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We study the following preferential attachment variant of the classical
Erdés—Rényi random graph process. Starting with an empty graph on n ver-
tices, new edges are added one-by-one, and each time an edge is chosen with
probability roughly proportional to the product of the current degrees of its
endpoints (note that the vertex set is fixed). We determine the asymptotic size
of the giant component in the supercritical phase, confirming a conjecture of
Pittel from 2010. Our proof uses a simple method: we condition on the vertex
degrees (of a multigraph variant), and use known results for the configuration
model.

1. Introduction. During the last two decades “dynamic” network models (which
evolve/grow step-by-step) have been of great interest in various different research areas,
including combinatorics, probability theory, statistical physics, and network science; see for
example, [2, 5, 11, 13, 17, 30, 36, 54]. Part of the motivation stems from the fact that many
real-world networks (such as Facebook) also grow over time. Widely studied models include
variants of the classical Erd6s—Rényi random graph process [5, 7, 14, 45, 46] and the modern
“scale-free” preferential attachment model made popular by Barabési and Albert [2, 3, 8],
which have strikingly different features.

In this paper we consider a hybrid between between the Erd6s—Rényi and Barabasi—Albert
network models, where the vertex set is fixed (as in the Erd6s—Rényi case) and edges are
added with (one version of) preferential attachment. More precisely, let « € (0, 00) be a
parameter, and write (G} ,,)m>0 for the random graph process with fixed vertex set [n] =
{1,...,n} where new edges are added one-by-one (starting with no edges) such that the next
edge connects two currently nonadjacent vertices v and w with probability proportional® to
(dy +a)(dy + ), where d,, denotes the current degree of v. In intuitive words, edges are thus
added according to a “rich-get-richer” preferential attachment mechanism (since vertices with
higher degree are more likely to be joined). Note that Gy ,, has m edges. Furthermore, in the
limit o« — oo all edges are added with the same probability, so we recover the Erd6s—Rényi
random graph process.

The dynamic network model (G} ,,)m=>0 is so natural that is has been suggested and stud-
ied multiple times (sometimes independently) in the complex networks and combinatorial
probability literature. It was first studied in 2010 by Pittel [40], who described it as a special
case of a more general model that he attributed to a suggestion by Lovasz in 2002, where the
next edge joins v and w with probability proportional to f(d,) f (dy) for some function f;
this in turn can be traced back to a suggestion? of Erdés and Rényi [15] from 1961 moti-
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'Here we have tacitly normalized in a convenient way: namely, if the probability of adding the new edge {v, w}
is proportional to (xdy + B)(xdw + B) with B, x > 0, then it is also proportional to (dy + @) (dy + @) with
a:=p8/x>0.

2Erdés and Rényi proposed, even more generally, to study network models where the probability of joining v
and w depends on the current degrees dy and dy,, see [15], p. 344.
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vated by more realistic modeling (see also Section 5.2.2). From 2011 onward Borgs et al. [9],
Rath and Szakics [43], and [27], Example 7.9, also studied a natural multigraph variant of
Gy . (see Section 2.1), motivated by the emerging (multi)graph limit theory paradigm. Fur-
thermore, in 2012, Ben-Naim and Krapivsky [4] proposed and studied the model Gy, ,, by
statistical physics methods, motivated by the way connections are formed on Facebook (see
also [50] and Appendix A.2.2).

In this paper we study the emergence of the giant component in this intriguing model,
which is one of the most important and fascinating phase transitions in random graph the-
ory. Pittel [40] answered the basic question of existence and location of this phase transition
in Gy, - for any fixed & > 0 he showed that at around m ~ m. many steps the largest com-

ponent typically changes from size ®(logn) to size © (n), where?

11 ‘ n no
(1.D M 0 +a ) 2@+1)

A variant of this result for « = 1 was also reported by Ben-Naim and Krapivsky [4]. In
fact, Pittel [40] proved much stronger estimates on the size L (m) = L1(Gj/ ) of the largest
component of Gy ,,, in particular near the critical point m.. Focusing for simplicity on the
“supercritical” phase (where the unique “giant” component has emerged as the largest com-
ponent), his result [40], Theorem 1, can be written as follows. 4Ife = 0(1) and &*n — o0

as n — 00, then, for a certain function p, (&) with py(¢) = ®(g) as € \( 0, we have’
(1.2) Li(mc(1+¢)) = pa(e)n - (1 4+ 0,(1)).

Overall, Pittel’s “finite-size scaling” results qualitatively recover several key features of the
Erd6s—Rényi phase transition [6, 7], in particular the fundamental “linear growth” of the
O (en)-sized largest component, see (1.2). However, for technical reasons his proof requires
the extra assumption £*n — oo, while it is natural to guess, and was conjectured by Pittel
[40], pp. 621,649, that the estimate (1.2) remains valid under the weaker supercritical condi-
tion £>n — oo known from the Erdés—Rényi reference model.

The main purpose of the present paper is to extend Pittel’s result and verify his nice con-
jecture (which also appears in the recent book by Frieze and Karonski [17], Section 17.5).
We further extend the result by allowing « to depend on n. Moreover, and at least as impor-
tant, we do this using a simpler method than the one in [40]: we use known results for the
configuration model to derive the results rather quickly.

1.1. Main results. Our first result determines the asymptotic size of the giant component
in the entire supercritical phase, thus confirming Pittel’s nearly 10-year-old conjecture (see
also Appendix A.2.1). Furthermore, (1.4) below identifies the precise linear growth-rate of the
giant, generalizing and rigorizing a statistical physics result by Ben-Naim and Krapivsky [4]
from 2012 for the special case @ = 1 (see Appendix A.2.2).

THEOREM 1.1 (Extending Pittel [40]). Fix o € (0,00). If ¢ = ¢(n) = O(1) and

&3n — 0o as n — oo, then

(1.3) Li(mc(14+¢)) = pa(e)n - (1 +0p(1)),
where the continuous function py : (0, 00) — (0, 1] is given by (4.13) together with (4.12); it
satisfies 0 < py(e) < 2¢ and

(1.4) P (€) = 0(e?) ase\0.

1+2/o¢+

3The phase transition location m. from (1.1) can easily be guessed via modern heuristics, see Appendix A.1.
4See Appendix A.2.1 for Pittel’s formulation of his supercritical giant component result.
5 As usual, op (1) denotes a quantity that converges to 0 in probability as n — oo; see e.g., [26, 30].
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From the perspective of mathematical physics, this result places the preferential attachment
process into the same universality class as the Erd6s—Rényi reference model (with largest “su-
percritical” component of order en and largest “subcritical” component of order £ ~2 log(&3n),
both under the condition £3n — oo, cf. [40]). This kind of universality is only known for rel-
atively few network models, including random regular graphs [39], the configuration model
[44], hypercube percolation [21, 56], and bounded-size Achlioptas processes [48].

Since the limiting case o — oo of the preferential attachment process recovers the uni-
form Erd6s—Rényi process (GE,}}n)mZO’ it is natural to wonder under what conditions this
Erd6s—Rényi approximation holds rigorously in the case when o« = «(n) is finite but tends
to infinity as n — oco. Our main giant component result, which is the following extension of
Theorem 1.1, allows us to answer this intriguing question by allowing for « = @ (n), including
a(n) — oo. To establish uniqueness of the “giant component” (as in [40]), Theorem 1.2 also
includes a weak estimate on the size Ly(m) = Lz(Gf,l,m) of the second largest component
of Gy ,,,- We henceforth use the convention that x /0o = 0 for any finite x.

THEOREM 1.2 (Main giant component result). Assume that « = a(n) — a € (0, o0] as
n— o0.Ife =e(n) = O(1) and e3n — 00 as n — oo, then

(1.5) Li(mc(1+¢8)) = pa(e)n - (14 0p(1)),
(1.6) Ly(mc(1+¢e))=0,(1) - Li(mc(1 +¢)),
where the function p, : (0, 00) — (0, 1] is as in Theorem 1.1, and poo(€) satisfies
(1.7) 1 — poo(e) = e~ 1H8)Px()
In particular, (1.4) holds for any o € (0, o0].
Remark 4.1 also shows that limy_, 5 p(€) = Poo(€). Recognizing (1.7) as a standard

branching process equation, the largest component of the Erd6s—Rényi process (GE};) m>0 18
well known [6, 7] to satisfy

(1.8) Ll(GE}‘%(HS)) = poo(&)n - (1 +0,(1))

when ¢ = O(1) and £’n — co. From Theorem 1.2 it is easy to deduce (using continuity
of poo) that the preferential attachment process has the same giant component behaviour
when «(n) — oo sufficiently fast.

