

1 **Engineering oxygen vacancy-rich CeO_x overcoating onto Ni/Al₂O₃ by atomic layer**
2 **deposition for bi-reforming of methane**

3 Baitang Jin ¹, Kaiying Wang ², Han Yu ¹, Xiaoqing He ^{3,4}, and Xinhua Liang ^{1,2,*}

4 ¹ *Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri*

5 *University of Science and Technology, Rolla, Missouri 65409, United States*

6 ² *Department of Energy, Environmental and Chemical Engineering, Washington University in St.*

7 *Louis, St. Louis, Missouri 63130, United States*

8 ³ *Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211, United*
9 *States*

10 ⁴ *Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO*
11 *65211, United States*

12

13 * Corresponding author. Email: xinhua.liang@wustl.edu

14

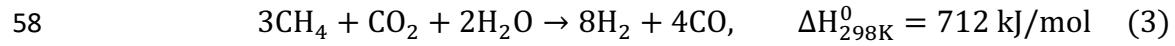
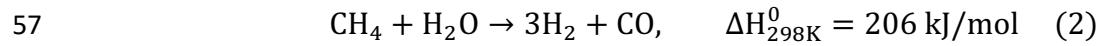
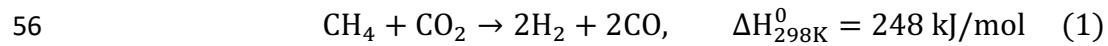
15 **Abstract**

16 Atomic layer deposition (ALD) was applied to develop CeO_x-overcoated Ni/Al₂O₃ catalyst for bi-
17 reforming of methane (BRM), as the combination of dry reforming of methane (DRM) and steam
18 reforming of methane (SRM). Non-stoichiometric CeO_x thin films were successfully deposited on
19 Ni/Al₂O₃ particles by ALD, which constructed a beneficial Ni-CeO_x interface and modified the
20 catalyst property. Ascribed to the unique ALD growth mode, a high amount of Ce(III) and oxygen
21 vacancies existed in the ALD-deposited CeO_x overcoating. A reduction process before the BRM
22 reaction contributed to the further reduction of Ce(IV) to Ce(III), resulting in more oxygen
23 vacancies. The oxygen vacancies at the Ni-CeO_x interface enabled a high rate of CO₂ activation

24 and enabled the balance between the activation of CO_2 and H_2O for BRM. Due to its oxygen
25 vacancies as activation sites for CO_2 and H_2O , CeO_x ALD overcoating significantly improved the
26 activity of $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst and achieved a better control in the H_2/CO ratio with a suitable ratio
27 of $\text{H}_2\text{O}/\text{CO}_2/\text{CH}_4$ feed. CeO_x overcoatings enhanced the reducibility of $\text{Ni}(\text{II})$ sites and assisted in
28 preventing Ni from oxidation during the BRM reaction. Less carbon deposition was achieved by
29 the $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst with CeO_x overcoating as ascribed to its better reactant activation capacity.

30

31 Keywords: Non-stoichiometric CeO_x ; atomic layer deposition (ALD); bi-reforming of methane
32 (BRM); oxygen vacancy




33

34 **1. Introduction**

35 With the rising greenhouse gas (GHG) emissions, the net-zero target by 2050 set in the Paris
36 Agreement and Conference of the Parties necessitates a technically feasible strategy to chemically
37 recycle captured CO_2 into value-added products for the decarbonization roadmap [1, 2]. Dry
38 reforming of methane (DRM, eq. 1) exhibits remarkable potential in consuming the GHG (i.e.,
39 CH_4 and CO_2), utilizing the off-peak energy, and producing syngas (i.e., H_2 and CO) with H_2/CO
40 molar ratio of ~ 1 as industrial C1-block, whereas the current steam reforming of methane (SRM,
41 eq. 2, with H_2/CO molar ratio of ~ 3) faces high H_2/CO ratio with the formation of side-product
42 CO_2 [3]. Without reconstructing the present infrastructure, bi-reforming of methane (BRM), which
43 incorporates DRM into SRM, can achieve industrial utilization of CO_2 and production of valuable
44 syngas with desired H_2/CO ratio [1, 3, 4]. Especially, syngas with an H_2/CO molar ratio of ~ 2
45 (metgas) can be achieved (eq. 3) by BRM and it is optimal for the production of methanol and
46 dimethyl ether, which are blueprinted as the renewable CO_2 -recycling synthetic fuels to substitute

47 the conventional fossil fuels in the near future [3, 5-7]. Nickel, with low cost and high reactivity
48 for CH₄, has been widely investigated as methane reforming catalysts [1, 8, 9]. However, Ni-based
49 catalysts face the challenge of sintering and coking. Especially, the side reactions (e.g., CH₄
50 cracking and Boudouard reactions) result in carbon growth and high pressure drop in fixed bed
51 reactors [10-12]. To inhibit carbon growth and accumulation, constructing a metal-oxide interface
52 (e.g., introducing promoter or overcoating) and enhancing the concentration of interfacial oxygen
53 surrounding Ni sites can kinetically accelerate the removal rate of carbon intermediates via CO₂
54 oxidation [13].

55

59

60 CeO₂, with reversible valence states and oxygen vacancies, has been proven to be effective to
61 provide active O sites and enhance the performance of catalysts for methane reforming [14]. The
62 intimate contact between Ni and CeO₂ exhibits a strong influence on the catalytic behavior. For
63 instance, Yan et. al utilized plasma-synthesized Ni/CeO₂-SiO₂ with closer Ni-CeO₂ contact than
64 that of the catalyst prepared by the calcination method for DRM, and achieved better activity and
65 stability due to the more reactive O species at Ni-CeO₂ interface [8]. Besides, the morphology of
66 CeO₂ (e.g., nanorod, nanoparticles, or thin-film) has been reported to play a decisive role on the
67 concentration of oxygen vacancies [15-18], which can participate in CO₂ activation [19]. To
68 develop a highly active and stable catalyst for methane reforming, it is desirable to deposit CeO_x
69 with high concentration of oxygen vacancies and construct a sufficient metal-oxide interface.

70

71 Atomic layer deposition (ALD) is a gas phase self-limiting thin film coating technology based on
72 cycle-repeatedly sequential surface reactions [20]. With a desired number of ALD cycles, the
73 layer-by-layer growth could be achieved at the atomic level. For heterogeneous catalysts, ALD
74 has been applied to prepare highly dispersed metal clusters as the active catalytic sites, from single
75 atoms to nm-scale nanoparticles (NPs) [20-23]; ALD can also synthesize ultrathin oxide layer or
76 overcoating, which exhibits unique features in generating additional active sites [21, 24], blocking
77 the undesired sites [25], or constructing functional structure [25, 26] for heterogeneous catalysts.
78 Studies showed that the encapsulating structure of ALD oxide film became discontinuous and
79 partially encapsulating on the active metal sites after high-temperature treatment, which effectively
80 exposed the active metal sites and created desirable metal-oxide interfaces [25, 27-29]. Ascribed
81 to the growth mode of ALD, studies showed that the composition of ALD oxide thin film could
82 be non-stoichiometric and exhibited unique properties, which differs from the oxides prepared by
83 traditional methods [24, 29, 30]. Considering the importance of interfacial oxygen species,
84 depositing a suitable oxide onto Ni/Al₂O₃ catalyst as overcoating can effectively construct an ideal
85 metal-oxide interface and tune the catalytic performance. In this work, a highly active and coke-
86 resistant CeO_x-Ni/Al₂O₃ catalyst was synthesized by Ni ALD on Al₂O₃ support, followed by CeO_x
87 ALD. CeO_x ALD exhibited unique properties and enhanced the catalytic performance of Ni/Al₂O₃,
88 enabling to tune the H₂/CO ratio for the BRM reaction.

89

90 **2. Experimental**

91 2.1. Catalyst preparation

92 Ni/Al₂O₃ catalyst was synthesized by depositing Ni NPs onto α -Al₂O₃ NPs (Alfa Aesar, 99+%, 80
93 nm, US3008) using ALD in a home-made fluidized bed reactor [31], as shown in Figure S1.
94 Bis(cyclopentadienyl)nickel (NiCp₂, Alfa Aesar) and hydrogen (Airgas, 99.99%) were used as
95 precursors, and N₂ (Airgas, 99.99%) was used as a carrier gas or flush gas. Before ALD, α -Al₂O₃
96 NPs were loaded in the reactor and preheated at 150 °C overnight to remove moisture. Then, the
97 reactor temperature was set at 300 °C for Ni ALD. For a typical Ni ALD cycle, NiCp₂ was dosed
98 into the ALD reactor by heating a NiCp₂ bubbler at 90 °C and delivering the vaporized NiCp₂ with
99 6 mL/min N₂ for 300 s to initiate the first half-reaction. The ALD reactor was flushed by N₂ flush
100 for 600 s to remove excess NiCp₂ and by-products, followed by vacuum evacuation for 20 s. For
101 the second half-reaction, 20 mL/min H₂ was dosed into the reactor for 300 s to react with the
102 chemisorbed NiCp₂ and generate Ni NPs, followed by the clean-up using N₂ flush and evacuation.
103 In this work, 5 cycles of Ni ALD were applied to synthesize Ni NPs and the catalyst was labeled
104 as Ni/Al₂O₃.

105

106 CeO_x ALD was conducted to deposit CeO_x overcoating onto the Ni/Al₂O₃ catalyst in the same
107 ALD reactor. Tris(i-propylcyclopentadienyl)cerium (Ce(iPrCp)₃, Strem Chemicals, 99.9%) and
108 deionized water were used as the precursors for CeO_x ALD and N₂ was used as a carrier gas. The
109 reactor temperature was set at 200 °C. For a typical CeO_x ALD cycle, Ce(iPrCp)₃ was dosed into
110 the reactor by heating a Ce(iPrCp)₃ bubbler at 150 °C and delivering the vaporized Ce(iPrCp)₃
111 with 15 mL/min N₂ for 60 s, followed by the reactor clean-up using N₂ flush and evacuation. Then,
112 H₂O was dosed into the reactor for 60 s to react with the chemisorbed Ce(iPrCp)₃ and generate the
113 CeO_x overcoating, followed by inert gas flush and vacuum evacuation process. In this work, 10,
114 30, 60, and 90 cycles of CeO_x ALD were applied on the Ni/Al₂O₃ catalyst, and the catalyst was

115 labeled as 10CeO_x-Ni/Al₂O₃, 30CeO_x-Ni/Al₂O₃, 60CeO_x-Ni/Al₂O₃, and 90CeO_x-Ni/Al₂O₃,
116 respectively. For ease of characterization, 200 cycles of CeO_x ALD were applied on Ni/Al₂O₃ and
117 the catalyst was labeled as CeO_x-Ni/Al₂O₃.

