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We study the following preferential attachment variant of the classical
Erdős–Rényi random graph process. Starting with an empty graph on n ver-
tices, new edges are added one-by-one, and each time an edge is chosen with
probability roughly proportional to the product of the current degrees of its
endpoints (note that the vertex set is fixed). We determine the asymptotic size
of the giant component in the supercritical phase, confirming a conjecture of
Pittel from 2010. Our proof uses a simple method: we condition on the vertex
degrees (of a multigraph variant), and use known results for the configuration
model.

1. Introduction. During the last two decades “dynamic” network models (which
evolve/grow step-by-step) have been of great interest in various different research areas,
including combinatorics, probability theory, statistical physics, and network science; see for
example, [2, 5, 11, 13, 17, 30, 36, 54]. Part of the motivation stems from the fact that many
real-world networks (such as Facebook) also grow over time. Widely studied models include
variants of the classical Erdős–Rényi random graph process [5, 7, 14, 45, 46] and the modern
“scale-free” preferential attachment model made popular by Barabási and Albert [2, 3, 8],
which have strikingly different features.

In this paper we consider a hybrid between between the Erdős–Rényi and Barabási–Albert
network models, where the vertex set is fixed (as in the Erdős–Rényi case) and edges are
added with (one version of) preferential attachment. More precisely, let α ∈ (0,∞) be a
parameter, and write (Gα

n,m)m≥0 for the random graph process with fixed vertex set [n] =
{1, . . . , n} where new edges are added one-by-one (starting with no edges) such that the next
edge connects two currently nonadjacent vertices v and w with probability proportional1 to
(dv +α)(dw +α), where dv denotes the current degree of v. In intuitive words, edges are thus
added according to a “rich-get-richer” preferential attachment mechanism (since vertices with
higher degree are more likely to be joined). Note that Gα

n,m has m edges. Furthermore, in the
limit α → ∞ all edges are added with the same probability, so we recover the Erdős–Rényi
random graph process.

The dynamic network model (Gα
n,m)m≥0 is so natural that is has been suggested and stud-

ied multiple times (sometimes independently) in the complex networks and combinatorial
probability literature. It was first studied in 2010 by Pittel [40], who described it as a special
case of a more general model that he attributed to a suggestion by Lovász in 2002, where the
next edge joins v and w with probability proportional to f (dv)f (dw) for some function f ;
this in turn can be traced back to a suggestion2 of Erdős and Rényi [15] from 1961 moti-
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graph process.
1Here we have tacitly normalized in a convenient way: namely, if the probability of adding the new edge {v,w}

is proportional to (χdv + β)(χdw + β) with β,χ > 0, then it is also proportional to (dv + α)(dw + α) with
α := β/χ > 0.

2Erdős and Rényi proposed, even more generally, to study network models where the probability of joining v

and w depends on the current degrees dv and dw , see [15], p. 344.
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vated by more realistic modeling (see also Section 5.2.2). From 2011 onward Borgs et al. [9],
Ráth and Szakács [43], and [27], Example 7.9, also studied a natural multigraph variant of
Gα

n,m (see Section 2.1), motivated by the emerging (multi)graph limit theory paradigm. Fur-
thermore, in 2012, Ben-Naim and Krapivsky [4] proposed and studied the model Gα

n,m by
statistical physics methods, motivated by the way connections are formed on Facebook (see
also [50] and Appendix A.2.2).

In this paper we study the emergence of the giant component in this intriguing model,
which is one of the most important and fascinating phase transitions in random graph the-
ory. Pittel [40] answered the basic question of existence and location of this phase transition
in Gα

n,m: for any fixed α > 0 he showed that at around m ≈ mc many steps the largest com-
ponent typically changes from size �(logn) to size �(n), where3

(1.1) mc :=
n

2(1 + α−1)
=

nα

2(α + 1)
.

A variant of this result for α = 1 was also reported by Ben-Naim and Krapivsky [4]. In
fact, Pittel [40] proved much stronger estimates on the size L1(m) = L1(G

α
n,m) of the largest

component of Gα
n,m, in particular near the critical point mc. Focusing for simplicity on the

“supercritical” phase (where the unique “giant” component has emerged as the largest com-
ponent), his result [40], Theorem 1, can be written as follows. 4 If ε = O(1) and ε4n → ∞
as n → ∞, then, for a certain function ρα(ε) with ρα(ε) = �(ε) as ε ց 0, we have5

L1
(

mc(1 + ε)
)

= ρα(ε)n ·
(

1 + op(1)
)

.(1.2)

Overall, Pittel’s “finite-size scaling” results qualitatively recover several key features of the
Erdős–Rényi phase transition [6, 7], in particular the fundamental “linear growth” of the
�(εn)–sized largest component, see (1.2). However, for technical reasons his proof requires
the extra assumption ε4n → ∞, while it is natural to guess, and was conjectured by Pittel
[40], pp. 621,649, that the estimate (1.2) remains valid under the weaker supercritical condi-
tion ε3n → ∞ known from the Erdős–Rényi reference model.

The main purpose of the present paper is to extend Pittel’s result and verify his nice con-
jecture (which also appears in the recent book by Frieze and Karoński [17], Section 17.5).
We further extend the result by allowing α to depend on n. Moreover, and at least as impor-
tant, we do this using a simpler method than the one in [40]: we use known results for the
configuration model to derive the results rather quickly.

1.1. Main results. Our first result determines the asymptotic size of the giant component
in the entire supercritical phase, thus confirming Pittel’s nearly 10-year-old conjecture (see
also Appendix A.2.1). Furthermore, (1.4) below identifies the precise linear growth-rate of the
giant, generalizing and rigorizing a statistical physics result by Ben-Naim and Krapivsky [4]
from 2012 for the special case α = 1 (see Appendix A.2.2).

THEOREM 1.1 (Extending Pittel [40]). Fix α ∈ (0,∞). If ε = ε(n) = O(1) and

ε3n → ∞ as n → ∞, then

L1
(

mc(1 + ε)
)

= ρα(ε)n ·
(

1 + op(1)
)

,(1.3)

where the continuous function ρα : (0,∞) → (0,1] is given by (4.13) together with (4.12); it

satisfies 0 < ρα(ε) < 2ε and

(1.4) ρα(ε) =
2ε

1 + 2/α
+ O

(

ε2)

as ε ց 0.

3The phase transition location mc from (1.1) can easily be guessed via modern heuristics, see Appendix A.1.
4See Appendix A.2.1 for Pittel’s formulation of his supercritical giant component result.
5As usual, op(1) denotes a quantity that converges to 0 in probability as n → ∞; see e.g., [26, 30].
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From the perspective of mathematical physics, this result places the preferential attachment
process into the same universality class as the Erdős–Rényi reference model (with largest “su-
percritical” component of order εn and largest “subcritical” component of order ε−2 log(ε3n),
both under the condition ε3n → ∞, cf. [40]). This kind of universality is only known for rel-
atively few network models, including random regular graphs [39], the configuration model
[44], hypercube percolation [21, 56], and bounded-size Achlioptas processes [48].

Since the limiting case α → ∞ of the preferential attachment process recovers the uni-
form Erdős–Rényi process (GER

n,m)m≥0, it is natural to wonder under what conditions this
Erdős–Rényi approximation holds rigorously in the case when α = α(n) is finite but tends
to infinity as n → ∞. Our main giant component result, which is the following extension of
Theorem 1.1, allows us to answer this intriguing question by allowing for α = α(n), including
α(n) → ∞. To establish uniqueness of the “giant component” (as in [40]), Theorem 1.2 also
includes a weak estimate on the size L2(m) = L2(G

α
n,m) of the second largest component

of Gα
n,m. We henceforth use the convention that x/∞ = 0 for any finite x.

THEOREM 1.2 (Main giant component result). Assume that α = α(n) → a ∈ (0,∞] as

n → ∞. If ε = ε(n) = O(1) and ε3n → ∞ as n → ∞, then

L1
(

mc(1 + ε)
)

= ρa(ε)n ·
(

1 + op(1)
)

,(1.5)

L2
(

mc(1 + ε)
)

= op(1) · L1
(

mc(1 + ε)
)

,(1.6)

where the function ρa : (0,∞) → (0,1] is as in Theorem 1.1, and ρ∞(ε) satisfies

1 − ρ∞(ε) = e−(1+ε)ρ∞(ε).(1.7)

In particular, (1.4) holds for any α ∈ (0,∞].

Remark 4.1 also shows that limα→∞ ρα(ε) = ρ∞(ε). Recognizing (1.7) as a standard
branching process equation, the largest component of the Erdős–Rényi process (GER

n,m)m≥0 is
well known [6, 7] to satisfy

(1.8) L1
(

GER
n, n

2 (1+ε)

)

= ρ∞(ε)n ·
(

1 + op(1)
)

when ε = O(1) and ε3n → ∞. From Theorem 1.2 it is easy to deduce (using continuity
of ρ∞) that the preferential attachment process has the same giant component behaviour
when α(n) → ∞ sufficiently fast.

COROLLARY 1.3 (Supercritical Erdős–Rényi behaviour). Assume that α = α(n) → ∞
as n → ∞. If ε = ε(n) = O(1), ε3n → ∞ and αε → ∞ as n → ∞, then

(1.9) L1

(
n

2
(1 + ε)

)

= L1
(

Gα
n, n

2 (1+ε)

)

= ρ∞(ε)n ·
(

1 + op(1)
)

.

In particular, ε = O(1) and ε3n → ∞ imply (1.9) when α = �(n1/3).

For the interested reader we include two remarks about the function ρα and the condition
ε = O(1).

