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The Density of Costas Arrays Decays Exponentially

Lutz Warnke , Bill Correll, Jr. , Senior Member, IEEE, and Christopher N. Swanson

Abstract— Costas arrays are useful in radar and sonar engi-
neering, and many other settings in which optimal 2-D autocor-
relation is needed: they are permutation matrices in which the
vectors joining different pairs of ones are all distinct. We prove
that the density of Costas arrays among permutation matrices
decays exponentially, solving a core problem in the theory of
Costas arrays. The proof combines ideas from random graph
theory with tools from probabilistic combinatorics.

Index Terms— Costas arrays, density, permutations, combina-
torics, probability, radar, sonar.

I. INTRODUCTION

C
OSTAS arrays are fascinating objects of interdiscipli-

nary interest: they not only have important engineering

applications, but also give rise to challenging mathematical

problems. Formally, a Costas array is simply a permutation

matrix with the additional property that all vectors between

any two different ones are distinct, see Figure 1. They were

introduced in 1965 by Costas [1], with the goal of improving

the target detection performance of frequency hopping sonar

systems [2]. Around the same time Gilbert also indepen-

dently studied them, motivated by the combinatorics of Latin

squares [3].

Since the 1960s, engineers and mathematicians alike have

been studying Costas arrays. Their optimal 2-D autocor-

relation is useful in a variety of different applications,

including radar waveforms [4]–[9], computer graphics, com-

munications (particularly cell phones), experimental design,

data mining, and a patent [10] that uses Costas arrays to

match patterns. Widely studied mathematical questions include

existence [11]–[13], constructions [11], [14]–[17], struc-

tural properties [18]–[26], and enumeration [27]–[35] of

Costas arrays.

From the beginning, the number C(n) of n×n Costas arrays

has been of core theoretical interest. After determining C(n)
for n ≤ 13 by exhaustive search in 1984, Golomb and Taylor

compiled a fundamental list of 10 open problems regarding the

asymptotic behavior of C(n), see [11, Section V], including
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Fig. 1. Example of an 8×8 Costas array, with black squares representing ones
(and the remaining squares representing zeros): in this permutation matrix

all
�
8

2

�
= 28 vectors between pairs of different ones are distinct, i.e., they

differ in either length or slope.

the asymptotic enumeration conjecture that

C(n)

n!
→ 0 as n → ∞, (1)

i.e., that the density C(n)/n! of Costas arrays among per-

mutation matrices tends to zero. This conjecture received

considerable attention, and three independent proofs emerged

in the 1980s: first by Weiss, next by Reiner, and finally by

Davies, see [12], [36], [37]. In fact, they each proved that

C(n)

n!
≤

O(1)

n
. (2)

Supported by the values of C(n) for small n, in the

late 1980s it became a folklore speculation that the den-

sity C(n)/n! should in fact decay exponentially, see Table I

and [38, p. 119]. It remained a well-known challenge to

narrow the gap between the rigorous upper bound (2) and

the rate of decay observed in practice, see [12], [39], [40].

In this paper we prove that the density C(n)/n! of Costas

arrays among permutation matrices decays exponentially, con-

firming the above-mentioned speculations from the 1980s.

In particular, Theorem 1 below solves the first part of

Problem 4 of Drakakis [40], which in his 2011 update of the

Golomb–Taylor open problems list is marked as one of the

core theoretical problems for Costas arrays.

Theorem 1 (Main Result: Exponential Decay): There is a

constant c > 0 so that the density C(n)/n! of n × n Costas

arrays among n × n permutation matrices satisfies

C(n)

n!
≤ e−cn for all n ≥ 3. (3)
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The exponential decay of (3) is nearly best possible, since

we have the elementary lower bound

C(n)

n!
≥ e−n log n for infinitely many n, (4)

see (38) in Section V. In (3) the restriction to n ≥ 3 is

necessary, since C(n)/n! = 1 for n ∈ {1, 2}, see Table I.

Theorem 1 significantly improves upon the previously known

polynomial decay of C(n)/n!, where the smallest implicit

constant in (2) is due to Swanson, Correll and Ho [41].