118

119 For comparison, Al₂O₃ ALD was conducted to deposit Al₂O₃ overcoating onto the Ni/Al₂O₃
120 catalyst in the same reactor. Trimethylaluminum (TMA, Sigma-Aldrich) and deionized water were
121 used as the precursors for Al₂O₃ ALD and N₂ was used as the carrier gas. The ALD reaction
122 temperature was 150 °C for Al₂O₃ ALD. For a typical Al₂O₃ ALD cycle, TMA was dosed into the
123 reactor for 300 s, followed by the reactor clean-up using N₂ flush and evacuation. Then, H₂O was
124 dosed into the reactor for 300 s to react with the chemisorbed TMA and generate Al₂O₃ thin film,
125 followed by the reactor clean-up process. 10 cycles of Al₂O₃ were applied to achieve the similar
126 thickness of CeO_x thin film on 60CeO_x-Ni/Al₂O₃ based the ALD thin film growth rates. The
127 catalyst was labeled as Al₂O₃-Ni/Al₂O₃.

128

129 For comparison, liquid-based incipient wetness method was conducted to deposit CeO₂ as a
130 promoter onto the Ni/Al₂O₃ catalyst. Ni/Al₂O₃ particles were impregnated in an aqueous solution
131 of Ce(NO₃)₃ (Alfa Aesar, 99.99%) for 1 h (with a similar amount of CeO_x on 60CeO_x-Ni/Al₂O₃),
132 dried at 100 °C in an oven, and then calcinated in the air in a tubular furnace at 500 °C for 3 h. The
133 catalyst was labeled as iwCeO₂/Ni/Al₂O₃.

134

135 2.2. Bi-reforming of methane reaction

136 A home-made fixed bed reactor system was built for bi-reforming of methane reaction, as shown
137 in Figure S2. The reactant control and delivery system were achieved by mass flow controllers

138 (MKS Instruments) for controlling gas flow rates and a syringe pump (Chemtex Fusion 101) for
139 controlling water flow rate. To ensure the gasification of water, heating tapes (Omega Engineering)
140 were used to heat up the water feeding line to 120 °C. A quartz tube with an inner diameter of 10
141 mm was used as a reactor, which was placed vertically and heated by a tubular furnace (Carbolite
142 Gero, Ltd.). A K-type thermocouple (Omega Engineering) was positioned right above the catalyst
143 bed to monitor the reactor temperature. One on-line gas chromatograph (SRI 8610C) was used to
144 analyze the products, with a 6-foot Hayesep D column and TCD detector. A cold trap tank was
145 used to condense any by-product water from the product gas before it entered into the GC.

146

147 For the BRM reaction, ~50 mg catalyst particles were loaded on ~30 mg quartz wool in the quartz
148 tube reactor. A reduction procedure was conducted at 800 °C for 1 h using 20%H₂/80%Ar (v/v%)
149 mixture with a flow rate of 100 mL/min. After reduction, the temperature was set at a desired
150 temperature and the reactant gases (i.e., CH₄, CO₂, and gas-phase H₂O) were introduced into the
151 reactor.

152

153 2.3. Catalyst characterizations

154 Transmission electron microscopy (TEM) was conducted using an FEI Tecnai F20 TEM
155 instrument to measure the Ni particle size and acquire the morphology of the catalysts. X-ray
156 photoelectron spectroscopy (XPS) was conducted using a Kratos Axis 165 X-ray photoelectron
157 spectrometer to determine the chemical states of different elements. XRD was conducted on an X-
158 Pert Multi-purpose diffractometer to access the phase information of the catalysts.

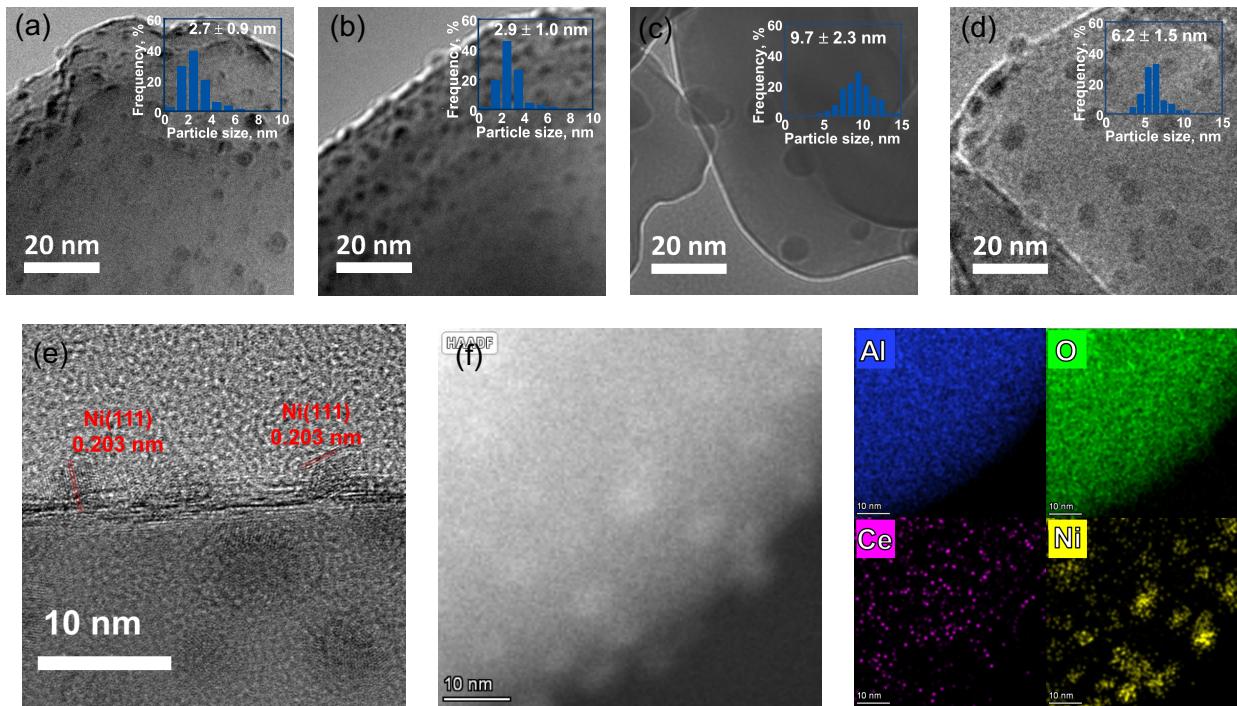
159

160 H₂-temperature programmed reduction (H₂-TPR) was conducted using a Micromeritics AutoChem
161 II 2920 instrument. The catalysts were first pretreated in Ar at 300 °C for 1 h. Then, H₂-TPR was
162 performed using 10%H₂/90%Ar (v/v%) from 50 to 900 °C with a temperature increasing rate of
163 10 °C/min. The H₂ pulse chemisorption experiment was also conducted on this Micromeritics
164 AutoChem II 2920 instrument. The sample was first pretreated in a H₂/Ar (mixed at 10/90 vol%)
165 flow for 1 h and flushed in Ar for 1 h at 700 °C. After cooling down to 50 °C in Ar, the samples
166 underwent the cycles of H₂/Ar pulse and Ar pulse.

167

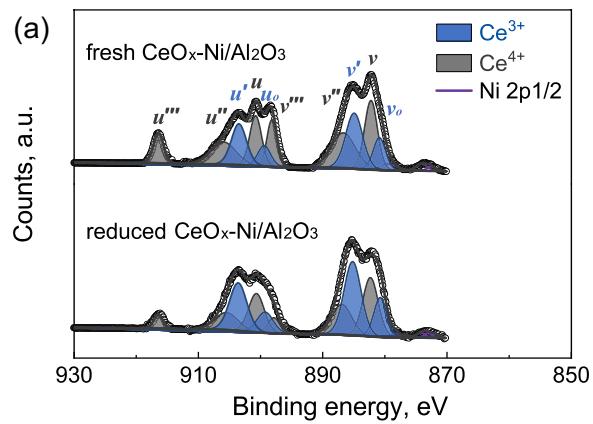
168 Thermogravimetric analysis (TGA) was conducted using a TA Instrument Q50 analyzer. The
169 sample underwent a temperature ramping from room temperature to 200 °C, holding at 200 °C for
170 1 h, and temperature ramping from 200 to 800 °C at 10 °C /min in 40 mL/min Ar.

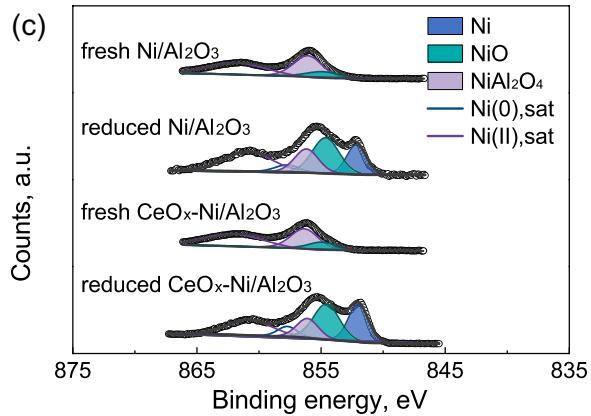
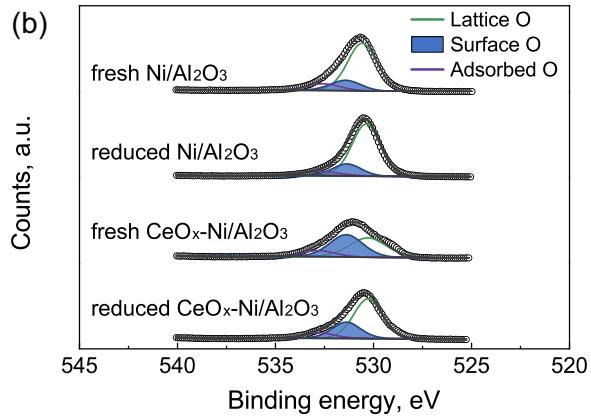
171


172 CO₂-temperature programmed desorption (CO₂-TPD) and O₂-temperature programmed oxidation
173 (O₂-TPO) were conducted using the methane reforming reactor. A mass spectrometer (Stanford
174 Research System, QMS 200) with a pressure-time mode was used to detect and record the gas
175 signal. The m/e value of the MS signal was taken to identify the gas species (e.g., 40 for Ar, 28 for
176 CO, 44 for CO₂, and 32 for O₂). For CO₂-TPD, the catalyst was first reduced at 800 °C using H₂,
177 then CO₂ saturation in 20 mL/min 20%CO₂/80%Ar (v/v%) mixture for 1 h at 80 °C and Ar flush
178 in 20 mL/min Ar for 1 h at 80 °C. After this pretreatment, CO₂-TPO was performed in Ar, starting
179 from 80 to 700 °C with a temperature increasing rate of 10 C/min. For O₂-TPO, the spent catalysts
180 were first pretreated in Ar at 100 °C for 1 h r and then oxidized in 20%O₂/80%Ar (v/v%) from 100
181 to 800 °C.

