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ABSTRACT: Machine learning has had a significant impact on multiple areas of
science, technology, health, and computer and information sciences. Through the
advent of quantum computing, quantum machine learning has developed as a new
and important avenue for the study of complex learning problems. Yet there is
substantial debate and uncertainty in regard to the foundations of machine learning.
Here, we provide a detailed exposition of the mathematical connections between a
general machine learning approach called Boltzmann machines and Feynman’s
description of quantum and statistical mechanics. In Feynman’s description,
quantum phenomena arise from an elegant, weighted sum over (or superposition
of) paths. Our analysis shows that Boltzmann machines and neural networks have a
similar mathematical structure. This allows the interpretation that the hidden layers
in Boltzmann machines and neural networks are discrete versions of path elements
and allows a path integral interpretation of machine learning similar to that in
quantum and statistical mechanics. Since Feynman paths are a natural and elegant
depiction of interference phenomena and the superposition principle germane to quantum mechanics, this analysis allows us to
interpret the goal in machine learning as finding an appropriate combination of paths, and accumulated path-weights, through a
network, that cumulatively captures the correct properties of an x-to-y map for a given mathematical problem. We are forced to
conclude that neural networks are naturally related to Feynman path-integrals and hence may present one avenue to be considered
as quantum problems. Consequently, we provide general quantum circuit models applicable to both Boltzmann machines and
Feynman path integrals.

1. INTRODUCTION
Machine learning1 has had significant impact on multiple areas
of science, technology, health, and computer and information
sciences. These approaches have recently become popular in
modeling molecular systems, with a particular increase in
interest following Google DeepMind’s seemingly triumphant2,3

efforts toward protein structure prediction. Through the advent
of quantum computing, quantum machine learning has
developed as an important avenue for the study of complex
learning problems. A neural-network ansatz trainable method on
a quantum and/or classical device has been used with
unprecedented success in procuring a reasonable approximation
of a target quantum state.4 Of particular interest and with a great
success is the use of the Restricted-Boltzmann Machine
(RBM).5 The choice of RBM is due to the fact it has been
proven to be a universal approximator for any probability
density5−7 and has received astonishing success in simulating a
wide variety of drivers in condensed-matter physics,8,9 quantum
dynamics10 vibration spectroscopy of molecular systems,11,12

quantum chemistry13−18 of complex multiscale problems,19 and
even in standard classification tasks.20,21 Prior work has also
established that RBM is capable of mimicking a volume-law
entangled quantum state even when sparsely parametrized.22

With quadratically scaling quantum circuits available,13 RBM

also shows hints of possible quantum advantage due to proven
intractability of polynomially retrieving the full distribution
classically.23 Graph-based18 projection operators that resolve
the identity17,24 have been used to construct RBMs for
correlated electronic potential energy surfaces16 and reduce
the computational complexity for classical17,25 and quantum24

calculations.
Even though RBMs (and neural networks in general) have

been widely used, probing into the underlying learning
mechanism and the connection to a Feynman path integral
RBM is still sparsely explored.26 In this paper, we explore a deep
mathematical and conceptual connection between RBM,
Feynman path integrals, and more generally neural networks.
This step is especially critical considering that, arguably, the
most general, conceptually elegant, and unifying formalism of
both quantum mechanics and statistical mechanics appears
through Feynman’s description of path integrals.27,28 For a
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historical view of path integrals, see ref 29, and for applications
to other areas, see ref 30. Over the years, Feynman path integrals
have been the workhorse for many path integral-basedmolecular
dynamics31,32 and Monte Carlo33,34 formalisms to compute
equilibrium properties in condensed phase quantum sys-
tems.35,36 The real time interpretation of Feynman path integrals
have been the basis for powerful numerical procedures such as
centroid molecular dynamics37−39 and ring-polymer molecular
dynamics.40

The paper is organized as follows: In Section 2 we present a
brief summary of RBMs which is followed by developing explicit
connections between Feynman path integrals, RBMs, and neural
networks in general in Sections 3 and 4. As a direct consequence
of the analysis in Section 4, we are able to provide general
quantum circuit models that are applicable to both Boltzmann
machines and to Feynman path integral descriptions. Based on
this description, in Section 6, we are able to provide a discussion
on k-local Hamiltonians which yield full Boltzmann machine
(unrestricted) and finally in Section 4.1, we present one
interpretation of this mathematical exposition based on inverse
scattering theory. Conclusions are given in Section 9.