COROLLARY 1.3 (Supercritical Erd6s—Rényi behaviour). Assume that « = a(n) — oo
asn—oo.lfe=¢(n) = O(1), 3n — 0o and ag — 00 as n — 00, then

n
(1.9 Ll(i(l + 8)) = Ll(GZ’%(HE)) = poc(&)n - (1 +0p(1)).
In particular, e = O (1) and &3n — 0o imply (1.9) when o = Qn'/3).

For the interested reader we include two remarks about the function p, and the condition
e=0(1).

REMARK 1.4. As shown in the proof in Section 4, p,(¢e) is an analytic function of
a € (0,00) and ¢ € (0, 00); moreover, it extends analytically to e € [0, o), as shown in
Remark 4.2.
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REMARK 1.5. The condition ¢ = O(1) in Theorems 1.1-1.2 can be removed. This is a
trivial consequence of the monotonicity of the process and the fact that p,(¢) — 1 as ¢ — o0,
see Remark 4.1: it suffices to consider the case ¢ — oo, and then we may for any n > 0
choose g such that p,(e9) > 1 — n and then whp (i.e., with probability tending to one as
n — oo) we have

n>Li(mc(1+¢)) > Li(mc(1+ &) > (pale0) — n)n
> (1 —=2m)n > (pa(e) —2n)n,
which also implies that L (m.(1 + ¢)) < 2nn whp.

(1.10)

1.2. Comments. 'To motivate why the phase transition of Gy ,, has some ErdGs—Rényi
features (like linear growth of the giant component), let us point out that distinct tree-
components Cp, C; merge with probability proportional to

(1.11) S d+a) Y du+a)=[Q+a)Ci—2]- [2+)|Cal —2].

v€C1 w€C2

In concrete words, trees thus merge with rates that are approximately proportional to the rates
|C1| - |C2| from the Erd6s—Rényi process. Since the phase transition is usually dominated
by the contribution of tree-like components (e.g., by counting the vertices in “small” trees
outside of the giant component), after some hand-waving it thus becomes plausible to observe
some key features of the Erd6s—Rényi reference model.

Our actual proof takes a surprisingly simple different route (instead of trying to leverage
the above tree-heuristic). Indeed, we first show that a natural multigraph variant of G}/, has,
conditioned on its degree sequence, the same distribution as the well-known configuration
model for random multigraphs. By noting that in the multigraph variant the degrees evolve
nearly independently (when looked at in the right way), we can also get very strong control
over the resulting asymptotic degree sequence of negative binomial form (which contrasts not
only the Poisson distribution of the Erd6s—Rényi model, but also the power-law distributions
observed in many preferential attachment models). These two results together allow us to
study the multigraph variant of G7 ,, via standard results for the configuration model, which
then easily gives the asymptotic size of the giant component in Gj ,,. See Section 2 for a
detailed proof overview.

We mention that our arguments are quite different from Pittel [40], who studies the multi-
graph variant of Gy, via involved enumerative techniques. In fact, he notes [40], p. 643,
that by conditioning on the degree sequence, it might be possible to use known results for
the configuration model; however, in the paper he used a different approach, partly because
it seemed difficult to verify the required degree conditions. (We will see that this is not so
difficult, using a continuous-time construction. Moreover, we have the advantage of being
able to use a stream-lined version [29] of the original phase transition result [38] for the
configuration model.)

Finally, while the focus of the present paper is on the giant component, it is important to
note that our proof method can also be used to study other properties of Gy ,, such as the
k-core, see Section 5.3.

1.3. Organization. In Section 2 we give a detailed overview of our proof strategy. In
particular, we state several technical auxiliary results, which we later prove in Section 3.
Furthermore, in Section 2.2 we give a heuristic argument of our main giant component result,
which we make rigorous in Section 4. In Section 5 we then discuss extensions, variants,
other properties, and open problems. Finally, Appendix A.l contains a simple heuristic for
the phase transition location m., and Appendix A.2 shows how our results are compatible
with previous work.
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2. Proof structure. In this section we outline our high-level proof strategy for Theo-
rems 1.1-1.2, which proceeds roughly as follows. After introducing a suitable random multi-
graph variant (Gg:,’;)mzo of (Gz,m)mzo, we shall derive three basic auxiliary results (whose
proofs are deferred to Section 3). First, Theorem 2.2 shows that results for the random multi-
graph G, transfer to the original random graph G} . Second, Theorem 2.4 shows that,
by conditioning on its degree sequence, we can study G“ * via the widely studied configu-
ration model G for random multigraphs. Third, Theorem 2 5 determines the typical degree
sequence of Gy, The crux is that these three results together allow us to study Gy ,, b
applying standard results for random graphs with given degree sequences (see Theorem 2.8),
and in Section 2.2 we outline how this reduction makes our main giant component result
plausible (the full details are deferred to Section 4).

2.1. A multigraph variant: Reduction and auxiliary results. We start by introducing a
convenient multigraph variant of (Gy ,)m>0, which allows for loops and multiple edges
(this natural model was also used by Pittel [40], and further studied from different aspects
in [9, 27, 43]). We write (GO’ *)m>0 for the random multigraph process with fixed vertex
set [n] and parameter o € (O o0), where edges are added one-by-one (starting with no
edges) such that the next edge connects distinct vertices v and w with probability propor-
tional to 2(d, + «)(dy + @), and forms a loop at vertex v with probability proportional to
(dy + a)(dy + 1 + «); here d,, denotes the current degree of v (as usual, each loop is counted
as two edges at its endpoint). In this paper we shall first prove our main results for the ran-
dom multigraph G3;,, which turns out to be much easier to analyze than Gy, ; we record
this intermediate goal for later reference.

nm’

THEOREM 2.1 (Main multigraph result). Theorems 1.1-1.2 also hold for the random
multigraph Gy, .

2.1.1. Approximating Gy, ,, by the multigraph Gy;;,.  Our first auxiliary result allows us
to study Gy, ,, via the random multigraph G, (so that Theorems 1.1-1.2 eventually fol-
low from Theorem 2. 1). In words, Theorem 2 2 implies that whp-results for Gy;, routinely
transfer to G, when m = O(n) and o = Q(1). This lemma is basically the same as [40],
Corollary 3; one difference is that we do not restrict to constant . (Another difference is that
we only give an o(1) bound for the additive term in (2.1)—(2.2). This can easily be improved,

but we do not need this.)

THEOREM 2.2 (Transfer statement: from G“ » o GY n.m- partly [40]).  Given C, ap > 0,
there is B = B(C, ag) > 0 such that thefollowmg holds whenever 1 <m < Cn and o > ay.
For any set G,, of graphs with m edges and vertex set [n], we have

2.1) P(GS . € Gn) < B-P(Gy € Gy) + o(1).

REMARK 2.3. The proof shows more generally that, for any set G, ,, of graph sequences
(Go, ..., G,) with vertex set [n], we have

2.2) P((G% Vozicm € Gm) < B PG oim € Grm) + 0(1).

The proof strategy is to compare the stepwise conditional probabilities of the added edges,
where we may clearly restrict to simple graph sequences (without loops or multiple edges).
By construction, the conditional probability of adding the new edge {v, w} is in both pro-
cesses proportional to 2(d, +«) (d, 4 o), but the normalizing factors in the denominator differ
slightly (since only one of these processes allows for loops and multiple edges; see (3.28)—
(3.29) in Section 3.3). It turns out that during the first m = O(n) steps the corresponding
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normalizing factors of both processes are extremely close together, which eventually allows
us to establish (2.2), from which inequality (2.1) follows immediately. See Section 3.3 for the
full details.

2.1.2. Reducing the multigraph Gy, to the configuration model. Our second auxil-
iary result allows us to study Gy, via the well-known configuration model Gj for ran-
dom multigraphs, see, for example, [5, 17, 54]; it says that Gy;, conditioned on its de-
gree sequence d(GZ:;’;) = d = (dy)ve[n) has the same distribution as the configuration
model Gy = ([n], Eq), which we for concreteness here define as follows: Let Sq be the
set of all 2m-element sequences in which each vertex v € [n] appears d, times, pick a
uniform random vertex sequence W = (wq, ..., w2,) € Sq, and define the edge multiset
Eq :={wiwy, ..., wzm_lwzm}.6 As said above, this useful property was noted (but not ex-
ploited) by Pittel [40] (at least after conditioning the multigraph on being simple); it has also

been noted or used in [27, 43].

THEOREM 2.4 (Conditional equivalence: Gg:;"l and G4, [27,40,43]). Foranym > 1 and
any degree sequence d = (dy)ye[n) with Zve[n] dy = 2m, the random multigraph Gg:; condi-
tioned on having degree sequence d has the same distribution as the configuration model Gy.
In other words, for any set G,, of multigraphs with m edges and vertex set [n], we have
23) P(GY, € Gn | d(GE) = d) = B(G € ).