182

183 **3. Results and Discussion**


184 **3.1. Material characterizations**



185 TEM was conducted to determine the morphology of the Ni/Al₂O₃ and 60CeO_x-Ni/Al₂O₃ catalysts.
186 As shown in Figure 1a, the average size of Ni NPs (in oxidized state) on the ALD-prepared
187 Ni/Al₂O₃ was 2.7 ± 0.9 nm, which is much smaller than those prepared by the traditional incipient
188 wetness method. After 60 cycles of CeO_x ALD, the average size of Ni NPs (in oxidized state) on
189 60CeO_x-Ni/Al₂O₃ was about 2.9 ± 1.0 nm, which was almost the same as that of the pristine
190 Ni/Al₂O₃. Since the CeO_x ALD process was conducted at a mild temperature of 200 °C, there was
191 no obvious sintering of Ni NPs during the CeO₂ ALD coating process. For the reduced catalysts,
192 the average size of the reduced Ni/Al₂O₃ catalyst is 9.7 ± 2.3 nm and the average size of the reduced
193 60CeO_x-Ni/Al₂O₃ catalyst is 6.2 ± 1.5 nm, which indicates the CeO_x overcoating inhibited the
194 sintering of the Ni during the high-temperature reduction process. As a bottom-up synthesis
195 strategy, ALD can create an ultra-thin CeO_x overcoating on Ni/Al₂O₃ surface conformally and help
196 prevent sintering. The lattice spacing of 0.203 nm could be observed with the HRTEM analysis,
197 which was ascribed to the (111) of metallic Ni. The element mapping result in Figure 1f exhibited
198 the uniform distribution of CeO_x overcoating on both Ni and Al₂O₃, which confirms the Ni-CeO_x-
199 interface. In addition, XRD was conducted to determine the phase structure of Ni/Al₂O₃ and CeO_x-
200 Ni/Al₂O₃, as shown in Figure S3. It could be seen that the main peaks were assigned to α -Al₂O₃,
201 with a small amount of NiO. The peaks assigned to any cerium oxide could be hardly seen,
202 probably due to the low loading or the amorphous structure.

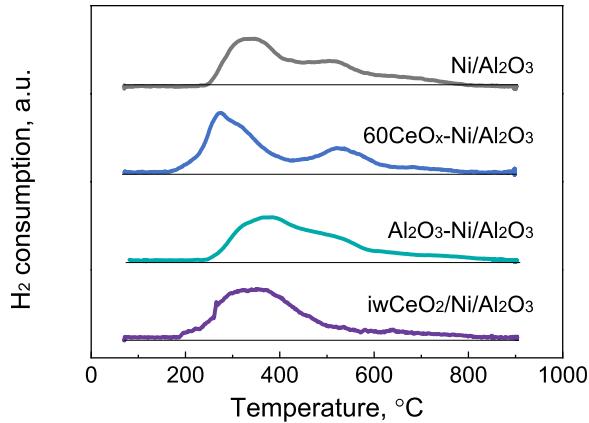
205 Figure 1. TEM images of (a) fresh Ni/Al₂O₃, (b) fresh 60CeO_x-Ni/Al₂O₃, (c) reduced Ni/Al₂O₃,
 206 and (d-f) reduced 60CeO_x-Ni/Al₂O₃. (f) EDS elemental mapping of Al, O, Ce, and Ni for reduced
 207 60CeO_x-Ni/Al₂O₃. The inset images show the size distribution of Ni NPs.

208

213 Figure 2. XPS spectra of (a) Ce3d for fresh CeO_x-Ni/Al₂O₃ and reduced CeO_x-Ni/Al₂O₃, (b) O 1s,
 214 and (c) Ni 2p3/2 for fresh Ni/Al₂O₃, reduced Ni/Al₂O₃, fresh CeO_x-Ni/Al₂O₃, and reduced CeO_x-
 215 Ni/Al₂O₃.

216

217 To examine the property of CeO_x thin films prepared by ALD, XPS was conducted on the fresh
 218 and reduced ALD-prepared CeO_x-Ni/Al₂O₃ and iwCeO₂/Ni/Al₂O₃ catalysts in Figure 2 and Figure
 219 S4. All spectra were calibrated by fixing adventitious carbon at 284.5 eV (C1s in Figure S4). For
 220 the Ce element in Figure 2a, the Ce(IV) peaks included ν at 882.3 eV, ν'' at 886.7 eV, ν''' at 897.8
 221 eV, u at 899.3 eV, u'' at 903.5 eV, and u''' at 916.4 eV [32, 33]. The Ce(III) peaks included ν_o at
 222 880.8 eV, ν' at 885.2 eV, u_o at 899.3 eV and u' at 903.5 eV [32, 33]. To have a quantitative


223 comparison, the Ce(III) contents were calculated from the $(v_o + v' + u_o + u')\%$ for the ALD-prepared
224 and IW-prepared catalysts. Besides, the characteristic u'' peak, without any overlapping with other
225 peaks, could represent the relative Ce(IV) content and was used to indicate the Ce(IV) amount.
226 The Ce(III) content of the fresh ALD-prepared $\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ was 38.0%, with u'' peak as Ce(IV)
227 representative at 4.7%. Based on the Ce 3d results, there was more Ce(III) in the ALD-prepared
228 $\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ catalyst. For cerium oxide, the content of Ce(III) is generally considered a
229 significant indicator of the oxygen storage capacity, which assists the surface reaction and
230 enhances the catalytic activity [33]. For the ALD-prepared catalyst, the higher amount of Ce(III)
231 should be ascribed to the unique ALD growth mode, because $\text{Ce}(\text{iPrCp})_3$ and H_2O would react to
232 form $\text{Ce}(\text{OH})_3$ initially, and the ultra-thin film structure could favor the existence of Ce(III) [34-
233 36]. Therefore, the ALD-prepared CeO_x overcoating had more Ce(III) than that prepared by the
234 traditional liquid method and could participate in the surface reaction during methane reforming.
235 During the H_2 -reduction process, the chemical states of Ce in Figure 2a and O in Figure 2b also
236 significantly changed. In the spectrum of Ce 3d, there was a higher Ce(III) content for $\text{CeO}_x\text{-}$
237 $\text{Ni/Al}_2\text{O}_3$, with the Ce(III) ratio of 50.8% based on $(v_o + v' + u_o + u')\%$ and the diagnostic peak (u'')
238 of 1.9 % for Ce(IV). For the IW-prepared $\text{iwCeO}_2\text{/Ni/Al}_2\text{O}_3$ catalyst, the fresh catalyst had a Ce(III)
239 content at 22.4% and $u''\%$ peak as Ce(IV) representative at 6.4%. After reduction, the reduced
240 catalyst had a Ce(III)% content of 42.7 % and $u''\%$ of 4.6 % for the $\text{iwCeO}_2\text{/Ni/Al}_2\text{O}_3$ catalyst.
241 Compared with the spectra of the fresh $\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ catalysts with Ce(III)% of 40.0 % and $u''\%$
242 of 4.8 %, the Ce(III) content for the reduced catalyst was higher, indicating the reduction of Ce(IV).
243 Owning to the variable valences of Ce(III) and Ce(IV), Ce(IV) was reduced to Ce(III) during H_2 -
244 reduction, and more oxygen vacancies were generated to keep the electronic balance of Ce(III)
245 [18, 41].

247 The oxygen species were investigated using XPS for Ni/Al₂O₃, ALD-overcoated CeO_x-Ni/Al₂O₃,
248 ALD-overcoated Al₂O₃-Ni/Al₂O₃, and IW-promoted iwCeO₂/Ni/Al₂O₃. The O species were
249 deconvoluted to three peaks, including the lattice O at ~ 530.5 eV for O of the metal oxide, the
250 surface O at ~ 531.5 eV for low coordinated oxygen atoms, and the adsorbed O at ~532.7 eV from
251 adsorbed H₂O [37]. Especially, the surface oxygen consists of hydroxyl oxygen and deficient
252 oxygen sites, which are important surface species. As shown in Figure 2b, the content of surface
253 O in Ni/Al₂O₃ was about ~15%, which was smaller than ~45% of the CeO_x-Ni/Al₂O₃ catalyst. For
254 comparison, the content of surface O for the ALD-overcoated Al₂O₃-Ni/Al₂O₃ catalyst reached
255 ~54% and the content of surface O for IW-promoted iwCeO₂/Ni/Al₂O₃ reached ~23% in Figure
256 S4. For the ALD-overcoated catalysts, the high content of the surface O indicated a large number
257 of hydroxyls, regardless of CeO_x ALD or Al₂O₃ ALD overcoating. Besides, the higher content of
258 surface O in the iwCeO₂/Ni/Al₂O₃ catalyst indicated that the CeO₂ promoter also increased the
259 surface O for Ni/Al₂O₃ and didn't decrease after high temperature reduction, which was ascribed
260 to the oxygen vacancies with Ce⁴⁺/Ce³⁺. Therefore, the surface O of the ALD-overcoated CeO_x-
261 Ni/Al₂O₃ resulted from both the hydroxyl groups and oxygen vacancies. For O 1s of the samples
262 after reduction, the surface O for ALD-overcoated CeO_x-Ni/Al₂O₃ was about 26.4 %, which was
263 higher than 17.2% for Ni/Al₂O₃, 20.1% for Al₂O₃-Ni/Al₂O₃, and 21.0% for iwCeO₂/Ni/Al₂O₃. For
264 the ALD-overcoating catalysts (i.e., CeO_x-Ni/Al₂O₃ and Al₂O₃-Ni/Al₂O₃), the surface O
265 significantly decreased after high-temperature reduction, which was ascribed to the removal of
266 hydroxyl groups at high temperature, whereas the CeO_x-Ni/Al₂O₃ catalyst still had a high amount
267 of surface oxygen. Comparing CeO_x-Ni/Al₂O₃ and Al₂O₃-Ni/Al₂O₃, the higher surface O of CeO_x-
268 Ni/Al₂O₃ should result from the oxygen vacancies. The higher amount of oxygen vacancies after

269 reduction for reduced $\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ was also confirmed by the spectra of Ce 3d. For the bi-
270 reforming of methane, the high amount of oxygen vacancies could serve as the activation sites for
271 CO_2 and enhance the catalytic performance.

