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Abstract

We analytically derive and numerically simulate a two-dimensional energy functional
modelling the effects of a constant electric field on a thin sample of a bent-core
liquid crystal in the ferromagnetic SmA-like phase. We start from a three-dimensional
domain and show that under proper rescaling and in the limit of small thickness the
electric self-interactions term gives rise to boundary terms. We compare our results to
previously proposed models.
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1 Introduction

Ferroelectric liquid crystals made of achiral molecules have been extensively studied
(Niori et al. 1996; Eremin and Jakli 2013; Jakli et al. 2018), due to their properties
of technological interest and their lower production costs. In materials with rod-like
molecules, ferroelectricity generally requires molecular chirality coupled with director
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tilt with respect to the smectic layer. Instead, achiral materials composed of bow-like
shaped molecules, so-called bent-core liquid crystals (BLCs), might exhibit spon-
taneous polarization in the non-tilted Smectic A phase (SmA) Niori et al. (1996),
resulting from the efficient packing of their bow-shaped molecules, which gives rise
to a polar order along the kink direction of the molecules.

While different types of tilted bent-core smectic phases have been known and
investigated for the past several decades, orthogonal bent-core smectic phases with
ferroelectric properties have been reported only since around 2010. Experimental
evidence of such a phase, here denoted by SmAP ., is presented in Reddy et al. (2011),
Guoetal. (2011). In Zhu et al. (2012), the authors report a BLC compound exhibiting a
SmAP; phase at a lower temperature and a polarization splay-modulated orthogonal
phase (SmAP;,..) at a higher temperature. The relatively high dielectric constant
shown in the SmAP phase Guo et al. (2011) and the bistable response observed in
the SmAP ., phase Zhu et al. (2012) suggest that orthogonal smectic phase of BLCs
may be a good candidate for future competitive optical devices Korblova et al. (2017).

A mathematical challenge faced when modeling and analyzing ferroelectric mate-
rials comes from the nonlocal nature of the electric self-interactions. In Bailey et al.
(2007), Bailey et al. study the stability of B7 fibers by showing that the concen-
tric cylindrical smectic layers form freestanding fibers with a tilted smectic phase of
BLC:s. In their work, an expression for the electric self-interactions energy density is
provided and used in a one-dimensional radial setting. This energy density consists of
three terms: the dielectric interaction with the electric field created by the diverging
spontaneous polarization, the dielectric interaction with the external electric field, and
their interaction with the spontaneous polarization, see (8). Under some assumptions,
such as constant nematic director and fixed smectic layers, and with p; : Q; — S?
denoting the polarization director, 25, = (0, 1)2 x (0, h) the material sample, and i
the ratio of the film thickness to the film’s in-plane length, we arrive at the following
dimensionless equation for the electric potential:

V- (ef:(pn) VOi) = V- (Prxe,) inR7,

where the dielectric tensor &} (pj) takes possibly different values inside and outside
of the domain:

g(p) inQy
ef(p) =
n(P) {I outside 2,

see (3). To model the elastic effects, we start from the elastic free energy proposed in
Stallinga and Vertogen (1994), see also Vaupotic et al. (2014). In the end, we arrive to
the total free energy for the SmAP . given in non-dimensional form by (17) augmented
by (18).

We are interested in deriving a reduced two-dimensional model to study thin sam-
ples. In particular, we show that in the thin-film limit setting an appropriately rescaled
version of the three-dimensional ferroelectric orthogonal BLCs model described by
(17)—(18) leads to a two-dimensional local free energy of the form given in (45). A
similar nonlocal energy has been obtained and extensively investigated in the field
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of micromagnetics. In particular, Kohn and Slastikov in Kohn and Slastikov (2005)
characterize the magnetostatic energy for micromagnetics in a thin film with a smooth
cross section as a two-dimensional, local limiting variational problem. Our approach
is inspired by their work, which we extend fully to the case of a constant coefficient
dielectric tensor and a rectangular cross section, and partially to the case of a bounded
and measurable coefficient dielectric tensor, which does not dependent on the polar-
ization vector. In Sect. 2, we derive the three-dimensional free energy model, and in
Sect. 3 we obtain bounds for its various terms, under some assumptions on the form
of the dielectric tensor. We then present a reduced local two-dimensional energy, see
(45), motivated by the I"-convergence results obtained in Theorem 4.1 of Sect. 4.

A two-dimensional energy of the form (45) was recently used in the one-constant
approximation setting, that is when the elastic constants are assumed to be all equal,
to study electric field effects on a BLC thin sample in the SmAP4,,, phase Garcia-
Cervera et al. (2020). When a term is introduced to relax the unit length constraint
of the polarization director, this energy resembles the Ginzburg—Landau functional of
superconductivity, with surface energy density given by (p-v)?Z, on the top and bottom
parts of a rectangular domain. In here, we show that in fact this surface energy models
the contribution of the nonlocal electric self-interactions. According to the analytical
results obtained in Garcia-Cervera et al. (2020), energy minimizing configurations
develop a pair of boundary defects, on the top and bottom parts of the boundary,
each with &£ 1/2 degree. Furthermore, numerical simulations exploring the switching
mechanism obtained by reversing the direction of an applied electric field indicate
the strong bistability of the SmAP,,, bent-core liquid crystals and show that a pair
of interior vortices nucleate from the boundary vortex pair, move to the center of the
domain, and then annihilate each other.

In Sect. 5, we numerically compare the SmAP ., phase studied in Garcia-Cervera
et al. (2020) with the SmAP . one, by considering gradient flow numerical simulations
of arelaxation of the polarization director unit length constraint of the two-dimensional
energy (45) applied to model the SmAP . phase. Our study is consistent with the one-
dimensional results for SmAP . presented in Gornik et al. (2014), Gornik and Vaupoti¢
(2014), Guo et al. (2011). In our two-dimensional confined geometry, when an electric
field is applied in the upward direction, a pair of boundary vortices appears on the
vertical sides of the domain and move with the electric field, resulting in an upward
polarization in most of the domain, see Fig. 1.

To gain a complete picture of the switching mechanism, we also numerically study
the non-equal elastic constant model for the SmAP,,, phase. In contrast with the
results for the one-constant approximation obtained in Garcia-Cervera et al. (2020),
only one interior vortex appears near one of the boundary vortices, the interior vortex
then moves toward the opposite boundary vortex to complete the switching, see Fig. 2,
this picture is consistent with the scenario proposed in Zhu et al. (2012).

Notations:

(i) Fora > 0,b > 0, we denote Q¢ = (0, a)? x (0, b);
(i) Forb > 0, we let @, = Q} = (0, 1)? x (0, b);
(iii) If p = (p1, p2, 0), we denote pt = (—pa, p1,0);
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(iv) Given X = (x1,x2,x3) € R3 and p(x) = (p1(x), p2(X), p3(x)), we define
div'p = 8y p1 +d2pa. curl'p = 8 py—d; pr.and [V/'p|> = Y7, Y3, (3ip )%

(v) Forpp : Qp — R, we let pp : 21 — R be the rescaling of p;, in the x3 variable,
that is Pp(x1, X2, x3) = pp(x1, X2, bx3), and p,, : (0, 1)?> — R the average of py
over (0, b), that is p, (x1, x2) = % fob P»(x1, X2, x3) dx3, whenever the integral
exists. A change of variables shows that

!
Py (x1, x2) =/ Pp(x1, x2, X3) dx3. (1)
0

(vi) By L2° we denote the set of L* functions with compact support.