As we shall see in Section 3.1, the random multigraph process was carefully designed to
make (2.3) true “by construction”. To make this plausible, recall that the conditional probabil-
ity of adding the nonloop edge {v, w} in the next step is proportional to 2 - (d, + &) - (dy + ).
This “factorization” suggests that we can alternatively construct the m edges of G}, as
follows: we first generate the vertex sequence wri, ..., Wy, (each time vertex v is cho-
sen with probability proportional to d,, + o) and then join them pairwise to the m edges
WiwWy, ..., Wyn—1Woy. In Section 3.1 we show that (a version of) this construction indeed
gives the correct distribution (this is the place where the special treatment of loops is crucial).
It furthermore turns out that every vertex sequence (wi, ..., Way,) € Sq arises with the same
probability (see (3.3) in Section 3.1), which by the described construction of G3 = ([n], Eq)
then easily gives the desired conditional equivalence. See Section 3.1 for the full details.

2.1.3. Approximating the degree sequence of G,,. Our third auxiliary result states

that the degree sequence of G% is asymptotically a negative binomial distribution Y ~

NBin(w, p) with shape parameter « and suitable probability p = p(«, m/n), that is,

P(Y =r):= (“ +: - 1) (1= p)*p"
2.4) :
— M(l —p)¥p" forreN={0,1,...}.

For notational convenience, given a degree sequence d = (dy)ye[] and an integer k > 0, we
write

1 1
(2.5) 7 (d) == - > Lig=ty and pi(d):= . Y dh

ve[n] ve(n]

OThis construction indeed gives the usual configuration model, since Eq has the same distribution as the edges
of a uniform random matching of the 2m-element multiset in which each vertex v € [n] appears d, times.
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for the proportion of vertices with degree k, and the kth moment of the degree of a random
vertex, respectively. We now state a limit theorem for the degrees (aiming at simplicity rather
than the widest generality).

THEOREM 2.5 (Degree sequence of Gy, : negative binomial). Suppose that n — oo,
m=0(n), and a« = a(n) = Q(1). Let d be the (random) degree sequence of GZ:,’;, and let
Y =Y, ~ NBin(a, p,) with

(2.6) Pni=2m/(na + 2m).

Then, for any sequence w(n) — oo, for every integer k > 0,
2.7 i (d) = P(Y, = k) + op(w(m)n™'/?),
(2.8) pk(d) = EY¥ + op(w(m)n'3),

where IEY,ic = 0(1).

REMARK 2.6. The estimates (2.7)—(2.8) with an arbitrary w(n) — oo can equivalently
be written as 7 (d) = P(Y, = k) + Op(n~"/?) and pui(d) = EYS + 0,(n=1/?), see, for ex-
ample, [26], Lemma 3.

REMARK 2.7. Wehave EY, =2m/n =3 ¢ dv/n, EY, (Y, —1) = 2m/n)*(1+a™ "),
and EY,, (Y, — )Y, —2) = 2m/n)>(1 + =) (1 +2a~"); see Lemma 3.1.

The proof strategy hinges on the fact that, in G7';,, the degree of a vertex equals the number
of its concurrences in the auxiliary sequence wi, ..., Wy, introduced above. To study these
statistics we then switch to continuous time, and identify the degree of each vertex v € [n]
with a suitable independent birth process (with initial value O and birth rates Ay := k + ).
In Section 3.2, we show that if we sequentially record the vertices which give birth, then the
resulting vertex sequence wi, ..., Wy, indeed has the correct distribution. This continuous-
time embedding ensures (i) that the birth processes and thus the degrees evolve independently,
and (ii) that each birth process has an explicit distribution at time ¢, which turns out to be of
negative binomial form (see (3.6) in Section 3.2). These two properties make it easy to ap-
proximate the degree sequence up to the desired precision. See Section 3.2 for the full details.

2.2. Reduction to configuration model G}y: Giant component heuristics. The punchline
of the auxiliary results above is that we can obtain results for Gy ,, by applying standard
results for the well-understood configuration model G, where d is random but approximates
a negative binomial distribution. Armed with this reduction to the configuration model G},
the plan is to then estimate the size of the largest component by applying the following
result of Janson and Luczak [29], a special case of Theorems 2.3-2.4, which is a convenient
extension of the pioneering result by Molloy and Reed [38]. (The moment condition us5(d) =
O (1) can be weakened to lower moments, see [29, 55], but we do not need this.)

THEOREM 2.8 (Phase transition in G3%, [29]). Suppose that, for each n > ng, d =
(dv)veln] is a sequence of nonnegative integers with us(d) = O(1) such that 3, dy is
even. Furthermore, suppose that D € N is a random variable that is independent of n such
that ED € (0,00), P(D =1) > 0, and mrp.(d) — P(D = k) as n — oo, for every k > 0. Then,
writing L1 = L1(Gy) and Ly = L2(G}) for the sizes of the largest and second largest com-
ponent of G, the following holds.
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(1) IfED(D —2) > 0, then there is a unique & € (0, 1) satisfying EDeP = SZED and,
furthermore,

(2.9) Li/n - 1-FE? >0 and Ly/n—2>0.

@Gi) IfED(D —2)=0and ¢, := Zve[n] dy(dy — 2) satisfies ¢, > 0 and n_2/3§,, — 00 as
n— oo, then

2.10 L= 2ED 1 d L=
2.10) = (o T 0)o @d La=o,.

(iii) IfED(D —2) <0, then L/n — 0.

In the following heuristic discussion we shall make our giant component results for G},
plausible (with a focus on Theorem 1.1). To this end, as discussed above, it suffices to study
the giant component of Gy for ‘typical” degree sequences d, where we shall below (for sim-
plicity) assume that we can apply Theorem 2.8 with the random variable D being approxi-
mately equal to Y =Y, ~ NBin(«, p) from Theorem 2.5. Regarding the point when the giant
component emerges, in the usual informal language Theorem 2.8 (together with Remark 2.7)
states that there is a giant component if and only if

2m (2m 1
(2.11) EDD-2)~EY(Y -2)=EY(Y—-1)—-EY = 7<7(1 +a7)— 1>
is larger than zero, which makes the phase transition location m¢ ~ n/[2(1 + a ] plausi-
ble (see Appendix A.l for an alternative heuristic). Regarding the size of the largest com-
ponent for m = m¢(1 4+ ¢) with ¢ = ¢(n) — 0, in view of (2.11) we have ED(D —2) ~
EY (Y —2) =0®(e) — 0. In this case Theorem 2.8(ii) intuitively predicts (together with (2.8)
and Remark 2.7) that the size of the largest component is approximately

2IED Zd dy—2) ~ 2EYEY (Y —2)n . 2en
ED(D — 1)(D —2) TEYY -1 -2) 14220

ve(n]

which makes L (mc(1 4 €)) = py(e)n with pe(g) = 2¢/(1 + 2a~1) as & \ 0 plausible. In
fact, our above application of Theorem 2.8(ii) tacitly required that the parameter

n~23 N dy(dy —2) 0B EY (Y - 2) = 0(n!%)
ve[n]

tends to infinity, which makes the assumption e>n — oo and thus Theorem 1.1 plausible. See

Section 4 for a rigorous version of the above heuristic arguments (in the more general setting
of Theorem 1.2).

3. Proofs of auxiliary results. In this section we prove the three basic auxiliary results
stated in Sections 2.1.1-2.1.3. As noted above, the results have partly been shown earlier,
but for completeness we give complete proofs of the versions used here. We consider Theo-
rem 2.2 last, since we find it convenient to use Theorem 2.5 in the proof.

3.1. Proof of Theorem 2.4: Conditional equivalence of Gy, and Gg. The conditional
equivalence result of Theorem 2.4 can be shown in several ways, 1nclud1ng enumeration [40]
and exchangeability [27, 43] approaches. Inspired by Pdlya urn arguments, here we shall use
an elementary approach that avoids cumbersome explicit calculations by defining appropriate
random variables (which also facilitates the upcoming degree sequence arguments). To this

end we introduce a random sequence

(3.1) (Wj)j=1
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of vertices from [n], by defining W; | to have the conditional probability distribution with

2 jeril Liwj=v) +

(3.2) P(Wiy1 =v|Wy, ..., W) = -
I +an

forall v € [n].