REMARK 1.4. As shown in the proof in Section 4, ρα(ε) is an analytic function of
α ∈ (0,∞) and ε ∈ (0,∞); moreover, it extends analytically to ε ∈ [0,∞), as shown in
Remark 4.2.
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REMARK 1.5. The condition ε = O(1) in Theorems 1.1–1.2 can be removed. This is a
trivial consequence of the monotonicity of the process and the fact that ρα(ε) → 1 as ε → ∞,
see Remark 4.1: it suffices to consider the case ε → ∞, and then we may for any η > 0
choose ε0 such that ρa(ε0) > 1 − η and then whp (i.e., with probability tending to one as
n → ∞) we have

(1.10)
n ≥ L1

(

mc(1 + ε)
)

≥ L1
(

mc(1 + ε0)
)

≥
(

ρa(ε0) − η
)

n

≥ (1 − 2η)n ≥
(

ρa(ε) − 2η
)

n,

which also implies that L1(mc(1 + ε)) ≤ 2ηn whp.

1.2. Comments. To motivate why the phase transition of Gα
n,m has some Erdős–Rényi

features (like linear growth of the giant component), let us point out that distinct tree-
components C1, C2 merge with probability proportional to

(1.11)
∑

v∈C1

(dv + α) ·
∑

w∈C2

(dw + α) =
[

(2 + α)|C1| − 2
]

·
[

(2 + α)|C2| − 2
]

.

In concrete words, trees thus merge with rates that are approximately proportional to the rates
|C1| · |C2| from the Erdős–Rényi process. Since the phase transition is usually dominated
by the contribution of tree-like components (e.g., by counting the vertices in “small” trees
outside of the giant component), after some hand-waving it thus becomes plausible to observe
some key features of the Erdős–Rényi reference model.

Our actual proof takes a surprisingly simple different route (instead of trying to leverage
the above tree-heuristic). Indeed, we first show that a natural multigraph variant of Gα

n,m has,
conditioned on its degree sequence, the same distribution as the well-known configuration
model for random multigraphs. By noting that in the multigraph variant the degrees evolve
nearly independently (when looked at in the right way), we can also get very strong control
over the resulting asymptotic degree sequence of negative binomial form (which contrasts not
only the Poisson distribution of the Erdős–Rényi model, but also the power-law distributions
observed in many preferential attachment models). These two results together allow us to
study the multigraph variant of Gα

n,m via standard results for the configuration model, which
then easily gives the asymptotic size of the giant component in Gα

n,m. See Section 2 for a
detailed proof overview.

We mention that our arguments are quite different from Pittel [40], who studies the multi-
graph variant of Gα

n,m via involved enumerative techniques. In fact, he notes [40], p. 643,
that by conditioning on the degree sequence, it might be possible to use known results for
the configuration model; however, in the paper he used a different approach, partly because
it seemed difficult to verify the required degree conditions. (We will see that this is not so
difficult, using a continuous-time construction. Moreover, we have the advantage of being
able to use a stream-lined version [29] of the original phase transition result [38] for the
configuration model.)

Finally, while the focus of the present paper is on the giant component, it is important to
note that our proof method can also be used to study other properties of Gα

n,m such as the
k-core, see Section 5.3.

1.3. Organization. In Section 2 we give a detailed overview of our proof strategy. In
particular, we state several technical auxiliary results, which we later prove in Section 3.
Furthermore, in Section 2.2 we give a heuristic argument of our main giant component result,
which we make rigorous in Section 4. In Section 5 we then discuss extensions, variants,
other properties, and open problems. Finally, Appendix A.1 contains a simple heuristic for
the phase transition location mc, and Appendix A.2 shows how our results are compatible
with previous work.
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2. Proof structure. In this section we outline our high-level proof strategy for Theo-
rems 1.1–1.2, which proceeds roughly as follows. After introducing a suitable random multi-
graph variant (Gα,∗

n,m)m≥0 of (Gα
n,m)m≥0, we shall derive three basic auxiliary results (whose

proofs are deferred to Section 3). First, Theorem 2.2 shows that results for the random multi-
graph Gα,∗

n,m transfer to the original random graph Gα
n,m. Second, Theorem 2.4 shows that,

by conditioning on its degree sequence, we can study Gα,∗
n,m via the widely studied configu-

ration model G∗
d for random multigraphs. Third, Theorem 2.5 determines the typical degree

sequence of Gα,∗
n,m. The crux is that these three results together allow us to study Gα

n,m by
applying standard results for random graphs with given degree sequences (see Theorem 2.8),
and in Section 2.2 we outline how this reduction makes our main giant component result
plausible (the full details are deferred to Section 4).

2.1. A multigraph variant: Reduction and auxiliary results. We start by introducing a
convenient multigraph variant of (Gα

n,m)m≥0, which allows for loops and multiple edges
(this natural model was also used by Pittel [40], and further studied from different aspects
in [9, 27, 43]). We write (Gα,∗

n,m)m≥0 for the random multigraph process with fixed vertex
set [n] and parameter α ∈ (0,∞), where edges are added one-by-one (starting with no
edges) such that the next edge connects distinct vertices v and w with probability propor-
tional to 2(dv + α)(dw + α), and forms a loop at vertex v with probability proportional to
(dv + α)(dv + 1 + α); here dv denotes the current degree of v (as usual, each loop is counted
as two edges at its endpoint). In this paper we shall first prove our main results for the ran-
dom multigraph Gα,∗

n,m, which turns out to be much easier to analyze than Gα
n,m; we record

this intermediate goal for later reference.

THEOREM 2.1 (Main multigraph result). Theorems 1.1–1.2 also hold for the random

multigraph Gα,∗
n,m.

2.1.1. Approximating Gα
n,m by the multigraph Gα,∗

n,m. Our first auxiliary result allows us
to study Gα

n,m via the random multigraph Gα,∗
n,m (so that Theorems 1.1–1.2 eventually fol-

low from Theorem 2.1). In words, Theorem 2.2 implies that whp–results for Gα,∗
n,m routinely

transfer to Gα
n,m when m = O(n) and α = �(1). This lemma is basically the same as [40],

Corollary 3; one difference is that we do not restrict to constant α. (Another difference is that
we only give an o(1) bound for the additive term in (2.1)–(2.2). This can easily be improved,
but we do not need this.)

THEOREM 2.2 (Transfer statement: from Gα,∗
n,m to Gα

n,m, partly [40]). Given C,α0 > 0,
there is B = B(C,α0) > 0 such that the following holds whenever 1 ≤ m ≤ Cn and α ≥ α0.
For any set Gn of graphs with m edges and vertex set [n], we have

(2.1) P
(

Gα
n,m ∈ Gn

)

≤ B · P
(

Gα,∗
n,m ∈ Gn

)

+ o(1).

REMARK 2.3. The proof shows more generally that, for any set Gn,m of graph sequences
(G0, . . . ,Gm) with vertex set [n], we have

(2.2) P
((

Gα
n,i

)

0≤i≤m ∈ Gn,m

)

≤ B · P
((

G
α,∗
n,i

)

0≤i≤m ∈ Gn,m

)

+ o(1).

The proof strategy is to compare the stepwise conditional probabilities of the added edges,
where we may clearly restrict to simple graph sequences (without loops or multiple edges).
By construction, the conditional probability of adding the new edge {v,w} is in both pro-
cesses proportional to 2(dv +α)(dv +α), but the normalizing factors in the denominator differ
slightly (since only one of these processes allows for loops and multiple edges; see (3.28)–
(3.29) in Section 3.3). It turns out that during the first m = O(n) steps the corresponding
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normalizing factors of both processes are extremely close together, which eventually allows
us to establish (2.2), from which inequality (2.1) follows immediately. See Section 3.3 for the
full details.

2.1.2. Reducing the multigraph Gα,∗
n,m to the configuration model. Our second auxil-

iary result allows us to study Gα,∗
n,m via the well-known configuration model G∗

d for ran-
dom multigraphs, see, for example, [5, 17, 54]; it says that Gα,∗

n,m conditioned on its de-
gree sequence d(Gα,∗

n,m) = d = (dv)v∈[n] has the same distribution as the configuration
model G∗

d = ([n],Ed), which we for concreteness here define as follows: Let Sd be the
set of all 2m-element sequences in which each vertex v ∈ [n] appears dv times, pick a
uniform random vertex sequence w = (w1, . . . ,w2m) ∈ Sd, and define the edge multiset
Ed := {w1w2, . . . ,w2m−1w2m}.6 As said above, this useful property was noted (but not ex-
ploited) by Pittel [40] (at least after conditioning the multigraph on being simple); it has also
been noted or used in [27, 43].

THEOREM 2.4 (Conditional equivalence: Gα,∗
n,m and G∗

d, [27, 40, 43]). For any m ≥ 1 and

any degree sequence d = (dv)v∈[n] with
∑

v∈[n] dv = 2m, the random multigraph Gα,∗
n,m condi-

tioned on having degree sequence d has the same distribution as the configuration model G∗
d.

In other words, for any set Gn of multigraphs with m edges and vertex set [n], we have

(2.3) P
(

Gα,∗
n,m ∈ Gn | d

(

Gα,∗
n,m

)

= d
)

= P
(

G∗
d ∈ Gn

)

.

As we shall see in Section 3.1, the random multigraph process was carefully designed to
make (2.3) true “by construction”. To make this plausible, recall that the conditional probabil-
ity of adding the nonloop edge {v,w} in the next step is proportional to 2 · (dv +α) · (dw +α).
This “factorization” suggests that we can alternatively construct the m edges of Gα,∗

n,m as
follows: we first generate the vertex sequence w1, . . . ,w2m (each time vertex v is cho-
sen with probability proportional to dv + α) and then join them pairwise to the m edges
w1w2, . . . ,w2m−1w2m. In Section 3.1 we show that (a version of) this construction indeed
gives the correct distribution (this is the place where the special treatment of loops is crucial).
It furthermore turns out that every vertex sequence (w1, . . . ,w2m) ∈ Sd arises with the same
probability (see (3.3) in Section 3.1), which by the described construction of G∗

d = ([n],Ed)

then easily gives the desired conditional equivalence. See Section 3.1 for the full details.