2 Three-Dimensional Model

Bent-core liquid crystal molecules can be described using two orthogonal unit vectors:
n and p, with |n| = |p| = 1 and n - p = 0. The so-called nematic director n is parallel
to the axis of the molecule, while p, known as polarization director, points in the
direction of the bow of the molecule. Since the polarization director p follows the bent
of the molecule, its direction is physically relevant, unlikely for the nematic director n
where in fact the unit vectors £n are physically equivalent. According to the physics
literature, p is also in the same direction as the spontaneous polarization P, which can
then be written as P = Py p with Py > 0. In the SmA phase a material forms layers,
which are locally perpendicular to the nematic director n. The layer structure can be
described by a complex order parameter . We consider a sample in the shape of a
parallelepiped with a square base of length side L and height z: QtL = (0, L)2 x (0, 1).
Since we are interested in the regime where the smectic layers are well-defined, we
assume the smectic order parameter y, the intensity of the spontaneous polarization
Py, and the nematic director n to be constants. We take n oriented in the z-direction,
n = e3, namely we assume fixed smectic layers parallel to the xy-plane. By the
orthogonality constraint this last assumption implies that p has only two nonzero
components:

p = (p1, p2,0). (2)

Because all the terms in the energy density involving the smectic order parameter
are constant, we will neglect them. Both polarization and nematic directors are defined
only in the liquid crystal sample. However, in the following, when needed, we will
implicitly consider the directors as defined in the whole space by extending them to
zero outside the sample.

We refer to the cell thickness as to the dimension of the sample in the z direction (¢
in our notation above, and in reference Kohn and Slastikov (2005)), and to the cell size
as to the dimension of the sample in the x and y directions (L in our notation above,
and in reference Gornik et al. (2014)).

We include electric self-interactions terms as modeled by Bailey et al. (2007), see
also Bauman and Phillips (2012), and elastic contributions as described in the work
of Stallinga and Vertogen (1994), see also Longa et al. (1998) and Vaupotic et al.
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(2014). The electric self-interactions energy density can be expressed in terms of the
electric field induced by the diverging spontaneous polarization E;, the externally
applied electric field E,,, and their interaction with the spontaneous polarization P. If
we denote by Xal» the characteristic function of SZ,L, following Bailey et al. (2007),
we have:

1 1
<§80§E,‘ . Ei —-P- Ei — onéEex . Eex —-P- Eex) XQ{“
1
+§50 (Ei - Ei — Eox - Eoy) (1 - XQ’L) s

where g is the dielectric permittivity of free space and ¢ is the relative dielectric tensor
of the material. E; and E, are defined in the whole space.

In principle, one has £(p) = EpPOP+e; MM+ g, n®n, where p, n, m form
an orthonormal basis, and ¢, €, and &, are positive dimensionless material constants.
If n = e3, form = (—p;y, p1, 0) this gives

(ep—em)P? +em (sp—em)pip2 O
E@) =| (p—emp2p1  (p—em)P3+em O, A3)
0 0 &n

and, for all x,y € R3, it holds

X )Y = (ep — &m) PEX1 Y1 + EmX11 + (£p — &m) P2 P1X2 V1
+(ep — Em) P1 P2 X1 Y2 4 (8) — Em) P3 X2 Y2 + EmX2 Y2 + €4X3)3

=g, (p% X1 y1 4 p2 p1(x2 y1 +x1 y2) + p3 a2 yz)

+ &m ((1 —phxivi — p2 iy +x1y2) + (1= pd)x yz)
+EnXx3y3

=¢&p (P% x1y1+ p2 pr(x2yr +x1y2) + P% X2 yz)
+&m (P% x1y1 — p2 p1(x2y1 +x1y2) + P% X2 yz) + enx3y3.
From this, we see that

x"8(p)x =&, (p1x1 + p2 x2)% + &m (p2x1 — p1x2)? + €023

> e [(Pl X1+ p2x2)? + (paxy — prx2)? +x§] ;
and

xT28(P)y < et (Ix1l1y1l + 1x2l [y2] + [x311y3]) + (6 — &m) p2 p1(x2 Y1 + X1 ¥2)
< eqlxX[ |yl + lep — emlIx2 y1 + x1 2| < &4 (X[y] + [x2 y1 + x1 y2)

where e = min{e,, &, £,}, and e, = max{e,, &y, &, }.
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Therefore, we conclude that

x'é(p)x> e |x* and x"2(p)y < 2. [x|lyl. )
Introducing the electric potential V&L, defined as E; = —VCDtL, Gauss’s law yields
eV - (eh () VOF) = V- (Prgy) in, 5)

where
é(p) inQF,
e¥ = 6
Qf ®) {I outside QL, ©)

with 7 being the identity tensor. Under our assumptions, if we let € = min{e_, 1}, and
€ = max{2e4, 1}, given any p and x, y € R?, regardless of the values of L and 7, we
have

xep, @)x > elx’ xTep, ()Y < EIX[Iyl. ™

For a constant applied electric field, the terms that contain just E,, are constants,
and we are led to consider the following electric self-interactions energy density f;:

1
Ja = (=P-E; =P Eex) xqL + ESOSEIL (P E; - Ej, (8)

together with (5).

Our convergence results apply generally to the case of a relative dielectric tensor
£(x) that is independent of p. In particular, we obtain a general I'-convergence result
along subsequences (see Theorem 4.1, Case I below). For the simplified case, when
the dielectric tensor is a constant diagonal matrix we obtain a stronger, more explicit,
I"-convergence result (see Theorem 4.1, Case II below). Note that in Bauman et al.
Bauman and Phillips (2012) the relative dielectric tensor £(x) is taken to be a constant
diagonal matrix.

€1 00
Ep=2=|0e0|, )
0 0 &3

where ¢1, €2, and ¢3 are dimensionless positive material constants. We also remark
that for materials for which ¢, = &, the dielectric tensor (3) reduces to (9) with
gl=6 =¢p =gy and &3 = &.

To model elastic contributions, we start from the elastic free energy density for
an orthorhombic system presented in Stallinga and Vertogen (1994) and, as done in
Vaupotic et al. (2014), for simplicity we do not include the higher order derivatives
terms, i.e. the linear second-order terms of equation (26) in Stallinga and Vertogen
(1994) (see also Trebin (1981) and Longa et al. (1998)).

Using |p| = 1 and the assumption n = e3, which implies (2) and m = n x p =
(—=p2, p1, 0), this elastic density simplifies to the expression (see equation (A14) in
Stallinga and Vertogen (1994)):
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1 1
k1p~(vxp)+k2m-(vxm)+§K1(V-p>2+§K2<V-m>2

1 2 1 2 1 2
+3Ka[p- (Vxp] + SKsm- (VxmI” + 2K7[n- (V xm)]

1
+ 5K [0V x D + Kis [Tr(Vp)? = (V- p)?]
+Kus [Tr(Vm)2 — (V- m)z] :

where we also applied the following identity, which holds for any u € H'(R3, R3) in
the sense of distributions

V- [(u-Viu— (V- -wu] = Tr(Vu)’ — (V- u)’.

Substituting m = (—p3, p1, 0), we then have

1
fo= (i +k)p- (Vxp)+ (K + K7)(V - p)?
1 1
+§(K2 + K1) [n- (V x P)]2 + §(K4 + Ks)[p- (V x P)]2

+ (K13 + Kiy) [ Tr(Vp) = (V - ). (10)

We next add a linear term, which models dipolar divergence distortions and is
needed because in bent-core molecules one distinguishes between the positive and
negative directions of P, see Coleman et al. (2003), Bailey et al. (2007), and Bauman
and Phillips (2012):

fp=cV-p+c V.P. (11)
As a consequence of the divergence theorem, this term gives only a boundary contri-
bution. Assuming P = Py p with Py constant, we have

fp=(+c PYV-p=cp(Py)V-p.