In addition to proving a long-standing open problem in

the theory of Costas arrays, a further contribution of this

paper lies in the transfer of proof techniques from random

graph theory to Costas arrays. Indeed, we will prove (3) by

exploiting that C(n)/n! is the probability that a random n × n
permutation matrix is a Costas array. While previous work then

used the second moment method to obtain the polynomial

decay (2), in this paper we will instead use the bounded

differences inequality (Theorem 2) to obtain the exponential

decay (3); see Sections III and IV. A major challenge for

obtaining exponential decay from this inequality is that a direct

application only gives the trivial upper bound C(n)/n! ≤ 1,

the key obstacle being that the relevant random variables

are not sufficiently smooth or Lipschitz; see Section III-B.

We will overcome this obstacle by adapting powerful ideas of

Bollobás [42] from random graph theory; see Section IV.

II. BACKGROUND ON THE NUMBERS OF COSTAS ARRAYS

Definition 1 (Costas Array): A Costas array is a permu-

tation matrix with the additional property that all vectors

between any two different ones are distinct.

An example of an 8× 8 Costas array is shown in Figure 1,

with black squares representing the ones of the permutation

matrix. In the frequency-hopping remote sensing applications

for which Costas arrays were originally designed, the dimen-

sions of the matrix correspond to transmit time intervals and

transmit frequencies. When the frequency hopping pattern is

shifted in both time (horizontally) and frequency (vertically),

then any one can be brought into coincidence with any other

one. The crux of Costas arrays is that no such shift (other

than the identity, which is not a shift at all) can bring two

different ones into coincidence with any two other ones. This

optimal auto-correlation also enables other applications, such

as magnetic clamping [10], sub-pixel metrology [43], digital

watermarking and steganography [44], [45].

A practical reason to care about the number C(n)
of n × n Costas arrays arises in remote sensing. The tone

transmit ordering for a frequency-hopped radar is rapidly

changed among a set of Costas arrays of the same order n
for two reasons: (i) to simultaneously maintain low probability

of intercept operations and target detection performance, and

(ii) to control pulse train ambiguities. Selecting the order n to

be approximately the time-bandwidth product of the system

such that many n × n Costas arrays exist addresses both

needs [46, Section III-IV]. Another reason to care about values

of C(n) arises in shared-band communications, for which

TABLE I

NUMBER C(n) OF n × n COSTAS ARRAYS

Costas arrays supply code schemes. In such applications,

performance is improved for orders n for which C(n) is large.

In the remainder of this section we shall review further rel-

evant background, which will illustrate that the number C(n)
of n × n Costas arrays has been inspected from various angles

since the 1980s.

A. Enumerative Efforts

Many structural insights into Costas arrays were gained

by studying C(n) for small orders n via exhaustive enu-

meration of all possible n × n Costas arrays. For example,

in 1984 Golomb and Taylor [11] reported the complete enu-

meration for n ≤ 13 via exhaustive computer search, whose

findings underpinned their influential open problems list. Dur-

ing the next three decades the complete enumeration was

extended to n ≤ 29 in sequence of papers [27]–[34], which

in turn was instrumental for the 2011 update of the afore-

mentioned fundamental open problems list [40]. The values

of C(17) and C(27) are particularly insightful as they reveal

that C(n) is neither monotone increasing nor unimodal.

The tabulated values of C(n) in Table I record the results of

these massively-distributed backtracking searches for Costas

arrays, which for orders n = 28 and n = 29 took the

equivalent of 70 and 366.55 years of single CPU time, respec-

tively [33], [34]. Despite such enormous computational efforts,

it remains unknown if Costas arrays exist for order n = 32,

see [12]. Part of the reason is the ‘combinatorial explosion’ of

the search space: for each increment of order n approximately

five times more computational resources are needed according

to [31, pp. 530-531] and [47, p. 22]. Interestingly, Correll [35,

Equation (3)] found a closed-form sum for C(n) based on

the Möbius Inversion Formula, but this expression has proven

difficult to evaluate [40, p. 8].