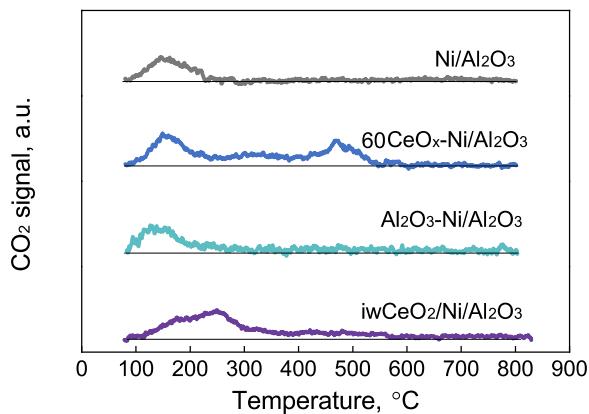
272

273 Figure 2 and Figure S4 depict the XPS spectra for the reduced $\text{Ni/Al}_2\text{O}_3$, reduced $\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$,
274 reduced $\text{Al}_2\text{O}_3\text{-Ni/Al}_2\text{O}_3$, and reduced $\text{iwCeO}_2\text{/Ni/Al}_2\text{O}_3$ catalysts. For Ni 2p 3/2, the peaks could
275 be deconvoluted into different Ni species as metallic Ni at $\sim 852.1\text{ eV}$, NiO at $\sim 854.5\text{ eV}$, NiAl_2O_4
276 at $\sim 856.2\text{ eV}$, and satellite peaks due to shake-up phenomena, including Ni(0),sat at $\sim 857.8\text{ eV}$
277 and Ni(II),sat at $\sim 860.8\text{ eV}$ [38, 39]. Especially, the spinel NiAl_2O_4 was highly thermal stable
278 with a reduction temperature of $\sim 800\text{ }^\circ\text{C}$, whereas NiO was easily reduced to Ni at high
279 temperatures and highly reductive DRM reaction conditions. For the fresh catalyst (Figure S4), a
280 high amount of NiAl_2O_4 indicates that the interaction between NiO and Al_2O_3 for ALD-prepared
281 $\text{Ni/Al}_2\text{O}_3$ was very strong, which was due to the chemisorption-based growth mechanism [40].
282 Under this circumstance, the presence of NiAl_2O_4 after reduction treatment could be considered
283 an incomplete reduction, which could lead to the activity loss. Comparing the different catalysts
284 after reduction in Figure 2c and Figure S4e, the content of NiAl_2O_4 was 17.6% for $\text{Ni/Al}_2\text{O}_3$, 13.8%
285 for $\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$, 26.4% for $\text{Al}_2\text{O}_3\text{-Ni/Al}_2\text{O}_3$, and 14.1% for $\text{iwCeO}_2\text{/Ni/Al}_2\text{O}_3$. Based on the
286 chemical states of Ni, the CeO_x ALD overcoating, or CeO_2 IW promoter significantly enhanced
287 the reducibility, whereas the Al_2O_3 ALD overcoating exhibited a negative effect on the reducibility
288 due to the formation of NiAl_2O_4 . In this case, CeO_x ALD effectively weakened the metal-support
289 interaction (i.e., Ni- Al_2O_3 interaction) and released more Ni from NiAl_2O_4 , while Al_2O_3 ALD
290 overcoating resulted in the formation of more NiAl_2O_4 .

291

292 Figure 3. H₂-TPR spectra of Ni/Al₂O₃, 60CeO_x-Ni/Al₂O₃, Al₂O₃-Ni/Al₂O₃, and iwCeO₂/Ni/Al₂O₃.

293


294 To characterize the metal-support interactions and probe the effects of CeO_x ALD thin film, H₂-
 295 TPR was conducted for Ni/Al₂O₃, ALD-overcoated 60CeO_x-Ni/Al₂O₃, ALD-overcoated Al₂O₃-
 296 Ni/Al₂O₃, and IW-promoted iwCeO₂/Ni/Al₂O₃, as shown in Figure 3. Depending on the extent of
 297 Ni diffusion into the Al₂O₃ lattice, a higher reduction temperature is necessary for the species with
 298 a greater extent of diffusion/interaction and various species can be identified by TPR [42],
 299 including free NiO without any interaction, NiO-Al₂O₃ with interaction, and NiAl₂O₄ with spinel
 300 crystallization [40, 42]. For Ni/Al₂O₃, the dominant peak at ~340 °C was assigned to NiO, the peak
 301 at ~515 °C was assigned to NiO-Al₂O₃, and the peak >700 °C was assigned to NiAl₂O₄. Therefore,
 302 Ni(II) peaks in Ni/Al₂O₃ mainly consisted of free NiO and NiO-Al₂O₃, with a reduction degree at
 303 72%. For ALD-overcoated 60CeO_x-Ni/Al₂O₃, the NiO peak was at ~280 °C and the NiO-Al₂O₃
 304 peak was at ~520 °C. Clearly, CeO_x ALD facilitated the reduction process of the free NiO sites
 305 because the free NiO shifted to a lower temperature. The reduction degree for the 60CeO_x-
 306 Ni/Al₂O₃ was about 77%, indicating that the CeO_x ALD promoted the reduction of Ni sites. For
 307 ALD-overcoated Al₂O₃-Ni/Al₂O₃, the NiO peak and the NiO-Al₂O₃ peak almost remained in the

308 same position as those of Ni/Al₂O₃ with similar reduction degree at 71%, but the peaks became
309 broadened, especially the NiO-Al₂O₃ peak, indicating that Al₂O₃ ALD films interacted with Ni
310 sites. Regarding the reducibility, CeO_x ALD overcoating was beneficial to the catalytic activity as
311 compared to Al₂O₃ as the overcoating material. As for iwCeO₂/Ni/Al₂O₃, the overall peak was
312 shifted to lower temperatures, including ~320 °C for NiO and ~470 °C for NiO-Al₂O₃, with a
313 reduction degree of 79%. Especially, the promoting effect of IW CeO₂ on NiO-Al₂O₃ might arise
314 from the interaction between NiO-CeO₂ and the possible formation of NiO-CeO₂ after calcination,
315 because the introduction of CeO₂ by the incipient wetness method requires a high temperature
316 calcination at 500 °C. The difference between ALD-overcoated CeO_x-Ni/Al₂O₃ and IW-promoted
317 iwCeO₂/Ni/Al₂O₃ could result from the morphology of ALD CeO_x films, because the role of CeO_x
318 overcoating was prepared by surface modification instead of bulk transformation. Therefore, CeO_x
319 ALD provided an efficient Ni-CeO_x interface and promoted the reducibility of Ni sites for the
320 Ni/Al₂O₃ catalyst.

321

322 Although the stoichiometry of the bi-reforming of methane can be realized by the combination of
323 SRM and DRM, the competition between SRM and DRM reactions should be considered for
324 practical application. Especially, the surface reaction competition between SRM and DRM can be
325 determined by the activation process of H₂O and CO₂ on the surface oxygen sites. To evaluate the
326 surface oxygen and the CO₂ affinity, CO₂ temperature-program desorption (CO₂-TPD) was
327 performed. According to the desorption temperature, the basic sites can be classified as weak basic
328 sites < 200 °C for physical adsorption or Brønsted basic sites (e.g., -OH group), medium basic sites
329 at 200-350 °C for Lewis acid-base pair Ce⁴⁺-O²⁻, and strong basic sites >350 °C for oxygen
330 vacancies or oxygen defects [33, 43]. As shown in Figure 4, the peaks for the Ni/Al₂O₃ catalyst

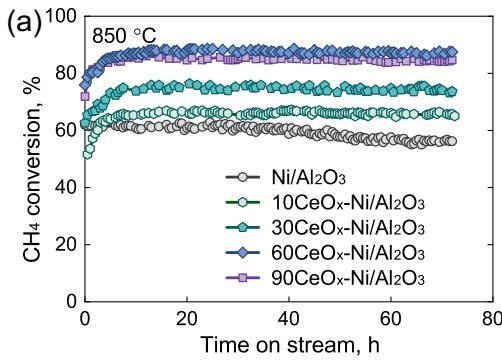
331 mainly consisted of weak basic sites due to the acidic and -OH-rich properties of Al_2O_3 . For the
332 same reason, Al_2O_3 ALD failed to enhance the medium basic sites or strong basic sites of the
333 catalyst. In contrast, the addition of CeO_2 enhanced both the basic sites and strong basic sites by
334 IW or ALD method, because of the basic nature of CeO_2 . However, the ALD-deposited CeO_x
335 exhibited stronger basic properties in terms of quantity and strength, and thus a higher CO_2 affinity
336 than that of the IW-prepared CeO_2 . For $\text{iwCeO}_2/\text{Ni}/\text{Al}_2\text{O}_3$, the introduction of CeO_2 by the IW
337 method significantly increased the medium basic sites and provided a small amount of the strong
338 basic sites. For $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, the deposition of CeO_x by ALD brought both medium basic
339 sites and strong basic sites, especially for the strong basic sites. In comparison, the high amount of
340 strong basic sites indicated there were more oxygen vacancies for the catalyst with CeO_x ALD
341 overcoating. The high CO_2 affinities and special oxygen sites for CeO_x ALD overcoated catalyst
342 should result from the thin-film structure and unique growth mode. It has been reported that the
343 oxygen vacancies of CeO_2 can be tuned by its morphology and structure and a thin film structure
344 enabled the high amount of oxygen vacancies [15-18]. As ascribed to the layer growth mode of
345 ALD thin films [36], the $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst with CeO_x ALD overcoating would have enhanced
346 catalytic activity due to the oxygen vacancies of CeO_x .

347

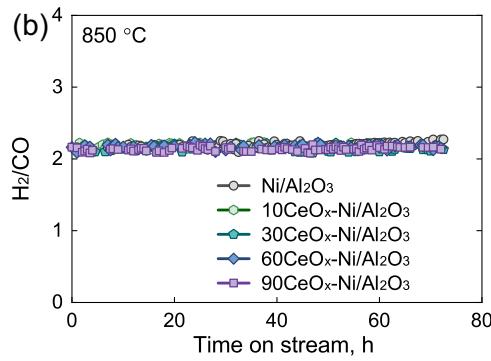
348 Figure 4. CO₂-TPD spectra of Ni/Al₂O₃, 60CeO_x-Ni/Al₂O₃, Al₂O₃-Ni/Al₂O₃, and
 349 iwCeO₂/Ni/Al₂O₃.

350

3.2. Catalytic performance for bi-reforming of methane


352 The equilibrium of bi-reforming of methane by co-feeding CH₄, H₂O, and CO₂ was calculated
353 using the Gibbs reactor and Soave-Redlich-Kwong equation of state in ChemCAD, as shown in
354 Figure S5. At varying temperatures, the equilibrium conversion of CH₄ was almost the same at all
355 conditions, but the H₂/CO ratio was very different and varied with the feeding. Here, the H₂/CO
356 ratio from the direct stoichiometric combination of SRM and DRM was used for the comparison
357 with the equilibrium value (see Supporting Information). The difference between the direct
358 stoichiometric value and the equilibrium value was mainly caused by the water-gas shift reaction
359 or reverse water-gas shift reaction (WGS/RWGS). A higher temperature drives the equilibrium
360 H₂/CO molar ratio towards 2, indicating a weaker effect of the WGS/RWGS at a higher
361 temperature. Besides, the H₂/CO ratio exhibited a tunable ratio at varying inlet feed of CH₄, H₂O,
362 and CO₂.