In conclusion, for Py constant, we arrive to the following phenomenological energy
functional, together with (5):

1 1
/L[kTp«vxp)+§Ks(V-p>2+5KB[n-(vxp>]2

1

1 1
+3Kr[p-(Vx P + 3 Ko |[Ti(Vp)’ = (V- p)’

1
+cp(P)V-p—P-E —P-E,] -i-/z ESOE;L(p) Ei-E;, (12)
R‘ 1

where k7 = ki + k2, Kg = K1 + K7, Kp = K2 + K11, K1 = K4 + K5, and
Kg =2 (K13 + Ki4).
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We rewrite the K term using the identity: Tr(Vp)? = |Vp|? — |V x p|?, introduce
the quantities

diV/p =01p1 +dpr and curl’p =01 p2 — % p1,
and use (2) and |p| = 1 to see that

V.-p=divlp; [n-(V x p)]2 = (curl'p)?,
p-(Vxp)=(p203p1 — p193p2),
—2p1 p2d3p1 d3p2 = pT(@3p1) + p3(33p2)2,

which gives

[p-(V xpI* = @3p)* + (33p2)* = [83pl%
IV x pI> = [83p]* + (curl'p);  Tr(Vp)? = |Vp|* — |85p|*> — (curl'p)*.

We apply (5) to express E; in terms of the electric potential:
/ e0€5. (P) Ei - Ei = / e0 €5 (P)VDS - VO
R3 1 R3 1

=/ P-V@fdxz—/ P.-E;.
of f
1

p- =m=(—p2, p1,0), (13)

Setting

our energy functional then becomes

1 .
Ep) = /QL |:—kT pl -03p + E(KS —Kg) (dlv’p)2

t

1 1 1
+ 5 (Kp = Kg)(curl'p)? + 5 (Kr = Ke)|dspl* + 5 Ko |Vpl?

. 3
+cp(Po)divp — Pop - Eex] + A@ 50 s;tL(p)WD,L VoL, (14

with Gauss’s law

eV (e P VOF) = V- (bxgr) inR (15)

We look for minimizers p of (14) in H 1(QL, §?), where recall that for P €
HI(Q;L, $2), the function PxqL 18 to be interpreted as p xo. = p in QtL and zero
elsewhere. ' '

By elliptic regularity theory (15) has a solution ®X € LOS(R?), with V&l e
L>(R3,R?) (see Sect. 3.1 below). And, existence of minimizers is straightforward
under our assumptions, provided that
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Ks > 0; Kp > 0; K7 > 0; K¢g > 0;
Ks—Kg>0;, Kp—Ks>0; Kr—Kg=>0, (16)

with no sign restriction on k7 and c.

2.1 Dimensionless Energy

To understand the role of the relative size of the cell thickness ¢ and the cell size L,
P2 L3
0

€0

,and

L P
we rescale length by L, the electric potential by —0, and the energy by
€0

work with the dimensionless quantities:

X=—, h=—; &p=—-o;; Q, =(0,1)x(,h),
I I h Lp n = (0, 1)” x (0, h)
_LPPlEel ke . Ks—Kg
KG ’ T KG’ S KG ’
Kp — K Kr — K c,(Py)L
K3 = B G K: = T G »(Po) .
Kg K¢ b K¢

Recalling that we are assuming E,, constant, given e, a unit vector parallel to the
direction of E,,, we write E,x = 05 |Eqx| €, where oy = sign(E,y), and dropping
the hat in the rescaled quantities, for p, € H'(Qy, S?) we arrive at the following
dimensionless energy:

c0 K¢

E =
7 (Ph) P21

/ I:—Zk; pfl- - 03pn + K; (div/ph)2 + K; (curl/ph)2
Qp

* 2 2 * q-/
+ K7 103Pa[2 + Vi [? + 25 div'py — 20,0 By ]

3
+ [ e Vo v, (a7
R3 2
augmented by the Gauss’s law

V- (eh(pn) VOR) = V- (Paxe,) inR, (18)
where &/ (pp) := 85;, (pr)- Note that for £} (p;) we still have the estimates in (7), this
is a property that we will use in a fundamental way.

3 Preliminary Results
We follow the idea of Kohn and Slastikov (2005) and study a rescaled small thickness
limit of (17) for the case of a constant applied field E, parallel to the y direction. Using

the properties of the fundamental solutions of the uniformly elliptic equation (18),
inferred from some classical Littman et al. (1963) and recent Mourgoglou (2019) work,
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we show that under some technical assumptions on the dielectric tensor and domain
thickness the electric potential term gives rise to boundary terms. These boundary
terms, in the one-dimensional setup, agree with the ones proposed in the work of
Gornik and coauthors (Gornik et al. 2014; Gornik and Vaupoti¢ 2014). We proceed
by obtaining some preliminary estimates.

3.1 Fundamental Solutions

The dimensionless Gauss’s law (18) is a second-order elliptic equation in divergence
form of the type

3 3
> 0 (aix) djux) =" 9 gi(x) forx e R?, (19)
ij=1

i=1

where g = (g1, g2, g3) € LP(R},R?) forall p > 1, and a;;(x) € L™ (R?) with

3 3
Z a;j(X)x; xj > € [x|%; Z a;ij(x)x; yj < €[x][yl. (20)
i,j=1 i,j=1

Consider the space YL2(R3) = {u e LO(R3?) : Vu e L2(R3, R3)}. For general
properties of Y1-2(R3) we refer to Maly and Ziemer Maly and Ziemer (1997). In
particular, Y L.2(R3) is endowed with the norm

ully == llullpe + [VullL2, 21

and YOI’Z(R3) = YL2(R?), where Yol’z(]R3) is the closure of C;’O(R3) in Y12(R3).
Moreover, foru € Y 1’2(R3), it holds

llullps < ClIVul|2, (22)

for some constant C = C(n) (see Maly and Ziemer (1997) Lemma 1.76 pg. 46).

Green’s functions for second-order elliptic equation with bounded measurable
coefficients in divergence form were well studied by Littman, Stampacchia, and Wein-
berger in Littman et al. (1963) and later by Griiter and Widman in Griiter and Widman
(1982). More recently, Hofmann and Kim in Hofmann and Kim (2007) studied Green’s
matrices of strongly elliptic systems under the assumption that solutions of the elliptic
system satisfy De Giorgi-Nash type local Holder continuity estimates, which is sat-
isfied for the scalar case (see Gilbarg and Trudinger (1998), also mentioned in Kang
and Kim (2010)). More detailed analysis for elliptic equations with lower order terms
can be found in Mourgoglou (2019).

Recall that we denote by L2° the family of L functions with compact support.
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Lemma3.1 Let A = (a;j) with a;j € L®R3) (i, j = 1..3) verify (20). Assume
gelL¥® (R3, R3), then a fundamental solution K (X, y; A) of the operator

3

L) =— Y 8 (a;j(x);u(x))

i,j=1

exists, with K (-, y; A) € Wb (R?). Additionally,
u(x) = /IR@ g(y) - VyK(x,y; A)dy (23)

is the unique solution in Y'2(R3) of L(u) = —V - g. Moreover, K(x,y; A) =
K(y, x; A) a.e., and for some constant Co > 0, which depends only on the constants
€ and €, it holds

Colx—ylIT <KX, y; A) < Colx—y|”! (24)

fora.e.x e R3\ {y}.