These exhaustive enumeration efforts have been facilitated

by an alternate definition of Costas arrays. Namely, for a given

permutation π of [n] := {1, . . . , n} the one-line form is

π = a1a2 . . . an, (5)

where aj = π(j). Row r of the difference triangle of π
for 1 ≤ r ≤ n − 1 is then given by the n − r differences

ar+1 − a1 ar+2 − a2 · · · an − an−r. (6)

Here the conceptual point is that the permutation π represents

an n × n Costas array if no row of its difference triangle

has repeated differences, which in turn can be efficiently

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on December 23,2022 at 23:30:49 UTC from IEEE Xplore.  Restrictions apply. 



WARNKE et al.: DENSITY OF COSTAS ARRAYS DECAYS EXPONENTIALLY 577

verified by a computer with only O(n3) many difference

comparisons [2], [48].

Interest in finding new Costas arrays and additional

values of C(n) has spawned research into constraints

on difference triangles of Costas arrays, in order

to further accelerate backtracking searches. In particular,

Chang [49] remarked in 1987 that only differences in

rows r ≤ bn−1
2 c need to be computed for verification, and

Barker, Drakakis, and Rickard [48, Theorem 4, Section V]

showed in 2009 that an isosceles-trapezoidal region of differ-

ences in rows n
3 < r < bn−1

2 c need not be computed. More

recently, Correll [19] established constraints on the number

of positive differences in the rows r ≤ bn
3 c, and additional

constraints [20] on first differences (r = 1).

Drakakis [39] quantified the overall restrictiveness of the

various structural constraints by defining the degrees of free-

dom L(n) of an n × n Costas array to be the minimal

number of integers from the domain [n] whose images need

to be specified in order to uniquely determine a Costas array.

Based on computational data he conjectured [39, Conjecture 2]

that L(n) ≤ 3 for n ≥ 24, and he proved that L(n) = o(n) in

fact already suffices [39, Section IV] to establish exponential

decay of the density C(n)/n! of Costas arrays.

B. Constructions of Costas Arrays and Beard’s Database

Costas arrays can be constructed using finite field tech-

niques. For example, Welch (within [14]) gave a construction

involving a single primitive element. Golomb also gave a

generalization of a construction due to Lempel to two distinct

primitive elements [15]. Unfortunately, such explicit construc-

tions (and variants thereof) do not work for all orders n, and

it remains open if Costas arrays exist for all n; see [12],

[17], [40]. However, the Welch and Lempel-Golomb construc-

tions and the infinitude of primes show that n × n Costas

arrays exist for infinitely many orders n, and even establish

that lim sup C(n) = ∞ as n → ∞ [11, p. 1158].

All known Costas arrays up to order 1030 are in Beard’s

database [50]. Figure 2 displays the number of Costas arrays

of each order n in the database on logarithmic axes. The exact

values of Table I show up in the left-hand part of the figure.

The explicit constructions that account for the right-hand side

of Figure 2 are explained in more detail in [46, p. 1047].

C. Heuristic Prediction of C(n) and a Density Conjecture

In an effort towards understanding the asymptotic behavior

of the number C(n) of n×n Costas arrays, in 1988 Silverman,

Vickers and Mooney [27] accurately predicted the shape of

the left-hand hump in Figure 2, based on a probabilistic

model in which the entries of the difference triangle (see

Section II-A) associated with a random permutation matrix

are independent [12], [40]. Their heuristic predicts that

C(n)

n!
≈

(

1 −
K

n + 1

)IP(n)

, (7)

Fig. 2. Numbers of n×n Costas arrays in Beard’s database [50]: for n ≤ 29
these equal C(n), and for n ≥ 30 these are lower bounds for C(n). Our main
result (Theorem 1) shows that C(n)/n! decays exponentially with n.

where the constant K ≈ 1.111 was fit to the values of C(n)
for n ≤ 17 (all known values around 1988) and the parameter

IP(n) :=

{

n(n − 2)(2n + 1)/24 if n odd,

(n + 1)(n − 1)(2n − 3)/24 if n even.
(8)

In 2007, Beard et al. [31] fit K to the values of C(n)
for n ≤ 26, and the resulting constant K ≈ 1.10784 is nearly

unchanged.