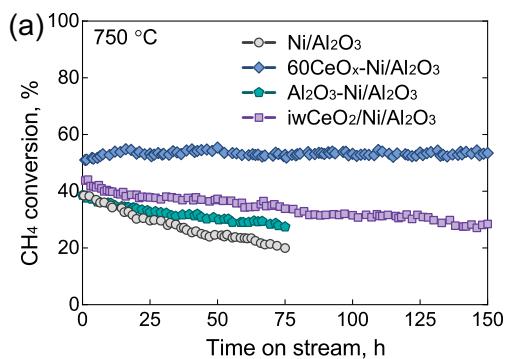
363

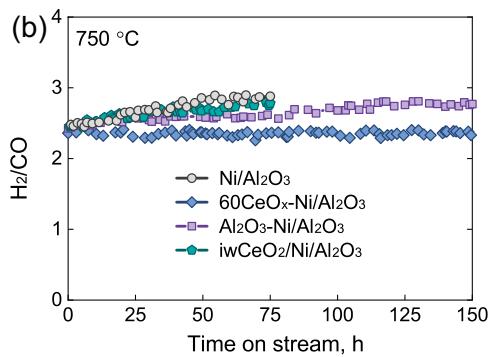

364 Bi-reforming of methane with $\text{CH}_4/\text{H}_2\text{O}/\text{CO}_2=3/2/1$ as a feedstock was conducted using the
 365 $\text{Ni}/\text{Al}_2\text{O}_3$ and ALD CeO_x -overcoated $\text{Ni}/\text{Al}_2\text{O}_3$ catalysts. Figures 5a and 5b show the CH_4
 366 conversion and H_2/CO for BRM reaction at 850 °C. As shown in Figure 5a, the CH_4 conversion of
 367 $\text{Ni}/\text{Al}_2\text{O}_3$ reached 61.9% at the initial stage, and then gradually decreased to 56.4% after 72 h at
 368 850 °C. In contrast, the CeO_x -overcoated $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst exhibited better stability and activity.
 369 Notably, all CeO_x -overcoated $\text{Ni}/\text{Al}_2\text{O}_3$ catalysts exhibited an activation process in the initial 5 h
 370 of reaction, which might be ascribed to the formation of CeAlO_3 and further reduction of NiAl_2O_4 .

371 to metallic Ni, as discussed in our previous work [40, 44], and then a stable conversion could be
 372 reached. In this work, 60 cycles of CeO_x exhibited an optimal effect on the $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst for
 373 the BRM reaction. The highest conversion at 87.2% was achieved for the $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$
 374 catalyst due to the optimum loading of the CeO_2 overcoating with 60 cycles of CeO_2 ALD, which
 375 is much better than that of the uncoated, $10\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, $30\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, and $90\text{CeO}_2\text{-}$
 376 $\text{Ni}/\text{Al}_2\text{O}_3$ catalysts. In Figure 5b, the H_2/CO of $\text{Ni}/\text{Al}_2\text{O}_3$ and CeO_x -overcoated $\text{Ni}/\text{Al}_2\text{O}_3$ reached
 377 ~ 2.05 , which is close to the value of 2 for the stoichiometric combination DRM/SMR with a
 378 feedstock ratio of $\text{CH}_4/\text{H}_2\text{O}/\text{CO}_2=3/2/1$.

379

380

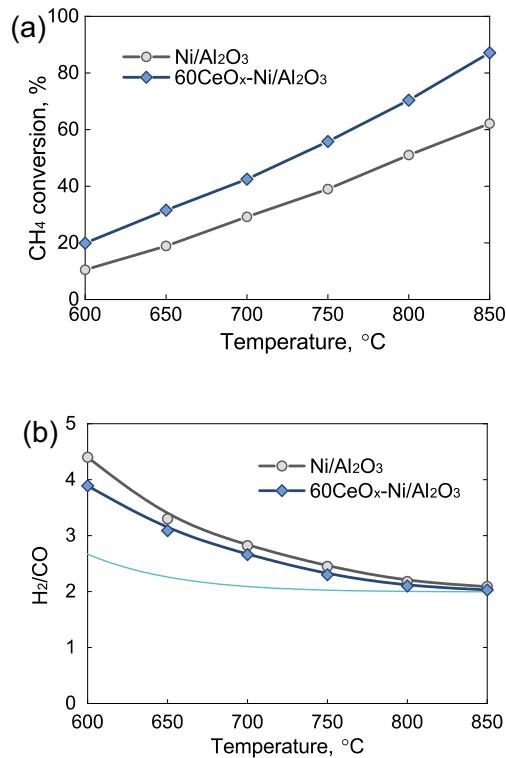



381 Figure 5. (a) CH_4 conversion and (b) H_2/CO ratio of BRM as a function of time on stream using
 382 $\text{Ni}/\text{Al}_2\text{O}_3$, $10\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, $30\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, and $90\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$.
 383 Reaction conditions: 50 mg catalyst, 30 mL/min CH_4 , 10 mL/min CO_2 , 20 mL/min H_2O (gas
 384 phase), at 850 °C.

385

386 Bi-reforming of methane with $\text{H}_2\text{O}/\text{CO}_2/\text{CH}_4=2/1/3$ was also tested at 750 °C, as shown in Figure
387 6. The deactivation of $\text{Ni}/\text{Al}_2\text{O}_3$ at 750 °C was more severe than the test at 850 °C using the same
388 catalyst. The CH_4 conversion for $\text{Ni}/\text{Al}_2\text{O}_3$ decreased from 39.4% to 19.8% in 72 h, which could
389 be ascribed to the oxidation of the Ni surface and coke formation at a lower reaction temperature.
390 The Al_2O_3 ALD overcoated Al_2O_3 - $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst and the CeO_2 IW promoted $\text{iwCeO}_2/\text{Ni}/\text{Al}_2\text{O}_3$
391 catalyst exhibited better stability than that of $\text{Ni}/\text{Al}_2\text{O}_3$, but there was still gradual deactivation. In
392 contrast, the CeO_x ALD overcoated 60CeO_x - $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst greatly enhanced the stability and
393 activity for BRM, with a stable conversion at 53.5% during a test of 150 h. As for the product, the
394 H_2/CO ratio of BRM using the $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst increased from 2.45 to 2.88, which could be
395 ascribed to the limited water-gas shift reaction. For the 60CeO_x - $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst, the H_2/CO ratio
396 was kept at ~2.34. Therefore, the CeO_x ALD overcoating successfully decorated the Ni sites and
397 enhanced the catalytic performance due to its high oxygen vacancy properties and sufficient Ni-
398 CeO_x interface.

399


400

401 Figure 6. (a) CH_4 conversion and (b) H_2/CO ratio of BRM as a function of time on stream using
 402 $\text{Ni}/\text{Al}_2\text{O}_3$, $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, $\text{Al}_2\text{O}_3\text{-Ni}/\text{Al}_2\text{O}_3$, and $\text{iwCeO}_2\text{/Ni}/\text{Al}_2\text{O}_3$ as catalysts. Reaction
 403 conditions: 50 mg catalyst, 30 mL/min CH_4 , 10 mL/min CO_2 , and 20 mL/min H_2O (gas phase),
 404 and 750 °C.

405

406 The catalytic behavior of uncoated $\text{Ni}/\text{Al}_2\text{O}_3$ and $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$ for methane reforming was
 407 systematically tested at different temperatures. Figure 7 depicts the CH_4 conversion and H_2/CO
 408 molar ratio for BRM with an inlet feed of $\text{H}_2\text{O}/\text{CO}_2/\text{CH}_4=2/1/3$ at different temperatures. In Figure
 409 7a, the enhanced activity was observed for $60\text{CeO}_2\text{-Ni}/\text{Al}_2\text{O}_3$ at varying temperatures, verifying
 410 the promoting effects of CeO_x ALD overcoating. In Figure 7b, the H_2/CO ratio for uncoated
 411 $\text{Ni}/\text{Al}_2\text{O}_3$ and $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$ was higher than the value based on the stoichiometric combination
 412 (i.e., $\text{H}_2/\text{CO}=2$) or the equilibrium ratio, especially at low temperatures. On one hand, the deviation
 413 between the practical H_2/CO ratio of BRM products and the equilibrium H_2/CO ratio might be
 414 explained by the severe water gas shift reaction. On the other hand, BRM is based on the catalytic
 415 dissociation of CH_4 on Ni sites and the following oxidation by H_2O or CO_2 , so the H_2/CO ratio in
 416 the products should be directly related to the activation process of H_2O or CO_2 . Therefore, the
 417 difference of H_2/CO ratio for the reaction catalyzed by $\text{Ni}/\text{Al}_2\text{O}_3$ and $60\text{CeO}_2\text{-Ni}/\text{Al}_2\text{O}_3$ indicated

418 that CeO_x overcoating could affect the reactant activation. Therefore, the lower H_2/CO ratio for
419 $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ indicated that the CeO_x overcoating could have a better capability in CO_2
420 activation, which was ascribed to the oxygen vacancies of CeO_x ALD.

421

422


423 Figure 7. (a) CH_4 conversion and (b) H_2/CO ratio of BRM as a function of reaction temperature
424 using $\text{Ni/Al}_2\text{O}_3$ and $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$. Reaction conditions: 50 mg catalyst, 30 mL/min CH_4 , 10
425 mL/min CO_2 , and 20 mL/min H_2O (gas phase).

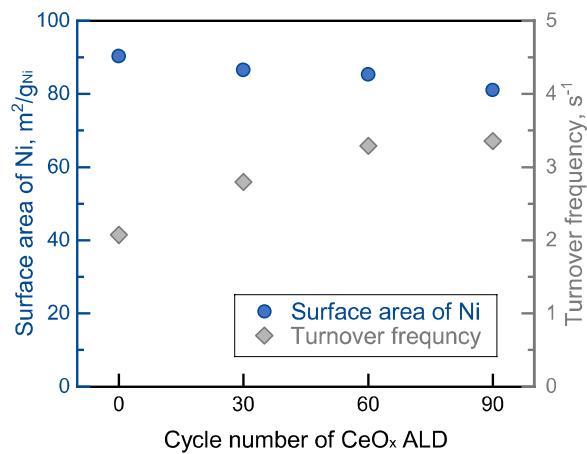
426

427 Figure 8 shows the catalytic performance of uncoated $\text{Ni/Al}_2\text{O}_3$ and $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ at 750 °C
428 and 850 °C with different ratios of $\text{H}_2\text{O}/\text{CO}_2/\text{CH}_4$ but $(\text{H}_2\text{O}+\text{CO}_2)/\text{CH}_4=1$ in the feed as the
429 combination of DRM and SRM. In Figure 8a, the CeO_x ALD overcoating significantly enhanced
430 the CH_4 conversion for $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$, as compared to the uncoated $\text{Ni/Al}_2\text{O}_3$ under different
431 feed conditions. For instance, the CH_4 conversion was 62.6% for $\text{Ni/Al}_2\text{O}_3$ and 87.6% for $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$.