2. RESTRICTED-BOLTZMANN MACHINE
The network of the Restricted-Boltzmann Machine denoted as
G involves two interconnected spin registers G = (V1, V2, E),
where the vertex set V1={v}i = 1

i = n with n +, and each is
associated with an operator σz(vi). A similar prescription exists
for V2={h}i = 1

i = p with p +, and each is associated with an
operator σz(hi). The network is described in Figure 1. The set of

edges |E| = p*n and is weighted by Wj
i. The Hamiltonian of the

network is

X v h a v b h

W v h

( , , ) ( ) ( )

( ) ( )

i

n

i
z

i
j

p

j
z

j

i j

n p

j
i z

i
z

j

1 1

1, 1

,

= + +
= =

= = (1)

and the corresponding thermal state the network encodes is

X v h e

Tr e
( , , )G

C
X v h

v h
X v h

( , , )

,
( , , )

=
{ } (2)

where the superscript C denotes the classically correlated
thermal state. Using eq 2, one can define a proxy state/ansatz for
the target quantum state as

X X v h( ) diag( ( , , ))H
h

G
C=

(3)

of the driver Hamiltonian H d d× where X⃗ can be
variationally trained. Using the RBM network, we have shown
that one can obtain very accurate electronic structures of simple
molecules and band structures of two-dimensional materi-
als.13,14

3. CONNECTIONS BETWEEN RESTRICTED BOLTZMAN
MACHINES AND FEYNMAN PATH INTEGRALS

The starting point in our discussion of Feynman path integrals
for quantum and statistical mechanics is the quantum
propagator in real and imaginary time given by

x H xexpx x, { } (4)

where, when β is real, ρx,x′ represents the quantum canonical
density operator, and β becomes the inverse temperature or β =
1/kBT. When β is imaginary, that is, β = ıt/ℏ, ρx,x′ represents the
real time evolution or unitary propagation of the problem. This
process of connecting real time and imaginary inverse
temperature values is commonly known as Wick rotation28 on
the complex time frame and is one hallmark of quantum
statistical mechanics within Feynman’s description. At this stage,
it is also critical to note that x may represent any basis,
continuous or discrete, and we make no distinction of this in our
discussion.
The next step in Feynman’s exposition of path integrals is to

slice the propagator in eq 4 into small increments34 given by δβ =
β/P. Thus, for Hamiltonians that only contain two-body terms,

x H x

x H H P x

exp

exp exp terms

x x
P

, [ { }]

= [ { }][ { }]µ (5)

a family of resolutions of identity ∫ dhi h hi i inserted between
the P propagation slices yields

dh dh x H h

h H h h h

h H x

exp

exp

exp

x x

P

P

, 1 2 1

1 2 2

= ··· [ { }]

[ { }]

[ { }]

µ

(6)

which has the beautiful interpretation according to Feynman28

of the particle “traveling” from x to x′ in a series of steps h1, h2, ...,
hP, which define a path, with the total amplitude on the left side
being a sum over all such paths. In the discrete representation, eq
6 may be written as

x H h

h H h

h H x

exp

exp

exp

x x

i

P

i i

P

, 1

1
1

i i

P

1

1

= [ { }]

[ { }]

[ { }]
=

+
+

(7)

where , , ..., P1 2{ }, and μi represents the μith
discretization of the ith slice in the Feynman path integral.
That is, each of the P slices are discretized as noted, and these

Figure 1. RBM network G = (V,E) showing the biases a⃗ and b⃗ for
hidden hj j

p
1{ } = (gray) and visible vi i

n
1{ }= (red) neurons and the

interconnecting weights Wij (blue).
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discreizations are labeled using {μi}. Thus, in essence, eq 7 is
simply a discrete sum over paths labeled by μ̅, or more
specifically, the sequence of indices x h h h x, , , ,P1 2