Proof The existence and the properties of K(x,y; A), as well as the representation
formula (23) follow for example from Theorem 6.1 in Mourgoglou (2019). While
for the symmetry property, and the bound (24) we refer to Littman et al. (1963).
In particular, the argument that leads to (7.9) pg 67 in Littman et al. (1963) can be
applied to obtain the global bound, the symmetry property, and Holder continuity in
R\ {y}. See also Theorem 3.1 for the symmetry property and the global estimate,
and Theorem 3.2 in Hofmann and Kim (2007) for the representation formula, as well
as part (3) of Theorem 6.1 and Lemma 6.4 in Mourgoglou (2019). O

3.2 Averaging Along the Thickness

Setting x = (x1, x2, X3) € 2y, for a given py(X) = pu(x1, X2, x3) € HY(Qp, $?) and
using the notation pj, (x1, x2) = % foh Pr(x1, X2, x3) dx3, we consider the solution D,
of

V- (5 (pn) Vi) = V- (Pxe,) inR’, (25)

where recall that e (p;) := 8S’fzh (pr) and 85*2,1 (pn) is defined via (3) and (6). It is
important to stress that while p,, does not depend on x3, the right-hand side and the
coefficients of (25) do, and therefore the solution does depend on x3. Note also that
we are employing & (py,) rather than & (pj,), and that (25) is of the type (19) as well.

We start by proving a result analogous to Lemma 3 in Kohn and Slastikov (2005).

Lemma3.2 Let p, € H (2, S?) and ®;, and @y, be the solutions of (18) and (25),
respectively. There is a universal constant C such that

€ ~
<c |5 (h2+ e ph)2>.
€ Q

(26)

'/ er(Pr) VP, - VO —/ er(pn)Vo), - VO,
R3 R3
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Proof We simply write £* for &} (pp).
By definition of weak solutions in Y 1.2(R3), for any ¢ € C° (R3), we have

f 5 (VP — V) - Vo =/ (Prxs —Paxes) - Vo,
R3 R3
and taking a sequence ¢, € C2° (R3) converging to ®; — @y, in Y 12 (R3), we conclude

/3 5 (VP — V) - (V) — VP;) = /3 (Prxey, — Prxe,) - V(®h — Pp)
R R

< Ipr = Pull 2@ IV Ph — Vil L2 g3
(27)

Using this together with the uniform ellipticity (4), we obtain
— 1 _
V@, — VOl 2g3) < 8—||Ph —Prllz2,- (28)

Since &* is positive definite, its square root is uniquely defined and denoted by B.
Then we have

K *Vdy, - Vo, — eV, - Vo,

|-
R3

IBY®ull 23y — |1 BY®nll23)| - [IBYPall 23y + I BV @Il 23)]
=N I

By (27) and (28), we find

2 <|BV®, — BV(D;,||L2(R3 = /R3 e (VO — V) - (VO, — V)
< lpn = Pull 20 IV PR — Vil 2R3

_ 1 _
< lpn — ph”Lz(Qh)g_”ph = Pull2@py

and then applying the Poincaré inequality yields

I < —— by =Pyl 2qyy < — aph
1 \/_ Prn = PrliL2(q,) = NG

L2(Q2p) .
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Now we estimate />. Applying the same proof for (28) on V&,

IBY 2, 55, = fR TV, VO < e [V,

Ch8+
2 ||Ph||L2(Qh) 8—2

Similarly we obtain the estimate for BV ®;,. These two inequalities give

NG
L < VYt
e
Combining these estimates for /1 and I, we have the desired inequality:
_ _ he 0
/ £ VD), - V), — VD), - VO, | < Y10+ || OPh
R3 E_JE— aZ Lz(Qh)
C./exh Bph
= 372
e’ L2(Q1)
~ 12
JE d
< C3—/;r n? +/ IPri)
87 Ql 82

3.3 The Electric Potential Term

As in Kohn and Slastikov (2005), because of (26), we focus our attention on the term
Jr3 €5 (Pn) VO - VO

We fix p, € H'(Q2,, $?), and denote by K, (x, y; ps) the fundamental solution of
(25). Using Lemma 3.1 we see that

Dp(x) = /R3 Pu X, - VyKn(X,y; pr) dy

—/;2 VP (y) Kn(x,y; Ph)d)’+/ Kn(x,y:pn) (Py - v) () doy
h

02

- fQ div' p,(y) Kn(x, y; pp) dy + fm Kn(x,y:pn) (Py - v) () doy.
h h
(29)
One should notice that because of the global bound (24) the above integrals are well-

defined. By definition of weak solution of (18) in Y!-2(R?), for any ¢ € C°(R?), we
have

/ &5 (Pn) V@, - Vo =/ Pr (%) xe, (%) - Vo (x) dx.
R3 R3
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Hence,
/ ej(pn) VO, - Vop = —/ V'§h¢+/ Py -v) P,
R3 Q 92,
and taking a sequence ¢, € C° (R3) converging to @, in Y 1-2(R3), we gather

/ ef(pn) VO, - VO, = —/ @), div'py, +f ®)(x) (), - v)(X) doy,  (30)
R3 Q a2,
Using (29) in (30), we find

/SZ(ph)V5h‘V6h=/ / div' py,(y) div'p,(x) Kn(X,y; pr) dy dx
R3 Qp JQp
_ / / Kok, ¥; o) (B - v) 8) div'Py (x) doy dx
Qp SOy
- / Ka(x, y: pi) div/ By (v) (B - v)(x) dy dox
02 JQp

+ / / Kn(,y: pi) (B - v) 8) By - 1)) doy doy
02, JoRy,

and by the symmetry of the fundamental solution we conclude

/ &5 (o) VP - VP = / / div' By (y) divD, (%) Kn(x, y; pp) dy dx
R3 Qp JQp
) / f Kn(x, y: pi) div' B, (¥) (B - ) (x) dy doy
Q2 JQp

+ / Kn(,y:p1) (B - v) 8) (B - v)(x) doy doy.
02, Joy,
31)

One should remark that the argument leading to (7.9) pg 67 in Littman et al. (1963)
can be applied to obtain Holder continuity in R \ {y} of the fundamental solution
Ky (-, y; pn), see also Sect. 3.6 in Hofmann and Kim (2007). We estimate each integral
in (31) separately. From the point of view of this work, the third integral is the one of
most interest, as it gives rise to boundary terms in the limit.

Lemma3.3 Letp;, € H (2, S?). Under our assumptions, we have that

/Q fg div' By (y) div'D,, (%) Kn (. y: pr) dydx | < C 12| ldiv' il s ). (32)
h h
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Proof We introduce the compactly supported kernel

1

X C) s
/x%_'_x% {\/x1+x2§2}

k(x1,x2) =

and define
(x1, x2) = / ) |div'Py, (y1. y2))| k(x1 = y1, x2 — y2) dy1dys.
0,1

By Young’s inequality, since k € L' (R?), we then have ¢ € L*>(R?) and ||¢ lz2m2y <
&l L g2y 1diV'Dy 1 L2(0.1)2)-

As a consequence of (24), we can use a similar approach to that in Kohn and
Slastikov (2005) to get, using X' = (x1, x2), ¥ = (y1, y2), and w = (0, 1),

/ / div' P, (y) div', (%) Kn(x, y; pn) dy dx
QI

h h
/ / div' B (v') div'p, (x) / / Kn(x, y: pi) dxs dys dy dx’
wJo 0 0

h h
e / / (div' B (¥ iV, (<) / / ix =y~ dxs dys dy dx’
wJo 0 0

< Chz// |dlv/§h(y/)| |div/§h(x/)|1/2 dy/ dX/,
oJo [(x1 —yD? + (x2 — »2)?]

by Holder inequality we arrive to the wanted bound:

f / div' By (y) divBy () Kn(x, y: py) dy dx
Q JQp

<cn / B )6 . ) o
0,1)