432 Ni/Al₂O₃ with a feed of H₂O/CO₂/CH₄=3/0/3 (which is the case of SRM) at 850 °C. Besides, it
433 was noted that the H₂O/CO₂ ratio in the feed influenced the CH₄ conversion. For instance, the CH₄
434 conversion for 60CeO_x-Ni/Al₂O₃ with feed H₂O/CO₂/CH₄=0/3/3 (which is the case of DRM) was
435 86.2% at 850 °C, and a higher CH₄ conversion was achieved with a higher H₂O content ratio in
436 the feed, reaching CH₄ conversion of 87.2% with a feed of H₂O/CO₂/CH₄=2/1/3, and 87.6% with
437 a feed of H₂O/CO₂/CH₄=2/1/3. The higher conversion for high-content H₂O in feed is more
438 significant for Ni/Al₂O₃, with CH₄ conversion at 750 °C reaching CH₄ conversion of 57.7% with
439 H₂O/CO₂/CH₄=0/3/3 (DRM), 62.1% at H₂O/CO₂/CH₄=2/1/3, and 62.6% at H₂O/CO₂/CH₄=3/0/3
440 (SRM). The influence of H₂O in the feed is more significant at lower temperatures. At 750 °C,
441 60CeO_x-Ni/Al₂O₃ had a CH₄ conversion of 47.9% for DRM and 52.1% for SRM, and Ni/Al₂O₃
442 had a CH₄ conversion of 32.7% for DRM and 41.1% for SRM, indicating that the effects of H₂O
443 on CH₄ conversion were less significant for 60CeO_x-Ni/Al₂O₃. The better performance with a
444 higher H₂O content in the feed might be ascribed to the activation of CO₂. The H₂/CO ratio at 850
445 °C for both catalysts was close to the equilibrium value, whereas the H₂/CO ratio at 750 °C was
446 far from the equilibrium value, especially for Ni/Al₂O₃. Similar to the previous discussion, the
447 H₂/CO ratio might be affected by the water-gas shift reaction and the activation process for H₂O
448 or CO₂. It seems that the CeO_x overcoating could enhance the CO₂ activation and achieve a H₂/CO
449 ratio which was close to the equilibrium value.

450

451

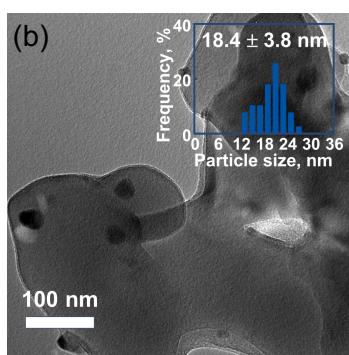
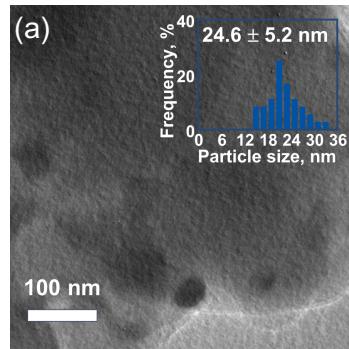

452

453 Figure 8. (a) CH_4 conversion and (b) H_2/CO ratio of BRM as a function of feed conditions using
 454 $\text{Ni}/\text{Al}_2\text{O}_3$ and $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$ as catalysts at $850\text{ }^\circ\text{C}$. (c) CH_4 conversion and (d) H_2/CO ratio of
 455 BRM as a function of feed conditions using $\text{Ni}/\text{Al}_2\text{O}_3$ and $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$ as catalysts at $750\text{ }^\circ\text{C}$.
 456 Reaction conditions: 50 mg catalyst and inlet feed $(\text{H}_2\text{O}+\text{CO}_2)/\text{CH}_4=1$.

457

458 H_2 pulse chemisorption was conducted to demonstrate the confinement effects and the promoting
 459 effects of CeO_x overcoating on $\text{Ni}/\text{Al}_2\text{O}_3$ for BRM reaction, as shown in Figure 9. With the increase
 460 in the cycle number of CeO_x ALD overcoating, the Ni surface area exhibited a decreasing trend,
 461 which indicates that the CeO_x overcoating partially covered the Ni surface and confined the Ni
 462 sites. The turnover frequency (TOF) was also calculated to investigate the intrinsic reaction
 463 activity with the order as follows: $90\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3 \approx 60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3 > 30\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3 >$

464 Ni/Al₂O₃. The increasing TOF value with the increase in the ALD cycle number indicates that the
465 CeO_x overcoating enhanced the intrinsic reaction rate.

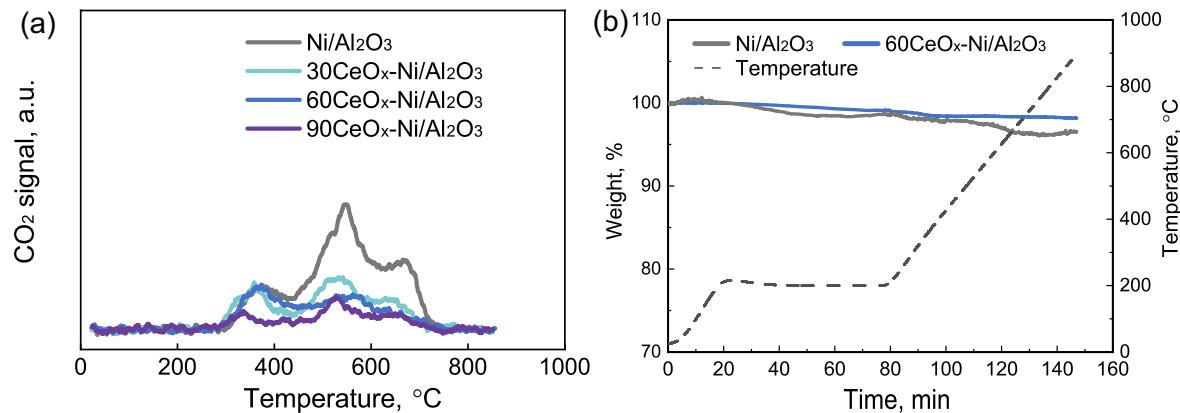


466

467 Figure 9. Ni surface area based on H₂-chemisorption and turnover frequency of methane on Ni
468 sites for bi-reforming of methane as the function of CeO_x ALD cycle number on Ni/Al₂O₃.

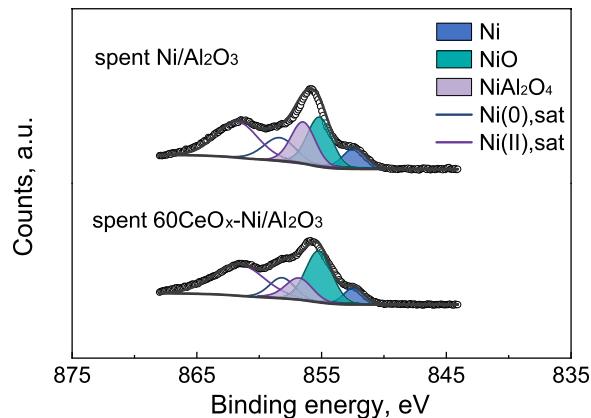
469

470 3.3. Characterizations of spent catalysts

471 The sintering of Ni NPs is generally one of the main reasons for catalyst deactivation. TEM was
472 used to investigate the Ni NPs size for the spent catalysts in Figure 10. For the spent Ni/Al₂O₃
473 catalyst in Figure 10a, the average size for Ni NPs was 24.6 ± 5.2 nm. For the spent 60CeO_x-
474 Ni/Al₂O₃ catalyst in Figure 10b, the average size for Ni was 18.4 ± 3.8 nm. The presence of CeO_x
475 ALD overcoating greatly prevented the mobilization of Ni NPs, possibly due to the Ni-CeO_x
476 interaction or the geometric confinement effect of CeO_x coating [45], thus preventing the sintering
477 of Ni NPs and enhancing the stability of the Ni NPs.



480 Figure 10. TEM images of (a) spent $\text{Ni}/\text{Al}_2\text{O}_3$ and (b) spent $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$ after bi-reforming
481 of methane reaction at $850\text{ }^\circ\text{C}$ for 72 h. The inset images show the size distribution of Ni NPs.


482

483 During SRM or DRM, the catalytic dissociation of methane on metal sites is generally considered
484 as the initial step to generate H and CH_x ($x=0\text{-}3$) and the oxidants (H_2O or CO_2) will undergo
485 dissociation and activation for the oxidation of CH_x . However, the side reactions (CH_4 cracking
486 and Boudouard reaction) share the same species as carbon intermediates in the elementary step
487 and inevitably result in carbon growth [10, 13]. During methane reforming, the carbon formation
488 resulted from the side reactions and the low oxidation rate of coke by the reactants (i.e., H_2O and
489 CO_2). To determine the carbon growth rate during the bi-reforming of methane, $\text{O}_2\text{-TPO}$ was
490 conducted on the spent catalysts. As shown in Figure 11a, spent $\text{Ni}/\text{Al}_2\text{O}_3$, spent $30\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$,
491 spent $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, and spent $90\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$ after bi-reforming of methane at $850\text{ }^\circ\text{C}$ for

492 72 h ($\text{H}_2\text{O}/\text{CO}_2/\text{CH}_4 = 2/1/3$) were tested. The oxidation temperature of the surface carbon on these
493 catalysts ranged from 300 to 750 °C, indicating different carbon species. According to the
494 oxidation temperature, the chemical composition and crystallization of carbon can be determined.
495 The carbon peak at <400 °C was assigned to the carbidic carbon (C_α), the carbon peak at 400-600
496 °C was assigned to the amorphous carbon (C_β), and the carbon peak at > 600 °C was assigned to
497 the graphitic carbon (C_γ) [46, 47]. In this work, all three carbon species resulted from the bi-
498 reforming of methane reaction, especially for the amorphous carbon and graphitic carbon. As for
499 the catalysts with CeO_x ALD overcoating, there exhibited a great decrease in the carbon amount,
500 mainly for the amorphous carbon and graphitic carbon. Studies showed that further graphitization
501 growth was catalyzed on the large Ni NPs and insufficient oxidation rate. The CeO_x overcoating
502 on Ni NPs by made the Ni sites discontinuously exposed, then limited the graphitization growth.
503 Besides, the oxygen sites on CeO_x , especially the oxygen vacancies, provided the activation sites
504 for CO_2 or H_2O and enabled the high concentration of surface O for carbon oxidation. Therefore,
505 a decreasing amount of carbon deposition was found with the increase in the number of CeO_x ALD
506 cycles. TGA was also conducted to determine the carbon deposition on spent $\text{Ni}/\text{Al}_2\text{O}_3$ and spent
507 $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$, as shown in Figure 11b. The catalysts first underwent a preheating process at
508 200 °C to remove any moisture. When the temperature ramped from 200 to 900 °C, the weight of
509 $\text{Ni}/\text{Al}_2\text{O}_3$ decreased from 98.6% to 96.5%, indicating that 2.1 wt.% coke was detected. Besides,
510 the decrease at ~120 min indicates the existence of graphitic carbon. In comparison, the weight of
511 $60\text{CeO}_x\text{-Ni}/\text{Al}_2\text{O}_3$ decreased from 99.0% to 98.2%, indicating 0.8 wt.% coke was detected. The
512 lower coke amount was ascribed to the activation sites of H_2O and CO_2 on Ni-CeO_x interface.
513 Therefore, the suppressing effects of CeO_x overcoating on coking was confirmed for $\text{Ni}/\text{Al}_2\text{O}_3$ in
514 the methane reforming.