P1 2{ ··· }
represents one specific path that connects x to x′. As the number
of slices P→ ∞, this then leads to the sum over paths notation of
Feynman given by

h x H xexpx x, = [ { }] (8)

and the expression above is essentially a sum over paths, or path
integral over the path variable h, as in eq 7, and the path integral
description is over basis vectors hi{ } beginning from x and
ending at x .. The paths are traversed by the evolution process
described by the operator exp{−βH}. Thus, the interference of,
or sum over, paths, leading to the superposition theorem which
is a hallmark of quantum theory, appears in Feynman’s
description through the accumulation of all possible paths
described in eqs 7 and 8. Additionally when the outer indices x
and x are on different spaces, the expression above presents a
more general path integration form for x → y . Equations 7
and 8 may be compactly represented using Figure 2. The case
where x → y . is shown in Figure 3 and in a more verbose
manner in Figure 4 where the discrete version in eq 7 is spelt out.
In all cases, x and hi represent vector spaces, and hence, the
similarity between Figures 2, 3, and 4, and restricted Boltzmann
machines (Figure 1) from machine learning, is palpable. These
connections are further explored in the following sections.

Furthermore, in Feynman’s description, when β is chosen to
be real, that is inverse temperature (= 1/kBT), the quantity,

r dx h x H xT exp= [ ] = [ { }] (9)

is the partition function, and the quantity ρx,x′/Z is canonical
weight which depends on all the layers as per eq 6 and all
possible paths as per eq 7.

4. RESTRICTED BOLTZMANN MACHINES RECAST
USING FEYNMAN’S PATH INTEGRALS

To connect the formalism above to Boltzmann machines and
neural networks in general, we may begin by interpreting the
family of basis states {x } as visible layer states, and the layers

hi{ } as hidden layer states. For more general neural networks
x may be replaced by |y⟩. When this is not the case, there are
multiple hidden layers and one visible layer, as denoted in
Figures 1 and 2. One must note that in the traditional
description of Feynman path integrals, there is no distinction
between the variables used to describe the states {x } and hi{ }
as these are both treated as belonging to the same Hilbert space.
Here, we choose to highlight the difference between path states,
{hi}, and terminal states, {|x⟩}, to make the connections to
Boltzmann machines explicit. In such a situation, the formalism
in eqs 6, 7, and 8 yields the realization of a sum over all paths that
begin at the visible basis state x and terminate at the visible
basis state x by traversing through all the hidden basis points
(eq 7) depicted as hi{| }. Furthermore, the evolution along these
paths is dictated by exp{−βH}, and specifically by the
Hamiltonian H.
To parametrize such an evolution process we may introduce

the needed Hamiltonian that depicts the dynamics in eq 8 as

H dxdx x x H x x

dh h h H h h

dxdh x x H h h

dh dh h h H h h

dxdh h h H x x c c. .

i

P

i i i i i

i

P

i i i i i i

P P P

1

1 1 1

1
1 1 1

= +

+

+

+

+

=

>
+ + +

(10)

and in this general form, the connections are apparent to eq 1.
We note that this also represents a continuous neural network
with P hidden layers (compare Figures 1 and 2), where the
diagonal elements of H are biases applied to each (visible and
hidden) state, and the off-diagonal elements in H are coupling
elements across basis states, referred to as weights, either within
a given visible layer, or across neighboring layers. The discrete
form of this Hamiltonian may be simply obtained by using a
finite number of basis functions for visible and hidden layers (eq
7), and the integrals then become summations leading to matrix
elements

x H x h H h

x H h h H h

Biases: ;

Weights: ;

i i

i i1 1

i i

i i1 1

{ }

{ }+
+ (11)

and

Figure 2. Neural network depiction of eq 8.

Figure 3.Neural network depiction of eq 8. Similar to Figure 2, but now
|x′⟩ is assumed to be a different space from |x⟩. This figure is elaborated
in Figure 4 to make connections to the sum of path, eq 7.

Figure 4. Explicit version of Figure 3 that connects directly to sum over
paths description on eq 7.
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H x H x x x

h H h h h

x H h x h c c

h H h h h c c

x H h x h c c

. .

. .