< Ch? Idiv' Py Il 22¢0.192) 11 22(0.1)2)
< CI ||div'Pyll r2¢0,1)2) 11diV DRl L2¢0.1)2) < C B ||diV/ﬁh||i2(Ql)-

]

The difficulty in dealing with the second term in (31) stems from the fact that the
boundary of the domain is not smooth and for a Lipschitz domain the trace operator
H'2(Q) — L2(3K2) does not exist (see Corollary 2.13, p. 331, in Mikhailov (2011)).
However, the bound (24) allows us to control this term using a Riesz potential and
applying the trace embedding theorem for n =2 and p = %‘.
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Lemma3.4 Letp; € Hl(Qh, SZ). Under our assumptions, it holds

/ f Ky (k. ¥: o) div By (¥) (B - v)®) dy do
02, J

.~ 2
< Cr? (14 [[divBn [, - (33)

Proof Since |(p;, - v)(x)| < 1, we can simplify our expression to

/ / Kn(x, ¥; o) div' By @) () - v)(x) dy doy
Q2 J Qp

scf /|Kh<x,y;ph>||div’roh<y)|dydax.
02 J

And, as in Lemma 3.3, using (24) and the Riesz potential, 0 < y < n:

Iy(f)(z)zc(y,n)/ &dw, z e R,
R 12

—w|r

withn =2,y = 1, and f = [div'p, x(0.1)2|, We obtain

/ / Knx, ¥: o) &V Br @) @ - v)() dy doy

02y J

<Ch? / Iy (|divPy x0,12]) doxy - (34)
3(0,1)2

By Theorem 1.97 pg. 58 in Maly and Ziemer Maly and Ziemer (1997), we know that
ifl < p<nand f e LP(RY), then I,(f) € YP(R"), and there is a constant
Co = Co(n, p), such that

Co ' N llr < M fllyrs < Coll fllLe, (35)

where

np
n—p

Wfllyre = 1f e + UV flle,  p* =

Applying, this result for f = |div/§h X(0,1)2L n = 2, and p = 4/3, which gives
p* =4, we gather that Iy (|div'P;, xo.12|) € W"*3((0, 1)?), and by (35),

111 ([div'Pn x0.12]) w4,y = € [HdVPh xo.02l | an o) - GO

A classical theorem for Lipschitz domains by Gagliardo (1957) then implies that
11 (|div'Py, x(0.12]) € L*3(3(0, 1)?), and

11 (Jdiv'Dy, x0.192]) 1za5@0.12) < Cr Il (|divDy xo.102]) lwiaso.1)2)-
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which in turn, in conjunction with (36) and Holder’s inequality, gives

1 (div'By xo.02]) 1 @012y < C I ([div'By X002 ]) 1z4560.1)2)
< C || |div/l_)h X(0,1)2| ||L4/3((0,1)2) =< C H |divlﬁh X(O,l)zi ||L2((0,1)2) .

Since I (|div'Py, x(o.1)2|) | = 0, this and (34), imply

/ / Kn(x, y: pi) div' B, (¥) (B - ) (%) dy dory
02 JQp

< €12 |[|div'By xo.a2! ] 20102

and, our claim follows from (1), and the inequality ba < (b* +a®), withb = 1. O

To deal with the last term in (31) we follow a similar approach as the one in Kohn
and Slastikov (2005), and we divide the integral into two parts: The first part is bounded
in Lemma 3.5, and the second is considered in the next sections.

Since our domain has limited regularity having only a Lipschitz boundary, we
cannot directly apply the method of proof of Kohn and Slastikov (2005), where the
smoothness of the normal vector to the boundary is used in a fundamental way. In our
case we need to keep track of the different parts of the boundary.

We denote by I';, i = 1...4, the four open sides of the 9(0, 1)2:

={(x1,0)eR2,0<x1 <1}; r2={(1,x2)eR2,0<x2<1}

F3={(x1,l)eR2,0<x1 <1}; F4=[(0,x2)€R2,0<m<1}.

Lemma3.5 Letp, € Hl(Qh, SZ). Under our assumptions, we have that

/ / Knx y: pw) [(B) - v) ) — @ - )]
0, JoRy,
B )0 doydoy| < CH (1Bl 0.0y + 1)

Proof On the parts of 92;, with x3 = 0, and x3 = h, the normal v to 9€2, is parallel

to the x3-axis, so that in there we have (p;, - v)(x1, x2, 0) = (pj, - v)(x1, x2, h) = 0, as

p3 = 0. Additionally, on the rest of 92, the normal does not depend on x3. Hence, on

082y, the function (py, - v) does not depend on x3, that is (pj, - v)(X) = (py, - V) (x1, x2).
Using |(py, - v)(x)| < 1 and (24), we then arrive to

Kn (%, y: p) [(Br - v) @) — By - V)(®] @y, - v)(X) doy dox

02,

v — v)(x1,x
< Ch2/ / |(Pr - v) 51, y2) — @y - v)( 11/2 2)| doy, sy does n
00,02 Ja0.n?  [(x1 — yD)? + (x2 — y)?]

RIS
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We split the double integral over 9 (0, 1)2 x d(0, 1)2 indouble integrals over I'; x I,
i, j = 1...4, and provide explicit computations for the cases I'j x I'1, '} x I'; and
I'y x I'3. The other integrals can be treated similarly.

Let p; and p, denote the nonzero components of p;,. Since p,, - v = —p, on I'y,
by Holder inequality we have

doy, y, doy, x,

/ / (Pr - v) 01, y2) — By, - V) (x1, x2)|
rJre [ —y1)2+(x2—y2)2]1/2

1

— — 2\ 3

-c / P21 32) = PaCxr. x)[ ")
- 90.12x8(0.1)2 (X1 — y1)? 4+ (x2 — y2)?

Then, since p, € H' ((0, 1)2), we can apply equation (1.4) pg. 289 in Gagliardo
(1957), to conclude that

doy, y, Aoy, x,

/ / (B - v) 012 y2) — By, - V) (x1, x2) |
12
nodr [ = 0?4 (o — 2]
= Culp2llgto.n2) = CullPalla0.1)2)-

On I'y x I';, we have

doy, y, dox, x,

/ / (Pr - v) O y2) — (P - V) (x1, x2) |
rdrs [ —yD? + (2 — )’2)2]1/2

! 1 0
:/ /' P2 (y1, )+Pz(x1, )|dy1dx1
Vo —yDr+1

szﬁ

1—x1
_2//_ VMZ dXI<2//1 u? + dXI

_ L o
_4/0 /o «/u2—+1dxl_4ln(”+m)‘0—4ln(1+ﬁ)_

IA

dy1 dx

Finally, on I'; x ', we find

/ / (r - v) 01, y2) — By, - V) (x1, x2) |
ridr [ =y + (2 — y2)?] 12
1
/ / Ipi (1, y2)+p2(x1’0)|dy2dx1 <2

[ ]+
Jor—n2+y2 D 2yl

2
dy2du:2/ / —pdpdf = 8.
0 0o P

doy, y, doy, x,

dy,du

<2

1
B /f{u2+y§§4} /uz+y§

@ Springer



Journal of Nonlinear Science (2023) 33:19 Page190f34 19

And, the lemma follows. O

We are left to study the integral:

f / Kn(x. y: pu) [(By - v) 0] doy doy. 37)
0, Joy,

which we consider in the next section.

