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Abstract
We analytically derive and numerically simulate a two-dimensional energy functional
modelling the effects of a constant electric field on a thin sample of a bent-core
liquid crystal in the ferromagnetic SmA-like phase. We start from a three-dimensional
domain and show that under proper rescaling and in the limit of small thickness the
electric self-interactions term gives rise to boundary terms. We compare our results to
previously proposed models.
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1 Introduction

Ferroelectric liquid crystals made of achiral molecules have been extensively studied
(Niori et al. 1996; Eremin and Jákli 2013; Jakli et al. 2018), due to their properties
of technological interest and their lower production costs. In materials with rod-like
molecules, ferroelectricity generally requiresmolecular chirality coupledwith director
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tilt with respect to the smectic layer. Instead, achiral materials composed of bow-like
shaped molecules, so-called bent-core liquid crystals (BLCs), might exhibit spon-
taneous polarization in the non-tilted Smectic A phase (SmA) Niori et al. (1996),
resulting from the efficient packing of their bow-shaped molecules, which gives rise
to a polar order along the kink direction of the molecules.

While different types of tilted bent-core smectic phases have been known and
investigated for the past several decades, orthogonal bent-core smectic phases with
ferroelectric properties have been reported only since around 2010. Experimental
evidence of such a phase, here denoted by SmAPF, is presented in Reddy et al. (2011),
Guo et al. (2011). In Zhu et al. (2012), the authors report a BLC compound exhibiting a
SmAPF phase at a lower temperature and a polarization splay-modulated orthogonal
phase (SmAPFmod ) at a higher temperature. The relatively high dielectric constant
shown in the SmAPF phase Guo et al. (2011) and the bistable response observed in
the SmAPFmod phase Zhu et al. (2012) suggest that orthogonal smectic phase of BLCs
may be a good candidate for future competitive optical devices Korblova et al. (2017).

A mathematical challenge faced when modeling and analyzing ferroelectric mate-
rials comes from the nonlocal nature of the electric self-interactions. In Bailey et al.
(2007), Bailey et al. study the stability of B7 fibers by showing that the concen-
tric cylindrical smectic layers form freestanding fibers with a tilted smectic phase of
BLCs. In their work, an expression for the electric self-interactions energy density is
provided and used in a one-dimensional radial setting. This energy density consists of
three terms: the dielectric interaction with the electric field created by the diverging
spontaneous polarization, the dielectric interaction with the external electric field, and
their interaction with the spontaneous polarization, see (8). Under some assumptions,
such as constant nematic director and fixed smectic layers, and with ph : �h → S

2

denoting the polarization director, �h = (0, 1)2 × (0, h) the material sample, and h
the ratio of the film thickness to the film’s in-plane length, we arrive at the following
dimensionless equation for the electric potential:

∇ · (ε∗
h(ph)∇�h

) = ∇ · (phχ�h ) in R3,

where the dielectric tensor ε∗
h(ph) takes possibly different values inside and outside

of the domain:

ε∗
h(p) =

{
ε̂(p) in �h

I outside �h,

see (3). To model the elastic effects, we start from the elastic free energy proposed in
Stallinga and Vertogen (1994), see also Vaupotic̆ et al. (2014). In the end, we arrive to
the total free energy for the SmAPF given in non-dimensional form by (17) augmented
by (18).

We are interested in deriving a reduced two-dimensional model to study thin sam-
ples. In particular, we show that in the thin-film limit setting an appropriately rescaled
version of the three-dimensional ferroelectric orthogonal BLCs model described by
(17)–(18) leads to a two-dimensional local free energy of the form given in (45). A
similar nonlocal energy has been obtained and extensively investigated in the field
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of micromagnetics. In particular, Kohn and Slastikov in Kohn and Slastikov (2005)
characterize the magnetostatic energy for micromagnetics in a thin film with a smooth
cross section as a two-dimensional, local limiting variational problem. Our approach
is inspired by their work, which we extend fully to the case of a constant coefficient
dielectric tensor and a rectangular cross section, and partially to the case of a bounded
and measurable coefficient dielectric tensor, which does not dependent on the polar-
ization vector. In Sect. 2, we derive the three-dimensional free energy model, and in
Sect. 3 we obtain bounds for its various terms, under some assumptions on the form
of the dielectric tensor. We then present a reduced local two-dimensional energy, see
(45), motivated by the �-convergence results obtained in Theorem 4.1 of Sect. 4.

A two-dimensional energy of the form (45) was recently used in the one-constant
approximation setting, that is when the elastic constants are assumed to be all equal,
to study electric field effects on a BLC thin sample in the SmAPFmod phase García-
Cervera et al. (2020). When a term is introduced to relax the unit length constraint
of the polarization director, this energy resembles the Ginzburg–Landau functional of
superconductivity, with surface energy density given by (p ·ν)2, on the top and bottom
parts of a rectangular domain. In here, we show that in fact this surface energy models
the contribution of the nonlocal electric self-interactions. According to the analytical
results obtained in García-Cervera et al. (2020), energy minimizing configurations
develop a pair of boundary defects, on the top and bottom parts of the boundary,
each with ± 1/2 degree. Furthermore, numerical simulations exploring the switching
mechanism obtained by reversing the direction of an applied electric field indicate
the strong bistability of the SmAPFmod bent-core liquid crystals and show that a pair
of interior vortices nucleate from the boundary vortex pair, move to the center of the
domain, and then annihilate each other.

In Sect. 5, we numerically compare the SmAPFmod phase studied in García-Cervera
et al. (2020) with the SmAPF one, by considering gradient flow numerical simulations
of a relaxation of the polarization director unit length constraint of the two-dimensional
energy (45) applied to model the SmAPF phase. Our study is consistent with the one-
dimensional results for SmAPF presented in Gornik et al. (2014), Gornik andVaupotic̆
(2014), Guo et al. (2011). In our two-dimensional confined geometry, when an electric
field is applied in the upward direction, a pair of boundary vortices appears on the
vertical sides of the domain and move with the electric field, resulting in an upward
polarization in most of the domain, see Fig. 1.

To gain a complete picture of the switching mechanism, we also numerically study
the non-equal elastic constant model for the SmAPFmod phase. In contrast with the
results for the one-constant approximation obtained in García-Cervera et al. (2020),
only one interior vortex appears near one of the boundary vortices, the interior vortex
then moves toward the opposite boundary vortex to complete the switching, see Fig. 2,
this picture is consistent with the scenario proposed in Zhu et al. (2012).

Notations:

(i) For a > 0, b > 0, we denote �a
b = (0, a)2 × (0, b);

(ii) For b > 0, we let �b ≡ �1
b = (0, 1)2 × (0, b);

(iii) If p = (p1, p2, 0), we denote p⊥ = (−p2, p1, 0);
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(iv) Given x = (x1, x2, x3) ∈ R
3 and p(x) = (p1(x), p2(x), p3(x)), we define

div′p = ∂1 p1+∂2 p2, curl′p = ∂1 p2−∂2 p1, and |∇′p|2 = ∑2
i=1

∑3
j=1(∂i p j )

2;
(v) For pb : �b → R, we let p̃b : �1 → R be the rescaling of pb in the x3 variable,

that is p̃b(x1, x2, x3) = pb(x1, x2, b x3), and pb : (0, 1)2 → R the average of pb
over (0, b), that is pb(x1, x2) = 1

b

∫ b
0 pb(x1, x2, x3) dx3, whenever the integral

exists. A change of variables shows that

pb(x1, x2) =
∫ 1

0
p̃b(x1, x2, x3) dx3. (1)

(vi) By L∞
c we denote the set of L∞ functions with compact support.

2 Three-Dimensional Model

Bent-core liquid crystal molecules can be described using two orthogonal unit vectors:
n and p, with |n| = |p| = 1 and n ·p = 0. The so-called nematic director n is parallel
to the axis of the molecule, while p, known as polarization director, points in the
direction of the bow of the molecule. Since the polarization director p follows the bent
of the molecule, its direction is physically relevant, unlikely for the nematic director n
where in fact the unit vectors ±n are physically equivalent. According to the physics
literature, p is also in the same direction as the spontaneous polarization P, which can
then be written as P = P0 p with P0 > 0. In the SmA phase a material forms layers,
which are locally perpendicular to the nematic director n. The layer structure can be
described by a complex order parameter ψ . We consider a sample in the shape of a
parallelepiped with a square base of length side L and height t :�L

t = (0, L)2× (0, t).
Since we are interested in the regime where the smectic layers are well-defined, we
assume the smectic order parameter ψ , the intensity of the spontaneous polarization
P0, and the nematic director n to be constants. We take n oriented in the z-direction,
n = e3, namely we assume fixed smectic layers parallel to the xy-plane. By the
orthogonality constraint this last assumption implies that p has only two nonzero
components:

p = (p1, p2, 0). (2)

Because all the terms in the energy density involving the smectic order parameter ψ

are constant, we will neglect them. Both polarization and nematic directors are defined
only in the liquid crystal sample. However, in the following, when needed, we will
implicitly consider the directors as defined in the whole space by extending them to
zero outside the sample.

We refer to the cell thickness as to the dimension of the sample in the z direction (t
in our notation above, and in reference Kohn and Slastikov (2005)), and to the cell size
as to the dimension of the sample in the x and y directions (L in our notation above,
and in reference Gornik et al. (2014)).