517 Figure 11. (a) O₂-TPO of spent Ni/Al₂O₃, 30CeO_x-Ni/Al₂O₃, 60CeO_x-Ni/Al₂O₃, and 90CeO_x-
518 Ni/Al₂O₃, (b) TGA of the spent Ni/Al₂O₃ and spent 60CeO_x-Ni/Al₂O₃. Spent catalysts underwent
519 bi-reforming of methane at 850 °C for 72 h (H₂O/CO₂/CH₄ = 2/1/3).

521 Figure 12. XPS spectra of Ni 2p3/2 of spent Ni/Al₂O₃ and spent 60CeO_x-Ni/Al₂O₃ after bi-
522 reforming of methane at 850 °C for 72 h (H₂O/CO₂/CH₄ = 2/1/3).

523 XPS spectra were collected using the spent Ni/Al₂O₃ and spent 60CeO_x-Ni/Al₂O₃ catalysts after
524 bi-reforming of methane at 850 °C for 72 h, as shown in Figure 12 and Figure S6. For Ni 2p3/2,
525 there was 19.9% NiAl₂O₄ for spent Ni/Al₂O₃ and 13.2% NiAl₂O₄ for spent 60CeO_x-Ni/Al₂O₃. This
526 indicates that the CeO_x overcoating enhanced the reducibility of NiAl₂O₄. Besides, it was noticed

527 that there was more metallic Ni for the spent $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ catalyst than that of spent $\text{Ni/Al}_2\text{O}_3$,
528 which demonstrates that the CeO_x overcoating enhanced the reducibility and helped prevent the
529 Ni nanoparticles from oxidation. The more metallic Ni sites by CeO_x overcoating means better
530 utilization of Ni sites and better catalytic performance. Besides, for the O 1s spectra, the $60\text{CeO}_x\text{-}$
531 $\text{Ni/Al}_2\text{O}_3$ catalyst still had a high amount of surface oxygen after the reaction process, indicating
532 that the oxygen species of CeO_x overcoating was stable during the reaction.

533

534 3.4. Mechanism of performance enhancement by CeO_x ALD overcoating

535 In this work, the effects of CeO_x ALD overcoating on $\text{Ni/Al}_2\text{O}_3$ for bi-reforming of methane was
536 systematically studied. The mechanism of performance enhancement was proposed, as shown in
537 Figure S7. The CeO_x ALD overcoating was successfully deposited onto $\text{Ni/Al}_2\text{O}_3$ and a beneficial
538 Ni-CeO_x interface was formed. The CeO_x ALD overcoating exhibited its unique chemical
539 properties for enhanced performance as compared to the ALD Al_2O_3 or IW CeO_2 promoter.
540 Compared to the lower reducibility of the Al_2O_3 ALD coated $\text{Ni/Al}_2\text{O}_3$ catalyst due to the
541 formation of NiAl_2O_4 during Al_2O_3 ALD process, the CeO_x ALD overcoating greatly improved
542 the reducibility of Ni(II) and prevented the oxidation of the active Ni NPs. Besides, CeO_x was
543 oxygen-deficient in non-stoichiometric form, resulting in the high concentration of the oxygen
544 vacancies. The high oxygen vacancies in CeO_x ALD overcoating CeO_2 promoter provided higher
545 activity in the CO_2 activation process and promoted the catalytic performance.

546

547 **4. Conclusion**

548 In this work, $\text{Ni/Al}_2\text{O}_3$ catalyst was prepared by depositing Ni NPs on Al_2O_3 NPs by ALD,
549 followed by CeO_x ALD overcoating on $\text{Ni/Al}_2\text{O}_3$ catalyst with different numbers of cycles (i.e.,

10, 30, 60, and 90). The catalytic performance of $\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ was investigated for the bi-reforming of methane reaction. Based on TEM analysis, the Ni NPs size for the pristine $\text{Ni/Al}_2\text{O}_3$ catalyst was about 2.7 nm and the Ni size for the $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ catalyst was about 2.9 nm, which indicates that the CeO_x ALD coating didn't change the morphology of Ni NPs due to its mild temperature ALD conditions. Based on XPS and $\text{CO}_2\text{-TPD}$, CeO_x ALD overcoating was found to be in non-stoichiometric form with a high amount of Ce(III) and oxygen vacancies, which might be ascribed to the unique ALD growth process. Besides, the reduction process for the catalyst led to a further reduction of Ce(IV) to Ce(III) and generated more oxygen vacancies, which acted as the CO_2 activation sites and achieved a good balance between SRM and DRM. Based on TPR analysis, CeO_x ALD also enhanced the reducibility of Ni NPs and helped keep Ni in the metallic state. For the bi-reforming of methane, CeO_x ALD significantly improved the activity and stability and achieved a better control in the H_2/CO ratio at the designed $\text{H}_2\text{O/CO}_2/\text{CH}_4$ feed. For BRM at 850 °C with $\text{H}_2\text{O/CO}_2/\text{CH}_4=2/1/3$, which was intended to produce H_2/CO at 2, the CH_4 conversion was ~61.9% for pristine $\text{Ni/Al}_2\text{O}_3$ and 87.2% for $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$, with H_2/CO molar ratio at ~2.05 for both catalysts. For BRM at 750 °C with $\text{H}_2\text{O/CO}_2/\text{CH}_4=2/1/3$, the CH_4 conversion was ~39.4% with gradual deactivation for pristine $\text{Ni/Al}_2\text{O}_3$ and ~53.5% in a 150-h test for $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$. Besides, the H_2/CO varied from 2.45 to 2.88 for $\text{Ni/Al}_2\text{O}_3$ during a 75-h test and kept stable at 2.34 for $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$. Under the varying $\text{H}_2\text{O/CO}_2/\text{CH}_4$ feed conditions (keeping $(\text{H}_2\text{O}+\text{CO}_2)/\text{CH}_4=1$), the $60\text{CeO}_x\text{-Ni/Al}_2\text{O}_3$ catalyst exhibited a closer H_2/CO value to the direct stoichiometric combination result of SRM and DRM than that of the $\text{Ni/Al}_2\text{O}_3$ catalyst. Based on TPO results of spent catalysts, CeO_x ALD significantly decreased the carbon formation, especially the amorphous carbon and graphitic carbon, because CeO_x ALD overcoating could

572 provide sufficient oxygen vacancies, which enhanced the oxidant activation to remove carbon
573 intermediate and inhibited carbon formation.

574

575 **Acknowledgment**

576 This work was supported in part by the U.S. National Science Foundation (Award Number
577 2306177).

578

579 **References**

- 580 [1] Y. Song, E. Ozdemir, S. Ramesh, A. Adishev, S. Subramanian, A. Harale, M. Albuali, B.A.
581 Fadhel, A. Jamal, D. Moon, Dry reforming of methane by stable Ni–Mo nanocatalysts on single-
582 crystalline MgO, *Science*, 367 (2020) 777-781.
- 583 [2] D. Gielen, R. Gorini, N. Wagner, R. Leme, L. Gutierrez, G. Prakash, E. Asmeland, L. Janeiro,
584 G. Gallina, G. Vale, *Global energy transformation: A roadmap to 2050*, (2019).
- 585 [3] G.A. Olah, A. Goeppert, M. Czaun, G.S. Prakash, Bi-reforming of methane from any source
586 with steam and carbon dioxide exclusively to metgas (CO–2H₂) for methanol and hydrocarbon
587 synthesis, *Journal of the American Chemical Society*, 135 (2013) 648-650.
- 588 [4] G.A. Olah, A. Goeppert, M. Czaun, T. Mathew, R.B. May, G.S. Prakash, Single step bi-
589 reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to
590 metgas (CO-2H₂) for methanol synthesis: Self-sufficient effective and exclusive oxygenation of
591 methane to methanol with oxygen, *Journal of the American Chemical Society*, 137 (2015) 8720-
592 8729.
- 593 [5] A. Saravanan, D.-V.N. Vo, S. Jeevanantham, V. Bhuvaneswari, V.A. Narayanan, P. Yaashikaa,
594 S. Swetha, B. Reshma, A comprehensive review on different approaches for CO₂ utilization and
595 conversion pathways, *Chemical Engineering Science*, (2021) 116515.
- 596 [6] X. Fan, B. Jin, S. Ren, S. Li, M. Yu, X. Liang, Roles of interaction between components in
597 CZZA/HZSM-5 catalyst for dimethyl ether synthesis via CO₂ hydrogenation, *AIChE Journal*, 67
598 (2021) e17353.
- 599 [7] X. Fan, S. Ren, B. Jin, S. Li, M. Yu, X. Liang, Enhanced stability of Fe-modified CuO-ZnO-
600 ZrO₂-Al₂O₃/HZSM-5 bifunctional catalysts for dimethyl ether synthesis from CO₂ hydrogenation,
601 *Chinese Journal Of Chemical Engineering*, 38 (2021) 106-113.
- 602 [8] X. Yan, T. Hu, P. Liu, S. Li, B. Zhao, Q. Zhang, W. Jiao, S. Chen, P. Wang, J. Lu, Highly
603 efficient and stable Ni/CeO₂-SiO₂ catalyst for dry reforming of methane: Effect of interfacial
604 structure of Ni/CeO₂ on SiO₂, *Applied Catalysis B: Environmental*, 246 (2019) 221-231.
- 605 [9] Y.-x. Pan, P. Kuai, Y. Liu, Q. Ge, C.-j. Liu, Promotion effects of Ga₂O₃ on CO₂ adsorption and
606 conversion over a SiO₂-supported Ni catalyst, *Energy & Environmental Science*, 3 (2010) 1322-
607 1325.

608 [10] M. Akri, S. Zhao, X. Li, K. Zang, A.F. Lee, M.A. Isaacs, W. Xi, Y. Gangarajula, J. Luo, Y.
609 Ren, Atomically dispersed nickel as coke-resistant active sites for methane dry reforming, *Nature*
610 *Communications*, 10 (2019) 1-10.

611 [11] B. Qi, O. Farid, A.F. Velo, J. Mendil, S. Uribe, Y. Kaneko, K. Sakakura, Y. Kagota, M. Al-
612 Dahhan, Tracking the heavy metal contaminants entrained with the flow into a trickle bed
613 hydrotreating reactor packed with different catalyst shapes using newly developed noninvasive
614 dynamic radioactive particle tracking, *Chemical Engineering Journal*, 429 (2022) 132277.

