containing two distinct numbers {x, y}. Let

NK ,x :=
∑

W∈I
YW with YW := 1{W⊆I(m) and S≤m}. (48)

Since {x} ∪ W contains r − 1 ≥ 2 elements, by similar reasoning as for |I| it follows that

max
0≤i≤m

|Yx(i) ∩ K | · 1{S≤m} ≤ NK ,x · r2. (49)

We shall bound NK ,x via the following Chernoff-type upper tail estimate for combinatorial random
variables with ‘controlled dependencies’, which is a convenient corollary of [33, Theorem 7 and
Remarks 9–10].

Lemma 3.1. Let (Yα)α∈I be a finite family of variables with Yα ∈ [0, 1] and
∑

α∈I λα ≤ µ, where

(λα)α∈I satisfies E(
∏

i∈[s] Yαi
) ≤

∏

i∈[s] λαi
for all (α1, . . . , αs) ∈ Is with αi ∩ αj = ∅ for i ̸= j.

Set Y :=
∑

α∈I Yα . If maxα∈I |{β ∈ I : α ∩ β ̸= ∅}| ≤ C, then P(Y ≥ z) ≤ (eµ/z)z/C for all z > µ.

With an eye on ENK ,x, we first record the basic observation that when S≤m holds, then in every
step i ≤ m there are at least |S(i)| ≥ |S(m)| ≫ ND−δ/4 available numbers, say. For any set U of
numbers from Z/NZ a straightforward adaptation of the proof of [3, Lemma 4.1] (which proceeds
by taking a union bound over all possible steps where the numbers of U could appear) then ensures
that

P

(

U ⊆ I(m) and S≤m

)

≤ m|U | ·
( 1

ND−δ/4

)|U |
≤ π |U | with π := D

− 1
r−1

+δ/2
, (50)

where we used that m/N = D
− 1

r−1 (logN)O(1) ≪ D
− 1

r−1
+δ/4, say. In particular, for any sequence of

sets (W1, . . . ,Ws) ∈ Is satisfying Wi ∩ Wj = ∅ for i ̸= j, using the definition (48) of YW and (50) it
follows that

E

(

∏

i∈[s]
YWi

)

= P

(

⋃

i∈[s]
Wi ⊆ I(m) and S≤m

)

≤ π s(r−2) =
∏

i∈[s]
λWi

with λW := π r−2.

12
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Furthermore, combining |I| ≤ kr2 with (50) and the definition (28) of k, it also follows that

∑

W∈I
λW ≤ kr2 · π r−2 = 9ξ−1r2(log n)1−

1
r−1 D

3−r
r−1 D(r−2)δ/2 ≪ D

1
r−1 D−4δ =: µ.

To estimate the associated C-parameter of Lemma 3.1, note that any set W ∈ I satisfies

⏐

⏐{W ′ ∈ I : W ∩ W ′ ̸= ∅}
⏐

⏐ ≤
∑

w∈W

∑

A∈AN,r :{x,w}⊆A

2|A| ≤ r · r2 · 2r =: C .

Using inequality (49), by invoking Lemma 3.1 with z := µDδ/r2 ≥ DΩ(1) it follows that

P

(

max
0≤i≤m

|Yx(i) ∩ K | ≥ D
1

r−1 D−3δ and S≤m

)

≤ P(NK ,x ≥ z) ≤ (eµ/z)z/C ≤ exp
(

−NΩ(1)
)

. (51)

Taking a union bound over all of the at most N · N2 = NO(1) possible pairs (x, K ) then establishes

the claimed inequality (46).

3.3.3. Supermartingale arguments

We are now ready to prove P(¬G≤m) ≤ exp(−NΩ(1)), by showing that Xσ
K (i) ≥ 0 is extremely un-

likely. Here our main probabilistic tool is the following supermartingale inequality [18, Lemma 19],

which allows us to exploit that Xσ
K (i) is defined (38) as the sum of a random variable and a

deterministic function.