(This can be interpreted as the sequence of draws from a Pélya urn with n colours, with
initially « balls of each colour, see, e.g., [32, 37, 41].) By joining these vertices pairwise
to edges, for each i > 0 we then obtain a multigraph with vertex set [n] and edge multiset
E,i:={W1Way, ..., Wy_1 Wy}, where E, o = &. The resulting multigraph sequence is eas-
ily seen to have the same distribution as (G,'/)i>0. Indeed, since 3 ;c(oi) Lw;=v) = du (i)
equals the degree of vertex v after i steps, this follows from the simple observation that the
stepwise conditional distributions of the added edges are the same (the conditional probabil-
ity of adding {v, w} as the next edge is proportional to 2 - (dy (i) + &) (dy (i) + ) when v # w,
and proportional to (d, (i) + «)(d, (i) + 1 + @) when v = w). Now the proof of the desired
conditional equivalence result is straightforward, since the above “pairwise joining of 2m
vertices” construction of the edge multiset is similar to the construction of the configuration
model Gy described in Section 2.1.2.

PROOF OF THEOREM 2.4. Letd = (dy)ye[n] be a degree sequence with Zve[n] dy, =2m.
Recalling that Sq denotes the set of all 2m-element sequences w = (wy, ..., Way,) in which
each vertex v € [n] appears d, times, below we shall write E(W) := {wiwy, ..., Wom—1Wys}
for the associated edge multiset. For any multigraph G with degree sequence d(G) = d, by
the above-discussed construction of Gy, it follows that

]P’(Gg:;; =G)
~ P(Grm) =d)
_ Y weSa:Ew=EG) P((W1, ..., Way) = W)
ZWGSd P((le ey W2m) == W)

By multiplying the conditional probabilities from (3.2) (and rearranging the factors in the
numerator), it now is straightforward to see that the above probabilities

VE|n <j< (+ )
0<i<2m

are the same for all w € Sq (as they depend on the degree sequence d = (dy)yc[,] Only). Since
the edge multiset of Gy is defined as E(w) for a uniform random w € Sq (see Section 2.1.2),
it readily follows that

P(Gym = Gld(Gyy,) = d)

L{Ew)=E(G))
(3.4) P(Gym =Gld(Gyy) =d) = ) # =P(G}=0G),

weSq

which implies the claimed conditional equivalence (since G with degree sequence d(G) =d
was arbitrary). [

3.2. Proof of Theorem 2.5: Negative binomial degree sequence of Gy,. For the degree
sequence result of Theorem 2.5 it will be convenient to consider a continuous time embedding
of the (W;) ;> based construction of (ngf)izo, since this will give us more independence.
(This is a special case of a general embedding for Pdlya urns; see, e.g., [1], Section 9.2, with
extension in [22], Remark 4.2, and [23], Remark 1.11.) To this end, let

3.5) ((Dv(),0.00)) vefn]
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be independent pure birth processes with initial value 0 and birth rates Ay :=k + o (i.e.,
the transition rate from state k to state k + 1). Identifying vertex v € [n] with the birth pro-
cess Dy(1), the order of the random birth-times (z;);>1 (also defining 7o := 0 for conve-
nience) thus naturally induces a sequence of random vertices (W;) j>1 (the ones which gave
birth at the corresponding times). Justifying our slight abuse of notation, it is not difficult
to check that this vertex sequence has the same distribution as the sequence (W;) ;> de-
fined in Section 3.1. Indeed, since vertex v occurs »_ jetil Liw;=v) = Dy (7;) many times in
(W1, ..., W;), this follows from the simple observation that the stepwise conditional distri-
butions of the selected vertices are the same (the conditional probability of selecting v as
the next vertex is (Dy(7;) + )/ (i + an), since the total rate equals >, ¢, (Dw (7)) + @) =
i + an). For later reference we also record the standard fact’ that D, (¢) has a negative bino-
mial distribution with shape parameter & and probability 1 — e~/ that is,

(3.6) D,(t) ~NBin(a, 1 —e ™).

Exploiting independence of the birth-processes, now the proof of the desired degree sequence
result is conceptually straightforward, since in our vertex-based construction of Gy, the
degree of vertex v equals

(3.7) dy(m) = Z ﬂ{Wj:v} = Dy(t2m),
Jjel2m]

where 17, will be highly concentrated. Before giving the details, we record some basic prop-
erties of negative binomial random variables (deferring their proofs, which are rather tangen-
tial to the main argument here). For x € R and integer k > 0, we denote the falling factorial
by (x)k :=Tlo<j<k(x — j), where (x)o =1.

LEMMA 3.1. ForY ~ NBin(«, p) the following holds for all « € (0, 00) and p € [0, 1).

(1) We have, for every integer k > 0,
(3.8) E(Vye=EY)*- [] (+j/a) withEY =2
1<j<k I-p
(ii) The probability generating function and its derivative are given by, for |x| < 1/p,
1— o 1 — p)«
(3.9) Ex! = < P ) and E[yx'1]= ap&.
1 —px (1 — px)a+l

Gii) If p=1—e"", thent =log(l +x/a) implies p=1—1/(1+x/a) = x/(x +a) and
EY =x.

PROOF OF THEOREM 2.5. By the construction of G{» discussed above, we have, see
(3.7),

(3.10) d=d(G,7) = (Dv(t2m) yepn)-

With an eye on (2.5), we now introduce the auxiliary variables

(3.11) Ne(@®):= Y Lp,iy=k) and Mi(t):= > Dy(®)F.
ve(n] ve(n]

7By standard textbook results (see, e.g., [18], Section 6.8) the functions py(¢) := P(Dy(t) = k) with py(t) =
1(x=0y are the unique solutions of the forward equations p,’< () =M1 Pk—1OLg>1) — A pr(t). For iy =k + o
the solution of these differential equations turns out to be py (t) = P(Y = k) with Y ~ NBin(a, 1 —e™’) as defined
in (2.4). This can alternatively be deduced from [18], Exercise 6.8.6, and is also explicitly stated in [53], (3.15),
for example.
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We henceforth write @ = w(n), and may (as usual) assume that /wn < 2m holds. With the
goal of approximating 12, by a deterministic auxiliary time t,,, define

2 2m £/
(3.12) tm = log(l + _m) and t,f = log<1 + u)

an an
These times are chosen such that, by (3.6) and Lemma 3.1(iii), we have
(3.13) Dy (tn) £ Y, ~ NBin(a, py).

2m £ 4/
(3.14) ED,(tf) = =Y _ED, (1) + or/n.
n

Furthermore, since we assume /wn < 2m and m = O (n), all terms on the right-hand side of
(3.14) are O(1), so (3.8) and o = 2(1) yield, for every fixed integer g > 0,

(3.15) max _E(D, (1)), = O(1).

€ty bt}

For every k > 1 it is well known that we may write x* as a linear combination

(3.16) =3 H(ac)q,

1<q<k 4

where the coefficients are the so-called Stirling numbers of the second kind. Hence (3.15) also
holds with (D, (t)), replaced by D,(t)?, so that EY,/ = O(1) by (3.13). Using independence
of the birth processes, we also infer

(3.17) Var M (1) = Y Var[D < > EDy(t;;)" = O(n).
ve(n] veln]

We now approximate ta,,. To this end we consider M (¢) = >_,¢[,; Dv(t), where (3.14)
yields

(3.18) EM, (t5) = nED, () = 2m £ Jon.

Using Chebyshev’s inequality and (3.17)—(3.18) it follows that, whp, M (z,,) < 2m and
M, (t,‘n" ) > 2m. Since M{(12,,) = 2m by (3.10)—(3.11), using time-monotonicity of M(¢)
this implies that, whp,

(3.19) t,

+
m < Tom <1,.

Next we focus on i (d) = Zve[n] D,,(rz,n)k/n = My (t2m)/n, see (2.5) and (3.10)-(3.11).
By combining (3.8) and (3.14) with (3.15) it follows that, for every fixed integer g > 0,

B, = (25

L) BID, (1), = ED (), + O],
Using (3.16) again, we infer that ED,, (ti)k ED, (1)~ + O ({/w/n). Consequently, using
Chebyshev’s inequality and (3.17) again, we deduce that, whp,

(3.20) M (13) = EMy (1) + Jon = nED, ()" + O (on).

Since ED, (tm)k = EY,f by (3.13), using time-monotonicity of My (¢) and (3.19) it now fol-
lows that

(3.21) My (tam) = nEYX + 0p(wn'/?),
which in view of u(d) = My (t2,,)/n establishes (2.8).
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Finally, we turn to mx(d) = > e 1Dy (ram)=k} /1 = Ni(T2m)/n, see (2.5) and (3.10)-
(3.11). Here the key observation is that (3.19), (3.20) and (3.18) together imply that, whp,

| N (tam) — Ni(tw)| < |Mi1(6}) — My (z;,)|
<|EM; (1)) —EM(t,)| 4 2/ on = 4/wn.