2.1.3. Approximating the degree sequence of Gα,∗
n,m. Our third auxiliary result states

that the degree sequence of Gα,∗
n,m is asymptotically a negative binomial distribution Y ∼

NBin(α,p) with shape parameter α and suitable probability p = p(α,m/n), that is,

(2.4)

P(Y = r) :=
(

α + r − 1
r

)

(1 − p)αpr

=
∏

0≤j<r(α + j)

r!
(1 − p)αpr for r ∈ N= {0,1, . . .}.

For notational convenience, given a degree sequence d = (dv)v∈[n] and an integer k ≥ 0, we
write

πk(d) :=
1

n

∑

v∈[n]
1{dv=k} and μk(d) :=

1

n

∑

v∈[n]
dk
v(2.5)

6This construction indeed gives the usual configuration model, since Ed has the same distribution as the edges
of a uniform random matching of the 2m-element multiset in which each vertex v ∈ [n] appears dv times.
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for the proportion of vertices with degree k, and the kth moment of the degree of a random
vertex, respectively. We now state a limit theorem for the degrees (aiming at simplicity rather
than the widest generality).

THEOREM 2.5 (Degree sequence of Gα,∗
n,m: negative binomial). Suppose that n → ∞,

m = �(n), and α = α(n) = �(1). Let d be the (random) degree sequence of Gα,∗
n,m, and let

Y = Yn ∼ NBin(α,pn) with

pn := 2m/(nα + 2m).(2.6)

Then, for any sequence ω(n) → ∞, for every integer k ≥ 0,

πk(d) = P(Yn = k) + op
(

ω(n)n−1/2)

,(2.7)

μk(d) = EY k
n + op

(

ω(n)n−1/2)

,(2.8)

where EY k
n = O(1).

REMARK 2.6. The estimates (2.7)–(2.8) with an arbitrary ω(n) → ∞ can equivalently
be written as πk(d) = P(Yn = k) + Op(n

−1/2) and μk(d) = EY k
n + Op(n

−1/2), see, for ex-
ample, [26], Lemma 3.

REMARK 2.7. We have EYn = 2m/n =
∑

v∈[n] dv/n, EYn(Yn−1) = (2m/n)2(1+α−1),
and EYn(Yn − 1)(Yn − 2) = (2m/n)3(1 + α−1)(1 + 2α−1); see Lemma 3.1.

The proof strategy hinges on the fact that, in Gα,∗
n,m, the degree of a vertex equals the number

of its concurrences in the auxiliary sequence w1, . . . ,w2m introduced above. To study these
statistics we then switch to continuous time, and identify the degree of each vertex v ∈ [n]
with a suitable independent birth process (with initial value 0 and birth rates λk := k + α).
In Section 3.2, we show that if we sequentially record the vertices which give birth, then the
resulting vertex sequence w1, . . . ,w2m indeed has the correct distribution. This continuous-
time embedding ensures (i) that the birth processes and thus the degrees evolve independently,
and (ii) that each birth process has an explicit distribution at time t , which turns out to be of
negative binomial form (see (3.6) in Section 3.2). These two properties make it easy to ap-
proximate the degree sequence up to the desired precision. See Section 3.2 for the full details.

2.2. Reduction to configuration model G∗
d: Giant component heuristics. The punchline

of the auxiliary results above is that we can obtain results for Gα
n,m by applying standard

results for the well-understood configuration model G∗
d, where d is random but approximates

a negative binomial distribution. Armed with this reduction to the configuration model G∗
d,

the plan is to then estimate the size of the largest component by applying the following
result of Janson and Luczak [29], a special case of Theorems 2.3–2.4, which is a convenient
extension of the pioneering result by Molloy and Reed [38]. (The moment condition μ5(d) =
O(1) can be weakened to lower moments, see [29, 55], but we do not need this.)

THEOREM 2.8 (Phase transition in G∗
d, [29]). Suppose that, for each n ≥ n0, d =

(dv)v∈[n] is a sequence of nonnegative integers with μ5(d) = O(1) such that
∑

v∈[n] dv is

even. Furthermore, suppose that D ∈ N is a random variable that is independent of n such

that ED ∈ (0,∞), P(D = 1) > 0, and πk(d) → P(D = k) as n → ∞, for every k ≥ 0. Then,
writing L1 = L1(G

∗
d) and L2 = L2(G

∗
d) for the sizes of the largest and second largest com-

ponent of G∗
d, the following holds.
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(i) If ED(D − 2) > 0, then there is a unique ξ ∈ (0,1) satisfying EDξD = ξ2
ED, and,

furthermore,

(2.9) L1/n
p−→ 1 −EξD > 0 and L2/n

p−→ 0.

(ii) If ED(D − 2) = 0 and ζn :=
∑

v∈[n] dv(dv − 2) satisfies ζn > 0 and n−2/3ζn → ∞ as

n → ∞, then

(2.10) L1 =
(

2ED

ED(D − 1)(D − 2)
+ op(1)

)

ζn and L2 = op(ζn).

(iii) If ED(D − 2) ≤ 0, then L1/n
p−→ 0.

In the following heuristic discussion we shall make our giant component results for Gα
n,m

plausible (with a focus on Theorem 1.1). To this end, as discussed above, it suffices to study
the giant component of G∗

d for ‘typical’ degree sequences d, where we shall below (for sim-
plicity) assume that we can apply Theorem 2.8 with the random variable D being approxi-
mately equal to Y = Yn ∼ NBin(α,p) from Theorem 2.5. Regarding the point when the giant

component emerges, in the usual informal language Theorem 2.8 (together with Remark 2.7)
states that there is a giant component if and only if

(2.11) ED(D − 2) ≈ EY(Y − 2) = EY(Y − 1) −EY =
2m

n

(
2m

n

(

1 + α−1)

− 1
)

is larger than zero, which makes the phase transition location mc ≈ n/[2(1 + α−1)] plausi-
ble (see Appendix A.1 for an alternative heuristic). Regarding the size of the largest com-

ponent for m = mc(1 + ε) with ε = ε(n) → 0, in view of (2.11) we have ED(D − 2) ≈
EY(Y − 2) = �(ε) → 0. In this case Theorem 2.8(ii) intuitively predicts (together with (2.8)
and Remark 2.7) that the size of the largest component is approximately

2ED

ED(D − 1)(D − 2)
·

∑

v∈[n]
dv(dv − 2) ≈

2EYEY(Y − 2)n

EY(Y − 1)(Y − 2)
≈

2εn

1 + 2α−1 ,

which makes L1(mc(1 + ε)) ≈ ρα(ε)n with ρα(ε) ≈ 2ε/(1 + 2α−1) as ε ց 0 plausible. In
fact, our above application of Theorem 2.8(ii) tacitly required that the parameter

n−2/3 ·
∑

v∈[n]
dv(dv − 2) ≈ n1/3 ·EY(Y − 2) = �

(

n1/3ε
)

tends to infinity, which makes the assumption ε3n → ∞ and thus Theorem 1.1 plausible. See
Section 4 for a rigorous version of the above heuristic arguments (in the more general setting
of Theorem 1.2).

3. Proofs of auxiliary results. In this section we prove the three basic auxiliary results
stated in Sections 2.1.1–2.1.3. As noted above, the results have partly been shown earlier,
but for completeness we give complete proofs of the versions used here. We consider Theo-
rem 2.2 last, since we find it convenient to use Theorem 2.5 in the proof.

3.1. Proof of Theorem 2.4: Conditional equivalence of Gα,∗
n,m and G∗

d. The conditional
equivalence result of Theorem 2.4 can be shown in several ways, including enumeration [40]
and exchangeability [27, 43] approaches. Inspired by Pólya urn arguments, here we shall use
an elementary approach that avoids cumbersome explicit calculations by defining appropriate
random variables (which also facilitates the upcoming degree sequence arguments). To this
end we introduce a random sequence

(3.1) (Wj )j≥1
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of vertices from [n], by defining Wi+1 to have the conditional probability distribution with

(3.2) P(Wi+1 = v|W1, . . . ,Wi) =
∑

j∈[i] 1{Wj=v} + α

i + αn
for all v ∈ [n].

(This can be interpreted as the sequence of draws from a Pólya urn with n colours, with
initially α balls of each colour, see, e.g., [32, 37, 41].) By joining these vertices pairwise
to edges, for each i ≥ 0 we then obtain a multigraph with vertex set [n] and edge multiset
En,i := {W1W2, . . . ,W2i−1W2i}, where En,0 = ∅. The resulting multigraph sequence is eas-
ily seen to have the same distribution as (G

α,∗
n,i )i≥0. Indeed, since

∑

j∈[2i] 1{Wj=v} = dv(i)

equals the degree of vertex v after i steps, this follows from the simple observation that the
stepwise conditional distributions of the added edges are the same (the conditional probabil-
ity of adding {v,w} as the next edge is proportional to 2 · (dv(i)+α)(dw(i)+α) when v �= w,
and proportional to (dv(i) + α)(dv(i) + 1 + α) when v = w). Now the proof of the desired
conditional equivalence result is straightforward, since the above “pairwise joining of 2m

vertices” construction of the edge multiset is similar to the construction of the configuration
model G∗

d described in Section 2.1.2.