We include electric self-interactions terms as modeled by Bailey et al. (2007), see
also Bauman and Phillips (2012), and elastic contributions as described in the work
of Stallinga and Vertogen (1994), see also Longa et al. (1998) and Vaupotic̆ et al.
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(2014). The electric self-interactions energy density can be expressed in terms of the
electric field induced by the diverging spontaneous polarization Ei , the externally
applied electric field Eex , and their interaction with the spontaneous polarization P. If
we denote by χ�L

t
, the characteristic function of �L

t , following Bailey et al. (2007),
we have:

(
1

2
ε0ε̂Ei · Ei − P · Ei − 1

2
ε0ε̂Eex · Eex − P · Eex

)
χ�L

t

+1

2
ε0 (Ei · Ei − Eex · Eex )

(
1 − χ�L

t

)
,

where ε0 is the dielectric permittivity of free space and ε̂ is the relative dielectric tensor
of the material. Ei and Eex are defined in the whole space.

In principle, one has ε̂(p) = εp p⊗p+ εm m⊗m+ εn n⊗n, where p,n,m form
an orthonormal basis, and εp, εm and εn are positive dimensionless material constants.
If n = e3, form = (−p2, p1, 0) this gives

ε̂(p) =
⎡

⎣
(εp − εm) p21 + εm (εp − εm) p1 p2 0
(εp − εm) p2 p1 (εp − εm) p22 + εm 0

0 0 εn

⎤

⎦ , (3)

and, for all x, y ∈ R
3, it holds

xT ε̂(p) y = (εp − εm) p21 x1 y1 + εmx1y1 + (εp − εm) p2 p1 x2 y1

+ (εp − εm) p1 p2 x1 y2 + (εp − εm) p22 x2 y2 + εmx2 y2 + εnx3y3

= εp

(
p21 x1 y1 + p2 p1(x2 y1 + x1 y2) + p22 x2 y2

)

+ εm

(
(1 − p21) x1 y1 − p2 p1(x2 y1 + x1 y2) + (1 − p22) x2 y2

)

+εnx3y3

= εp

(
p21 x1 y1 + p2 p1(x2 y1 + x1 y2) + p22 x2 y2

)

+ εm

(
p22 x1 y1 − p2 p1(x2 y1 + x1 y2) + p21 x2 y2

)
+ εnx3y3.

From this, we see that

xT ε̂(p) x = εp (p1 x1 + p2 x2)
2 + εm (p2 x1 − p1 x2 )2 + εnx

2
3

≥ ε−
[
(p1 x1 + p2 x2)

2 + (p2 x1 − p1 x2 )2 + x23

]
,

and

xT ε̂(p) y ≤ ε+ (|x1| |y1| + |x2| |y2| + |x3||y3|) + (εp − εm)p2 p1(x2 y1 + x1 y2)

≤ ε+|x| |y| + |εp − εm | |x2 y1 + x1 y2| ≤ ε+ (|x| |y| + |x2 y1 + x1 y2|)

where ε− = min{εp, εm, εn}, and ε+ = max{εp, εm, εn}.
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Therefore, we conclude that

xT ε̂(p) x ≥ ε− |x|2 and xT ε̂(p) y ≤ 2 ε+ |x| |y|. (4)

Introducing the electric potential∇�L
t , defined as Ei = −∇�L

t , Gauss’s law yields

ε0 ∇ ·
(
ε∗
�L
t
(p)∇�L

t

)
= ∇ · (Pχ�L

t
) in R3, (5)

where

ε∗
�L
t
(p) =

{
ε̂(p) in �L

t ,

I outside �L
t ,

(6)

with I being the identity tensor. Under our assumptions, if we let ε = min{ε−, 1}, and
ε = max{2 ε+, 1}, given any p and x, y ∈ R

3, regardless of the values of L and t , we
have

xT ε∗
�L
t
(p) x ≥ ε |x|2; xT ε∗

�L
t
(p) y ≤ ε |x| |y|. (7)

For a constant applied electric field, the terms that contain just Eex are constants,
and we are led to consider the following electric self-interactions energy density fel :

fel = (−P · Ei − P · Eex ) χ�L
t

+ 1

2
ε0ε

∗
�L
t
(p) Ei · Ei , (8)

together with (5).
Our convergence results apply generally to the case of a relative dielectric tensor

ε̂(x) that is independent of p. In particular, we obtain a general �-convergence result
along subsequences (see Theorem 4.1, Case I below). For the simplified case, when
the dielectric tensor is a constant diagonal matrix we obtain a stronger, more explicit,
�-convergence result (see Theorem 4.1, Case II below). Note that in Bauman et al.
Bauman and Phillips (2012) the relative dielectric tensor ε̂(x) is taken to be a constant
diagonal matrix.

ε̂(p) ≡ ε̂c =
⎡

⎣
ε1 0 0
0 ε2 0
0 0 ε3

⎤

⎦ , (9)

where ε1, ε2, and ε3 are dimensionless positive material constants. We also remark
that for materials for which εp = εm , the dielectric tensor (3) reduces to (9) with
ε1 = ε2 = εp = εm and ε3 = εn .

To model elastic contributions, we start from the elastic free energy density for
an orthorhombic system presented in Stallinga and Vertogen (1994) and, as done in
Vaupotic̆ et al. (2014), for simplicity we do not include the higher order derivatives
terms, i.e. the linear second-order terms of equation (26) in Stallinga and Vertogen
(1994) (see also Trebin (1981) and Longa et al. (1998)).

Using |p| = 1 and the assumption n = e3, which implies (2) and m = n × p =
(−p2, p1, 0), this elastic density simplifies to the expression (see equation (A14) in
Stallinga and Vertogen (1994)):
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k1 p · (∇ × p) + k2 m · (∇ × m) + 1

2
K1(∇ · p)2 + 1

2
K2(∇ · m)2

+ 1

2
K4

[
p · (∇ × p)

]2 + 1

2
K5 [m · (∇ × m)]2 + 1

2
K7 [n · (∇ × m)]2

+ 1

2
K11

[
n · (∇ × p)

]2 + K13

[
Tr(∇p)2 − (∇ · p)2

]

+ K14

[
Tr(∇m)2 − (∇ · m)2

]
,

where we also applied the following identity, which holds for any u ∈ H1(R3,R3) in
the sense of distributions

∇ · [(u · ∇)u − (∇ · u)u] = Tr(∇u)2 − (∇ · u)2.

Substituting m = (−p2, p1, 0), we then have

fe = (k1 + k2)p · (∇ × p) + 1

2
(K1 + K7)(∇ · p)2

+ 1

2
(K2 + K11)

[
n · (∇ × p)

]2 + 1

2
(K4 + K5)

[
p · (∇ × p)

]2

+ (K13 + K14)
[
Tr(∇p)2 − (∇ · p)2

]
. (10)

We next add a linear term, which models dipolar divergence distortions and is
needed because in bent-core molecules one distinguishes between the positive and
negative directions of P, see Coleman et al. (2003), Bailey et al. (2007), and Bauman
and Phillips (2012):

fP = c′∇ · p + c
′′∇ · P. (11)

As a consequence of the divergence theorem, this term gives only a boundary contri-
bution. Assuming P = P0 p with P0 constant, we have

fP = (c′ + c
′′
P0)∇ · p = cP (P0)∇ · p.

In conclusion, for P0 constant, we arrive to the following phenomenological energy
functional, together with (5):

∫

�L
t

[
kT p · (∇ × p) + 1

2
KS (∇ · p)2 + 1

2
KB

[
n · (∇ × p)

]2

+ 1

2
KT

[
p · (∇ × p)

]2 + 1

2
KG

[
Tr(∇p)2 − (∇ · p)2

]

+ cP (P0)∇ · p − P · Ei − P · Eex
]+

∫

R3

1

2
ε0 ε∗

�L
t
(p) Ei · Ei , (12)

where kT = k1 + k2, KS = K1 + K7, KB = K2 + K11, KT = K4 + K5, and
KG = 2 (K13 + K14).
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We rewrite the KG term using the identity: Tr(∇p)2 = |∇p|2−|∇ ×p|2, introduce
the quantities

div′p = ∂1 p1 + ∂2 p2 and curl′p = ∂1 p2 − ∂2 p1,

and use (2) and |p| = 1 to see that

∇ · p = div′p; [
n · (∇ × p)

]2 = (curl′p)2,

p · (∇ × p) = (p2 ∂3 p1 − p1 ∂3 p2),

−2 p1 p2 ∂3 p1 ∂3 p2 = p21(∂3 p1)
2 + p22(∂3 p2)

2,

which gives

[p · (∇ × p)]2 = (∂3 p1)
2 + (∂3 p2)

2 = |∂3p|2;
|∇ × p|2 = |∂3p|2 + (curl′p)2; Tr(∇p)2 = |∇p|2 − |∂3p|2 − (curl′p)2.

We apply (5) to express Ei in terms of the electric potential:

∫

R3
ε0 ε∗

�L
t
(p) Ei · Ei =

∫

R3
ε0 ε∗

�L
t
(p)∇�L

t · ∇�L
t

=
∫

�L
t

P · ∇�L
t dx = −

∫

�L
t

P · Ei .