Furthermore, ENy(1,,) = nEl(p, 1, =k} = nP(Y,, = k) by (3.13), and Var Ni(1,,) = O(n) by
independence of the birth processes. Hence, using (3.22) and Chebyshev’s inequality it fol-
lows that, whp,

(3.23) |Ni(tom) — nP(Y, = k)| < |Ni(tw) — nP(Y, = k)| + 4/ on <5y wn,
which in view of 7 (d) = N (t2,,)/n establishes (2.7). O

(3.22)

PROOF OF LEMMA 3.1. We start with the first identity in (3.9), which is an immediate
consequence of (2.4) and (1 — px)™ =3, cn (“+:_1) p"x". Differentiation then yields the

second identity in (3.9), which for x = 1 yields EY = « - p/(1 — p). Taking higher derivatives
yields, for all integers k > 1,

: dk _
B 1 0=p=(gr0-n)-a-p
(3.24) 0=/<k
p k
=a(a+1)---(a¢+k— 1)-(—) .
I—=p

Inserting EY =« - p/(1 — p) into (3.24) then readily establishes (3.8), where the case k =0
is trivial. Finally, (iii) follows immediately by substituting p =1—1/(1 + x/«) into EY =
ap/(1—=p). O

REMARK 3.2. We used above that the degrees can be obtained by stopping the indepen-
dent processes D, (¢) suitably. Another, related, construction that also can be used to show
asymptotic results is that, for any p € (0, 1), if D, ~ NBin(«, p) are independent, then the de-
gree sequence (dy)ye[n] has the same distribution as (D, ),¢[,] conditioned on ), D, = 2m,
see for example, Holst [19] or Pittel [40], p. 624. That the degree distribution is asymptoti-
cally negative binomial can also be shown by direct calculations [41], Case 2b, p. 153.

3.3. Proof of Theorem 2.2: Relating Gy, ,, with G},.  For the transfer statements of The-
orem 2.2 and Remark 2.3, the strategy is to compare the stepwise conditional probabilities
of the added edges in (Gg’ ;)i=0 and its multigraph variant (GZ:;") i>0; these probabilities are
identical up to the normalizing factors in the denominator. (This is the same strategy as in
[40], Section 3, although we do the details differently and somewhat simpler.) We begin by
relating the two processes under an extra technical condition.

LEMMA 3.3.  Define Z(G;) := 3 _ye[n) dv (i)3, where dy(i) := dy(G;) denotes the degree
of vertex v in G;. Given A, C, oo > 0, the following holds whenever 1 <m < Cn and o > o).
For any sequence (Gy, ..., Gy) of simple graphs with V(G;) = [n], G; C G41, e(G;) =1,
and Z(G,,—1) < An, we have

(3.25)  P((Gy . )ozizm = (Gos -, Gm)) =O) - P((G}y)<icm = (GO, - - Gm)),

where the implicit constants in (3.25) may depend on C, g, A.
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PROOF. Let{v,w} € ([g]) \ E(G;) denote the (unique) edge in which G, and G; differ.
Note that, by construction, the edge {v, w} is added to G; with probability proportional to
2(dy(i) + a)(dy(i) + ) in both random graph processes, but each time the normalizing
factor in the denominator differs slightly. Indeed, recalling ), dy (i) = 2, in the random
multigraph process the normalizing factor equals

D 2(de() +a)(dy(@) +a) + Y (di(i) + @) (dy(i) + 1+ )

{x’y}e([;]) x€([n]
(3.26)

2
:(Z (dx(i)+oz)> + > (di(i) +a) = i +an)Qi +an+ 1),

x€[n] x€ln]
whereas in the original (simple) random graph process the normalizing factor equals
> 2(dy (i) + ) (dy (i) + @)
eore(BE@)
(327)  =Qi+an)’— [2 Yoo [de)+a)(dy@) o)+ Y (de() +a)2].
{x.y}€E(G) xeln]

=:0(G)

Putting things together, it follows that the one-step conditional probabilities are given by

« o 2(dy (i) + o) (dw (i) + )
(328) P(GY ;11 =Git1l(GY)ojzi = (Go.....Gi) = (2il+otnO;2—Ql(Gl.)a

_ 2(dy(i) + o) (dy (i) + )
Qi+ an)Ri4+an+ 1)’

’

(3.29) ]P’(GZ::‘H = G,-+1|(Gfl‘:;'f)05j§i = (Go,...,G)))

Next we claim that (3.25) follows if maxo<j<m Q(G;) < Ba?n for some constant B =
B(C, o, A) > 0. Indeed, the right-hand sides of (3.28)—(3.29) are then equal up to a multi-
plicative factor of 1 4+ O (n~!), where the implicit constants may depend on B and ag. Noting
that initially P(G5 , = Go) = 1 = P(G} 5 = Go), then (3.25) follows readily by comparing
the product of m < Cn conditional probabilities.

It remains to prove maxo<j<m Q(G;) < Ba’n. Using (x +a)(y + ) < 4max{x2, y2, az}
it follows that

0G) <8 Y (i) +dy()+a)+4 Y (de(D)* +0a?)

{x,y}€E(G)) x€(n]
(3.30) <16 Y dy(i)® +8e?|E(G)| +4 Y dy(i)? +4a’n
veln] veln]

<20-[Z(G;) + o max{i, n}].

Noting that Z(G;) < Z(G,,—1) by monotonicity of the degrees, and using the assumptions
Z(Gp—1) < An,i <m < Cn and o > ag we readily infer Q(G;) < 20[A + 2(C+Dn <
Ba2n for suitable B = B(C, a, A) > 0, completing the proof (as discussed). [J

To deduce the desired transfer statements, it intuitively remains to show that typically
Z(Gy, ,,_1) = O(n). Perhaps surprisingly, using Lemma 3.3 this can in fact be derived (or
“bootstrapped”) from a corresponding bound for the more tractable process Gy, by a stop-
ping time argument.
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PROOF OF THEOREM 2.2. Since (2.2) implies (2.1), it suffices to prove Remark 2.3.
Recalling (2.5) and (2.8) with EY; 5= 0(1), by Theorem 2.5 (and monotonicity in m) we
may choose A = A(C, op) > 0 such that

(3.31) P(Z(Gy_1) > An) <P(Z(Gy ' c)) > An) = o(1).

n,m—1
Next, by summing (3.25) over all graph sequences from G, ,, with Z(G,,—1) < An (ignor-
ing those sequences that are not realizable by the simple random graph process (Gz’ Do<i<m)
it follows that

(3'32> P((Gg,i)OSigm € gn m and Z( n,m— 1) = An) = 0(1) ]P)(( n,i )0<z<m € gn m)

where here and below we use the convention that all implicit constants may depend on C,
o, A.

Finally, we compare P(Z(Gfl‘ym_]) > An) with IP’(Z(GZ::;_I) > An). Since Z(G;) <
Z(Gi+1) by monotonicity of the degrees, here the idea is to focus on the first step where
Z(G ) < An is violated, and then only compare the probabilities in both processes up to (and
including) that step via Lemma 3.3. Turning to the details, define #,, ; as the set of all simple
graph sequences (Go, ..., G;) with V(G;) = [n], G; C Gl+1, e(Gy) =i, Z(Gj-1) < An,
and Z(G;) > An. Noting that initially Z(G9 0) =0= Z(Gn 0) by summing (3.25) over all
graph sequences from H,, ; it follows that

P(Z(Gy 1) > An) = 3 P((G})ozi<; € Hnj)

1<j<m-—1

(3.33) =0 Y PGy o<i<j € Hnj)

1<j<m-—1
<0 -P(Z(Gy, 1) > An),
which together with (3.31)—(3.32) completes the proof of inequality (2.2).

REMARK 3.4. The transfer statement of Theorem 2.2 fails when o = a(n) — 0 suffi-
ciently fast: for example, for o = o(n™?) and m = O(n) it is easy to check that (GZ Do<i<m
whp sequentially builds up a clique, whereas the multigraph variant (G )0<,<m whp only
adds loops.

4. Size of the giant component: Proof of the main theorems. In this section we prove
our main giant component results Theorems 1.1-1.2 and 2.1, by closely following the heuris-
tics from Section 2.2. (Recalling @ = a(n) — a € (0, oo] as n — 00, we sometimes need to
distinguish the cases a < oo and a = oo, since they have different asymptotic degree distri-
butions.)