PROOF OF THEOREM 2.4. Let d = (dv)v∈[n] be a degree sequence with
∑

v∈[n] dv = 2m.
Recalling that Sd denotes the set of all 2m-element sequences w = (w1, . . . ,w2m) in which
each vertex v ∈ [n] appears dv times, below we shall write E(w) := {w1w2, . . . ,w2m−1w2m}
for the associated edge multiset. For any multigraph G with degree sequence d(G) = d, by
the above-discussed construction of Gα,∗

n,m it follows that

P
(

Gα,∗
n,m = G|d

(

Gα,∗
n,m

)

= d
)

=
P(Gα,∗

n,m = G)

P(d(G
α,∗
n,m) = d)

=
∑

w∈Sd:E(w)=E(G)P((W1, . . . ,W2m) = w)
∑

w∈Sd
P((W1, . . . ,W2m) = w)

.

By multiplying the conditional probabilities from (3.2) (and rearranging the factors in the
numerator), it now is straightforward to see that the above probabilities

(3.3) P
(

(W1, . . . ,W2m) = w
)

=
∏

v∈[n]
∏

0≤j<dv
(j + α)

∏

0≤i<2m(i + αn)

are the same for all w ∈ Sd (as they depend on the degree sequence d = (dv)v∈[n] only). Since
the edge multiset of G∗

d is defined as E(w) for a uniform random w ∈ Sd (see Section 2.1.2),
it readily follows that

P
(

Gα,∗
n,m = G|d

(

Gα,∗
n,m

)

= d
)

=
∑

w∈Sd

1{E(w)=E(G)}
|Sd|

= P
(

G∗
d = G

)

,(3.4)

which implies the claimed conditional equivalence (since G with degree sequence d(G) = d

was arbitrary). �

3.2. Proof of Theorem 2.5: Negative binomial degree sequence of Gα,∗
n,m. For the degree

sequence result of Theorem 2.5 it will be convenient to consider a continuous time embedding
of the (Wj )j≥1 based construction of (G

α,∗
n,i )i≥0, since this will give us more independence.

(This is a special case of a general embedding for Pólya urns; see, e.g., [1], Section 9.2, with
extension in [22], Remark 4.2, and [23], Remark 1.11.) To this end, let

(3.5)
((

Dv(t)
)

t∈[0,∞)

)

v∈[n]
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be independent pure birth processes with initial value 0 and birth rates λk := k + α (i.e.,
the transition rate from state k to state k + 1). Identifying vertex v ∈ [n] with the birth pro-
cess Dv(t), the order of the random birth-times (τj )j≥1 (also defining τ0 := 0 for conve-
nience) thus naturally induces a sequence of random vertices (Wj )j≥1 (the ones which gave
birth at the corresponding times). Justifying our slight abuse of notation, it is not difficult
to check that this vertex sequence has the same distribution as the sequence (Wj )j≥1 de-
fined in Section 3.1. Indeed, since vertex v occurs

∑

j∈[i] 1{Wj=v} = Dv(τi) many times in
(W1, . . . ,Wi), this follows from the simple observation that the stepwise conditional distri-
butions of the selected vertices are the same (the conditional probability of selecting v as
the next vertex is (Dv(τi) + α)/(i + αn), since the total rate equals

∑

w∈[n](Dw(τi) + α) =
i + αn). For later reference we also record the standard fact7 that Dv(t) has a negative bino-
mial distribution with shape parameter α and probability 1 − e−t , that is,

(3.6) Dv(t) ∼ NBin
(

α,1 − e−t ).

Exploiting independence of the birth-processes, now the proof of the desired degree sequence
result is conceptually straightforward, since in our vertex-based construction of Gα,∗

n,m the
degree of vertex v equals

(3.7) dv(m) =
∑

j∈[2m]
1{Wj=v} = Dv(τ2m),

where τ2m will be highly concentrated. Before giving the details, we record some basic prop-
erties of negative binomial random variables (deferring their proofs, which are rather tangen-
tial to the main argument here). For x ∈ R and integer k ≥ 0, we denote the falling factorial
by 〈x〉k :=

∏

0≤j<k(x − j), where 〈x〉0 = 1.

LEMMA 3.1. For Y ∼ NBin(α,p) the following holds for all α ∈ (0,∞) and p ∈ [0,1).

(i) We have, for every integer k ≥ 0,

E〈Y 〉k = (EY)k ·
∏

1≤j<k

(1 + j/α) with EY =
αp

1 − p
.(3.8)

(ii) The probability generating function and its derivative are given by, for |x| < 1/p,

ExY =
(

1 − p

1 − px

)α

and E
[

YxY−1]

= αp
(1 − p)α

(1 − px)α+1 .(3.9)

(iii) If p = 1 − e−t , then t = log(1 + x/α) implies p = 1 − 1/(1 + x/α) = x/(x + α) and

EY = x.

PROOF OF THEOREM 2.5. By the construction of Gα,∗
n,m discussed above, we have, see

(3.7),

(3.10) d = d
(

Gα,∗
n,m

)

=
(

Dv(τ2m)
)

v∈[n].

With an eye on (2.5), we now introduce the auxiliary variables

Nk(t) :=
∑

v∈[n]
1{Dv(t)=k} and Mk(t) :=

∑

v∈[n]
Dv(t)

k.(3.11)

7By standard textbook results (see, e.g., [18], Section 6.8) the functions pk(t) := P(Dv(t) = k) with pk(t) =
1{k=0} are the unique solutions of the forward equations p′

k(t) = λk−1pk−1(t)1{k≥1} −λkpk(t). For λk = k +α

the solution of these differential equations turns out to be pk(t) = P(Y = k) with Y ∼ NBin(α,1−e−t ) as defined
in (2.4). This can alternatively be deduced from [18], Exercise 6.8.6, and is also explicitly stated in [53], (3.15),
for example.
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We henceforth write ω = ω(n), and may (as usual) assume that
√

ωn ≤ 2m holds. With the
goal of approximating τ2m by a deterministic auxiliary time tm, define

tm := log
(

1 +
2m

αn

)

and t±m := log
(

1 +
2m ±

√
ωn

αn

)

.(3.12)

These times are chosen such that, by (3.6) and Lemma 3.1(iii), we have

Dv(tm)
d= Yn ∼ NBin(α,pn),(3.13)

EDv

(

t±m
)

=
2m ±

√
ωn

n
= EDv(tm) ±

√

ω/n.(3.14)

Furthermore, since we assume
√

ωn ≤ 2m and m = O(n), all terms on the right-hand side of
(3.14) are O(1), so (3.8) and α = �(1) yield, for every fixed integer q ≥ 0,

max
t∈{t−m ,tm,t+m }

E
〈

Dv(t)
〉

q = O(1).(3.15)

For every k ≥ 1 it is well known that we may write xk as a linear combination

xk =
∑

1≤q≤k

{

k

q

}

〈x〉q ,(3.16)

where the coefficients are the so-called Stirling numbers of the second kind. Hence (3.15) also
holds with 〈Dv(t)〉q replaced by Dv(t)

q , so that EY
q
n = O(1) by (3.13). Using independence

of the birth processes, we also infer

VarMk

(

t±m
)

=
∑

v∈[n]
Var

[

Dv

(

t±m
)k] ≤

∑

v∈[n]
EDv

(

t±m
)2k = O(n).(3.17)

We now approximate τ2m. To this end we consider M1(t) =
∑

v∈[n] Dv(t), where (3.14)
yields

EM1
(

t±m
)

= nEDv

(

t±m
)

= 2m ±
√

ωn.(3.18)

Using Chebyshev’s inequality and (3.17)–(3.18) it follows that, whp, M1(t
−
m ) < 2m and

M1(t
+
m ) > 2m. Since M1(τ2m) = 2m by (3.10)–(3.11), using time-monotonicity of M1(t)

this implies that, whp,

t−m < τ2m < t+m .(3.19)

Next we focus on μk(d) =
∑

v∈[n] Dv(τ2m)k/n = Mk(τ2m)/n, see (2.5) and (3.10)–(3.11).
By combining (3.8) and (3.14) with (3.15) it follows that, for every fixed integer q ≥ 0,

E
〈

Dv

(

t±m
)〉

q =
(

2m ±
√

ωn

2m

)q

E
〈

Dv(tm)
〉

q = E
〈

Dv(tm)
〉

q + O(
√

ω/n).

Using (3.16) again, we infer that EDv(t
±
m )k = EDv(tm)k + O(

√
ω/n). Consequently, using

Chebyshev’s inequality and (3.17) again, we deduce that, whp,

Mk

(

t±m
)

= EMk

(

t±m
)

±
√

ωn = nEDv(tm)k + O(
√

ωn).(3.20)

Since EDv(tm)k = EY k
n by (3.13), using time-monotonicity of Mk(t) and (3.19) it now fol-

lows that

Mk(τ2m) = nEY k
n + op

(

ωn1/2)

,(3.21)

which in view of μk(d) = Mk(τ2m)/n establishes (2.8).
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Finally, we turn to πk(d) =
∑

v∈[n] 1{Dv(τ2m)=k}/n = Nk(τ2m)/n, see (2.5) and (3.10)–
(3.11). Here the key observation is that (3.19), (3.20) and (3.18) together imply that, whp,

(3.22)

∣
∣Nk(τ2m) − Nk(tm)

∣
∣ ≤

∣
∣M1

(

t+m
)

− M1
(

t−m
)∣
∣

≤
∣
∣EM1

(

t+m
)

−EM1
(

t−m
)∣
∣ + 2

√
ωn = 4

√
ωn.