615 [12] B. Qi, S. Uribe, O. Farid, M. Al-Dahhan, Development of a hybrid pressure drop and liquid
616 holdup phenomenological model for trickle bed reactors based on two-phase volume averaged
617 equations, *The Canadian Journal of Chemical Engineering*, 99 (2021) 1811-1823.

618 [13] Y. Lou, M. Steib, Q. Zhang, K. Tiefenbacher, A. Horváth, A. Jentys, Y. Liu, J.A. Lercher,
619 Design of stable Ni/ZrO₂ catalysts for dry reforming of methane, *Journal of Catalysis*, 356 (2017)
620 147-156.

621 [14] Y. Liu, Y. Wu, Z. Akhtamberdinova, X. Chen, G. Jiang, D. Liu, Dry reforming of shale gas
622 and carbon dioxide with Ni-Ce-Al₂O₃ catalyst: Syngas production enhanced over Ni-CeO_x
623 formation, *ChemCatChem*, 10 (2018) 4689-4698.

624 [15] X. Du, D. Zhang, L. Shi, R. Gao, J. Zhang, Morphology dependence of catalytic properties
625 of Ni/CeO₂ nanostructures for carbon dioxide reforming of methane, *The Journal of Physical*
626 *Chemistry C*, 116 (2012) 10009-10016.

627 [16] Z. Wang, Z. Huang, J.T. Brosnahan, S. Zhang, Y. Guo, Y. Guo, L. Wang, Y. Wang, W. Zhan,
628 Ru/CeO₂ catalyst with optimized CeO₂ support morphology and surface facets for propane
629 combustion, *Environmental Science & Technology*, 53 (2019) 5349-5358.

630 [17] F. Jiang, S. Wang, B. Liu, J. Liu, L. Wang, Y. Xiao, Y. Xu, X. Liu, Insights into the influence
631 of CeO₂ crystal facet on CO₂ hydrogenation to methanol over Pd/CeO₂ catalysts, *ACS Catalysis*,
632 10 (2020) 11493-11509.

633 [18] J. Vecchietti, A. Bonivardi, W. Xu, D. Stacchiola, J.J. Delgado, M. Calatayud, S.n.E. Collins,
634 Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported
635 platinum catalysts, *ACS Catalysis*, 4 (2014) 2088-2096.

636 [19] I. Luisetto, S. Tuti, C. Romano, M. Boaro, E. Di Bartolomeo, J.K. Kesavan, S.S. Kumar, K.
637 Selvakumar, Dry reforming of methane over Ni supported on doped CeO₂: New insight on the role
638 of dopants for CO₂ activation, *Journal of CO₂ Utilization*, 30 (2019) 63-78.

639 [20] L. Cao, J. Lu, Atomic-scale engineering of metal–oxide interfaces for advanced catalysis
640 using atomic layer deposition, *Catalysis Science & Technology*, 10 (2020) 2695-2710.

641 [21] L. Cao, W. Liu, Q. Luo, R. Yin, B. Wang, J. Weissenrieder, M. Soldemo, H. Yan, Y. Lin, Z.
642 Sun, Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H₂,
643 *Nature*, 565 (2019) 631-635.

644 [22] X. Wang, B. Jin, Y. Jin, T. Wu, L. Ma, X. Liang, Supported single Fe atoms prepared via
645 atomic layer deposition for catalytic reactions, *ACS Applied Nano Materials*, 3 (2020) 2867-2874.

646 [23] X. Wang, C. Zhang, B. Jin, X. Liang, Q. Wang, Z. Zhao, Q. Li, Pt–Carbon interaction-
647 determined reaction pathway and selectivity for hydrogenation of 5-hydroxymethylfurfural over
648 carbon supported Pt catalysts, *Catalysis Science & Technology*, 11 (2021) 1298-1310.

649 [24] H. Yan, K. He, I.A. Samek, D. Jing, M.G. Nanda, P.C. Stair, J.M. Notestein, Tandem In₂O₃-
650 Pt/Al₂O₃ catalyst for coupling of propane dehydrogenation to selective H₂ combustion, *Science*,
651 371 (2021) 1257-1260.

652 [25] J. Lu, B. Fu, M.C. Kung, G. Xiao, J.W. Elam, H.H. Kung, P.C. Stair, Coking-and sintering-
653 resistant palladium catalysts achieved through atomic layer deposition, *Science*, 335 (2012) 1205-
654 1208.

655 [26] Z. Shang, X. Liang, “Core–shell” nanostructured supported size-selective catalysts with high
656 catalytic activity, *Nano letters*, 17 (2017) 104-109.

657 [27] Z. Lu, R.W. Tracy, M.L. Abrams, N.L. Nicholls, P.T. Barger, T. Li, P.C. Stair, A.A. Dameron,
658 C.P. Nicholas, C.L. Marshall, Atomic layer deposition overcoating improves catalyst selectivity
659 and longevity in propane dehydrogenation, *ACS Catalysis*, 10 (2020) 13957-13967.

660 [28] T.M. Onn, S. Zhang, L. Arroyo-Ramirez, Y.-C. Chung, G.W. Graham, X. Pan, R.J. Gorte,
661 Improved thermal stability and methane-oxidation activity of Pd/Al₂O₃ catalysts by atomic layer
662 deposition of ZrO₂, *ACS Catalysis*, 5 (2015) 5696-5701.

663 [29] B. Jin, S. Li, Y. Liu, X. Liang, Engineering metal-oxide interface by depositing ZrO₂
664 overcoating on Ni/Al₂O₃ for dry reforming of methane, *Chemical Engineering Journal*, 436 (2022)
665 135195.

666 [30] K. Yuan, Q. Cao, H.-L. Lu, M. Zhong, X. Zheng, H.-Y. Chen, T. Wang, J.-J. Delaunay, W.
667 Luo, L. Zhang, Oxygen-deficient WO_{3-x}@ TiO_{2-x} core–shell nanosheets for efficient
668 photoelectrochemical oxidation of neutral water solutions, *Journal of Materials Chemistry A*, 5
669 (2017) 14697-14706.

670 [31] X. Liang, L.F. Hakim, G.D. Zhan, J.A. McCormick, S.M. George, A.W. Weimer, J.A.
671 Spencer, K.J. Buechler, J. Blackson, C.J. Wood, Novel processing to produce polymer/ceramic
672 nanocomposites by atomic layer deposition, *Journal of the American Ceramic Society*, 90 (2007)
673 57-63.

674 [32] G. Pantaleo, V. La Parola, F. Deganello, R. Singha, R. Bal, A. Venezia, Ni/CeO₂ catalysts for
675 methane partial oxidation: Synthesis driven structural and catalytic effects, *Applied Catalysis B: Environmental*, 189 (2016) 233-241.

677 [33] R.-P. Ye, Q. Li, W. Gong, T. Wang, J.J. Razink, L. Lin, Y.-Y. Qin, Z. Zhou, H. Adidharma,
678 J. Tang, High-performance of nanostructured Ni/CeO₂ catalyst on CO₂ methanation, *Applied
679 Catalysis B: Environmental*, 268 (2020) 118474.

680 [34] A. Gupta, T.S. Sakthivel, C.J. Neal, S. Koul, S. Singh, A. Kushima, S. Seal, Antioxidant
681 properties of ALD grown nanoceria films with tunable valency, *Biomaterials Science*, 7 (2019)
682 3051-3061.

683 [35] J. Liu, L.R. Redfern, Y. Liao, T. Islamoglu, A. Atilgan, O.K. Farha, J.T. Hupp, Metal–organic-
684 framework-supported and-isolated ceria clusters with mixed oxidation states, *ACS Applied
685 Materials & Interfaces*, 11 (2019) 47822-47829.

686 [36] J.W. Shin, S. Oh, S. Lee, D. Go, J. Park, H.J. Kim, B.C. Yang, G.Y. Cho, J. An, ALD CeO₂-
687 Coated Pt anode for thin-film solid oxide fuel cells, *International Journal of Hydrogen Energy*, 46
688 (2021) 20087-20092.

689 [37] M. Zhang, J. Zhang, Y. Wu, J. Pan, Q. Zhang, Y. Tan, Y. Han, Insight into the effects of the
690 oxygen species over Ni/ZrO₂ catalyst surface on methane reforming with carbon dioxide, *Applied
691 Catalysis B: Environmental*, 244 (2019) 427-437.

692 [38] B. Jin, S. Li, X. Liang, Enhanced activity and stability of MgO-promoted Ni/Al₂O₃ catalyst
693 for dry reforming of methane: Role of MgO, *Fuel*, 284 (2021) 119082.

694 [39] R. Yang, C. Xing, C. Lv, L. Shi, N. Tsubaki, Promotional effect of La₂O₃ and CeO₂ on Ni/γ-
695 Al₂O₃ catalysts for CO₂ reforming of CH₄, *Applied Catalysis A: General*, 385 (2010) 92-100.

696 [40] B. Jin, Z. Shang, S. Li, Y.-B. Jiang, X. Gu, X. Liang, Reforming of methane with carbon
697 dioxide over cerium oxide promoted nickel nanoparticles deposited on 4-channel hollow fibers by
698 atomic layer deposition, *Catalysis Science & Technology*, 10 (2020) 3212-3222.

699 [41] A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, Increasing oxide reducibility: The
700 role of metal/oxide interfaces in the formation of oxygen vacancies, *ACS Catalysis*, 7 (2017) 6493-
701 6513.

702 [42] J.L. Ewbank, L. Kovarik, F.Z. Diallo, C. Sievers, Effect of metal–support interactions in
703 Ni/Al₂O₃ catalysts with low metal loading for methane dry reforming, *Applied Catalysis A: General*, 494 (2015) 57-67.

705 [43] X. Jia, X. Zhang, N. Rui, X. Hu, C.-j. Liu, Structural effect of Ni/ZrO₂ catalyst on CO₂
706 methanation with enhanced activity, *Applied Catalysis B: Environmental*, 244 (2019) 159-169.

707 [44] B. Jin, S. Li, X. Liang, High-performance catalytic four-channel hollow fibers with highly
708 dispersed nickel nanoparticles prepared by atomic layer deposition for dry reforming of methane,
709 *Industrial & Engineering Chemistry Research*, (2021).

710 [45] Y. Zhang, A. Chen, M.-W. Kim, A. Alaei, S.S. Lee, Nanoconfining solution-processed
711 organic semiconductors for emerging optoelectronics, *Chemical Society Reviews*, 50 (2021) 9375-
712 9390.

713 [46] L. Li, S. He, Y. Song, J. Zhao, W. Ji, C.-T. Au, Fine-tunable Ni@ porous silica core–shell
714 nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane
715 to syngas, *Journal of Catalysis*, 288 (2012) 54-64.

716 [47] L. Chen, Y. Lu, Q. Hong, J. Lin, F. Dautzenberg, Catalytic partial oxidation of methane to
717 syngas over Ca-decorated-Al₂O₃-supported Ni and NiB catalysts, *Applied Catalysis A: General*,
718 292 (2005) 295-304.