PROOF OF THEOREM 2.1. Recall that Theorem 1.1 is a special case of Theorem 1.2.
Thus it suffices to prove that Theorem 1.2 holds with L;(m) := L j(Gg;;;). By consider-
ing subsequences in the standard way, we may assume that ¢ = e(n) — €0, fOr some g4, €
[0, c0),as n — oo. Let Y, ~ NBin(«, p,) be as in Theorem 2.5, and let §,, := n~ 12w (n) with
w(n) :=logn, say (any sequence with n~'/2 « 8, <« n~!/3 would work). Then (2.7)—(2.8)
show that the random vector §,; V(e (d) — P(Y, = k)72 s (i (d) — EY,II‘ )iep) converges in
probability to 0 in the product space R* x R*. By the Skorohod coupling theorem [33],
Theorem 4.30, we may without loss of generality assume that the random multigraphs for
different n are coupled such that this holds a.s., and thus that, a.s., for every for every inte-
ger k > 0 we have

4.1) i (d) =P(Y, = k) + 0(3,),
(4.2) i (d) =EYF 4+ 0(8,).
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As a preparatory step, we now show that d = (d,) ¢, satisfies the assumptions of Theo-
rem 2.8 with

NBin(a, p), ifa < oo,

4.3) .
Po(1 + £0), if a = o0,

where po is defined as in (4.4) below. Since m = m.(1 + ¢), recalling (2.6) and (1.1) we
infer that, as n — oo,

 oml4e)  (4e)/@+ D)
P aFame(l+e) 1+(+e)/(@+1)
(4.4)
1+e¢ 14+ e

= — =: .
d+2+¢  at2+en P

If a < 00, then it readily follows from (2.4) that Y, —d> NBin(a, pso). If instead a = oo, then
(4.4) yields p, — 0 and ap, — 1 4 €5 as n — 00, so that (2.4) implies

. 1 k
l_[0§j<k(ap”+-]p”)(1 _pn)a_> (I +é&c0) e—(H'Soo), k>0

45 P, =k = - o >0,

and thus Y, —d> Po(1 + &~). To sum up, in both cases we have Y, —d> D, so that (4.1) implies,
a.s., mp(d) =P(Y, =k) +o(1) > P(D = k) as n — oo, for every k > 0. Furthermore, ED €
(0, 00) and P(D = 1) > 0 are obvious (note that ps, > 0 when a < 00). Moreover, (4.2) and
Theorem 2.5 yield, a.s., us5(d) = I[t?lYn5 + o(1) = O(1), so the assumptions of Theorem 2.8
hold (as claimed).

Next, gearing up to apply Theorem 2.8 in the two separate cases oo =0 and e > 0, we
now estimate ED and ED (D — 2). In particular, (4.3), (3.8), and (4.4) yield, when a < oo,

Poo a

1
4.6 ED = = 1 =—A1 ,
(4.6) al—poo a+1( + &c0) 1+a_1( + &00)

which obviously holds for a = oo too (with our convention oo~ =0). Similarly, (3.8) yields,
when a < 00,

ED(D —2)=ED(D — 1) —ED = (ED)*(1+a~ ') —ED
4.7

= 1+al 1+ ex0)€00,
which again holds for a = oo by standard Poisson formulas for D ~ Po(1 + £).

Case 1: £(n) — €00 > 0. In this case, (4.7) yields ED(D — 2) > 0. Hence, Theorem 2.8(i)
applies and shows the existence of a unique & = £(a, €x) € (0, 1) such that

(4.8) EDeP~1 =¢ED.

Furthermore, by Theorem 2.4 and the calculations above, a.s. the degree sequence d is such
that (2.9) applies to G}, conditioned on d. Consequently, (2.9) holds for Gy, also uncon-

ditionally, which is (1.5)—(1.6) with p, (¢) replaced by
(4.9) pa(ecc) :=1—EEP.

In the remainder we take (4.9) together with (4.4), (4.3), and (4.8) as the definition of the
function p,(ex), for all a € (0, o] and g4 € (0, 00). We now study further properties of
this function, and for convenience temporarily write € instead of £,. (We no longer consider
finite n here, so there is no risk of confusion.)
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If a = oo, then by combining D ~ Po(1 + ¢) with standard Poisson formulas, we can
rewrite (4.8) as
(4.10) eI+ 1-8) _ ¢
In view of (4.9) this also yields the identity
(411) 1000(8) =1 e_(1+5)(1_$) =1 g’

establishing that o~ (&) is the positive solution of (1.7), as asserted.
If a < 0o, then by combining D ~ NBin(a, ps) with (3.9) and (4.4) we can rewrite (4.8)
as

a+1 a+1
(12 <a+2+e—(1+8)5§> =5

Then (4.9) and (3.9) yield

_1_ a+1 S saa+D)
(4.13) pale) =1 (a+2+8_(1+8)§) | —galatD),

By (4.13), (4.12) and elementary algebra, it also follows that

(1+¢e)(1—-§) (1+e)&
@iy puer=1-(1+ D) emamg (1o SEE),

We remark that, in view of (4.11), equations (4.13)—(4.14) both also hold when a = oo (by
interpreting the fractions in the natural way, i.e., as limits). As a further technical interlude
(that can safely be skipped on a first reading), note that the difference between the two sides
in (4.12) is a convex function of & € [0, 1], which vanishes at £ = £(a, ¢) and & = 1 but not
identically. Hence its derivative at &(a, €) must be negative, and thus the implicit function
theorem applies and shows that &(a, ¢) is an analytic function of (a, ¢) € (0, 00)2. Hence,
using (4.13) or (4.14), it follows that p, () is also an analytic function of (a, €).

Case 2: ¢(n) — &0 = 0. In this case, (4.7) yields ED(D — 2) = 0. Using (4.6) and (3.8)
when a < oo and standard Poisson formulas for D ~ Po(1) when a = oo, it follows that
ED=1/(14+a"") and

ED _ 1 . l+a!
ED(D —1)(D—2) (ED)2(1+1/a)(1+2/a) 1+2/a’

(4.15)

Moreover, using (4.2) and §,, < n~13 «e, in analogy with (4.6)—(4.7) it follows that, a.s.,

Cn/n=p2(d) = 2u1(d) =EY, (Y, —2) +0(5,)
(4.16)

(1+¢e)e+o(e) ~

E.

T 1tal 1+a-!

Consequently, n—2/ 3§n = O(en!/?) - oo, and Theorem 2.8(ii) applies a.s. to Gg;;; condi-
tioned on d, again using Theorem 2.4. Hence, (2.10) yields, conditioned on d and therefore
also unconditioned,

2(14+a7h 2en
1+2/a 1+2/a
We similarly also obtain L2(Gyy,) = 0p(§n) = op(en) = op(L1(Gyy ;). This verifies (1.6),
in this case too. However, to derive (1.5) from (4.17), it remains to stitch the two formulas
together by showing that, as ¢ — 0 with a < oo fixed, we have p,(¢) ~2¢/(1 + 2/a), as
asserted (more precisely) in (1.4). We shall do this by an analytic argument. (An alternative,
more conceptual, proof is sketched in Remark 4.2.) Since the claimed asymptotics is well

4.17) Ll(Gg;;;):< +0p(1));,,: (1 + op(1)).
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known in the Poisson case a = oo, for simplicity we henceforth assume a < oo (the proof in
the simpler case a = oo proceeds in the same way). With foresight, we define
(4.18) yi=0+e1-§)>0,
and then (similar to the calculations leading to (4.14) above) rewrite (4.12) as

B (1+e)(1—§) —(a+1) B w —(a+1)
(4.19) s_<1+T> _(1+a+1) .

Using (4.12) and log(1 4 x) < x, it follows that

1
(1—8) 4+ —-8)72%/2<—log(l —(1—-§)) = 1ogg
(4.20)

:(a+1)log<l+L) <y=>0+¢)d-8),
a+1
which after dividing by 1 — § > 0 easily gives 1 — & < 2¢, and thus p <1 —§ < 2¢ by

(4.13) or (4.14). Furthermore, equations (4.18)—(4.19) and a Taylor expansion (or the general
binomial series) yield

4 ( 4 )—“+” at2 3
4.21 ——=1-¢é=1—(14+—— =y - — (0] .
@2n o 3 + V- sasn? TOW)
Since 0 < ¥ < (1 + ¢)2¢ = O(¢e), after dividing by ¥ > 0 it then routinely follows that
2(a+ 1)e ) 2a+1) 2
4.22 =———— 4+ 0(&)=—e+ 0(&7).
( ) 4 (a+2)(1+¢) (=) a+?2 (=)

Recalling (4.18) and that 1 — & = O(¢), now (4.14) and (4.22) imply for ¢ \ O the asymp-
totics

_1//‘ a _2618 2
4.23) pue) =1 (4 00)) = 5 4 0(6)

as stated in (1.4). This completes the proof of Theorem 2.1, as discussed below (4.17). [

PROOF OF THEOREMS 1.1 AND 1.2. These results follow from the multigraph version
of Theorem 2.1 and the transfer result Theorem 2.2 by routine arguments (the key point is
that any event which fails with probability at most = = o(1) in G};';, fails with probability at
most B -7 4+ o0(1) =o0(1) in Gg’m). O

REMARK 4.1. When ¢ — oo (with « fixed), it follows easily from (4.19) that £ — 0,
and thus (4.13) implies pq(¢) = 1 — £4/@+) . 1. When a — oo with ¢ € (0, 00) fixed,
it follows easily from (4.19) that £(a, ¢) — £(00, €) satisfying (4.10), and thus (4.14) and
(4.11) imply ps(e) = 1 — &(00, €) = pxo(€). Furthermore, since pxo(€) is continuous with
bounded range, and each p,(¢) is increasing, it follows that p,(¢) — poo(€) uniformly in
e € (0, 00). We omit the details.