. .

i
i i i i

i

P

i
i i i i

P
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1 1
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1 1

,

i

i i i i

i i

i i i i
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1

1 1

1

1 1

= { }+

{ }+

| | {| |} + +

{ } + +

{ } +

>
+ +

+

+ +

(12)

which is a generalization of eq 1, derived from eq 10. In eq 12,
the terms, x x h h; ;i i

i i{ } { } ···, are projectors that are
replaced by the Pauli operators in eq 1. In such a situation, eq 8
represents the evolution process of quantummechanics but also
the learning process of machine learning. The weights for such a
learning process arise from the Hamiltonian, eqs 10, 11, and 12.
Equation 10 is clearly a generalization to eq 1 for an arbitrary
number of layers and essentially a continuous set of vertices in
each layer, with eq 12 representing the discretized version.
Additionally, we note the close connection41 between eqs 1

and 12 and the quantum Ising Model that has been studied
widely on diverse quantum hardware platforms such as trapped
ions,42 Rydberg atoms,43 polar molecules,44 cold atomic gases,45

and superconducting circuits.46 In its full implementation, the
quantum Ising Model Hamiltonian with local magnetic fields
may be written as

H J BIT
i j

ij i j
i

i i= +
< (13)

where γ ∈ (x, y, z), Jijγ is the coupling between sites i and j along
the γ direction, Bi

γ is the local magnetic field at site i along the γ
direction, and the quantities {σi

γ} are the Pauli spin operators
acting on the ith lattice site along the γ-direction of the Bloch
sphere. The critical distinction between eqs 1 and 13 is that, in
principle, all sites are connected to each other in eq 13, and
hence, HIT is closer to a full Boltzmann machine.
The cost function of RBMs (see eq 2) arise in eq 7 when β is

real. Such a situation may also be realized upon inspection of
Figure 3, where each node is to be interpreted as a single layer of
nodes, and the wires connecting nodes depict all weights across
layers, or a linear map between the same (see Figure 4). These
figures now summarize the analogy between Feynman’s
description of quantum and statistical mechanics and machine
learning models as presented using Boltzmann machines.
In the current form, the Hamiltonian in eq 10 also appears to

have similarities to Ising model Hamiltonians. Compare eqs 10,
11, 12, 13, and 1. But what is missing here is what is known as
activation functions common in machine learning, which we
may simply be interpreted as connections of the hidden bases to
bath vectors, or dissipative variables. This aspect is treated in
further detail in Section 7.
4.1. Boltzmann Machines as an Inverse Scattering

Problem: “Interpretability” of the “Hidden” Layer. In the
above sections, we discussed the theory of Feynman path
integrals as applicable to both quantum mechanics as well as
statistical mechanics. This naturally leads to the introduction of
a set of intermediate states, depicted as hi{ } above, that are

visited during transitions both in real time (quantum
mechanics) and imaginary time (statistical mechanics and
thermodynamics). We then showed how the exact same
structure appears in Boltzman machines and in neural networks
thus leading to one obvious interpretation that perhaps
Boltzman machines are a realization of Feynman path integrals.
This will automatically leads to definitions for entropy through
partial trace over hidden layers, in Section 5, and similar
definitions for higher order interactions, Section 6.
However, we now ask if we may expound upon an equivalent

description for the definition of weights and biases, as alluded to
in eq 11, as these appear in machine learning. In machine
learning and Boltzmann machines, a network such as that in
Figure 4 is represented by

h f h( )a a a a a1 1 , 1=+ + + (14)

where fa+1 represents the activation function for the (a + 1)-th
layer, and a a, 1{ }+ are the weight tensors (including bias)
connecting the a-th and (a + 1)-th layers. In defining a a, 1{ }+

here, we have combined the b W;j j
i{ } terms in eq 1. The

functions, fa+1, are chosen to be functions of the kets created by
the action ha a a, 1[ | ]+ , and thus, the weights a a, 1{ }+ are
operators that act on kets. The assumption here is that f i are
analytic, differentiable functions, and hence, continuous
representations of ReLU are acceptable forms. For the
description in Section 3,

h H h h f hexp ( )a a a a a a a1 1 1 , 1[ { }]+ + + + (15)

and this is the key central insight that appears from the treatment
in Section 3 and crystallizes the analogy presented in this paper.
Thus, influenced by eq 6, an equivalent description for the
machine learning processes described by Figures 3 and 4 may be
written in the continuous limit as

y dh dh f h

h f h h h

h f x

( )