3.4 Constant Dielectric Tensor Approximation
We first analyze the term in (37) under the simplifying assumption that the tensor

SZ (pr) in (18) is constant in R3 and it equals the matrix &, defined in (9), so that the
Gauss’s law that we need to study becomes

V(8. V®;) = V- (Pyxe,) in R (38)
By classical elliptic theory, we know the fundamental solution of (38):

1 1 1
KXx,y) = — . . (39

VEEE L -y L -2+ L — )

Lemma 3.6 Letpy € H' (2, S%). Under our assumptions, fori # j, it holds:

. 1 . 5 [ orh
;l_r’r})h2|lnh| rixrj[(ph.v)(x)] /(; /(; K(x,y) =0.

Proof As pointed out in the proof of Lemma 3.5, for x = (x1, x2, x3) € 9%, the
function (py, - v)(X) is zero when x3 = 0 and x3 = &, and it depends only on x; and
X7 otherwise, that is on €2, we have (py, - vV)(X) = (p, - v)(x1, x2).

We consider the case i = 1, j = 2, the other cases can be proven similarly.

For 0 < x; <1, we define

ol !
falx) Iy A K(x.y)
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Proceeding as in Lemma 5.1, since |§h . v| < 1, we have a.e. in [0, 1] the bound:

47 4/81 e &3 | frn(x1)l

du
/// ; dvdy,
NEQ - JEa—x

2+ y2+z32

_ 1 /I/If du dv d
T llnhlJo Jo Jo1 [L 1.2 h% o »
a U

xl)z‘f‘gyz + & U
! /1/1/1 du dv dy,
IInhl Jo Jo Jou \/ﬁ(l—m)z-i-%y%
2 /1 dys
IInhl Jo \/ﬁ(l—xlﬂ

1.2
+5y2

The changes of variable s = j—sLl andt = j—% give

R ! dy2
In | 1 1 2dx1

o MhlJo J1a—x2+ Ly3

_4/81(? /‘f /f dr ds
|In k] JE -+
/_8]8 /27{/
|1nh| - Ilnhl

where M > ‘/ﬁ + %.And, the lemma follows. O

Lemma 3.7 Under our assumptions, if {p,} € H'((0, 1)%) converges to q weakly in
H'((0, 1)2), then it holds:

300 2 (ot
lim Z— P , K (x,
Jim = - il o [(B, - v) (x1,x2)] /o /0 (x,y)

=aH/F (@ v, o],

ifi =13, withoy = 5= while

.3 1 — 2 (Mt
1 - N ) K ’
W20 2 12 (k] Jrur, [y -v) (1. x2)] /o /0 xv

=ay /r [@- v)(xl,xz)]z,
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wheni = 2,4, withay = 4njm'

Proof We consider the case i = 1, the other cases can be proven similarly.
Starting as in the proof of Lemma 5.1, and making the change of variable w =
J%(yl — x1), we have, a.e. in x| € [0, 1] and for x, = O:

/ / / K(x, y) dys dxs dy;
(1w

m//\/(m—y1)2+i'—2u2
1—x

1 2h2 7 (1 —u)

= d d

T /€1 8283\/a _ / w
./61

=
NG h? Y=
= /(l—u)ln VBt w2 w2 du
2 JE2 €3 hu &3 e A1
NGl

h2
2 JE2 €3

2\
Hy(xi,u) =0 —wn | w4+ [w?+ —u?
€3 we— L
NG
In <L>‘ (H} — HP),
NG

where H, hl and H ;% are defined and studied in Lemma 5.2 and 5.3, respectively.
Using the notations in Lemmas 5.2 and 5.3, we have

3 1 h h
L (55 v) (1 OT /0 /O Kx.y)

2h%|Inh| Jr«r,

31 1 , [V ophoph
= 32 P 0 K(x,y)dy; dx3 dy; dx
2h2|lnh|/0 [(Ph V) (xl’ )] /(‘) /O /0 (X,y) y3dx3 dy; 1
1 1 5 !
=oH / [(ﬁh : V) (x1, 0)] / Hy (xq1, u) dudxg
lInh| Jo 0

(%)
|

! 1
Y] ‘/O [Py v) (xl,o)]2[0 [ Hi i) = HR G0 | dudn,

du dy;

/ Hy(xq1, u)du,

here we use

:aH

We note that [ (py, - v) (x1, 0)]2 < 1and that {p;,} converges toq in L>(I';), by unique-
ness of limit and compactness of the trace operator on Lipschitz domains, since weakly
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convergent sequences are bounded. Also, by Lemmas 5.2 and 5.3 in the Appendix,
the Lebesgue Dominated Convergence Theorem implies that fol th(-, u)ydu — 0
and [} H2(-,u)du — [} =2(1 —u)du = —1, as h — 0. Thus, Lemma 5.4 in the
Appendix gives

a_ ) —
|1th| [(Ph : V)(Xl,())]z Hy(x1,u) — any [(q V) (x1, 0)]2
in L'((0, 1)) as h — 0, and the lemma follows. 0

3.5 Materials with Constant Relative Dielectric Tensor

As a consequence of inequality (24), the analogous of Lemma 3.6 holds for a general
e/ (pn) - see Lemma 3.8 below. A weaker version of Lemma 3.7 can be derived for
the case of a material with relative dielectric tensor independent of py,, that is when
8; (Ph) = é\'pc for

R g.(x) in
Epc(X) = 40
pe(X) I outside €2j,. (40)

Note that for this choice (25) becomes
V- (Bpe VOi) = V- (Pyxe,) in R, (41)
In the following, we denote by K, (X, y) the fundamental solution of (41).

Lemma 3.8 Let py € H' (2, S%). Under our assumptions, fori # j, it holds:

lim — [P, v) (X)]Z/h /h Kn(x,y;pn) =0
h—0 h* | Inh| Jr,r; " 0o Jo o '

Proof By (24), we have that

1 2 h prh
lim ———— pPr-v) () / / Kn(x,y; pn)
h—0 h% | In h| F[er[(h ) ] o Jo
1 N R
< C lim ——— pPr-v) X f/ ;
h=0 h? | In | r,.xr_,[(h VL J =

and the same proof as the one of Lemma 3.6 can follow to obtain that the limit on the
right-hand side tends to zero. O

To study the nonzero contribution of the boundary term, we apply the classical
Dunford-Pettis theorem (see for example Theorem 1.38 pg 18 in Ambrosio et al.
(2000)) and Lemma 5.4 in the Appendix.

@ Springer



Journal of Nonlinear Science (2023) 33:19 Page230f34 19

Lemma 3.9 Under our assumptions and when &j,(py) = &, there exist {h;} C {h}
and a; € LY(Ty) i = 1.4, such that if {pp} < H' (2, S?) is such that {py} C
H'((0, 1)) converges to q weakly in H'((0, 1)?), then it holds:

i 1 - ( ) 2 hj phy © )
im ——— V) (xg, x (%,
o h% i) e, [(Ph_, ) 1, X2 ] /0 /0 h (X, y

_ /r aior, o) [@ e, )] 42)

Proof Leti = 1. We set f, = (p,, - v)* and

1 1 ph ph
= Ky (x,y)dysdxsdy;.
= 2l /(; /o /0 n(X,y)dys dx3 dy,

By compactness of the trace operator, we have that f, — (q - v)2in LY(I"y) and
| fnl < 1. Proceeding as in Lemma 3.7, the upper bound in (24), using Lemmas 5.2
and 5.3, gives that {g,} C L'(I'{) and that g, is dominated by an L! function.
From this, the Dunford-Pettis theorem provides the existence of a subsequence that
converges weakly in L', that is there is a subsequence {gp;} and an | € LY(I'}) such
that 8h;—ai in L1 (I'1). Note that oy and the subsequence {4} do not depend on the
sequence p;,. And, (42) follows fori = 1 from Lemma 5.4 in the Appendix. Repeating
the argument for i = 2, starting from the subsequence % ; and so on, since the index i
ranges within a finite set, we obtain the lemma, with the «; being independent of the
choice of the sequence py. O