Furthermore, ENk(tm) = nE1{Dv(tm)=k} = nP(Yn = k) by (3.13), and VarNk(tm) = O(n) by
independence of the birth processes. Hence, using (3.22) and Chebyshev’s inequality it fol-
lows that, whp,

(3.23)
∣
∣Nk(τ2m) − nP(Yn = k)

∣
∣ ≤

∣
∣Nk(tm) − nP(Yn = k)

∣
∣ + 4

√
ωn ≤ 5

√
ωn,

which in view of πk(d) = Nk(τ2m)/n establishes (2.7). �

PROOF OF LEMMA 3.1. We start with the first identity in (3.9), which is an immediate
consequence of (2.4) and (1 − px)−α =

∑

r∈N
(α+r−1

r

)

prxr . Differentiation then yields the
second identity in (3.9), which for x = 1 yields EY = α ·p/(1−p). Taking higher derivatives
yields, for all integers k ≥ 1,

(3.24)

E

∏

0≤j<k

(Y − j) =
(

dk

dpk
(1 − p)−α

)

· (1 − p)αpk

= α(α + 1) · · · (α + k − 1) ·
(

p

1 − p

)k

.

Inserting EY = α · p/(1 − p) into (3.24) then readily establishes (3.8), where the case k = 0
is trivial. Finally, (iii) follows immediately by substituting p = 1 − 1/(1 + x/α) into EY =
αp/(1 − p). �

REMARK 3.2. We used above that the degrees can be obtained by stopping the indepen-
dent processes Dv(t) suitably. Another, related, construction that also can be used to show
asymptotic results is that, for any p ∈ (0,1), if Dv ∼ NBin(α,p) are independent, then the de-
gree sequence (dv)v∈[n] has the same distribution as (Dv)v∈[n] conditioned on

∑

v Dv = 2m,
see for example, Holst [19] or Pittel [40], p. 624. That the degree distribution is asymptoti-
cally negative binomial can also be shown by direct calculations [41], Case 2b, p. 153.

3.3. Proof of Theorem 2.2: Relating Gα
n,m with Gα,∗

n,m. For the transfer statements of The-
orem 2.2 and Remark 2.3, the strategy is to compare the stepwise conditional probabilities
of the added edges in (Gα

n,i)i≥0 and its multigraph variant (G
α,∗
n,i )i≥0; these probabilities are

identical up to the normalizing factors in the denominator. (This is the same strategy as in
[40], Section 3, although we do the details differently and somewhat simpler.) We begin by
relating the two processes under an extra technical condition.

LEMMA 3.3. Define Z(Gi) :=
∑

v∈[n] dv(i)
3, where dv(i) := dv(Gi) denotes the degree

of vertex v in Gi . Given A,C,α0 > 0, the following holds whenever 1 ≤ m ≤ Cn and α ≥ α0.
For any sequence (G0, . . . ,Gm) of simple graphs with V (Gi) = [n], Gi ⊂ Gi+1, e(Gi) = i,
and Z(Gm−1) ≤ An, we have

(3.25) P
((

Gα
n,i

)

0≤i≤m = (G0, . . . ,Gm)
)

= �(1) · P
((

G
α,∗
n,i

)

0≤i≤m = (G0, . . . ,Gm)
)

,

where the implicit constants in (3.25) may depend on C, α0, A.
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PROOF. Let {v,w} ∈
([n]

2

)

\E(Gi) denote the (unique) edge in which Gi+1 and Gi differ.
Note that, by construction, the edge {v,w} is added to Gi with probability proportional to
2(dv(i) + α)(dw(i) + α) in both random graph processes, but each time the normalizing
factor in the denominator differs slightly. Indeed, recalling

∑

v∈[n] dv(i) = 2i, in the random
multigraph process the normalizing factor equals

∑

{x,y}∈
([n]

2

)

2
(

dx(i) + α
)(

dy(i) + α
)

+
∑

x∈[n]

(

dx(i) + α
)(

dy(i) + 1 + α
)

=
(

∑

x∈[n]

(

dx(i) + α
)
)2

+
∑

x∈[n]

(

dx(i) + α
)

= (2i + αn)(2i + αn + 1),

(3.26)

whereas in the original (simple) random graph process the normalizing factor equals
∑

{x,y}∈
([n]

2

)

\E(Gi)

2
(

dx(i) + α
)(

dy(i) + α
)

= (2i + αn)2 −
[

2
∑

{x,y}∈E(Gi)

(

dx(i) + α
)(

dy(i) + α
)

+
∑

x∈[n]

(

dx(i) + α
)2

︸ ︷︷ ︸

=:Q(Gi)

]

.(3.27)

Putting things together, it follows that the one-step conditional probabilities are given by

P
(

Gα
n,i+1 = Gi+1|

(

Gα
n,j

)

0≤j≤i = (G0, . . . ,Gi)
)

=
2(dv(i) + α)(dw(i) + α)

(2i + αn)2 − Q(Gi)
,(3.28)

P
(

G
α,∗
n,i+1 = Gi+1|

(

G
α,∗
n,j

)

0≤j≤i = (G0, . . . ,Gi)
)

=
2(dv(i) + α)(dw(i) + α)

(2i + αn)(2i + αn + 1)
.(3.29)

Next we claim that (3.25) follows if max0≤i<m Q(Gi) ≤ Bα2n for some constant B =
B(C,α0,A) > 0. Indeed, the right-hand sides of (3.28)–(3.29) are then equal up to a multi-
plicative factor of 1+O(n−1), where the implicit constants may depend on B and α0. Noting
that initially P(Gα

n,0 = G0) = 1 = P(G
α,∗
n,0 = G0), then (3.25) follows readily by comparing

the product of m ≤ Cn conditional probabilities.
It remains to prove max0≤i<m Q(Gi) ≤ Bα2n. Using (x + α)(y + α) ≤ 4 max{x2, y2, α2}

it follows that

Q(Gi) ≤ 8
∑

{x,y}∈E(Gi)

(

dx(i)
2 + dy(i)

2 + α2)

+ 4
∑

x∈[n]

(

dx(i)
2 + α2)

≤ 16
∑

v∈[n]
dv(i)

3 + 8α2∣
∣E(Gi)

∣
∣ + 4

∑

v∈[n]
dv(i)

2 + 4α2n

≤ 20 ·
[

Z(Gi) + α2 max{i, n}
]

.

(3.30)

Noting that Z(Gi) ≤ Z(Gm−1) by monotonicity of the degrees, and using the assumptions
Z(Gm−1) ≤ An, i < m ≤ Cn and α ≥ α0 we readily infer Q(Gi) ≤ 20[A + α2(C + 1)]n ≤
Bα2n for suitable B = B(C,α0,A) > 0, completing the proof (as discussed). �

To deduce the desired transfer statements, it intuitively remains to show that typically
Z(Gα

n,m−1) = O(n). Perhaps surprisingly, using Lemma 3.3 this can in fact be derived (or
“bootstrapped”) from a corresponding bound for the more tractable process Gα,∗

n,m by a stop-
ping time argument.
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PROOF OF THEOREM 2.2. Since (2.2) implies (2.1), it suffices to prove Remark 2.3.
Recalling (2.5) and (2.8) with EY 5

n = O(1), by Theorem 2.5 (and monotonicity in m) we
may choose A = A(C,α0) > 0 such that

P
(

Z
(

G
α,∗
n,m−1

)

> An
)

≤ P
(

Z
(

G
α,∗
n,⌊Cn⌋

)

> An
)

= o(1).(3.31)

Next, by summing (3.25) over all graph sequences from Gn,m with Z(Gm−1) ≤ An (ignor-
ing those sequences that are not realizable by the simple random graph process (Gα

n,i)0≤i≤m)
it follows that

(3.32) P
((

Gα
n,i

)

0≤i≤m ∈ Gn,m and Z
(

Gα
n,m−1

)

≤ An
)

≤ O(1) · P
((

G
α,∗
n,i

)

0≤i≤m ∈ Gn,m

)

,

where here and below we use the convention that all implicit constants may depend on C,
α0, A.

Finally, we compare P(Z(Gα
n,m−1) > An) with P(Z(G

α,∗
n,m−1) > An). Since Z(Gi) <

Z(Gi+1) by monotonicity of the degrees, here the idea is to focus on the first step where
Z(Gj ) ≤ An is violated, and then only compare the probabilities in both processes up to (and
including) that step via Lemma 3.3. Turning to the details, define Hn,j as the set of all simple
graph sequences (G0, . . . ,Gj ) with V (Gi) = [n], Gi ⊂ Gi+1, e(Gi) = i, Z(Gj−1) ≤ An,
and Z(Gj ) > An. Noting that initially Z(Gα

n,0) = 0 = Z(G
α,∗
n,0), by summing (3.25) over all

graph sequences from Hn,j it follows that

P
(

Z
(

Gα
n,m−1

)

> An
)

=
∑

1≤j≤m−1

P
((

Gα
n,i

)

0≤i≤j ∈ Hn,j

)

= �(1) ·
∑

1≤j≤m−1

P
((

G
α,∗
n,i

)

0≤i≤j ∈ Hn,j

)

≤ O(1) · P
(

Z
(

G
α,∗
n,m−1

)

> An
)

,

(3.33)

which together with (3.31)–(3.32) completes the proof of inequality (2.2). �

REMARK 3.4. The transfer statement of Theorem 2.2 fails when α = α(n) → 0 suffi-
ciently fast: for example, for α = o(n−2) and m = O(n) it is easy to check that (Gα

n,i)0≤i≤m

whp sequentially builds up a clique, whereas the multigraph variant (G
α,∗
n,i )0≤i≤m whp only

adds loops.

4. Size of the giant component: Proof of the main theorems. In this section we prove
our main giant component results Theorems 1.1–1.2 and 2.1, by closely following the heuris-
tics from Section 2.2. (Recalling α = α(n) → a ∈ (0,∞] as n → ∞, we sometimes need to
distinguish the cases a < ∞ and a = ∞, since they have different asymptotic degree distri-
butions.)