Setting
p⊥ = m = (−p2, p1, 0), (13)

our energy functional then becomes

E(p) =
∫

�L
t

[
−kT p⊥ · ∂3p + 1

2
(KS − KG)

(
div′p

)2

+ 1

2
(KB − KG)(curl′p)2 + 1

2
(KT − KG)|∂3p|2 + 1

2
KG |∇p|2

+ cp(P0) div
′p − P0 p · Eex

]+
∫

R3

3

2
ε0 ε∗

�L
t
(p)∇�L

t · ∇�L
t , (14)

with Gauss’s law

ε0 ∇ ·
(
ε∗
�L
t
(p)∇�L

t

)
= P0 ∇ · (pχ�L

t
) in R3. (15)

We look for minimizers p of (14) in H1(�L
t , S2), where recall that for p ∈

H1(�L
t , S2), the function pχ�L

t
is to be interpreted as pχ�L

t
= p in �L

t and zero
elsewhere.

By elliptic regularity theory (15) has a solution �L
t ∈ L6(R3), with ∇�L

t ∈
L2(R3,R3) (see Sect. 3.1 below). And, existence of minimizers is straightforward
under our assumptions, provided that
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KS ≥ 0; KB ≥ 0; KT ≥ 0; KG > 0;
KS − KG ≥ 0; KB − KG ≥ 0; KT − KG ≥ 0, (16)

with no sign restriction on kT and cp.

2.1 Dimensionless Energy

To understand the role of the relative size of the cell thickness t and the cell size L ,

we rescale length by L , the electric potential by
L P0
ε0

, and the energy by
P2
0 L3

ε0
, and

work with the dimensionless quantities:

x̂ = x
L

, h = t

L
; �̂h = ε0

L P0
�1

h; �h = (0, 1)2 × (0, h) ,

σ = L2 P0 |Eex |
KG

, k∗
T = kT

KG
, K ∗

S = KS − KG

KG
,

K ∗
B = KB − KG

KG
, K ∗

T = KT − KG

KG
, c∗

p = cp(P0)L

KG
.

Recalling that we are assuming Eex constant, given e, a unit vector parallel to the
direction of Eex , we write Eex = σs |Eex | e, where σs = sign(Eex ), and dropping
the hat in the rescaled quantities, for ph ∈ H1(�h, S2) we arrive at the following
dimensionless energy:

Eh(ph) = ε0 KG

2P2
0 L

2

∫

�h

[
−2k∗

T p⊥
h · ∂3ph + K ∗

S

(
div′ph

)2 + K ∗
B (curl′ph)2

+ K ∗
T |∂3ph |2 + |∇ph |2 + 2 c∗

p div
′ph − 2 σs σ ph · e

]

+
∫

R3

3

2
ε∗
h(ph)∇�h · ∇�h, (17)

augmented by the Gauss’s law

∇ · (ε∗
h(ph)∇�h

) = ∇ · (phχ�h ) in R3, (18)

where ε∗
h(ph) := ε∗

�h
(ph). Note that for ε∗

h(ph) we still have the estimates in (7), this
is a property that we will use in a fundamental way.

3 Preliminary Results

We follow the idea of Kohn and Slastikov (2005) and study a rescaled small thickness
limit of (17) for the case of a constant applied field Eex parallel to the y direction.Using
the properties of the fundamental solutions of the uniformly elliptic equation (18),
inferred from some classical Littman et al. (1963) and recentMourgoglou (2019)work,
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we show that under some technical assumptions on the dielectric tensor and domain
thickness the electric potential term gives rise to boundary terms. These boundary
terms, in the one-dimensional setup, agree with the ones proposed in the work of
Gornik and coauthors (Gornik et al. 2014; Gornik and Vaupotic̆ 2014). We proceed
by obtaining some preliminary estimates.

3.1 Fundamental Solutions

The dimensionless Gauss’s law (18) is a second-order elliptic equation in divergence
form of the type

3∑

i, j=1

∂i
(
ai j (x) ∂ j u(x)

) =
3∑

i=1

∂i gi (x) for x ∈ R
3, (19)

where g = (g1, g2, g3) ∈ L p(R3,R3) for all p ≥ 1, and ai j (x) ∈ L∞(R3) with

3∑

i, j=1

ai j (x)xi x j ≥ ε |x|2;
3∑

i, j=1

ai j (x)xi y j ≤ ε |x| |y|. (20)

Consider the space Y 1,2(R3) = {
u ∈ L6(R3) : ∇u ∈ L2(R3,R3)

}
. For general

properties of Y 1,2(R3) we refer to Malý and Ziemer Malý and Ziemer (1997). In
particular, Y 1,2(R3) is endowed with the norm

||u||Y := ||u||L6 + ||∇u||L2 , (21)

and Y 1,2
0 (R3) = Y 1,2(R3), where Y 1,2

0 (R3) is the closure of C∞
c (R3) in Y 1,2(R3).

Moreover, for u ∈ Y 1,2(R3), it holds

||u||L6 ≤ C ||∇u||L2 , (22)

for some constant C = C(n) (see Malý and Ziemer (1997) Lemma 1.76 pg. 46).
Green’s functions for second-order elliptic equation with bounded measurable

coefficients in divergence formwere well studied by Littman, Stampacchia, andWein-
berger in Littman et al. (1963) and later by Grüter andWidman in Grüter andWidman
(1982).More recently, Hofmann andKim inHofmann andKim (2007) studiedGreen’s
matrices of strongly elliptic systems under the assumption that solutions of the elliptic
system satisfy De Giorgi-Nash type local Hölder continuity estimates, which is sat-
isfied for the scalar case (see Gilbarg and Trudinger (1998), also mentioned in Kang
and Kim (2010)). More detailed analysis for elliptic equations with lower order terms
can be found in Mourgoglou (2019).

Recall that we denote by L∞
c the family of L∞ functions with compact support.
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Lemma 3.1 Let A = (ai j ) with ai j ∈ L∞(R3) (i, j = 1..3) verify (20). Assume
g ∈ L∞

c (R3,R3), then a fundamental solution K (x, y; A) of the operator

L(u) = −
3∑

i, j=1

∂i
(
ai j (x) ∂ j u(x)

)

exists, with K (·, y; A) ∈ W 1,1
loc (R3). Additionally,

u(x) =
∫

R3
g(y) · ∇yK (x, y; A) dy (23)

is the unique solution in Y 1,2(R3) of L(u) = −∇ · g. Moreover, K (x, y; A) =
K (y, x; A) a.e., and for some constant C0 > 0, which depends only on the constants
ε and ε, it holds

C−1
0 |x − y|−1 ≤ K (x, y; A) ≤ C0 |x − y|−1 (24)

for a.e. x ∈ R
3 \ {y}.

Proof The existence and the properties of K (x, y; A), as well as the representation
formula (23) follow for example from Theorem 6.1 in Mourgoglou (2019). While
for the symmetry property, and the bound (24) we refer to Littman et al. (1963).
In particular, the argument that leads to (7.9) pg 67 in Littman et al. (1963) can be
applied to obtain the global bound, the symmetry property, and Hölder continuity in
R
3 \ {y}. See also Theorem 3.1 for the symmetry property and the global estimate,

and Theorem 3.2 in Hofmann and Kim (2007) for the representation formula, as well
as part (3) of Theorem 6.1 and Lemma 6.4 in Mourgoglou (2019). 
�

3.2 Averaging Along the Thickness

Setting x = (x1, x2, x3) ∈ �h , for a given ph(x) ≡ ph(x1, x2, x3) ∈ H1(�h, S2) and
using the notation ph(x1, x2) = 1

h

∫ h
0 ph(x1, x2, x3) dx3, we consider the solution �h

of
∇ · (ε∗

h(ph)∇�h
) = ∇ · (phχ�h ) in R3, (25)

where recall that ε∗
h(ph) := ε∗

�h
(ph) and ε∗

�h
(ph) is defined via (3) and (6). It is

important to stress that while ph does not depend on x3, the right-hand side and the
coefficients of (25) do, and therefore the solution does depend on x3. Note also that
we are employing ε∗

h(ph) rather than ε∗
h(ph), and that (25) is of the type (19) as well.

We start by proving a result analogous to Lemma 3 in Kohn and Slastikov (2005).

Lemma 3.2 Let ph ∈ H1(�h, S2) and �h and �h be the solutions of (18) and (25),
respectively. There is a universal constant C such that

∣
∣∣∣

∫

R3
ε∗
h(ph)∇�h · ∇�h −

∫

R3
ε∗
h(ph)∇�h · ∇�h

∣
∣∣∣ ≤ C

√
ε

ε3

(
h2 +

∫

�1

(∂3 p̃h)2
)

.

(26)
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Proof We simply write ε∗ for ε∗
h(ph).

By definition of weak solutions in Y 1,2(R3), for any φ ∈ C∞
c (R3), we have

∫

R3
ε∗(∇�h − ∇�h) · ∇φ =

∫

R3

(
phχ�h − phχ�h

) · ∇φ,

and taking a sequenceφn ∈ C∞
c (R3) converging to�h−�h in Y 1,2(R3), we conclude

∫

R3
ε∗(∇�h − ∇�h) · (∇�h − ∇�h) =

∫

R3

(
phχ�h − phχ�h

) · ∇(�h − �h)

≤ ‖ph − ph‖L2(�h)
‖∇�h − ∇�h‖L2(R3).