( )

( )

P P P P

P P P P P P

1 2 1 1,

, 1 1 1 2

2 2 1,2

= ··· + +

µ

(16)

Note the close similarity between eqs 6 and 16 where both
seem to now have a sum over paths flavor. Clearly, whereas in
quantum dynamics eq 6may be computed by providing a system
Hamiltonian, in machine learning, the weights, a a, 1{ }+ , are to
be obtained based on a known set of transitions, y ← x that are
used for training the network. Thus, in a sense, theML approach
to Boltzman machines is one where the Hamiltonian is
computed based on a data set that captures the y ← x map.
Hence, to achieve an equivalent description for the weights,

a a, 1{ }+ , we may remind ourselves that in quantum dynamics
and scattering theory,47 the transition amplitude, f i under
the influence of the Möller operator, Ω, which includes time
evolution (as in Section 3) or associated Greens function,47 is
the key aspect and connects to various observables such as state-
to-state scattering probabilities, rate constants, and also
vibrational properties. By comparison this statement is not
dissimilar to that in eqs 6 and 16, but in fact from this
perspective, the machine learning problem is an inverse
scattering problem in that, one may say, the Hamiltonian for
the process, given by eqs 10, 11, and 12, needs to be discovered.
In this language, the “hidden” layers of machine learning are
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simply the steps needed to construct the interference experi-
ments germane to quantum mechanics. Whereas in quantum
mechanics these “hidden” steps seem to allow the system to
achieve a probabilistic view, in machine learning the same
probabilistic view samples a large parameter space thus allowing
for an optimal solution to a given (hard) problem.

5. DESCRIPTION OF ENTROPY
To describe the entropy of the system containing x h; i{ { }},
using eq 9, we may first define the marginal probabilities using
the matrix elements

x H hexpx h, 11
= [ { }] (17)

and

h H hexph h i i, 1i i 1
= [ { }] ±± (18)

to redefine eq 7 and eq 8 as

dh dhx x x h h h, 1 2 , ,1 1 2
= ··· ··· (19)

These marginals may be used to write the Shannon entropy
functions: x h, 1

[ ], and h h,i i 1
[ ]

±
. The overall entropy of the

network is obtained using the entropy of each layer in a manner
similar to the inclusion exclusion principle in set theory,48 an
appropriate generalization for which is provided by Bethe’s free
energy49 and may be written as

x
i

h x h
i

h h, ,i i i1 1
[ ] + [ ] [ ] [ ]

+ (20)

which is often referred to asmutual information entropy and also
has applications in Belief propagation.49 For the special case of
the network in Figure 1, eq 20 reduces to

x h x h,1 1
[ ] + [ ] [ ] (21)

which is consistent with the expression in ref 50. However, eq 20
provides a generalization for an arbitrary number of hidden
layers for more general RBMs beyond those in Figure 1.

6. K-LOCAL HAMILTONIANS YIELD BOLTZMANN
MACHINES

For cases where the Hamiltonian in eq 10 has k-body terms, the
situation in eqs 8, 19, and 20 is more complicated. For example,
for three-body terms in eq 10, the expression in eq 19 may be
written as

dh dhx x x h h h h h h h x, 1 2 , , , , , ,P P1 2 1 2 3 1
= ··· ··· (22)