PROOF OF THEOREM 2.1. Recall that Theorem 1.1 is a special case of Theorem 1.2.
Thus it suffices to prove that Theorem 1.2 holds with Lj (m) := Lj (G

α,∗
n,m). By consider-

ing subsequences in the standard way, we may assume that ε = ε(n) → ε∞, for some ε∞ ∈
[0,∞), as n → ∞. Let Yn ∼ NBin(α,pn) be as in Theorem 2.5, and let δn := n−1/2ω(n) with
ω(n) := logn, say (any sequence with n−1/2 ≪ δn ≪ n−1/3 would work). Then (2.7)–(2.8)
show that the random vector δ−1

n ((πk(d) − P(Yn = k))∞k=0, (μk(d) − EY k
n )∞k=0) converges in

probability to 0 in the product space R
∞ × R

∞. By the Skorohod coupling theorem [33],
Theorem 4.30, we may without loss of generality assume that the random multigraphs for
different n are coupled such that this holds a.s., and thus that, a.s., for every for every inte-
ger k ≥ 0 we have

πk(d) = P(Yn = k) + o(δn),(4.1)

μk(d) = EY k
n + o(δn).(4.2)



PREFERENTIAL ATTACHMENT WITHOUT VERTEX GROWTH 1537

As a preparatory step, we now show that d = (dv)v∈[n] satisfies the assumptions of Theo-
rem 2.8 with

D ∼
{

NBin(a,p∞), if a < ∞,

Po(1 + ε∞), if a = ∞,
(4.3)

where p∞ is defined as in (4.4) below. Since m = mc(1 + ε), recalling (2.6) and (1.1) we
infer that, as n → ∞,

(4.4)

pn =
2mc(1 + ε)

nα + 2mc(1 + ε)
=

(1 + ε)/(α + 1)

1 + (1 + ε)/(α + 1)

=
1 + ε

α + 2 + ε
→

1 + ε∞
a + 2 + ε∞

=: p∞.

If a < ∞, then it readily follows from (2.4) that Yn
d→ NBin(a,p∞). If instead a = ∞, then

(4.4) yields pn → 0 and αpn → 1 + ε∞ as n → ∞, so that (2.4) implies

(4.5) P(Yn = k) =
∏

0≤j<k(αpn + jpn)

k!
(1 − pn)

α →
(1 + ε∞)k

k!
e−(1+ε∞), k ≥ 0,

and thus Yn
d→ Po(1 + ε∞). To sum up, in both cases we have Yn

d→ D, so that (4.1) implies,
a.s., πk(d) = P(Yn = k) + o(1) → P(D = k) as n → ∞, for every k ≥ 0. Furthermore, ED ∈
(0,∞) and P(D = 1) > 0 are obvious (note that p∞ > 0 when a < ∞). Moreover, (4.2) and
Theorem 2.5 yield, a.s., μ5(d) = EY 5

n + o(1) = O(1), so the assumptions of Theorem 2.8
hold (as claimed).

Next, gearing up to apply Theorem 2.8 in the two separate cases ε∞ = 0 and ε∞ > 0, we
now estimate ED and ED(D − 2). In particular, (4.3), (3.8), and (4.4) yield, when a < ∞,

ED = a
p∞

1 − p∞
=

a

a + 1
(1 + ε∞) =

1

1 + a−1
(1 + ε∞),(4.6)

which obviously holds for a = ∞ too (with our convention ∞−1 = 0). Similarly, (3.8) yields,
when a < ∞,

(4.7)
ED(D − 2) = ED(D − 1) −ED = (ED)2(

1 + a−1)

−ED

=
1

1 + a−1 (1 + ε∞)ε∞,

which again holds for a = ∞ by standard Poisson formulas for D ∼ Po(1 + ε∞).
Case 1: ε(n) → ε∞ > 0. In this case, (4.7) yields ED(D − 2) > 0. Hence, Theorem 2.8(i)

applies and shows the existence of a unique ξ = ξ(a, ε∞) ∈ (0,1) such that

EDξD−1 = ξED.(4.8)

Furthermore, by Theorem 2.4 and the calculations above, a.s. the degree sequence d is such
that (2.9) applies to Gα,∗

n,m conditioned on d. Consequently, (2.9) holds for Gα,∗
n,m also uncon-

ditionally, which is (1.5)–(1.6) with ρa(ε) replaced by

ρa(ε∞) := 1 −EξD.(4.9)

In the remainder we take (4.9) together with (4.4), (4.3), and (4.8) as the definition of the
function ρa(ε∞), for all a ∈ (0,∞] and ε∞ ∈ (0,∞). We now study further properties of
this function, and for convenience temporarily write ε instead of ε∞. (We no longer consider
finite n here, so there is no risk of confusion.)
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If a = ∞, then by combining D ∼ Po(1 + ε) with standard Poisson formulas, we can
rewrite (4.8) as

e−(1+ε)(1−ξ) = ξ.(4.10)

In view of (4.9) this also yields the identity

ρ∞(ε) = 1 − e−(1+ε)(1−ξ) = 1 − ξ,(4.11)

establishing that ρ∞(ξ) is the positive solution of (1.7), as asserted.
If a < ∞, then by combining D ∼ NBin(a,p∞) with (3.9) and (4.4) we can rewrite (4.8)

as
(

a + 1

a + 2 + ε − (1 + ε)ξ

)a+1
= ξ.(4.12)

Then (4.9) and (3.9) yield

ρa(ε) = 1 −
(

a + 1

a + 2 + ε − (1 + ε)ξ

)a

= 1 − ξa/(a+1).(4.13)

By (4.13), (4.12) and elementary algebra, it also follows that

(4.14) ρa(ε) = 1 −
(

1 +
(1 + ε)(1 − ξ)

a + 1

)

· ξ = (1 − ξ) ·
(

1 −
(1 + ε)ξ

a + 1

)

.

We remark that, in view of (4.11), equations (4.13)–(4.14) both also hold when a = ∞ (by
interpreting the fractions in the natural way, i.e., as limits). As a further technical interlude
(that can safely be skipped on a first reading), note that the difference between the two sides
in (4.12) is a convex function of ξ ∈ [0,1], which vanishes at ξ = ξ(a, ε) and ξ = 1 but not
identically. Hence its derivative at ξ(a, ε) must be negative, and thus the implicit function
theorem applies and shows that ξ(a, ε) is an analytic function of (a, ε) ∈ (0,∞)2. Hence,
using (4.13) or (4.14), it follows that ρa(ε) is also an analytic function of (a, ε).

Case 2: ε(n) → ε∞ = 0. In this case, (4.7) yields ED(D − 2) = 0. Using (4.6) and (3.8)
when a < ∞ and standard Poisson formulas for D ∼ Po(1) when a = ∞, it follows that
ED = 1/(1 + a−1) and

ED

ED(D − 1)(D − 2)
=

1

(ED)2(1 + 1/a)(1 + 2/a)
=

1 + a−1

1 + 2/a
.(4.15)

Moreover, using (4.2) and δn ≪ n−1/3 ≪ ε, in analogy with (4.6)–(4.7) it follows that, a.s.,

(4.16)

ζn/n = μ2(d) − 2μ1(d) = EYn(Yn − 2) + o(δn)

=
1

1 + α−1
(1 + ε)ε + o(ε) ∼

1

1 + a−1
ε.

Consequently, n−2/3ζn = �(εn1/3) → ∞, and Theorem 2.8(ii) applies a.s. to Gα,∗
n,m condi-

tioned on d, again using Theorem 2.4. Hence, (2.10) yields, conditioned on d and therefore
also unconditioned,

L1
(

Gα,∗
n,m

)

=
(

2(1 + a−1)

1 + 2/a
+ op(1)

)

ζn =
2εn

1 + 2/a
·
(

1 + op(1)
)

.(4.17)

We similarly also obtain L2(G
α,∗
n,m) = op(ζn) = op(εn) = op(L1(G

α,∗
n,m)). This verifies (1.6),

in this case too. However, to derive (1.5) from (4.17), it remains to stitch the two formulas
together by showing that, as ε → 0 with a ≤ ∞ fixed, we have ρa(ε) ∼ 2ε/(1 + 2/a), as
asserted (more precisely) in (1.4). We shall do this by an analytic argument. (An alternative,
more conceptual, proof is sketched in Remark 4.2.) Since the claimed asymptotics is well
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known in the Poisson case a = ∞, for simplicity we henceforth assume a < ∞ (the proof in
the simpler case a = ∞ proceeds in the same way). With foresight, we define

ψ := (1 + ε)(1 − ξ) > 0,(4.18)

and then (similar to the calculations leading to (4.14) above) rewrite (4.12) as

(4.19) ξ =
(

1 +
(1 + ε)(1 − ξ)

a + 1

)−(a+1)

=
(

1 +
ψ

a + 1

)−(a+1)

.