(27)

Using this together with the uniform ellipticity (4), we obtain

‖∇�h − ∇�h‖L2(R3) ≤ 1

ε−
‖ph − ph‖L2(�h)

. (28)

Since ε∗ is positive definite, its square root is uniquely defined and denoted by B.
Then we have

∣∣∣∣

∫

R3
ε∗∇�h · ∇�h − ε∗∇�h · ∇�h

∣∣∣∣

=
∣∣∣
∣

∫

R3
|B∇�h |2 −

∫

R3
|B∇�h |2

∣∣∣
∣

= ∣∣‖B∇�h‖L2(R3) − ‖B∇�h‖L2(R3)

∣∣ · ∣∣‖B∇�h‖L2(R3) + ‖B∇�‖L2(R3)

∣∣

=: I1 I2.

By (27) and (28), we find

I 21 ≤ ‖B∇�h − B∇�h‖2L2(R3)
=
∫

R3
ε∗ (∇�h − ∇�h

) · (∇�h − ∇�h
)

≤ ‖ph − ph‖L2(�h)
‖∇�h − ∇�h‖L2(R3)

≤ ‖ph − ph‖L2(�h)

1

ε−
‖ph − ph‖L2(�h)

and then applying the Poincaré inequality yields

I1 ≤ 1√
ε−

‖ph − ph‖L2(�h)
≤ Ch√

ε−

∥
∥∥∥
∂ph
∂z

∥
∥∥∥
L2(�h)

.
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Now we estimate I2. Applying the same proof for (28) on ∇�h ,

‖B∇�h‖2L2(R3)
=
∫

R3
ε∗∇�h · ∇�h ≤ ε+ ‖∇�h‖2L2(R3)

≤ ε+
ε2−

‖ph‖2L2(�h)
= Chε+

ε2−
.

Similarly we obtain the estimate for B∇�h . These two inequalities give

I2 ≤ C
√
h

√
ε+

ε−
.

Combining these estimates for I1 and I2, we have the desired inequality:

∣∣∣∣

∫

R3
ε∗∇�h · ∇�h − ε∗∇�h · ∇�h

∣∣∣∣ ≤ Ch
√
hε+

ε−
√

ε−

∥∥∥∥
∂ph
∂z

∥∥∥∥
L2(�h)

≤ C
√

ε+h
ε
3/2
−

∥∥∥∥
∂p̃h
∂z

∥∥∥∥
L2(�1)

≤ C
√

ε+
ε
3/2
−

(

h2 +
∫

�1

∣∣∣
∣
∂p̃h
∂z

∣∣∣
∣

2
)

.


�

3.3 The Electric Potential Term

As in Kohn and Slastikov (2005), because of (26), we focus our attention on the term∫
R3 ε∗

h(ph)∇�h · ∇�h .

We fix ph ∈ H1(�h, S2), and denote by Kh(x, y;ph) the fundamental solution of
(25). Using Lemma 3.1 we see that

�h(x) =
∫

R3
ph χ�h · ∇yKh(x, y;ph) dy

= −
∫

�h

∇ · ph(y) Kh(x, y;ph) dy +
∫

∂�h

Kh(x, y;ph)
(
ph · ν

)
(y) dσy

= −
∫

�h

div′ ph(y) Kh(x, y;ph) dy +
∫

∂�h

Kh(x, y;ph)
(
ph · ν

)
(y) dσy.

(29)

One should notice that because of the global bound (24) the above integrals are well-
defined. By definition of weak solution of (18) in Y 1,2(R3), for any φ ∈ C∞

c (R3), we
have

∫

R3
ε∗
h(ph)∇�h · ∇φ =

∫

R3
ph(x)χ�h (x) · ∇φ(x) dx.
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Hence,

∫

R3
ε∗
h(ph)∇�h · ∇φ = −

∫

�h

∇ · ph φ +
∫

∂�h

(ph · ν) φ,

and taking a sequence φn ∈ C∞
c (R3) converging to �h in Y 1,2(R3), we gather

∫

R3
ε∗
h(ph)∇�h · ∇�h = −

∫

�h

�h div
′ph +

∫

∂�h

�h(x) (ph · ν)(x) dσx, (30)

Using (29) in (30), we find

∫

R3
ε∗
h(ph)∇�h · ∇�h =

∫

�h

∫

�h

div′ ph(y) div′ph(x) Kh(x, y;ph) dy dx

−
∫

�h

∫

∂�h

Kh(x, y;ph)
(
ph · ν

)
(y) div′ph(x) dσy dx

−
∫

∂�h

∫

�h

Kh(x, y;ph) div′ ph(y) (ph · ν)(x) dy dσx

+
∫

∂�h

∫

∂�h

Kh(x, y;ph)
(
ph · ν

)
(y) (ph · ν)(x) dσy dσx

and by the symmetry of the fundamental solution we conclude

∫

R3
ε∗
h(ph)∇�h · ∇�h =

∫

�h

∫

�h

div′ ph(y) div′ph(x) Kh(x, y;ph) dy dx

− 2
∫

∂�h

∫

�h

Kh(x, y;ph) div′ ph(y) (ph · ν)(x) dy dσx

+
∫

∂�h

∫

∂�h

Kh(x, y;ph)
(
ph · ν

)
(y) (ph · ν)(x) dσy dσx.

(31)

One should remark that the argument leading to (7.9) pg 67 in Littman et al. (1963)
can be applied to obtain Hölder continuity in R

3 \ {y} of the fundamental solution
Kh(·, y;ph), see also Sect. 3.6 in Hofmann and Kim (2007).We estimate each integral
in (31) separately. From the point of view of this work, the third integral is the one of
most interest, as it gives rise to boundary terms in the limit.

Lemma 3.3 Let ph ∈ H1(�h, S2). Under our assumptions, we have that

∣∣
∣∣

∫

�h

∫

�h

div′ ph(y) div′ph(x) Kh(x, y;ph) dy dx
∣∣
∣∣ ≤ C h2 ||div′̃ph ||2L2(�1)

. (32)
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Proof We introduce the compactly supported kernel

k(x1, x2) = 1
√
x21 + x22

χ{√
x21+x22≤2

},

and define

φ(x1, x2) =
∫

(0,1)2

∣∣div′ph(y1, y2))
∣∣ k(x1 − y1, x2 − y2) dy1dy2.

By Young’s inequality, since k ∈ L1(R2), we then have φ ∈ L2(R2) and ‖φ‖L2(R2) ≤
‖k‖L1(R2)‖div′ph‖L2((0,1)2).

As a consequence of (24), we can use a similar approach to that in Kohn and
Slastikov (2005) to get, using x′ = (x1, x2), y′ = (y1, y2), and ω = (0, 1)2,

∣∣
∣∣

∫

�h

∫

�h

div′ ph(y) div′ph(x) Kh(x, y;ph) dy dx
∣∣
∣∣

=
∣∣∣∣

∫

ω

∫

ω

div′ ph(y′) div′ph(x′)
∫ h

0

∫ h

0
Kh(x, y;ph) dx3 dy3 dy′ dx′

∣∣∣∣

≤ C
∫

ω

∫

ω

|div′ ph(y′)| |div′ph(x′)|
∫ h

0

∫ h

0
|x − y|−1 dx3 dy3 dy′ dx′

≤ C h2
∫

ω

∫

ω

|div′ ph(y′)| |div′ph(x′)|
[
(x1 − y1)2 + (x2 − y2)2

]1/2 dy′ dx′,

by Hölder inequality we arrive to the wanted bound:

∣∣
∣∣

∫

�h

∫

�h

div′ ph(y) div′ph(x) Kh(x, y;ph) dy dx
∣∣
∣∣

≤ C h2
∫

(0,1)2
|div′ph(x1, x2)|φ(x1, x2) dx1 dx2

≤ C h2 ‖div′ph‖L2((0,1)2)||φ||L2((0,1)2)

≤ C h2 ||div′ph ||L2((0,1)2) ||div′ph ||L2((0,1)2) ≤ C h2 ||div′̃ph ||2L2(�1)
.


�

The difficulty in dealing with the second term in (31) stems from the fact that the
boundary of the domain is not smooth and for a Lipschitz domain the trace operator
H1/2(�) → L2(∂�) does not exist (see Corollary 2.13, p. 331, in Mikhailov (2011)).
However, the bound (24) allows us to control this term using a Riesz potential and
applying the trace embedding theorem for n = 2 and p = 4

3 .
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Lemma 3.4 Let ph ∈ H1(�h, S2). Under our assumptions, it holds

∣∣∣∣

∫

∂�h

∫

�h

Kh(x, y;ph) div′ ph(y) (ph · ν)(x) dy dσx

∣∣∣∣

≤ C h2
(
1 + ∣

∣
∣
∣ div′̃ph

∣
∣
∣
∣2
L2(�1)

)
. (33)

Proof Since |(ph · ν)(x)| ≤ 1, we can simplify our expression to

∣∣
∣∣

∫

∂�h

∫

�h

Kh(x, y;ph) div′ ph(y) (ph · ν)(x) dy dσx

∣∣
∣∣

≤ C
∫

∂�h

∫

�h

|Kh(x, y;ph)| |div′ ph(y)| dy dσx.