A more recent density prediction of Swanson et al. [41] is

based on the heuristic that, in a random permutation matrix,

the occurrences of the minimal configurations of ones that

violate the definition of a Costas array are independent. This

probabilistic heuristic leads to the conjecture that

C(n)

n!
= O

(

e−n2/18−n/8
)

. (9)

As it turns out, inequality (38) in Section V shows that the

two heuristic density predictions (7) and (9) are both false

for large n. The crux is that both formulas are not useful for

large n, as they predict that lim sup C(n) = 0 as n → ∞.

III. DENSITY OF COSTAS ARRAYS: KEY CHALLENGES

OF PROBABILISTIC APPROACH

Our upcoming proof of Theorem 1 in Section IV will

use probabilistic techniques to bound the density C(n)/n! of

Costas arrays from above. To this end we define Sn as the

set of all permutations of [n] = {1, . . . , n}, and write Mπ

for the n × n permutation matrix representing π ∈ Sn

(i.e., Mπ = (mij)i,j∈[n] with mij = 1 if π(i) = j and

mij = 0 otherwise). Choosing the permutation π ∈ Sn

uniformly at random, we obtain that

P(Mπ is a Costas array) =
C(n)

n!
, (10)

since Mπ equals any given Costas array with probability 1/n!.
A Costas array cannot contain three equally-spaced collinear
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ones, since otherwise the vector from the left one to the

middle one would be the same as the vector from the middle

one to the right one. These forbidden sets of three ones

are called L3-configurations (there are two other forbidden

configurations, see [41], but considering L3-configurations

suffices for our purposes). Writing X = X(π) for the number

of (unordered) L3-configurations in the random n × n permu-

tation matrix Mπ, using (10) it follows that

C(n)

n!
= P(Mπ is a Costas array) ≤ P(X = 0). (11)

A. Second Moment Method

To establish the polynomial decay C(n)/n! = O(1/n) as

in previous work [12], [37], [41], in view of inequality (11)

it suffices to apply the second moment method to X . Indeed,

after carefully estimating the first two moments of X , Cheby-

chev’s inequality eventually gives the polynomial bound

P(X = 0) ≤ VarX/(EX)2 = O(1/n), (12)

see [12, Section 4.2]. It it well-known that such inequalities

obtained by estimating moments of small order (like Cheby-

chev’s inequality) usually do not give exponential bounds.

In other words, the basic moment based proof approach used

in previous work is not suitable for proving Theorem 1.

B. Bounded Differences Inequality

To obtain the stronger exponential decay C(n)/n! ≤ e−cn

claimed by Theorem 1, we will estimate P(X = 0) via a more

powerful tool from probabilistic combinatorics, namely the

following bounded differences inequality for random permuta-

tions (which follows from Azuma-Hoeffding type martingale

arguments, see [51, Section 11.1] or [52, Section 1.1.4]).

Theorem 2 (Bounded Differences Inequality): Let

f : Sn → R be a function with discrete Lipschitz coefficient D,

i.e., such that |f(σ) − f(σ0)| ≤ D whenever σ0 arises from σ
via a transposition. Choosing π ∈ Sn uniformly at random,

the random variable Z := f(π) satisfies, for all t ≥ 0,

P
(

Z ≤ EZ − t
)

≤ exp

(

−
t2

2nD2

)

. (13)

Applying the bounded differences inequality (13) to the

number Z = X(π) of L3-configurations in the random n × n
permutation matrix Mπ, using X = X(π) ≥ 0 it follows that

P(X = 0) = P(X ≤ EX − EX) ≤ exp

(

−
(EX)2

2nD2

)

, (14)

where D = DX is the discrete Lipschitz coefficient from

Theorem 2 associated with the random variable X = X(π).
As we shall see in Equation (30) of Section IV-B, the expected

number of L3-configurations satisfies EX ∼ n/8 as n → ∞.