Using (4.12) and log(1 + x) ≤ x, it follows that

(4.20)

(1 − ξ) + (1 − ξ)2/2 < − log
(

1 − (1 − ξ)
)

= log
1

ξ

= (a + 1) log
(

1 +
ψ

a + 1

)

≤ ψ = (1 + ε)(1 − ξ),

which after dividing by 1 − ξ > 0 easily gives 1 − ξ < 2ε, and thus ρ ≤ 1 − ξ < 2ε by
(4.13) or (4.14). Furthermore, equations (4.18)–(4.19) and a Taylor expansion (or the general
binomial series) yield

ψ

1 + ε
= 1 − ξ = 1 −

(

1 +
ψ

a + 1

)−(a+1)

= ψ −
a + 2

2(a + 1)
ψ2 + O

(

ψ3)

.(4.21)

Since 0 < ψ ≤ (1 + ε)2ε = O(ε), after dividing by ψ > 0 it then routinely follows that

ψ =
2(a + 1)ε

(a + 2)(1 + ε)
+ O

(

ε2)

=
2(a + 1)

a + 2
ε + O

(

ε2)

.(4.22)

Recalling (4.18) and that 1 − ξ = O(ε), now (4.14) and (4.22) imply for ε ց 0 the asymp-
totics

ρa(ε) =
ψ

1 + ε
·
(

a

a + 1
+ O(ε)

)

=
2aε

a + 2
+ O

(

ε2)

,(4.23)

as stated in (1.4). This completes the proof of Theorem 2.1, as discussed below (4.17). �

PROOF OF THEOREMS 1.1 AND 1.2. These results follow from the multigraph version
of Theorem 2.1 and the transfer result Theorem 2.2 by routine arguments (the key point is
that any event which fails with probability at most π = o(1) in Gα,∗

n,m fails with probability at
most B · π + o(1) = o(1) in Gα

n,m). �

REMARK 4.1. When ε → ∞ (with α fixed), it follows easily from (4.19) that ξ → 0,
and thus (4.13) implies ρa(ε) = 1 − ξa/(a+1) → 1. When a → ∞ with ε ∈ (0,∞) fixed,
it follows easily from (4.19) that ξ(a, ε) → ξ(∞, ε) satisfying (4.10), and thus (4.14) and
(4.11) imply ρa(ε) → 1 − ξ(∞, ε) = ρ∞(ε). Furthermore, since ρ∞(ε) is continuous with
bounded range, and each ρa(ε) is increasing, it follows that ρa(ε) → ρ∞(ε) uniformly in
ε ∈ (0,∞). We omit the details.

REMARK 4.2. An alternative proof of (1.4) without calculations is based on the some-
what vague but very general idea that when we have a limit theorem with different cases
as above, then the cases have to fit together smoothly. To see this in the present case, fix α

and write for simplicity G(n, ε) := G
α,∗
n,⌊mc(1+ε)⌋. Consider a sequence εi → 0. First, fix i

and take ε = εi constant. Then, by Case 1 (ε∞ > 0) in the proof above, L1(G(n, εi)) =
ρα(εi)n(1 + op(1)). Hence we can choose ni so large that with probability > 1 − 2−i ,

∣
∣L1

(

G(ni, εi)
)

/ni − ρα(εi)
∣
∣ < 2−iεi .(4.24)
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We may further assume ni+1 > ni and ni > iε−3
i . Now consider the sequence of multigraphs

G(ni, εi), i ≥ 1. Case 2 (ε∞ = 0) in the proof above applies, so (4.17) holds for the multi-
graphs G(ni, εi), which together with (4.24) implies (1.4), up to a weaker error term o(ε).

It is also possible to recover the error term O(ε2) without explicit calculations. Suppose for
definiteness that a < ∞. We may then solve (4.12) for ε, and obtain ε = ε(ξ) as an analytic
function of ξ in some complex neighbourhood of ξ = 1. The derivative at 1 is nonzero, for
example, as a consequence of (1.4) and (4.13), and thus the implicit function theorem shows
that ξ(a, ε) may be extended to an analytic function of ε in some neighbourhood of 0. By
(4.13), the same holds for ρα(ε). Thus ρα(ε) is analytic on the closed half-line [0,∞), and
all derivatives stay bounded as ε → 0; so the error term O(ε2) in (1.4) follows by Taylor’s
theorem.

5. Final remarks.

5.1. Preferential attachment with negative α. As in previous work, we have through-
out assumed α > 0. It is also possible to consider α < 0, provided α = −r for some inte-
ger r = |α| ∈ N. In this case, the process adds edges by choosing vertices as in Section 3.1
with probability proportional to r − dv , where dv is the current degree. This is equivalent to
starting with r half-edges for each vertex, and then choosing pairs of half-edges uniformly at
random, in the simple graph version conditioned on keeping the graph simple. The multigraph
version can be seen (at least when rn is even) as the stepwise construction of an r-regular
multigraph by the configuration model. Equivalently, it is the process obtained if we construct
an r-regular multigraph by the configuration model and then take its edges in uniformly ran-
dom order; hence it can be seen as edge percolation on this random multigraph.

This process was introduced by Steger and Wormald [52] as a method to generate almost
uniformly distributed regular graphs, see also [34, 35]. Note that no vertex will ever get
degree more than r , so the process stops when we cannot add any edge without increasing
the maximum degree above r . Then there are n−O(1) vertices of degree r , in both the simple
graph and multigraph version, so the final (multi)graph is almost regular. Thus, the process
stops after m = m† − O(1) steps, where

m† :=
rn

2
=

|α|
2

n.(5.1)

The papers [34, 35, 52] just mentioned are mainly interested in the resulting final graph, but
we may also consider the entire process, and, in particular, the emergence of the giant com-
ponent in this process. In the following discussion we shall always assume that r := |α| ≥ 3,
so that n/2 < mc < n < m† by (1.1) and (5.1). Fix a small η > 0 with (1 − η)m† > mc.
Assuming m ≤ (1 − η)m†, it then is fairly easy to verify that the proofs from Sections 3–4
carry over to that case (with minor routine changes). The only noteworthy difference is that
in Section 3.2 the processes Dv(t) are now death processes, starting with r particles that each
dies at rate 1, and it turns out that (3.6) is then replaced by

Dv(t) ∼ Bin
(

|α|,1 − e−t ).(5.2)

As a consequence, the asymptotic degree distribution is now binomial, and it follows that
Theorem 2.5 holds with Yn ∼ Bin(|α|,pn) and pn := 2m/(n|α|). In spite of these differences,
it turns out that the probability generating function of Yn can in the case α < 0 be written in
the same form

ExYn =
(

1 +
2m

nα
(1 − x)

)−α

(5.3)
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as in the case α > 0 (see equations (3.9) and (2.6), where (1 − pnx)/(1 − pn) = 1 +
pn(1 − x)/(1 − pn) and pn/(1 − pn) = 2m/(nα) hold). As a consequence, the equations
(4.12)–(4.14) that define ρα(ε) are still valid. Hence, assuming r ≥ 3, Theorems 1.1, 1.2
and 2.1 hold for α := −r too, except the claim ρα(ε) < 2ε, which clearly is false for α < 0
by (1.4). (The assumption m ≤ (1 − η)m† may be eliminated by the same argument as in
Remark 1.5.) We may also let α → −∞, with ρ−∞ = ρ∞; we leave the routine details to
the reader. (In the multigraph case, these results are special cases of earlier results on edge
percolation in random multigraphs with given vertex degrees, see [16, 24].)

5.2. Extensions and variants.

5.2.1. Hypergraphs and different vertex weights. It seems possible to adapt the methods
of this paper to study hypergraph variants of the preferential attachment random graph pro-
cess. Similarly, it also seems possible to analyze the natural variant where a new edge {v,w}
is added with probability proportional to (dv + αv)(dw + αw), that is, where each vertex has
its own “preference weight” (though here some assumptions on the (αv)v∈[n] seem neces-
sary in order to prove a multigraph transfer statement akin to Theorem 2.2). We leave these
extensions to the reader.

5.2.2. More general preferential attachment functions. As suggested by Lovász, see
[40], and partly already by Erdős and Rényi [15], it is natural to study processes with more
general preferential attachment functions f = fn : N → [0,∞). We write (G

f
n,m)m≥0 for

the variant of (Gα
n,m)m≥0 where the next edge connects two currently nonadjacent v and w

with probability proportional to f (dv)f (dw). Similarly, we write (G
f,∗
n,m)m≥0 for the multi-

graph variant where the next edge connects distinct v and w with probability proportional to
2f (dv)f (dw), and forms a loop at v with probability proportional to f (dv)f (dv + 1). This
general class of dynamic network models not only contains the preferential attachment pro-
cess (via f (k) := k + α) but also the classical Erdős–Rényi process (via f (k) := 1), the con-
figuration model for d-regular graphs and the Steger–Wormald process [52] discussed in Sec-
tion 5.1 (via f (k) := max{d −k,0}), and the random d-process [49, 58] (via f (k) := 1{k<d}).

Here the problem of determining the asymptotic degree distribution after m steps is feasible
for many functions f via the pure birth-process based construction of (G

f,∗
n,m)m≥0 from Sec-

tion 3.2, with birth-rates λk := f (k). For example, using this construction they are easily seen
to be asymptotically Poisson in the Erdős–Rényi process, and truncated Poisson in the ran-
dom d-process. By contrast, the giant component problem for general functions f appears to
be more challenging. The crux is that the conditional equivalence argument from Section 3.1
(which crucially allowed us to work with the configuration model) seemingly only carries
over to linear functions, which motivates the following conceptually interesting problem.

PROBLEM 5.1. Study the giant component problem for G
f
n,m or G

f,∗
n,m when f is non-

linear.

5.2.3. Edge-rewiring variant without edge-growth. There is a natural variant of the pref-
erential attachment random multigraph process where the number of edges m = �(n) is also
fixed; this was proposed in the complex networks literature by Dorogovtsev, Mendes, and
Samukhin around 2002 (see [12], Section 3, and [11], Chapter 4.3). To be more precise,
this preferential attachment edge-rewiring process starts with a given (arbitrary) initial multi-
graph G0 with vertex set [n] and m multiedges, and then proceeds stepwise as follows: a
uniform endvertex v of a uniformly chosen edge e is selected, and then e is replaced with
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the edge {v,w}, where w is chosen with probability proportional to dw + α. This rewiring
process (also called simple edge-selection process [20] or edge reconnecting model [42, 43])
converges rapidly to a unique stationary distribution Gα,∞

n,m (see [20], Sections 1.1–1.2, [43],
Section 2.2, and the “equilibrium” discussion in [11, 12]), which in fact has the same distribu-
tion as Gα,∗

n,m (see [43], Lemma 2.1). It follows that we can use the random multigraph Gα,∗
n,m

to derive the long-run asymptotic properties of the edge-rewiring process with n vertices
and m edges. In particular, the result by Pittel [40] (or our Theorem 1.1 and 2.1) confirms
Conjecture 4.3 of Hruz and Peter [20] regarding the existence of a giant component.