REMARK 4.2. An alternative proof of (1.4) without calculations is based on the some-
what vague but very general idea that when we have a limit theorem with different cases
as above, then the cases have to fit together smoothly. To see this in the present case, fix o
and write for simplicity G(n, ¢) := Gijfmca 4e))" Consider a sequence ¢; — 0. First, fix i

and take & = ¢; constant. Then, by Case 1 (¢ > 0) in the proof above, Li(G(n, &) =
Pa(€i)n(1 + 0p(1)). Hence we can choose n; so large that with probability > 1 — 27,

(4.24) |L1(G(ni, &) /ni — pa(e)| <276
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We may further assume n; | > n; and n; > ig; 3. Now consider the sequence of multigraphs
G(ni, i), i > 1. Case 2 (ex = 0) in the proof above applies, so (4.17) holds for the multi-
graphs G (n;, ;), which together with (4.24) implies (1.4), up to a weaker error term o(¢).

It is also possible to recover the error term O (¢2) without explicit calculations. Suppose for
definiteness that a < oo. We may then solve (4.12) for €, and obtain ¢ = ¢(£) as an analytic
function of £ in some complex neighbourhood of & = 1. The derivative at 1 is nonzero, for
example, as a consequence of (1.4) and (4.13), and thus the implicit function theorem shows
that £(a, €) may be extended to an analytic function of & in some neighbourhood of 0. By
(4.13), the same holds for py (¢). Thus p,(€) is analytic on the closed half-line [0, co0), and
all derivatives stay bounded as ¢ — 0; so the error term 0(&?) in (1.4) follows by Taylor’s
theorem.

5. Final remarks.

5.1. Preferential attachment with negative o. As in previous work, we have through-
out assumed o > 0. It is also possible to consider « < 0, provided & = —r for some inte-
ger r = || € N. In this case, the process adds edges by choosing vertices as in Section 3.1
with probability proportional to » — d,,, where d,, is the current degree. This is equivalent to
starting with r half-edges for each vertex, and then choosing pairs of half-edges uniformly at
random, in the simple graph version conditioned on keeping the graph simple. The multigraph
version can be seen (at least when rn is even) as the stepwise construction of an r-regular
multigraph by the configuration model. Equivalently, it is the process obtained if we construct
an r-regular multigraph by the configuration model and then take its edges in uniformly ran-
dom order; hence it can be seen as edge percolation on this random multigraph.

This process was introduced by Steger and Wormald [52] as a method to generate almost
uniformly distributed regular graphs, see also [34, 35]. Note that no vertex will ever get
degree more than r, so the process stops when we cannot add any edge without increasing
the maximum degree above r. Then there are n — O (1) vertices of degree r, in both the simple
graph and multigraph version, so the final (multi)graph is almost regular. Thus, the process
stops after m = m+ — O (1) steps, where

rn o
5.1 my = 7 =73 n.

The papers [34, 35, 52] just mentioned are mainly interested in the resulting final graph, but
we may also consider the entire process, and, in particular, the emergence of the giant com-
ponent in this process. In the following discussion we shall always assume that r := || > 3,
so that n/2 < m¢ <n < my by (1.1) and (5.1). Fix a small n > 0 with (1 — n)my > mc.
Assuming m < (1 — n)ms, it then is fairly easy to verify that the proofs from Sections 3—4
carry over to that case (with minor routine changes). The only noteworthy difference is that
in Section 3.2 the processes D, (t) are now death processes, starting with r particles that each
dies at rate 1, and it turns out that (3.6) is then replaced by

(5.2) Dy (1) ~Bin(la|, 1 —e7").

As a consequence, the asymptotic degree distribution is now binomial, and it follows that
Theorem 2.5 holds with Y, ~ Bin(|«|, p,) and p, := 2m/(n|«|). In spite of these differences,
it turns out that the probability generating function of Y, can in the case o < 0 be written in
the same form

(5.3) Ex!" = <1 + 2—”’(1 —x))_a
no
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as in the case a > 0 (see equations (3.9) and (2.6), where (1 — p,x)/(1 —p,) =1+
pn(1 —x)/(1 = py) and p,/(1 — p,) = 2m/(na) hold). As a consequence, the equations
(4.12)—(4.14) that define p,(e) are still valid. Hence, assuming » > 3, Theorems 1.1, 1.2
and 2.1 hold for « := —r too, except the claim py(¢) < 2¢, which clearly is false for « < 0
by (1.4). (The assumption m < (1 — n)m+ may be eliminated by the same argument as in
Remark 1.5.) We may also let « — —o0, with p_ = pxo; We leave the routine details to
the reader. (In the multigraph case, these results are special cases of earlier results on edge
percolation in random multigraphs with given vertex degrees, see [16, 24].)

5.2. Extensions and variants.

5.2.1. Hypergraphs and different vertex weights. It seems possible to adapt the methods
of this paper to study hypergraph variants of the preferential attachment random graph pro-
cess. Similarly, it also seems possible to analyze the natural variant where a new edge {v, w}
is added with probability proportional to (d, + oy)(dy, + o), that is, where each vertex has
its own “preference weight” (though here some assumptions on the (ay)ye[n) S€€m neces-
sary in order to prove a multigraph transfer statement akin to Theorem 2.2). We leave these
extensions to the reader.

5.2.2. More general preferential attachment functions. As suggested by Lovisz, see
[40], and partly already by Erdés and Rényi [15], it is natural to study processes with more
general preferential attachment functions f = f, : N — [0, 00). We write (G,{,m)mzo for
the variant of (G} ,,,)m>0 where the next edge connects two currently nonadjacent v and w

with probability proportional to f(d,) f (dy). Similarly, we write (G,{j;)mzo for the multi-
graph variant where the next edge connects distinct v and w with probability proportional to
2f(dy) f(dy), and forms a loop at v with probability proportional to f(d,) f(dy + 1). This
general class of dynamic network models not only contains the preferential attachment pro-
cess (via f (k) := k + o) but also the classical Erd6s—Rényi process (via f (k) := 1), the con-
figuration model for d-regular graphs and the Steger—Wormald process [52] discussed in Sec-
tion 5.1 (via f (k) := max{d —k, 0}), and the random d-process [49, 58] (via f (k) := Lix<a}).
Here the problem of determining the asymptotic degree distribution after m steps is feasible
for many functions f via the pure birth-process based construction of (G,{jfn)mzo from Sec-
tion 3.2, with birth-rates A; := f (k). For example, using this construction they are easily seen
to be asymptotically Poisson in the Erd6s—Rényi process, and truncated Poisson in the ran-
dom d-process. By contrast, the giant component problem for general functions f appears to
be more challenging. The crux is that the conditional equivalence argument from Section 3.1
(which crucially allowed us to work with the configuration model) seemingly only carries
over to linear functions, which motivates the following conceptually interesting problem.

PROBLEM 5.1. Study the giant component problem for G,{,m or G,J,(j,’fl when f is non-
linear.

5.2.3. Edge-rewiring variant without edge-growth. There is a natural variant of the pref-
erential attachment random multigraph process where the number of edges m = ® (n) is also
fixed; this was proposed in the complex networks literature by Dorogovtsev, Mendes, and
Samukhin around 2002 (see [12], Section 3, and [11], Chapter 4.3). To be more precise,
this preferential attachment edge-rewiring process starts with a given (arbitrary) initial multi-
graph G with vertex set [n] and m multiedges, and then proceeds stepwise as follows: a
uniform endvertex v of a uniformly chosen edge e is selected, and then e is replaced with
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the edge {v, w}, where w is chosen with probability proportional to d,, + «. This rewiring
process (also called simple edge-selection process [20] or edge reconnecting model [42, 43])
converges rapidly to a unique stationary distribution G777 (see [20], Sections 1.1-1.2, [43],
Section 2.2, and the “equilibrium” discussion in [11, 12]), which in fact has the same distribu-
tion as Gy, (see [43], Lemma 2.1). It follows that we can use the random multigraph Gy,
to derive the long-run asymptotic properties of the edge-rewiring process with n vertices
and m edges. In particular, the result by Pittel [40] (or our Theorem 1.1 and 2.1) confirms

Conjecture 4.3 of Hruz and Peter [20] regarding the existence of a giant component.