And, as in Lemma 3.3, using (24) and the Riesz potential, 0 < γ < n:

Iγ ( f )(z) = c(γ, n)

∫

Rn

f (w)

|z − w|n−γ
dw, z ∈ R

n,

with n = 2, γ = 1, and f = |div′ph χ(0,1)2 |, we obtain
∣∣∣∣

∫

∂�h

∫

�h

Kh(x, y;ph) div′ ph(y) (ph · ν)(x) dy dσx

∣∣∣∣

≤ C h2
∫

∂(0,1)2
I1
(∣∣div′ph χ(0,1)2

∣∣) dσx1,x2 . (34)

By Theorem 1.97 pg. 58 in Malý and Ziemer Malý and Ziemer (1997), we know that
if 1 < p < n and f ∈ L p(Rn), then I1( f ) ∈ Y 1,p(Rn), and there is a constant
C0 = C0(n, p), such that

C−1
0 || f ||L p ≤ ||I1 f ||Y 1,p ≤ C0 || f ||L p , (35)

where

|| f ||Y 1,p := || f ||L p∗ + ||∇ f ||L p , p∗ = np

n − p
.

Applying, this result for f = ∣∣div′ph χ(0,1)2
∣∣, n = 2, and p = 4/3, which gives

p∗ = 4, we gather that I1
(∣∣div′ph χ(0,1)2

∣∣) ∈ W 1,4/3((0, 1)2), and by (35),

||I1
(∣∣div′ph χ(0,1)2

∣∣) ||W 1,4/3((0,1)2) ≤ C
∣∣∣∣ ∣∣div′ph χ(0,1)2

∣∣ ∣∣∣∣
L4/3((0,1)2) . (36)

A classical theorem for Lipschitz domains by Gagliardo (1957) then implies that
I1
(∣∣div′ph χ(0,1)2

∣∣) ∈ L4/3(∂(0, 1)2), and

||I1
(∣∣div′ph χ(0,1)2

∣∣) ||L4/3(∂(0,1)2) ≤ C1 ||I1
(∣∣div′ph χ(0,1)2

∣∣) ||W 1,4/3((0,1)2),
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which in turn, in conjunction with (36) and Hölder’s inequality, gives

||I1
(∣∣div′ph χ(0,1)2

∣∣) ||L1(∂(0,1)2) ≤ C ||I1
(∣∣div′ph χ(0,1)2

∣∣) ||L4/3(∂(0,1)2)

≤ C
∣∣∣∣ ∣∣div′ph χ(0,1)2

∣∣ ∣∣∣∣
L4/3((0,1)2) ≤ C

∣∣∣∣ ∣∣div′ph χ(0,1)2
∣∣ ∣∣∣∣

L2((0,1)2) .

Since I1
(∣∣div′ph χ(0,1)2

∣∣) | ≥ 0, this and (34), imply

∣∣∣∣

∫

∂�h

∫

�h

Kh(x, y;ph) div′ ph(y) (ph · ν)(x) dy dσx

∣∣∣∣

≤ C h2
∣
∣
∣
∣
∣
∣div′ph χ(0,1)2

∣
∣
∣
∣
∣
∣
L2((0,1)2) ,

and, our claim follows from (1), and the inequality b a ≤ 1
2 (b

2 + a2), with b = 1. 
�
To deal with the last term in (31) we follow a similar approach as the one in Kohn

and Slastikov (2005), andwe divide the integral into two parts: The first part is bounded
in Lemma 3.5, and the second is considered in the next sections.

Since our domain has limited regularity having only a Lipschitz boundary, we
cannot directly apply the method of proof of Kohn and Slastikov (2005), where the
smoothness of the normal vector to the boundary is used in a fundamental way. In our
case we need to keep track of the different parts of the boundary.

We denote by �i , i = 1...4, the four open sides of the ∂(0, 1)2:

�1 =
{
(x1, 0) ∈ R

2, 0 < x1 < 1
}

; �2 =
{
(1, x2) ∈ R

2, 0 < x2 < 1
}

�3 =
{
(x1, 1) ∈ R

2, 0 < x1 < 1
}

; �4 =
{
(0, x2) ∈ R

2, 0 < x2 < 1
}

.

Lemma 3.5 Let ph ∈ H1(�h, S2). Under our assumptions, we have that

∣∣∣∣

∫

∂�h

∫

∂�h

Kh(x, y;ph)
[(
ph · ν

)
(y) − (ph · ν)(x)

]

(ph · ν)(x) dσy dσx
∣∣ ≤ C h2

(
||ph ||H1((0,1)2) + 1

)
.

Proof On the parts of ∂�h with x3 = 0, and x3 = h, the normal ν to ∂�h is parallel
to the x3-axis, so that in there we have (ph · ν)(x1, x2, 0) = (ph · ν)(x1, x2, h) = 0, as
p3 = 0. Additionally, on the rest of ∂�h the normal does not depend on x3. Hence, on
∂�h the function (ph · ν) does not depend on x3, that is (ph · ν)(x) = (ph · ν)(x1, x2).

Using |(ph · ν)(x)| ≤ 1 and (24), we then arrive to

∣∣∣∣

∫

∂�h

∫

∂�h

Kh(x, y;ph)
[(
ph · ν

)
(y) − (ph · ν)(x)

]
(ph · ν)(x) dσy dσx

∣∣∣∣

≤ C h2
∫

∂(0,1)2

∫

∂(0,1)2

∣∣(ph · ν
)
(y1, y2) − (ph · ν)(x1, x2)

∣∣
[
(x1 − y1)2 + (x2 − y2)2

]1/2 dσy1,y2 dσx1,x2 .
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Wesplit the double integral over ∂(0, 1)2×∂(0, 1)2 in double integrals over�i×� j ,
i, j = 1...4, and provide explicit computations for the cases �1 × �1, �1 × �2 and
�1 × �3. The other integrals can be treated similarly.

Let p1 and p2 denote the nonzero components of ph . Since ph · ν = − p2 on �1,
by Hölder inequality we have

∫

�1

∫

�1

∣
∣(ph · ν

)
(y1, y2) − (ph · ν)(x1, x2)

∣
∣

[
(x1 − y1)2 + (x2 − y2)2

]1/2 dσy1,y2 dσx1,x2

≤ C

(∫

∂(0,1)2×∂(0,1)2

∣
∣p2(y1, y2) − p2(x1, x2)

∣
∣2

(x1 − y1)2 + (x2 − y2)2

) 1
2

.

Then, since p2 ∈ H1
(
(0, 1)2

)
, we can apply equation (1.4) pg. 289 in Gagliardo

(1957), to conclude that

∫

�1

∫

�1

∣∣(ph · ν
)
(y1, y2) − (ph · ν)(x1, x2)

∣∣
[
(x1 − y1)2 + (x2 − y2)2

]1/2 dσy1,y2 dσx1,x2

≤ C1 ||p2||H1((0,1)2) ≤ C1 ||ph ||H1((0,1)2).

On �1 × �3, we have

∫

�1

∫

�3

∣∣(ph · ν
)
(y1, y2) − (ph · ν)(x1, x2)

∣∣
[
(x1 − y1)2 + (x2 − y2)2

]1/2 dσy1,y2 dσx1,x2

=
∫ 1

0

∫ 1

0

|p2(y1, 1) + p2(x1, 0)|√
(x1 − y1)2 + 1

dy1 dx1

≤ 2
∫ 1

0

∫ 1

0

1
√

(x1 − y1)2 + 1
dy1 dx1

= 2
∫ 1

0

∫ 1−x1

−x1

du√
u2 + 1

dx1 ≤ 2
∫ 1

0

∫ 1

−1

du√
u2 + 1

dx1

= 4
∫ 1

0

∫ 1

0

du√
u2 + 1

dx1 = 4 ln(u +
√
1 + u2)

∣∣
∣
1

0
= 4 ln(1 + √

2).

Finally, on �1 × �2 we find

∫

�1

∫

�2

∣∣(ph · ν
)
(y1, y2) − (ph · ν)(x1, x2)

∣∣
[
(x1 − y1)2 + (x2 − y2)2

]1/2 dσy1,y2 dσx1,x2

=
∫ 1

0

∫ 1

0

|p1(1, y2) + p2(x1, 0)|√
(x1 − 1)2 + y22

dy2 dx1 ≤ 2
∫ 1

0

∫ 1

0

1
√
u2 + y22

dy2 du

≤ 2
∫∫

{u2+y22≤4}
1

√
u2 + y22

dy2 du = 2
∫ 2π

0

∫ 2

0

1

ρ
ρ dρ dθ = 8π.
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And, the lemma follows. 
�

We are left to study the integral:

∫

∂�h

∫

∂�h

Kh(x, y;ph)
[(
ph · ν

)
(x)

]2
dσy dσx, (37)

which we consider in the next section.

3.4 Constant Dielectric Tensor Approximation

We first analyze the term in (37) under the simplifying assumption that the tensor
ε∗
h(ph) in (18) is constant in R

3 and it equals the matrix ε̂c defined in (9), so that the
Gauss’s law that we need to study becomes

∇ · (ε̂c ∇�h
) = ∇ · (phχ�h ) in R

3. (38)

By classical elliptic theory, we know the fundamental solution of (38):

K (x, y) = 1

4π

1√
ε1 ε2 ε3

· 1
√

1
ε1

(x1 − y1)2 + 1
ε2

(x2 − y2)2 + 1
ε3

(x3 − y3)2
. (39)

Lemma 3.6 Let ph ∈ H1(�h, S2). Under our assumptions, for i �= j , it holds:

lim
h→0

1

h2 | ln h|
∫

�i×� j

[(
ph · ν

)
(x)

]2
∫ h

0

∫ h

0
K (x, y) = 0.

Proof As pointed out in the proof of Lemma 3.5, for x = (x1, x2, x3) ∈ ∂�h the
function (ph · ν)(x) is zero when x3 = 0 and x3 = h, and it depends only on x1 and
x2 otherwise, that is on ∂�h we have (ph · ν)(x) = (ph · ν)(x1, x2).