4 Dimensional Reduction

We use the estimates obtained in Sect. 3 to derive via I"-convergence two-dimensional
reduced energy functionals, starting from arescaled version of (17). Namely, for 2 > 0,
we consider {p;,} € HY(Qp, §2), Pr = (p{’, p'z’, 0), and the energy:

En(pn)
En(pn) = 2l ]
« Kg oy =2kE . Ki41
= — \V4 .0 L "y
2P02L2 h|lnh| Q |:| ph' + h Py 3P + ]’12 I 3ph|
+ K3 (divn)® + Kjcurl'Bp)? +2¢% divy — 2050 P -e]
1 3,
— | = Vo, - Vo, 43
N /Rs 2P VP - VO (43)
with
V- (5(pn) VOi) = V- (paxg,) inR>, (44)
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and define
E(l’) — ﬁ f(Oyl)Z e(r) + fa(o,l)z U)(X, r; V) if I‘(X) : I'()Cl7 x2) and r3 = O, (45)
00 otherwise,
where 8 > 0,
e(r) = |Vr]> + K& (divr)? + Kj(curlt)> — 20,01 -, (46)
and
w(x;r;v) =ax) (r-v)? + 2c;‘7 r-v, 47)
for some o € Ll(Fi),i =1,...,4

Given a generalized sequence {n} of real positive numbers or of integers, we say
that the family of functionals {£),} I'-converges to E weakly in H L@y, 8% if

1. (Liminf inequality) Given {p,} C H 1(52,,, §?), such that p, converges weakly to
qin H'(Qy, $?) then liminf, o E,(p,) > E(q).

2. (Limsup inequality) For any q € H'(1, §?), there exists {py} C Hl(Qn, 52)
such that P, converges weakly to q in H'(Q, %) and E(q) = lim,—o E(py)-

We then have the following main result:

Theorem 4.1 Let h > 0 and {p;} C H' (2, S?) with p, = (pi’, pé’, 0). Assume that

as h — 0 it holds that Ko B > 0, and that there exist hy > 0 and C > 0

2P:20L2 h|Inhl
such that Ey,(pp) < C forall h < hg. Then, there exists a subsequence (not relabeled)
and q € Hl(Ql, $2), with q(x) = q(x1, x2) and g3 = 0, such that

Pr—q weakly in H' (21, $%). (48)

Additionally, we distinguish the two following cases:

Case I: If the dielectric tensor &} (X) is independent of py, i.e., & (Py) = &pc (40),
then there exists a sequence {h} such that {Ep;} I'-converges to E weakly
in H'(Q, §%) with a(x) = a;(x) € L'T)) forx e T andi = 1,...,4,
where the functions a; and the sequence {h } are as in Lemma 3.9.

Case II: If the dielectric tensor is a constant diagonal matrix, i.e., &} (pp) = & (9),
3
4. /er€3

then {Ep} T'-converges to E weakly in HY(Q, §?), where a = on

I'tand 'z and o = #gﬁ onTyand Ty.
Proof Case II: Assume EZ(ph) = &, from E,(pp) < C, Py converges up to a subse-
quence weakly in H'(Q1, %) to some q € H'(Q1, $?). By rewriting, up to additive

constants, the energy in the following form:
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kph

Py
K3 +1

~

En(pn) = i3pn —

€0 K¢ K;ﬁ—i—l
2PZ L2 h|Inh| Jg, h?

2

. e c ~ ~ ~

+Ks (d”/p”z(_i) + Khcud P+ [VPul = 20,0 Pn -e]
S

1
+ h%|1nh|

3
/3 5£Z(Ph) V&, -V,
R

we see that liminf Ej;(py) > E(q) for any p;—q in H' (2, $?), from (31) and
Lemmas 3.3-3.7. On the other hand, for any q € H 1 (21, Sz) we can construct a
sequence by taking p, = q to show limsup E;(p,) = E(q). Case I follows by a
similar proof applied now to the subsequence {Ej, }. O

5 Numerical Approximation
5.1 Ferroelectric Polar Smectic A Liquid Crystals SmAP .

For our numerical simulation of the SmAP . phase, we use the one-constant approx-
imation, that is we take Ks = Kp = K7 = K, and consider a relaxation of the
energy, which depends on a small parameter €. The first is an assumption often found in
the physics literature, the second is a numerical device frequently found in numerical
works, which is used to relax the unit-length constraint. Finally, since the explicit form
of the function «(x) in Theorem 4.1 is not known, we take it to be piecewise constant
with the same values on the horizontal and vertical sides - this form is suggested by the
result in Lemma 3.7 of the simplified case studied in section 3.4. In non-dimensional
units, the energy numerically studied looks like

(1 _ 2)2
Ec(p) =/ <|Vp|2—2asopz+% dx
Q €

+ wy Pp-v —I—a)2 do +wy (p-v—i—b)2 do, 49)
'y Cn

where p = (p1, p2),
Q=(0,1)% Ty =(0,1) x {0,1}; Ty ={0,1} x (0, 1),

L’ Py |E
ando = % is proportional to the intensity of the applied electric field. Note

that from the derivation of our model we have the condition wy a = wgy b.
E
We take o = 1, and consider the gradient flow for (49), p; = — 8_6 The resulting
p

system of equations is
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9 0 1 —|pl? ,

—p:Ap+< >p+—( POy e

ot o €

ap

8—v=—wv(P'V+a)V onTy (50)
0

—pz—a)H(p~v+b)v only.

av

We discretize the system in time using a semi-implicit method, with a second-order
backward differentiation formula for the Laplacian part, and an explicit second-order
formula for the nonlinear terms. We use the standard second-order discretization for
the Laplacian in space, and solve the resulting linear system of equations using the
discrete Fourier Transform.

We then run the simulation with the following choice of parameters:

1 1
E=0.02,a)v=ﬂ,a)H=—,a=\/g,b=1.
€3/ €

In the SmAP; phase, the polar ordering is not uniform in the ground state, as polar-
ization splay occurs due to the surface energy. The one-dimensional study presented
in Guo et al. (2011) shows the molecules near the surface pointing either toward or
out of the top and bottom glass plates and an horizontal polarization in the middle of
the sample to accommodate the boundary conditions at the top and bottom. The same
behavior is obtained in the two-dimensional case, as shown in Fig. 1a. In addition, in
this two-dimensional confined geometry, with our choice of parameters, we see a pair
of boundary vortices appearing, with the molecules preferring to be almost parallel
to the lateral segment of the domain boundary. The application of an upward elec-
tric field results in the vortices moving upward so that more polarization fields in the
domain point upward (Fig. 1b, ¢). When a sufficiently high electric field is applied, the
bent-core molecules reorient following the direction of the electric field in most part
of the domain (Fig. 1d).

Note that to compare our results with the numerical pictures for the polar director
profiles presented in the one-dimensional approximation of Gornik et al. (2014), in
Fig. 1, we take the positive y-axis to be in the horizontal direction pointing to the
right, and the positive x-axis in the vertical one pointing upwards, and plot the polar
director. The one-dimensional approximation is consistent with the behavior of the
polar director at the center of the sample.