The key challenge is that the Lipschitz coefficient D = DX

is too large for inequality (14) to be useful. Indeed, we shall

below prove that D = DX ≥ n − 2, which in view of

0 ≤
(EX)2

2nD2
≤

O(1)

n
(15)

implies that the right-hand side of inequality (14) tends to one

as n → ∞ (and not to zero as one might hope). Using (11)

this means that the bounded differences inequality only gives

the trivial density bound C(n)/n! ≤ 1 for large n.

For the interested reader we now prove that the discrete

Lipschitz coefficient of X indeed satisfies D = DX ≥
n− 2, as claimed above. To this end we consider the identity

permutation σ ∈ Sn, and the permutation σ0 ∈ Sn which arises

from σ by transposing n − 1 and n. Recalling that X(σ)
counts the number of (unordered) L3-configurations in the

permutation matrix Mσ representing σ, by observing that the

two bottom right-hand ones in Mσ′ are not a part of any

L3-configuration, it follows that the above-defined permuta-

tions σ, σ0 satisfy

X(σ) − X(σ0) = Idl3(n) − Idl3(n − 2), (16)

where Idl3(n) denotes the number of (unordered)

L3-configurations in the n × n identity permutation matrix.

The formula

Idl3(n) =

{

1
4n(n − 2) if n even,
1
4 (n − 1)2 if n odd,

(17)

appearing in [41, Theorem 4] then implies that

D = DX ≥ |X(σ) − X(σ0)| = n − 2, (18)

i.e., that the discrete Lipschitz coefficient of X is very large.

IV. DENSITY OF COSTAS ARRAYS: PROOF OF THEOREM 1

In this section we prove Theorem 1, by estimating the den-

sity C(n)/n! of Costas arrays using the bounded differences

inequality (13). We will overcome the technical challenge of

large Lipschitz coefficients (discussed in Section III) by trans-

ferring proof ideas from random graph theory to Costas arrays.

More concretely, we shall adapt a ‘disjoint approximation’

technique that can be traced back to a random graphs break-

through of Bollobás [42] from 1988. This powerful proof

technique consists of the following two key steps:

Step 1: Using the combinatorial idea of counting ‘dis-

joint’ objects, define an auxiliary random vari-

able X 0 = X 0(π) which (i) satisfies 0 ≤ X 0 ≤ X ,

and (ii) has a small discrete Lipschitz coeffi-

cient D = DX′ .

Step 2: Using a random sampling approach, bound the

expected value EX 0 from below.

To see why the auxiliary random variable X 0 = X 0(π) is

useful, note that 0 ≤ X 0 ≤ X implies

P(X = 0) ≤ P(X 0 = 0). (19)

Applying the bounded differences inequality (Theorem 2)

to Z = X 0(π) similarly to (14), it follows from (11) that

C(n)

n!
≤ exp

(

−
(EX 0)2

2nD2

)

, (20)

where D = DX′ is the discrete Lipschitz coefficient from

Theorem 2 associated with the random variable X 0 = X 0(π).
Adapting the above-mentioned two key steps to Costas arrays,

in Equations (23) and (37) of Sections IV-A and IV-B we
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will show that for all n ≥ 3 our auxiliary random vari-

able X 0 satisfies D = DX′ = 2 and EX 0 ≥ an for a suitable

constant a > 0. Inserting these estimates into (20) then gives

C(n)

n!
≤ exp

(

−
a2n

8

)

for all n ≥ 3, (21)

establishing the desired exponential Costas array density (3)

of Theorem 1 with constant c := a2/8.

To complete the proof of Theorem 1 it remains to adapt

the two key steps of the disjoint approximation technique to

Costas arrays, i.e., to define suitable X 0 = X 0(π) which sat-

isfies 0 ≤ X 0 ≤ X and D = DX′ = 2 as well as EX 0 ≥ an.