We consider the case i = 1, j = 2, the other cases can be proven similarly.
For 0 ≤ x1 ≤ 1, we define

fh(x1) =
[(
ph · ν

)
(x1, 0)

]2

h2 |ln h|
∫

�2

∫ h

0

∫ h

0
K (x, y)
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Proceeding as in Lemma 5.1, since
∣∣ph · ν

∣∣ ≤ 1, we have a.e. in [0, 1] the bound:

4π
√

ε1 ε2 ε3 | fh(x1)|
≤ 1

| ln h|
∫ 1

0

∫ 1

0

∫ 1−v

−v

du
√

1
ε1

(1 − x1)2 + 1
ε2
y22 + h2

ε3
u2

dv dy2

≤ 1

| ln h|
∫ 1

0

∫ 1

0

∫ 1

−1

du dv
√

1
ε1

(1 − x1)2 + 1
ε2
y22 + h2

ε3
u2

dy2

≤ 1

| ln h|
∫ 1

0

∫ 1

0

∫ 1

−1

du dv dy2√
1
ε1

(1 − x1)2 + 1
ε2
y22

= 2

| ln h|
∫ 1

0

dy2√
1
ε1

(1 − x1)2 + 1
ε2
y22

.

The changes of variable s = x1√
ε1

and t = y2√
ε2

give

∫ 1

0

1

| ln h|
∫ 1

0

dy2√
1
ε1

(1 − x1)2 + 1
ε2
y22

dx1

=
√

ε1ε2

| ln h|
∫ 1√

ε1

0

∫ 1√
ε2

0

dt ds
√

( 1√
ε1

− s)2 + t2

≤
√

ε1ε2

| ln h|
∫ 2π

0

∫ M

0
dr dθ ≤ C

| ln h| ,

where M ≥
√

1
ε1

+ 1
ε2
. And, the lemma follows. 
�

Lemma 3.7 Under our assumptions, if {ph} ⊂ H1((0, 1)2) converges to q weakly in
H1((0, 1)2), then it holds:

lim
h→0

3

2

1

h2 | ln h|
∫

�i×�i

[(
ph · ν

)
(x1, x2)

]2
∫ h

0

∫ h

0
K (x, y)

= αH

∫

�i

[
(q · ν)(x1, x2)

]2
,

if i = 1, 3, with αH = 3
4π

√
ε2ε3

; while

lim
h→0

3

2

1

h2 | ln h|
∫

�i×�i

[(
ph · ν

)
(x1, x2)

]2
∫ h

0

∫ h

0
K (x, y)

= αV

∫

�i

[
(q · ν)(x1, x2)

]2
,
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when i = 2, 4, with αV = 3
4π

√
ε1ε3

.

Proof We consider the case i = 1, the other cases can be proven similarly.
Starting as in the proof of Lemma 5.1, and making the change of variable w =

1√
ε1

(y1 − x1), we have, a.e. in x1 ∈ [0, 1] and for x2 = 0:

∫ 1

0

∫ h

0

∫ h

0
K (x, y) dy3 dx3 dy1

= 1

4π

2h2√
ε1 ε2 ε3

∫ 1

0

∫ 1

0

(1 − u)
√

1
ε1

(x1 − y1)2 + h2
ε3
u2

du dy1

= 1

4π

2h2√
ε1 ε2 ε3

√
ε1

∫ 1−x1√
ε1

− x1√
ε1

∫ 1

0

(1 − u)
√

w2 + h2
ε3
u2

du dw

= h2

2π

1√
ε2 ε3

∫ 1

0
(1 − u) ln

⎛

⎝
√

ε3

h u

⎛

⎝w +
√

w2 + h2

ε3
u2

⎞

⎠

⎞

⎠
∣
∣∣∣

w= 1−x1√
ε1

w=− x1√
ε1

du

= h2

2π

1√
ε2 ε3

∫ 1

0
Hh(x1, u) du,

here we use

Hh(x1, u) = (1 − u) ln

⎛

⎝w +
√

w2 + h2

ε3
u2

⎞

⎠
∣∣∣∣

w= 1−x1√
ε1

w=− x1√
ε1

=
∣∣∣
∣ln

(
h√
ε3

)∣∣∣
∣ (H

1
h − H2

h ),

where H1
h and H2

h are defined and studied in Lemma 5.2 and 5.3, respectively.
Using the notations in Lemmas 5.2 and 5.3, we have

3

2

1

h2 | ln h|
∫

�1×�1

[(
ph · ν

)
(x1, 0)

]2
∫ h

0

∫ h

0
K (x, y)

= 3

2

1

h2 | ln h|
∫ 1

0

[(
ph · ν

)
(x1, 0)

]2
∫ 1

0

∫ h

0

∫ h

0
K (x, y) dy3 dx3 dy1 dx1

= αH
1

| ln h|
∫ 1

0

[(
ph · ν

)
(x1, 0)

]2
∫ 1

0
Hh(x1, u) du dx1

= αH

∣∣
∣ln

(
h√
ε3

)∣∣
∣

| ln h|
∫ 1

0

[(
ph · ν

)
(x1, 0)

]2
∫ 1

0

[
H1
h (x1, u) − H2

h (x1, u)
]
du dx1.

Wenote that
[(
ph · ν

)
(x1, 0)

]2 ≤ 1 and that {ph} converges to q in L2(�1), by unique-
ness of limit and compactness of the trace operator on Lipschitz domains, sinceweakly
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convergent sequences are bounded. Also, by Lemmas 5.2 and 5.3 in the Appendix,
the Lebesgue Dominated Convergence Theorem implies that

∫ 1
0 H1

h (·, u) du → 0

and
∫ 1
0 H2

h (·, u) du → ∫ 1
0 −2(1 − u) du = −1, as h → 0. Thus, Lemma 5.4 in the

Appendix gives

αH

| ln h|
[
(ph · ν)(x1, 0)

]2
Hh(x1, u) −→ αH

[
(q · ν)(x1, 0)

]2

in L1((0, 1)2) as h → 0, and the lemma follows. 
�

3.5 Materials with Constant Relative Dielectric Tensor

As a consequence of inequality (24), the analogous of Lemma 3.6 holds for a general
ε∗
h(ph) - see Lemma 3.8 below. A weaker version of Lemma 3.7 can be derived for
the case of a material with relative dielectric tensor independent of ph , that is when
ε∗
h(ph) = ε̂pc for

ε̂pc(x) =
{

ε̂c(x) in �h

I outside �h .
(40)

Note that for this choice (25) becomes

∇ · (ε̂pc ∇�h
) = ∇ · (phχ�h ) in R

3. (41)

In the following, we denote by Kh(x, y) the fundamental solution of (41).

Lemma 3.8 Let ph ∈ H1(�h, S2). Under our assumptions, for i �= j , it holds:

lim
h→0

1

h2 | ln h|
∫

�i×� j

[(
ph · ν

)
(x)

]2
∫ h

0

∫ h

0
Kh(x, y;ph) = 0.

Proof By (24), we have that

∣∣∣
∣∣
lim
h→0

1

h2 | ln h|
∫

�i×� j

[(
ph · ν

)
(x)

]2
∫ h

0

∫ h

0
Kh(x, y;ph)

∣∣∣
∣∣

≤ C lim
h→0

1

h2 | ln h|
∫

�i×� j

[(
ph · ν

)
(x)

]2
∫ h

0

∫ h

0

1

|x − y| ,

and the same proof as the one of Lemma 3.6 can follow to obtain that the limit on the
right-hand side tends to zero. 
�

To study the nonzero contribution of the boundary term, we apply the classical
Dunford-Pettis theorem (see for example Theorem 1.38 pg 18 in Ambrosio et al.
(2000)) and Lemma 5.4 in the Appendix.
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Lemma 3.9 Under our assumptions and when ε∗
h(ph) ≡ ε̂pc, there exist {h j } ⊂ {h}

and αi ∈ L1(�i ) i = 1..4, such that if {ph} ⊂ H1(�h, S2) is such that {ph} ⊂
H1((0, 1)2) converges to q weakly in H1((0, 1)2), then it holds:

lim
h j→0

1

h2j | ln h j |
∫

�i×�i

[(
ph j

· ν
)

(x1, x2)
]2 ∫ h j

0

∫ h j

0
Kh j (x, y)

=
∫

�i

αi (x1, x2)
[
(q · ν)(x1, x2)

]2
. (42)

Proof Let i = 1. We set fh = (ph · ν)2 and

gh = 1

h2| ln h|
∫ 1

0

∫ h

0

∫ h

0
Kh(x, y) dy3 dx3 dy1.

By compactness of the trace operator, we have that fh → (q · ν)2 in L1(�1) and
| fh | ≤ 1. Proceeding as in Lemma 3.7, the upper bound in (24), using Lemmas 5.2
and 5.3, gives that {gh} ⊂ L1(�1) and that gh is dominated by an L1 function.
From this, the Dunford-Pettis theorem provides the existence of a subsequence that
converges weakly in L1, that is there is a subsequence {gh j } and an α1 ∈ L1(�1) such
that gh j⇀α1 in L1(�1). Note that α1 and the subsequence {h j } do not depend on the
sequence ph . And, (42) follows for i = 1 from Lemma 5.4 in the Appendix. Repeating
the argument for i = 2, starting from the subsequence h j and so on, since the index i
ranges within a finite set, we obtain the lemma, with the αi being independent of the
choice of the sequence ph . 
�

4 Dimensional Reduction

We use the estimates obtained in Sect. 3 to derive via �-convergence two-dimensional
reduced energy functionals, starting froma rescaled version of (17).Namely, for h > 0,
we consider {ph} ∈ H1(�h, S2), ph = (ph1 , p

h
2 , 0), and the energy:

Eh(ph) = Eh(ph)
h2| ln h|

≡ ε0

2P2
0 L2

KG

h | ln h|
∫

�1

[
|∇′̃ph |2 + −2 k∗

T

h
p̃⊥
h · ∂3p̃h + K ∗

T + 1

h2
|∂3p̃h |2

+ K ∗
S

(
div′̃ph

)2 + K ∗
B(curl′̃ph)2 + 2 c∗

p div′̃ph − 2 σs σ p̃h · e
]

+ 1

h2| ln h|
∫

R3

3

2
ε∗
h(ph)∇�h · ∇�h, (43)

with
∇ · (ε∗

h(ph)∇�h
) = ∇ · (phχ�h ) in R3, (44)
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and define

E(r) =
{

β
∫
(0,1)2 e(r) + ∫

∂(0,1)2 w(x; r; ν) if r(x) = r(x1, x2) and r3 = 0,

∞ otherwise,
(45)

where β > 0,

e(r) = |∇r|2 + K ∗
S (div r)2 + K ∗

B(curl r)2 − 2 σs σ r · e, (46)

and
w(x; r; ν) = α(x) (r · ν)2 + 2 c∗

p r · ν, (47)

for some α ∈ L1(�i ), i = 1, . . . , 4.
Given a generalized sequence {η} of real positive numbers or of integers, we say

that the family of functionals {Eη} �-converges to E weakly in H1(�1, S2) if

1. (Liminf inequality) Given {pη} ⊂ H1(�η, S2), such that p̃η converges weakly to
q in H1(�1, S2) then lim infη→0 Eη(pη) ≥ E(q).

2. (Limsup inequality) For any q ∈ H1(�1, S2), there exists {pη} ⊂ H1(�η, S2)
such that p̃η converges weakly to q in H1(�1, S2) and E(q) = limη→0 E(pη).

We then have the following main result:

Theorem 4.1 Let h > 0 and {ph} ⊂ H1(�h, S2) with ph = (ph1 , p
h
2 , 0). Assume that

as h → 0 it holds that ε0
2P2

0 L2
KG

h | ln h| → β > 0, and that there exist h0 > 0 and C > 0

such that Eh(ph) ≤ C for all h < h0. Then, there exists a subsequence (not relabeled)
and q ∈ H1(�1, S2), with q(x) = q(x1, x2) and q3 = 0, such that

p̃h⇀q weakly in H1(�1, S
2). (48)

Additionally, we distinguish the two following cases:

Case I: If the dielectric tensor ε∗
h(x) is independent of ph, i.e., ε

∗
h(ph) = ε̂pc (40),

then there exists a sequence {h j } such that {Eh j } �-converges to E weakly
in H1(�1, S2) with α(x) = αi (x) ∈ L1(�i ) for x ∈ �i and i = 1, . . . , 4,
where the functions αi and the sequence {h j } are as in Lemma 3.9.

Case II: If the dielectric tensor is a constant diagonal matrix, i.e., ε∗
h(ph) = ε̂c (9),

then {Eh} �-converges to E weakly in H1(�1, S2), where α = 3
4π

√
ε2ε3

on

�1 and �3 and α = 3
4π

√
ε1ε3

on �2 and �4.

Proof Case II: Assume ε∗
h(ph) = ε̂c, from Eh(ph) ≤ C , p̃h converges up to a subse-

quence weakly in H1(�1, S2) to some q ∈ H1(�1, S2). By rewriting, up to additive
constants, the energy in the following form:
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Eh(ph) = ε0

2P2
0 L2

KG

h | ln h|
∫

�1

[
K ∗
T + 1

h2

∣∣
∣∣∂3p̃h − k∗

T h

K ∗
T + 1

p̃⊥
h

∣∣
∣∣

2

+ K ∗
S

(
div′̃ph + cp

K ∗
S

)2

+ K ∗
B(curl′̃ph)2 + |∇′̃ph |2 − 2 σs σ p̃h · e

]

+ 1

h2| ln h|
∫

R3

3

2
ε∗
h(ph)∇�h · ∇�h,

we see that lim inf Eh(ph) ≥ E(q) for any ph⇀q in H1(�1, S2), from (31) and
Lemmas 3.3–3.7. On the other hand, for any q ∈ H1(�1, S2) we can construct a
sequence by taking ph = q to show lim sup Eh(ph) = E(q). Case I follows by a
similar proof applied now to the subsequence {Eh j }. 
�

5 Numerical Approximation

5.1 Ferroelectric Polar Smectic A Liquid Crystals SmAPF

For our numerical simulation of the SmAPF phase, we use the one-constant approx-
imation, that is we take KS = KB = KT = KG , and consider a relaxation of the
energy, which depends on a small parameter ε. The first is an assumption often found in
the physics literature, the second is a numerical device frequently found in numerical
works, which is used to relax the unit-length constraint. Finally, since the explicit form
of the function α(x) in Theorem 4.1 is not known, we take it to be piecewise constant
with the same values on the horizontal and vertical sides - this form is suggested by the
result in Lemma 3.7 of the simplified case studied in section 3.4. In non-dimensional
units, the energy numerically studied looks like

Eε(p) =
∫

�

(
|∇p|2 − 2σs σ p2 + (1 − |p|2)2

2ε2

)
dx

+ωV

∫

�V

(p · ν + a)2 dσ + ωH

∫

�H

(p · ν + b)2 dσ, (49)

where p = (p1, p2),

� = (0, 1)2; �H = (0, 1) × {0, 1}; �V = {0, 1} × (0, 1),

and σ = L2 P0 |Eex |
KG

is proportional to the intensity of the applied electric field. Note

that from the derivation of our model we have the condition ωV a = ωH b.

We take σs = 1, and consider the gradient flow for (49), pt = −δEε

δp
. The resulting

system of equations is
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p
∂t

= �p +
(
0

σ

)

p + (1 − |p|2)
ε2

p in �

∂p
∂ν

= −ωV (p · ν + a) ν on �V

∂p
∂ν

= −ωH (p · ν + b) ν on �H .

(50)

We discretize the system in time using a semi-implicit method, with a second-order
backward differentiation formula for the Laplacian part, and an explicit second-order
formula for the nonlinear terms. We use the standard second-order discretization for
the Laplacian in space, and solve the resulting linear system of equations using the
discrete Fourier Transform.

We then run the simulation with the following choice of parameters:

ε = 0.02, ωV = 1

ε3/2
, ωH = 1

ε
, a = √

ε, b = 1.

In the SmAPF phase, the polar ordering is not uniform in the ground state, as polar-
ization splay occurs due to the surface energy. The one-dimensional study presented
in Guo et al. (2011) shows the molecules near the surface pointing either toward or
out of the top and bottom glass plates and an horizontal polarization in the middle of
the sample to accommodate the boundary conditions at the top and bottom. The same
behavior is obtained in the two-dimensional case, as shown in Fig. 1a. In addition, in
this two-dimensional confined geometry, with our choice of parameters, we see a pair
of boundary vortices appearing, with the molecules preferring to be almost parallel
to the lateral segment of the domain boundary. The application of an upward elec-
tric field results in the vortices moving upward so that more polarization fields in the
domain point upward (Fig. 1b, c). When a sufficiently high electric field is applied, the
bent-core molecules reorient following the direction of the electric field in most part
of the domain (Fig. 1d).

Note that to compare our results with the numerical pictures for the polar director
profiles presented in the one-dimensional approximation of Gornik et al. (2014), in
Fig. 1, we take the positive y-axis to be in the horizontal direction pointing to the
right, and the positive x-axis in the vertical one pointing upwards, and plot the polar
director. The one-dimensional approximation is consistent with the behavior of the
polar director at the center of the sample.

5.2 Bistability Behavior of SmAPFmod

In García-Cervera et al. (2020), we studied the ferroelectric bistability of the
polarization-modulated orthogonal smectic liquid crystals described first in Zhu et al.
(2012). To model the SmAPFmod phase, we considered the following relaxed energy
functional:
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Fig. 1 Numerical solution of the gradient flow (50) for σ = 0, 1, 10, 300 with ε = 0.02

Fε(p) = 1

2

∫

�

(
|∇p|2 + 1

2ε2
(1 − |p|2)2 + σ |e − p|2

)
dxdy + 1

2ε

∫

�H

(p · ν)2 dx,

(51)
where e = σs e2, � = (0, 1)2, and �H = (0, 1) × {0, 1} and imposed a Dirichlet
boundary condition for p on the vertical sides:

p = ν for x ∈ �V = {0, 1} × (0, 1), (52)

where ν is the outward normal vector, and defined

H1
D =

{
p ∈ H1(�;R2) : p|�V = ν

}
. (53)

We were able to prove that as ε → 0 the global energy minimizers in H1
D of Eε

converge up to subsequences to an S1 valued function, which has always boundary
vortices. We also numerically studied the dynamics of the model bistability, by revers-
ing the direction of the applied electric field. Unlike the model proposed in Zhu et al.
(2012), where the authors expected the switching to happen with the nucleation of one
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internal vortex, our simulations shows the formation of two distinct internal vortices,
which move towards the center of the sample, where they annihilate each other.