5.2 Bistability Behavior of SmAP .,

In Garcia-Cervera et al. (2020), we studied the ferroelectric bistability of the
polarization-modulated orthogonal smectic liquid crystals described first in Zhu et al.
(2012). To model the SmAP.,,, phase, we considered the following relaxed energy
functional:
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o=0
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=300

o=10

Fig. 1 Numerical solution of the gradient flow (50) for o = 0, 1, 10, 300 with ¢ = 0.02

(SD

f (- v)dx,
Cn

1
2¢e

p|2) dxdy +

1 1
Fe(p) = E/Q (leI2 + 282(1 —pP+ole—

d a Dirichlet

impose

0,1) x {0, 1} and

(0, )%, and Ty
boundary condition for p on the vertical sides

where e = o e, Q2

(52)

forx e I'y = {0, 1} x (0, 1),

p=v

r, and defined

where v is the outward normal vecto

(53)

Plry = v} .

R?)

’

{peH%Q

Hp) =

inimizers

We were able to prove that as ¢ — 0 the global energy m
converge up to subsequences to an S' valued function

in Hb of E,

, which has always boundary

by revers-

ity,

istabil

f the model b
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f the applied electric field. Unlike the model proposed in Zhu et al.
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internal vortex, our simulations shows the formation of two distinct internal vortices,
which move towards the center of the sample, where they annihilate each other.
In here, we consider the non-equal elastic constant case:

1
Fe(p) = fg (ki‘(v P’ + &IV x p|* +a|Vp|* + il Ipl*)?

|
+a|p—e|2) ax+ | (-2 (54)
H

and the same Dirichlet boundary condition for p on the vertical sides.

This energy with zero electric field, on a smooth domain, and with nonzero degree
Dirichlet data on all of the boundary was studied analytically in Colbert-Kelly and
Phillips (2013), and numerically in Colbert-Kelly et al. (2017) to investigate the vor-
tex configurations. We follow the numerical scheme provided in Colbert-Kelly et al.
(2017). The gradient flow of the energy can be written for each case, k{ > k; and
k3 > ki, separately:

ap 1
s =L(p) + 8—2(1 — p>)p+o(e2—p), (55)
where
_Jla+ k) Ap — (k3 — k})V(V - p) it k5 > kY

(a+kP)Ap — (k3 —kDV x (V x p) ifkf > k3,

with boundary conditions

9 1
aa—p+kf(v-p)v+k;(vXp) XV+=(p-v)v=0 onTly,
v &

p=v onlvy.

During the switching process, Fig.2 shows that only one internal vortex appears to
reverse the polarization. This is different from what we observed in the equal constant
case, k’f = ki“, where two interior vortices nucleate from each boundary vortex and
they meet in the middle of the sample and then annihilate each other. We take k' =
1,k5 = 0.7, and a = 0.3, since according to the physics literature in BLCs the splay
elastic constant is larger than the bend elastic constant (Majumdar et al. 2011; Gornik
et al. 2014). Initially —1/2 and 1/2 vortices appear at the top and bottom surfaces,
respectively (see Fig. 2a). Then, Fig. 2b and ¢ shows that the —1/2 vortex at (0.5, 1)
splits into a 1/2 vortex at the boundary and a —1 interior vortex. This —1 interior
vortex starts moving downward (see Fig. 2c—e) and is eventually expelled, by the
combination with the 41/2 vortex at the bottom surface (Fig. 2f). This completes the
switching process and we now see one —1/2 boundary vortex on the bottom plate and
the polarization pointing downward in most part of the domain.
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(e) ®
Fig. 2 Numerical solution of the gradient flow (55) for switching dynamics from o = 70
to o = =70, with ¢ = 0.03. The polarization fields are depicted at selected times

t =0,t =001, = 0.016,r = 0.018,+ = 0.022,r = 0.023
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Appendix

For the convenience of the reader, in this section we provide some computations
concerning the limits used in Lemmas 3.6 and 3.7.

Lemma5.1 Let A > 0, then if h, e3 > 0, we have

h h
/ / W3S ()= Jy(A),

JA+ 05— y3)?

where

h h2
(A =2hJe5 |In| — + JA+— | —InvA
J€3 &3

and

h2
Jn(A) =2¢e3 | JA+ 8——«/2
3

Proof We follow Carbou (2001), and use the change of variables hv = x3, and
hu = y3 — hv to gather

/h/h dy; dx3 h/ / dys dv
0 Jo Ja+ L — ) JAa+ Loy
2// du dv
=h
~ JatEe

Changing the order of integration, and computing the integral in v, then yields

// dys dx3 =2h2/ 0 —w
A+ £ —y)? 0 ,/A-|-h2 2
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Computing the integral in u gives the desired equality. O

Lemma5.2 Let (x1,u) € [0, 1]2, then a.e. we have
lim H} (x;,u) =0,
hi% n (X1, u)

where

- 1 1—x)2 W2
H,f (x1,u) == 1 hu In :1 + ( SXI) + 8—142
[ In(7)l Ver 1 3

Additionally, there exist hi(e1, €3) > 0, and H'(x1,u) € L'((0, 1)?), such that, for
0 < h < hy,a.e. it holds

|H} (x1, u)| < Hy(x1, u).

Proof If (x1,u) # (1,0), as \/La — 0, the numerator of H,' — (1 —u) In [Lﬁ],

while the denominator tends to infinity, hence H}} (x1,u) — Oa.e.in [0, 1]2.
Let 71 > 0 be such that, i—;h% < 1,and JLE < 1,andset y; = %(i—;h% +1). Then,
if0 <h <h,0<u<1,and 0 < x1 < y1, we have

- 1—x)2  h?
In ail (I —x) e

NG €1 3

1
= 5lInéi] + Co.

1 €1
In— +1In [1 — X1 +\/(1 —x1)2+—h2u2:|
JVEl1 &3

where

Cp = max {

In |:1 — X1 +\/(1 —x1)2+ Elp2 uzJ
€3

max takenover0 < h < h1,0 <u <1, and0 < x1 < y;.
On the other hand, if %(i—ih% + 1) < x1 <1, whenever (xg, u) # (1, 0), we have

051—x1+\/(1—x1)2+8—1h2u2§1,
€3

and, 0 < 2 (1 — x1) < 1. Therefore,

= [In2(1 —xp)].

1n|:1 —x +\/(1 —x1)2+8—1h2u2:|
&3
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And, the lemma follows with

1—u

Ci—; if0 <x; <y
[ In( )
Hy(x1,u) =
LS (Cy+ [In(1 —x) if 1 < x1 < L.
“n(\/faﬂ
where C; = §|Ing(| + Cop,and C; = §|Ing;| + In2. O

Lemma 5.3 Let (x1, u) € [0, 112, then a.e. we have

Jim ey, ) = =2(1 = w),
where

—u —X1 xl
— 4=+ —u?

1
HE(x1,u) == ——— In
(o)) | Ve Ve e

Additionally, we can find hy(e1, €3) > 0, and H>(x1, u) € LY((0, D?), such that, for
0 < h < hy, a.e. it holds
|Hjy (x1, w)| < Ha(x1, u0).

Proof If u # 0, we can rewrite the logarithmic part as

2
83”

€1 €1 &3 2 2
X [ 4 k22
€1 + €1 + agu

h 1
=2In(—)+2Inu —In —
JE3 JE1

—In |:x1 + [x] + 8—1h2u2],
&3

and we can easily adapt the proof of Lemma 5.2 to reach the wanted conclusion. O

Propositions 3.7 and 3.8 use the following lemma, which is stated in the lecture
notes of Kenneth Karlsen (2006) without proof.

Lemma5.4 Let u,, vy, u,v : Q2 — R be measurable functions such that u, — u in
LY (Q) with ||lupllec < C forall n. Asn — oo, if v, strongly (resp. weakly) converges

to vin LY(), then u,v, strongly (resp. weakly) converges to uv in LY(Q).

Proof A proof for the case u, — u a.e. is given in Lemma A.1 in Weber (2021), the
same proof can be adapted to derive this lemma as well. O
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