A. Step 1: Define X 0 With Small Lipschitz Coefficient

The first step of the disjoint approximation technique

addresses the key challenge that the number X = X(π)
of L3-configurations in Mπ has a large discrete Lipschitz

coefficient. In the context of random graphs Bollobás [42]

realized that, by artificially limiting ‘overlaps’ between the

objects of interest, one can often replace X by an auxiliary

random variable that (i) behaves similarly to X , and (ii) has

a small discrete Lipschitz coefficient. Adapting this combi-

natorial insight to Costas arrays, we define X 0 = X 0(π) as

the maximum number of (unordered) L3-configurations in the

random n × n permutation matrix Mπ which are pairwise

disjoint, i.e., which share no ones. Note that

0 ≤ X 0 ≤ X. (22)

Recall that the discrete Lipschitz coefficient D = DX′ from

Theorem 2 is an upper bound on the maximum change

of X 0(σ) that can result from applying a transposition τ
to σ ∈ Sn. Since each one in the permutation matrix Mσ is

contained in at most one L3-configuration counted by X 0(σ),
for any permutation σ ∈ Sn and transposition τ it follows that

|X 0(σ) − X 0(τσ)| ≤ 2. (23)

Hence D = DX′ := 2 is a valid choice for the discrete

Lipschitz coefficient of X 0.

B. Step 2: Lower Bound on the Expectation EX 0

In the second step of the disjoint approximation technique it

remains to show that the expected value EX 0 of the auxiliary

random variable X 0 = X 0(π) is large. Here our main tool is a

random sampling technique from probabilistic combinatorics

(cf. [53, Theorem 3.2.1 and Lemma 7.3.1]), which uses

randomness to construct a set of disjoint L3-configurations.

Turning to the details, let L = L(π) denote the collection

of all (unordered) L3-configurations in the n × n permutation

matrix Mπ representing the random permutation π ∈ Sn, so

that |L| = X . Let O = O(π) denote the collection of all

unordered pairs {L, L0} ⊆ L which overlap in exactly one or

two ones (note that this implies L 6= L0). Let Lq = Lq(π)
be a random subset of L defined by including each L ∈ L
independently with probability q, where q ∈ [0, 1] is deter-

mined later. Let Oq = Oq(π) contain all pairs {L, L0} ∈ O

with L, L0 ∈ Lq . Since each L ∈ L is included in Lq

independently with probability q, it follows that

E|Lq | = qE|L| and E|Oq| = q2
E|O|. (24)

Deleting from Lq one element from each pair in Oq, we obtain

a collection L∗
q of pairwise disjoint L3-configurations in Mπ.

Noting X 0 ≥ |L∗
q | ≥ |Lq| − |Oq|, using the linearity of the

expectation together with (24) and |L| = X we infer that

EX 0 ≥ E|Lq| − E|Oq| = qEX − q2
E|O|. (25)

To establish our desired lower bound EX 0 ≥ an, it remains

to estimate the expectations EX and E|O|, and then choose

the inclusion probability q ∈ [0, 1] which maximizes (25).

We start with the expected number EX of L3-configurations

in the random permutation matrix Mπ. Let L3(n) denote

the collection of all possible (unordered) L3-configurations

that can appear in some n × n permutation matrix.

Given L ∈ L3(n), we denote by �{L⊆Mπ} the indicator vari-

able for the event that L ⊆ Mπ holds, i.e., that L is contained

in Mπ. Noting that the number X = X(π) of (unordered)

L3-configurations in Mπ can be expressed as the sum

X =
∑

L∈L3(n)

�{L⊆Mπ}, (26)

using the linearity of the expectation we see that

EX =
∑

L∈L3(n)

E(�{L⊆Mπ}) =
∑

L∈L3(n)

P(L ⊆ Mπ). (27)

Note that there are exactly (n − 3)! permutation matrices of

order n which contain a given L ∈ L3(n). Since Mπ equals

any such matrix with probability 1/n!, it follows that

EX =
∑

L∈L3(n)

(n − 3)!

n!
= |L3(n)| ·

(n − 3)!

n!
. (28)

According to [12, Equations (4.4) and (4.5)] the total number

of (unordered) potential L3-configurations is

|L3(n)| =

{

1
8n2(n − 2)2 if n even,
1
8 (n − 1)4 if n odd,

(29)

and so we conclude that

µ := EX =
|L3(n)|

n(n − 1)(n − 2)
∼

n

8
. (30)

We now turn to the expected number E|O| of unordered

overlapping pairs of L3-configurations in the random permu-

tation matrix Mπ. Given L, L0 ∈ L3(n), let |L∩L0| denote the

number of overlapping ones in these two L3-configurations.