In here, we consider the non-equal elastic constant case:

Fε(p) =
∫

�

(
k∗
1(∇ · p)2 + k∗

2 |∇ × p|2 + a|∇p|2 + 1

2ε2
(1 − |p|2)2

+ σ |p − e|2
)
dx + 1

ε

∫

�H

(p · ν)2, (54)

and the same Dirichlet boundary condition for p on the vertical sides.
This energy with zero electric field, on a smooth domain, and with nonzero degree

Dirichlet data on all of the boundary was studied analytically in Colbert-Kelly and
Phillips (2013), and numerically in Colbert-Kelly et al. (2017) to investigate the vor-
tex configurations. We follow the numerical scheme provided in Colbert-Kelly et al.
(2017). The gradient flow of the energy can be written for each case, k∗

1 ≥ k∗
2 and

k∗
2 ≥ k∗

1 , separately:

∂ p

∂t
= L(p) + 1

ε2
(1 − |p|2)p + σ(e2 − p), (55)

where

L(p) =
{

(a + k∗
2)�p − (k∗

2 − k∗
1)∇(∇ · p) if k∗

2 > k∗
1

(a + k∗
1)�p − (k∗

2 − k∗
1)∇ × (∇ × p) if k∗

1 > k∗
2 ,

with boundary conditions

a
∂p
∂ν

+ k∗
1(∇ · p)ν + k∗

2(∇ × p) × ν + 1

ε
(p · ν)ν = 0 on �H ,

p = ν on �V .

During the switching process, Fig. 2 shows that only one internal vortex appears to
reverse the polarization. This is different from what we observed in the equal constant
case, k∗

1 = k∗
2 , where two interior vortices nucleate from each boundary vortex and

they meet in the middle of the sample and then annihilate each other. We take k∗
1 =

1, k∗
2 = 0.7, and a = 0.3, since according to the physics literature in BLCs the splay

elastic constant is larger than the bend elastic constant (Majumdar et al. 2011; Gornik
et al. 2014). Initially −1/2 and 1/2 vortices appear at the top and bottom surfaces,
respectively (see Fig. 2a). Then, Fig. 2b and c shows that the −1/2 vortex at (0.5, 1)
splits into a 1/2 vortex at the boundary and a −1 interior vortex. This −1 interior
vortex starts moving downward (see Fig. 2c–e) and is eventually expelled, by the
combination with the +1/2 vortex at the bottom surface (Fig. 2f). This completes the
switching process and we now see one −1/2 boundary vortex on the bottom plate and
the polarization pointing downward in most part of the domain.
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Fig. 2 Numerical solution of the gradient flow (55) for switching dynamics from σ = 70
to σ = −70, with ε = 0.03. The polarization fields are depicted at selected times
t = 0, t = 0.01, t = 0.016, t = 0.018, t = 0.022, t = 0.023
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Appendix

For the convenience of the reader, in this section we provide some computations
concerning the limits used in Lemmas 3.6 and 3.7.

Lemma 5.1 Let A > 0, then if h, ε3 > 0, we have

∫ h

0

∫ h

0

dy3 dx3√
A + 1

ε3
(x3 − y3)2

= Ih(A) − Jh(A),

where

Ih(A) = 2h
√

ε3

⎡

⎣ln

⎛

⎝ h√
ε3

+
√

A + h2

ε3

⎞

⎠− ln
√
A

⎤

⎦

and

Jh(A) = 2 ε3

⎛

⎝

√

A + h2

ε3
−√

A

⎞

⎠ .

Proof We follow Carbou (2001), and use the change of variables h v = x3, and
h u = y3 − h v to gather

∫ h

0

∫ h

0

dy3 dx3√
A + 1

ε3
(x3 − y3)2

= h
∫ 1

0

∫ h

0

dy3 dv√
A + 1

ε3
(h v − y3)2

= h2
∫ 1

0

∫ 1−v

−v

du dv
√
A + h2

ε3
u2

.

Changing the order of integration, and computing the integral in v, then yields

∫ h

0

∫ h

0

dy3 dx3√
A + 1

ε3
(x3 − y3)2

= 2 h2
∫ 1

0

(1 − u)
√
A + h2

ε3
u2

du.
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Computing the integral in u gives the desired equality. 
�
Lemma 5.2 Let (x1, u) ∈ [0, 1]2, then a.e. we have

lim
h→0

H1
h (x1, u) = 0,

where

H1
h (x1, u) := 1 − u

| ln( h√
ε3

)| ln

⎡

⎣1 − x1√
ε1

+
√

(1 − x1)2

ε1
+ h2

ε3
u2

⎤

⎦ .

Additionally, there exist h1(ε1, ε3) > 0, and H1(x1, u) ∈ L1((0, 1)2), such that, for
0 < h < h1, a.e. it holds

|H1
h (x1, u)| ≤ H1(x1, u).

Proof If (x1, u) �= (1, 0), as h√
ε3

→ 0, the numerator of H1
h → (1− u) ln

[
2(1−x1)√

ε1

]
,

while the denominator tends to infinity, hence H1
h (x1, u) → 0 a.e. in [0, 1]2.

Let h1 > 0 be such that, ε1
ε3
h21 < 1, and h√

ε3
< 1, and set γ1 = 1

2 (
ε1
ε3
h21 + 1). Then,

if 0 < h < h1, 0 ≤ u ≤ 1, and 0 ≤ x1 ≤ γ1, we have

∣
∣∣∣∣∣
ln

⎡

⎣1 − x1√
ε1

+
√

(1 − x1)2

ε1
+ h2

ε3
u2

⎤

⎦

∣
∣∣∣∣∣

=
∣
∣∣∣ln

1√
ε1

+ ln

[
1 − x1 +

√
(1 − x1)2 + ε1

ε3
h2 u2

]∣∣∣∣ ≤ 1

2
| ln ε1| + C0,

where

C0 = max

{∣∣∣∣ln
[
1 − x1 +

√
(1 − x1)2 + ε1

ε3
h2 u2

]∣∣∣∣

}
,

max taken over 0 < h < h1, 0 ≤ u ≤ 1, and 0 ≤ x1 ≤ γ1.
On the other hand, if 1

2 (
ε1
ε3
h21 + 1) < x1 ≤ 1, whenever (x1, u) �= (1, 0), we have

0 ≤ 1 − x1 +
√

(1 − x1)2 + ε1

ε3
h2 u2 ≤ 1,

and, 0 ≤ 2 (1 − x1) ≤ 1. Therefore,

∣∣∣
∣ln

[
1 − x1 +

√
(1 − x1)2 + ε1

ε3
h2 u2

]∣∣∣
∣ ≤ | ln 2(1 − x1)|.
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And, the lemma follows with

H1(x1, u) =

⎧
⎪⎪⎨

⎪⎪⎩

C1
1−u

| ln( h1√
ε3

)| if 0 ≤ x1 ≤ γ1;

1−u
| ln( h1√

ε3
)| (C2 + | ln(1 − x1)|) if γ1 < x1 < 1.

where C1 = 1
2 | ln ε1| + C0, and C2 = 1

2 | ln ε1| + ln 2. 
�
Lemma 5.3 Let (x1, u) ∈ [0, 1]2, then a.e. we have

lim
h→0

H2
h (x1, u) = −2(1 − u),

where

H2
h (x1, u) := 1 − u

| ln( h√
ε3

)| ln

⎡

⎣−x1√
ε1

+
√
x21
ε1

+ h2

ε3
u2

⎤

⎦ .

Additionally, we can find h2(ε1, ε3) > 0, and H2(x1, u) ∈ L1((0, 1)2), such that, for
0 < h < h2, a.e. it holds

|H2
h (x1, u)| ≤ H2(x1, u).

Proof If u �= 0, we can rewrite the logarithmic part as

ln

⎡

⎣−x1√
ε1

+
√
x21
ε1

+ h2

ε3
u2

⎤

⎦ = ln

⎡

⎢⎢
⎣

h2
ε3
u2

x1√
ε1

+
√

x21
ε1

+ h2
ε3
u2

⎤

⎥⎥
⎦

= 2 ln(
h√
ε3

) + 2 ln u − ln
1√
ε1

− ln

[
x1 +

√
x21 + ε1

ε3
h2 u2

]
,

and we can easily adapt the proof of Lemma 5.2 to reach the wanted conclusion. 
�
Propositions 3.7 and 3.8 use the following lemma, which is stated in the lecture

notes of Kenneth Karlsen (2006) without proof.

Lemma 5.4 Let un, vn, u, v : � → R be measurable functions such that un → u in
L1(�) with ‖un‖∞ ≤ C for all n. As n → ∞, if vn strongly (resp. weakly) converges
to v in L1(�), then unvn strongly (resp. weakly) converges to uv in L1(�).

Proof A proof for the case un → u a.e. is given in Lemma A.1 in Weber (2021), the
same proof can be adapted to derive this lemma as well. 
�
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