5.3. Other properties. The method used in this paper, where the auxiliary results from
Section 2 are combined with results for G∗

d, can also be used to study other properties of Gα
n,m

and Gα,∗
n,m. We briefly mention a few selected examples of interest here (leaving details to

the reader).
First, we consider the number of vertices in “small” components of size k = O(1). Under

the assumptions of Theorem 2.8, in G∗
d their typical number can easily be related via [25],

Lemma 4.1, to a branching process X that depends on (a size-biased version of) the “idealized
degree distribution” D from Theorem 2.5. A routine analysis of P(|X| = k) then leads to a
conceptually simple proof of the counting formula [40], Lemma 4(b).8

Second, the so-called susceptibility, which is the expected component-size of a randomly
chosen vertex, can be similarly estimated via E|X| in the subcritical phase, see [25], Corol-
lary 3.2, and Appendix A.1.

Third, the widely studied k-core is the largest induced subgraph with minimum ver-
tex degree at least k (which can be empty). By mimicking the first part of Theo-
rem 2.1, one can use [28], Theorem 2.3, with D from Theorem 2.5 to show that, for
each k ≥ 2, a linear-sized k-core whp appears in Gα

n,m and Gα,∗
n,m around ckn steps,

where ck := 1
2 infμ>0 μ/P(Zα(μ) ≥ k − 1) with negative binomial random variable Zα(μ) ∼

NBin(α + 1,μ/(α + μ)).
Finally, we emphasize that our methods are geared towards the spare case m = O(n).

Indeed, for denser graphs the reduction of the simple graph process to the multigraph variant
breaks down, at least in the present form (see Theorem 2.2). This limitation is not just a
mere proof artifact: in the multigraph process the threshold for connectivity is located around
n1+α−1

edges [40], Theorem 2, so for α < 1 it must differ from the connectivity threshold of
the simple graph process (whose location remains an open problem).

5.4. Further open problems. We close with some open problems for the preferential at-
tachment process (Gα

n,m)m≥0 phase transition, which are all inspired by the corresponding
behaviour of the Erdős–Rényi reference model:

PROBLEM 5.2. In the subcritical phase m = mc(1 − ε) with ε = o(1) and ε3n → ∞,
show that whp L1(mc(1−ε)) ∼ Cαε−2 log(ε3n) for some constant Cα > 0 (sharpening [40]),
and prove a variant of Corollary 1.3.

PROBLEM 5.3. In the critical window m = mc(1 + ε) with |ε| = O(n−1/3), writing
Lj = Lj (G

α
n,m) for the size of the j th largest component of Gα

n,m, show that the sequence
(Lj/n2/3)j≥1 converges to a limiting distribution. ([40] establishes that Lj is of order n2/3,
for any fixed j ≥ 1.) For the random multigraph Gα,∗

n,m this can be shown by combining our
conditioning approach with the configuration model results from [10], but it remains open for
Gα

n,m (as Theorem 2.2 does not permit transfer of convergence in distribution). Also, does the
resulting limiting distribution equal the corresponding Erdős–Rényi one when α = ω(n1/3)?

8Pittel’s result [40], Lemma 4(b), is for the expected number of tree-components, and allows for growing k.
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PROBLEM 5.4. In the supercritical phase m = mc(1 + ε) with ε = o(1) and ε3n → ∞,
show that (1.6) can be improved to whp L2(mc(1 + ε)) ≤ Dαε−2 log(ε3n) for some con-
stant Dα > 0.

APPENDIX

A.1. Heuristic for the phase transition location mc. In this appendix we give an in-
formal explanation for why mc = n

2(1+α−1)
should be the phase transition location, based on

the widely-used heuristic [31, 36, 47, 51, 58] which predicts mc as the blow-up point of
the susceptibility S(m) = S(Gα

n,m) :=
∑

j |Cj |2/n, where C1,C2, . . . denote the components
of Gα

n,m. For simplicity, we henceforth assume that there is a deterministic approximation

(A.1) S(m) ≈ s(t) with t = t (m) := m/n.

By equation (1.11) in Section 1.2 any two distinct tree components Cj , Ck merge with prob-
ability proportional to [(2 + α)|Cj | − 2] · [(2 + α)|Ck| − 2], in which case the susceptibility
changes by (|Cj | + |Ck|)2/n − (|Cj |2 + |Ck|2)/n = 2|Cj ||Ck|/n. Pretending that nearly all
components are not-too-big tree-components (which in analogy with the Erdős–Rényi pro-
cess seems reasonable, since here we are only interested in steps leading up to the critical
point, i.e., before the giant emerges), with some hand-waving we loosely expect that

E
(

S(m + 1) − S(m)|S(m)
)

≈
∑

j �=k

( [(2 + α)|Cj | − 2] · [(2 + α)|Ck| − 2]
∑

v �= w: non-adj.(dv + α)(dw + α)
·

2|Cj ||Ck|
n

)

≈
2

n
·
((2 + α)

∑

j |Cj |2 − 2
∑

j |Cj |)2

(
∑

v(dv + α))2 =
2

n

(
(2 + α)S(m) − 2

2i/n + α

)2
.

(A.2)

Inserting (A.1), this suggests (together with S(m + 1) − S(m) ≈ s′(t)/n and S(0) = 1) the
differential equation

s ′(t) = 2
(

(2 + α)s(t) − 2

2t + α

)2
and s(0) = 1.(A.3)

The solution s(t) = α−2t
α−2(α+1)t

blows up at time tc := 1
2(1+α−1)

, so the described heuristic
indeed predicts the critical point mc = tcn. (For comparison, in the Erdős–Rényi process the
critical point is n/2 and its susceptibility blows up at time 1/2, since we analogously arrive
at s′(t) = 2s(t)2 and s(t) = 1/(1 − 2t).)

One of the arguments in [4] is essentially equivalent to this heuristic (using a different
time scale, see Section A.2.2). The assumed approximation (A.1) can be justified rigorously,
for example, using either the differential equation method [57, 59, 60], or the configuration
model transfer method from Section 5.3.

A.2. Compatibility with previous work. In this appendix we show that our giant com-
ponent results are compatible with previous work [4, 40].

A.2.1. Work of Pittel (on a random graph evolving by degrees). Translating to our no-
tation, Pittel [40] considers the preferential attachment random graph process for constant

α ∈ (0,∞). For c > cα := 1/(1 + α−1) he defines c∗ as the (unique) root x ∈ (0, cα) of

(A.4)
xαα+1

(α + x)α+2 =
cαα+1

(α + c)α+2 .
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Assuming n1/4(c − cα) → ∞, then [40], Theorem 1, ensures that the largest component has
size

(A.5) L1(cn/2) =
[

1 −
(

α + c∗

α + c

)α]

n ·
(

1 + op(1)
)

.

Using the following auxiliary claim, Theorem 1.1 implies (A.5) under the weaker assumption
n1/3(c − cα) → ∞ conjectured in [40] (since for m := mc(1 + ε) we have c = (1 + ε)cα and
n1/3ε = �(n1/3(c − cα)) → ∞).

CLAIM A.1. Let ε > 0. Then for c := (1 + ε)cα we have ρα(ε) = 1 − (α+c∗

α+c
)α .

PROOF. In view of (A.4) let

(A.6) ξ :=
c∗(α + c)

c(α + c∗)
=

(
α + c∗

α + c

)α+1
,

and observe that ξ ∈ (0,1) holds (since α ∈ (0,∞) and c∗ < cα < c). Noting that

1 − ξ =
c(α + c∗) − c∗(α + c)

c(α + c∗)
=

α(c − c∗)

c(α + c∗)
,(A.7)

we infer

α + c

α + c∗ = 1 +
c − c∗

α + c∗ = 1 +
c

α
· (1 − ξ) = 1 +

1 + ε

α + 1
(1 − ξ).(A.8)

Inserting this back into (A.6), a comparison with the first equation in (4.19) now shows that
ξ is indeed the unique solution in (0,1) to EDξD−1 = ξED, and thus, by (4.13) and (A.6),
we obtain ρα(ε) = 1 − ξα/(α+1) = 1 − (α+c∗

α+c
)α . �

A.2.2. Work of Ben-Naim and Krapivsky (popularity-driven networking). Ben-Naim and
Krapivsky [4] investigate the special case α = 1 of the preferential attachment random multi-
graph process (using a different time-parametrization) via the kinetic theory methodology
from statistical physics, also called rate equation approach. Inspecting equation (7) in [4]
(solving 2m/n = 〈j〉 = t/(1 − t) for t), for fixed ε > 0 it follows that adding m = (1 + ε)n/4
edges corresponds to their time

(A.9) t := (1 + n/2m)−1 = 1/3 + 2ε/9 + O
(

ε2)

.

The discussion of the function g(t) in [4], p. 4, together with (1), then says that the asymptotic
fraction of vertices in the giant component should be approximately equal to

3(t − 1/3) ∼ 2ε/3 ∼ ρ1(ε) as ε ց 0,(A.10)

which is made rigorous by Theorems 1.1 and 2.1. Finally, noting that (A.9) and (2.6) imply
the identity pn = t (when α = 1), Theorem 2.5 also gives a rigorous version of the asymptotic
degree distribution (9) in [4].
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