Lemma 3.2. Let (Si)i≥0 be a supermartingale adapted to the filtration (Fi)i≥0. Assume that Si = Xi + Di,

where Xi is Fi-measurable and Di is Fmax{i−1,0}-measurable. Writing ∆Xi := Xi+1 − Xi, assume that

maxi≥0 |∆Xi| ≤ C and
∑

i≥0 E(|∆Xi| | Fi) ≤ V . Then, for all z > 0,

P

(

Si ≥ S0 + z for some i ≥ 0
)

≤ exp

(

−
z2

2C(V + z)

)

. (52)

Turning to the details, we define the stopping time T as the minimum of m and the first step
i ≥ 0 where the ‘good’ event G≤i ∩ N≤i fails. For brevity, set i ∧ T := min{i, T }. Recalling the
definition (36) of the event G≤m = S≤m ∩ K≤m, by the discussion below (38) it follows that

P(¬G≤m) = P(¬S≤m ∪ ¬N≤m) + P(¬K≤m ∩ S≤m ∩ N≤m)

≤ P(¬S≤m) + P(¬N≤m and S≤m) +
∑

σ∈{+,−}

∑

K∈AN,k

P

(

Xσ
K (i ∧ T ) ≥ 0 for some i ≥ 0

)

. (53)

For any K ∈ AN,k, we initially have SK (0) = |K | = k. By definition (38) of Xσ
K (i) we thus have

Xσ
K (0 ∧ T ) = Xσ

K (0) = σ [|SK (0)| − k] − ke(0) = −kD−δ. (54)

Note that the estimates in Sections 3.3.1–3.3.2 apply for 0 ≤ i ≤ T − 1 (since then 0 ≤ i ≤ m − 1
and G≤i ∩ N≤i hold), which in particular implies that the expected one-step changes of Xσ

K (i)
satisfy (42), and that the one-step changes |∆SK (i)| satisfy the worst case bound (45) and the ex-
pectation bound (43). Recalling (54), the stopped sequence Si := Xσ

K (i∧T ) thus is a supermartingale

with S0 = −kD−δ , to which Lemma 3.2 can be applied with Xi = σ |SK (i ∧ T )|, C = O(D
1

r−1
−3δ) and

V = m · kD
1

r−1
+δ/2

/N = O(kD2δ/3). Invoking inequality (52) with z = kD−δ , using the definition (28)
of k and D = Θ(N) it follows that

P

(

Xσ
K (i ∧ T ) ≥ 0 for some i ≥ 0

)

≤ exp
(

−Ω
(

kDδ/3/D
1

r−1
))

≤ exp
(

−NΩ(1)
)

. (55)

Inserting (55) and |AN,k| ≤ N2 into (53), then P(¬G≤m) ≤ exp(−NΩ(1)) follows from (35) and (46),
which completes the proof of inequality (36) and thus Theorem 1.5, as discussed. □
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3.4. Generalization of Theorem 1.5

We close by recording that a minor variant of our proof yields the following generalization of
Theorem 1.5.

Theorem 3.3. For any fixed r ≥ 3 and c > 0, there are constants C,N0 > 0 such that the following

holds for any prime number N ≥ N0, setting k = kN := ⌈C(N/logN)1/(r−1) logN⌉. For any family BN,k

of k-element subsets of Z/NZ satisfying |BN,k| ≤ Nc there exists a set I ⊆ Z/NZ which (i) is r-AP free

in Z/NZ and (ii) satisfies |I ∩ K | ≥ 1 for all K ∈ BN,k.

Proof-Sketch. Our differential equation method based proof of inequality (36) immediately carries
over to BN,k, since besides |AN,k| ≤ NO(1) we did not use any AP-specific properties (note that
in the union bound arguments below (51) and (55) there is plenty of elbow room). Furthermore,
after changing the constant 9 in the definition (28) of k to 4c + 1, say, we see that the probability
estimate (37) holds with N−2 replaced by N−c , which ensures that the union bound argument
establishing Theorem 1.5 carries over to BN,k. □
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