Proceeding similarly to Equations (26) and (27), using the

linearity of the expectation it follows that

E|O| = 1
2

∑

(L,L′)∈L3(n)×L3(n):
|L∩L′|∈{1,2}

P(L ⊆ Mπ and L0 ⊆ Mπ), (31)

where the factor of 1/2 takes into account that |O| counts

unordered pairs. Writing L3,j(n) for the collection of
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all (L, L0) ∈ L3(n)×L3(n) with |L∩L0| = j, with analogous

counting reasoning as for Equation (28), it then follows that

E|O| =
|L3,1(n)|

2
·
(n − 5)!

n!
+

|L3,2(n)|

2
·
(n − 4)!

n!
. (32)

To bound |L3,2(n)| from above, note that there are |L3(n)|
choices for L ∈ L3(n), and then at most 3 · 3 = 9 choices

for L0 ∈ L3(n) with |L ∩ L0| = 2 (as there are 3 ways to

choose the two common ones, and at most 3 ways to choose

a third one of L0). It follows that

|L3,2(n)| ≤ |L3(n)| · 9. (33)

To bound |L3,1(n)| from above, we proceed similarly: note

that there are |L3(n)| choices for L ∈ L3(n), and then at

most 3 · n2 · 3 = 9n2 choices for L0 ∈ L3(n) with |L∩L0| = 1
(as there are 3 ways to choose the single common one,

at most n2 ways to choose a second one of L0, and at

most 3 ways to choose a third one of L0). It follows that

|L3,1(n)| ≤ |L3(n)| · 9n2. (34)

To clean up border cases, note that |L3,1(n)| = 0 if n ≤ 4 and

that |L3,2(n)| = 0 if n ≤ 3. Inserting the above estimates

into (32), using Equation (30) it follows that

E|O| ≤
9µ

2

[

�{n≥5}n
2

(n − 3)(n − 4)
+
�{n≥4}

n − 3

]

=: ∆, (35)

where �{n≥j} is the indicator function for n ≥ j, as usual.

We are now ready to derive the desired lower bound

on EX 0. Namely, after inserting the bounds EX = µ and

E|O| ≤ ∆ into inequality (25), we see that the inclusion

probability q := min{µ/(2∆), 1} yields

EX 0 ≥ q(µ − q∆) ≥
qµ

2
=

µ

4
· min

{

µ

∆
, 2

}

. (36)

Inspecting (29), (30) and (35), it follows that there is a

constant a > 0 such that for all n ≥ 3 we have

EX 0 ≥ an. (37)

This concludes the disjoint approximation technique, and thus

completes the proof of Theorem 1, as discussed.

V. CONCLUSION

In this paper we proved that the density C(n)/n! of Costas

arrays among permutation matrices decays exponentially, nar-

rowing the gap between the theoretical and empirical bounds

that had existed since the 1980s. We did this by showing,

more generally, that the density of permutation matrices with-

out three equally-spaced collinear ones decays exponentially.

A key proof ingredient was an approximation technique from

random graph theory, which allowed us to overcome the

concentration inequality-related obstacle of large Lipschitz

coefficients. This combinatorial technique does not seem to

be as widely known in other fields, and we hope that our

exposition in Section IV makes it accessible to a wider range

of researchers.

Our knowledge of the number C(n) of n × n Costas

arrays remains somewhat incomplete. For orders n ≥ 1 for

which n × n Costas arrays do exist, note that we trivially

have C(n)/n! ≥ 1/n! ≥ n−n. It thus follows from Theorem 1

and the explicit constructions mentioned in Section II-B that

for infinitely many (but not all) n we have

e−n log n ≤
C(n)

n!
≤ e−cn. (38)

In terms of asymptotic enumeration of Costas arrays, the main

open problem is to close the gap in (38). As a first step in this

direction, we propose the following more modest problem.

Problem 1 (Exponential Rate of Decay): Determine the

order of magnitude of − log (C(n)/n!) as n → ∞.
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