5.3. Other properties. The method used in this paper, where the auxiliary results from
Section 2 are combined with results for G}, can also be used to study other properties of G, ,,
and Gy, We briefly mention a few selected examples of interest here (leaving details to
the reader).

First, we consider the number of vertices in “small” components of size k = O(1). Under
the assumptions of Theorem 2.8, in Gy their typical number can easily be related via [25],
Lemma 4.1, to a branching process X that depends on (a size-biased version of) the “idealized
degree distribution” D from Theorem 2.5. A routine analysis of P(|X| = k) then leads to a
conceptually simple proof of the counting formula [40], Lemma 4(b).

Second, the so-called susceptibility, which is the expected component-size of a randomly
chosen vertex, can be similarly estimated via E|X]| in the subcritical phase, see [25], Corol-
lary 3.2, and Appendix A.1.

Third, the widely studied k-core is the largest induced subgraph with minimum ver-
tex degree at least k (which can be empty). By mimicking the first part of Theo-
rem 2.1, one can use [28], Theorem 2.3, with D from Theorem 2.5 to show that, for
each k > 2, a linear-sized k-core whp appears in Gy, and Gy, around cxn steps,
where ¢ ;= % inf, o u/P(Zy(0) > k — 1) with negative binomial random variable Z (1) ~
NBin(o + 1, /(o + w)).

Finally, we emphasize that our methods are geared towards the spare case m = O (n).
Indeed, for denser graphs the reduction of the simple graph process to the multigraph variant
breaks down, at least in the present form (see Theorem 2.2). This limitation is not just a
mere proof artifact: in the multigraph process the threshold for connectivity is located around
n“r"rl edges [40], Theorem 2, so for & < 1 it must differ from the connectivity threshold of
the simple graph process (whose location remains an open problem).

5.4. Further open problems. We close with some open problems for the preferential at-
tachment process (G, ,,)m=>0 phase transition, which are all inspired by the corresponding
behaviour of the Erd6s—Rényi reference model:

PROBLEM 5.2. In the subcritical phase m = m¢(1 — €) with ¢ = o(1) and &3n — o0,
show that whp L1 (mc(1 —¢)) ~ Cye? 10g(83n) for some constant Cy, > 0 (sharpening [40]),
and prove a variant of Corollary 1.3.

PROBLEM 5.3. In the critical window m = mc(1 + &) with |¢| = O(n~'/3), writing
Lj=L;(Gy ) for the size of the jth largest component of G} ,,, show that the sequence
(Lj/ n?/3) j>1 converges to a limiting distribution. ([40] establishes that L ; is of order n?/3,
for any fixed j > 1.) For the random multigraph G7;, this can be shown by combining our
conditioning approach with the configuration model results from [10], but it remains open for

G, (as Theorem 2.2 does not permit transfer of convergence in distribution). Also, does the
resulting limiting distribution equal the corresponding Erd6s—Rényi one when o = w (n'/3)?

8Ppittel’s result [40], Lemma 4(b), is for the expected number of tree-components, and allows for growing k.
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PROBLEM 5.4. In the supercritical phase m = m¢(1 + ¢) with ¢ = o(1) and &3n — oo,
show that (1.6) can be improved to whp La(m¢ (1 + ¢)) < Dye ™2 10g(83n) for some con-
stant D, > 0.

APPENDIX

A.1. Heuristic for the phase transition location m.. In this appendix we give an in-
formal explanation for why m. = m should be the phase transition location, based on
the widely-used heuristic [31, 36, 47, 51, 58] which predicts m. as the blow-up point of
the susceptibility S(m) = S(Gy ) :=3_; |C; |2/n, where C1, Ca, ... denote the components

of Gy, For simplicity, we henceforth assume that there is a deterministic approximation
(A.1) S(m)~s(t) witht=t(m):=m/n.

By equation (1.11) in Section 1.2 any two distinct tree components Cj, Cy merge with prob-
ability proportional to [(2 + «)|C;| — 2] - [(2 + )| Ck| — 2], in which case the susceptibility
changes by (|C;j| + |Ck])?/n — (IC;|* + |Ck|*)/n = 2|C;||C|/n. Pretending that nearly all
components are not-too-big tree-components (which in analogy with the Erd6s—Rényi pro-
cess seems reasonable, since here we are only interested in steps leading up to the critical
point, i.e., before the giant emerges), with some hand-waving we loosely expect that

E(S(m + 1) — S(m)|S(m))

~ Z([(2+06)|Cj| —2]- [+ a)|Ch| —2] 2|Cj||Ck|)
(A.2) £k Zv;ﬁw:non—adj.(dv +a)(dy +a) n

L2 (@43 IC1R—2Y (G _g<<2+a)5(m>—2>2
T (X, (dy +))? “a\ 2ifnta )

Inserting (A.1), this suggests (together with S(m + 1) — S(m) ~ s'(¢t)/n and S(0) = 1) the
differential equation

2+ a)s(r) —2)\?
A3 '(t :2(—) d s0)=1.
(A.3) s'(1) it and s(0)
The solution s(¢) = #«%ﬁl)t blows up at time #, := m, so the described heuristic

indeed predicts the critical point m. = t.n. (For comparison, in the Erd6s—Rényi process the
critical point is n/2 and its susceptibility blows up at time 1/2, since we analogously arrive
at s'(t) =2s(t)> and s(r) = 1/(1 —21).)

One of the arguments in [4] is essentially equivalent to this heuristic (using a different
time scale, see Section A.2.2). The assumed approximation (A.1) can be justified rigorously,
for example, using either the differential equation method [57, 59, 60], or the configuration
model transfer method from Section 5.3.

A.2. Compatibility with previous work. In this appendix we show that our giant com-
ponent results are compatible with previous work [4, 40].

A.2.1. Work of Pittel (on a random graph evolving by degrees). Translating to our no-
tation, Pittel [40] considers the preferential attachment random graph process for constant
a€(0,00).Forc>cy:=1/(1+ o~ 1) he defines ¢* as the (unique) root x € (0, ¢y) of

xaa—f—l Caa-H

(AD (o 4 x)o+2 - (a +c)at2’
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Assuming nl/4 (¢ — cq) — 00, then [40], Theorem 1, ensures that the largest component has
size
o+ c*

og+c

(A.5) Li(cn/2) = [1 - ( )a]n S(140,(1)).

Using the following auxiliary claim, Theorem 1.1 implies (A.5) under the weaker assumption
n'3c—cy) = 00 conjectured in [40] (since for m := m.(1 + ¢) we have ¢ = (1 + ¢)c, and
n'Be =03 (c—cq)) »> ).

CLAIM A.1. Lete > 0. Then for c:= (1 + &)cy we have py(e) =1 — (%)“.

PROOF. In view of (A.4) let

_Mato) (a + c*)““

S clatct) \a+c

and observe that & € (0, 1) holds (since « € (0, 00) and ¢* < ¢4 < ¢). Noting that

(A.6) £

cla+c®)—c*(a+c) alc—c")

A7 1—-&= = ,
(A7) g c(o + c*) c(o + c*)
we infer
o+c c—c* c 1+¢
A.8 =1 =14+4—-—-1=-8=1 1-8).
(A.8) P +a+c* +a (r-2%) +a+1( &)

Inserting this back into (A.6), a comparison with the first equation in (4.19) now shows that
& is indeed the unique solution in (0, 1) to IEDED_1 = EED, and thus, by (4.13) and (A.6),
we obtain py(¢) = 1 — /@t — 1 (%)“. O

A.2.2. Work of Ben-Naim and Krapivsky (popularity-driven networking). Ben-Naim and
Krapivsky [4] investigate the special case o = 1 of the preferential attachment random multi-
graph process (using a different time-parametrization) via the kinetic theory methodology
from statistical physics, also called rate equation approach. Inspecting equation (7) in [4]
(solving 2m/n = (j) =1t/(1 —t) for t), for fixed € > 0 it follows that adding m = (1 + ¢)n /4
edges corresponds to their time

(A.9) t:=0+n/2m)~'=1/342¢/94 0(¢?).

The discussion of the function g(¢) in [4], p. 4, together with (1), then says that the asymptotic
fraction of vertices in the giant component should be approximately equal to

(A.10) 3(t—1/3) ~2¢/3~ pi(e) ase\ 0,

which is made rigorous by Theorems 1.1 and 2.1. Finally, noting that (A.9) and (2.6) imply
the identity p, =t (when o = 1), Theorem 2.5 also gives a rigorous version of the asymptotic
degree distribution (9) in [4].
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