The associated neural network and Feynman path integration
techniques are both represented in compact form in Figure 5.
Here, each triangle captures a three-body interaction, and this
aspect is referred to using the blue squares inside the triangles.
For example, the three-body terms make the Hamiltonian

tensorial, and thus, it simultaneously interacts bases x h h; ;1 2{ }
, etc. While a tree-type topology may be appropriate in such
cases as the interactions grow, a simplified form of the
representation is presented in Figure 5. Again, as in Figure 3,
when the outer indices x and x are on different Hilbert
spaces, x in eq 22 is replaced with y . The associated depiction
is provided in Figure 6. It must be noted that Figure 5 is not a
restricted Boltzmann machine as may be seen from the fact that

the layer corresponding to x is connected to two following
layers corresponding to h1 and h ,2 and so on. In fact, this is a
step toward a general Boltzmann machine, and as the many-
body interactions captured within the Hamiltonian increases,
this approaches the path integral formalism commensurate with
the full Boltzmann machine.
In such cases a generalization to the entropy from eq 20 may

be obtained from Kekuchi’s theory.49 We begin this general-
ization by reinspecting Figures 5 and 6. These figures contain
sets of triangles that are connected to each other since the
Hamiltonian contains three-body terms. Thus, higher order
Hamiltonians will necessitate the presence of higher order
simplexes51 that are connected, and these will be commensurate
with the many-body interaction terms that are captured within
the Hamiltonian. Thus, it is appropriate to think of the
Boltzmann machine in Figures 5 and 6 as graphs such that
when the Hamiltonian contains k-body terms, the associated
Boltzmann machine would have k-nodes that are completely
connected and hence best represented as k-simplexes. Thus, if
we consider the resultant neural network as a graph made of
simplexes, or as a simplicial complex,51,52 the entropy arises from
a graph theoretic description18,49,53 and may be written as

( 1)
r

r
r r

,
, ,

(23)

Here, the αth rank-r simplex within the graph created from the
neural network has entropy r, , which may be thought to be a
functional of the reduced probability ρα,r, that is the reduced
probability for the αth rank-r simplex in a graphical depiction
such as that in Figures 5 and 6. The quantity in eq 23 is the
maximum rank of the simplexes that is the k= for k-local
Hamiltonians. Thus, for the two-body case, the rank of the
objects within a graphical description of the neural network is “r
= 0” (nodes in the network) and “r = 1” (edges in the network).
For the three-body case in Figures 5 and 6, the value of is 2,
and the corresponding entropy takes the form

Figure 5. 3-Local neural network depiction with entropy in eq 23. Each
triangle represents a rank-3 weight tensor and is depicted with a blue
square on its interior. In general, this could be a partial tree topology but
is presented here in a simplified form.

Figure 6. Same as Figure 5 but now depicts the case for x → y as in
Figure 3.
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nodes
,0 ,0

edges
,1 ,1

faces
,2 ,2+

(24)

where the set of “nodes” include visible and hidden layers, the set
of “edges” include connections between the same and are
determined by the traditional weights used in machine learning,
and finally, the set of “faces” include generalized weights that
now depend on three sets of layers that may be any combination
of visible or hidden layers.
The quantity, r, in eq 23 is amultiplicity term and prevents

overcounting in the graph-theoretic expression, eq 23, and
includes the number of times the αth (r)-rank object appears in
all simplexes of rank greater than or equal to r. Thus, through the
analogy discussed we are also able to provide high-order neural
networks as a extension of Feynman path integrals with
Hamiltonians that may contain higher order terms.

7. ROLE OF ACTIVATION FUNCTIONS
In Boltzmann machines and neural networks, there is a concept
called activation functions, which has thus far been ignored in
our discussion. One can interpret such activation functions as a
external bath, that perform the operation that modifies eq 6 by
replacing

h h H x f h h H xexp ( exp )P P act P P[ { }] [ { }]
(25)

and

h h x f h h x( )act2 2 2 2··· ··· (26)

and so on. Here, for each hidden node, the activation function
attenuates the probability at that node, through connection to an
external bath, as shown in Figure 7 thus modifying the
Hamiltonian in eq 10 to read

i
k
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y
{
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i
k
jjjjjj

y
{
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H H

dh ds h h H s s c c
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. .
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i i i i i i

i

P

i i i i i

1

1

= +

+ +

+

=

= (27)

Thus, wemap the situation with actvation functions to include
bath variables as is expected for system-bath or condensed phase
quantum dynamics54

However, it is also to be noted that the most general form of
the Hamiltonian achievable within ion trap quantum hardware

represents a case very similar to eq 27. In the language of spin
and boson operators,55

Ion Trap
system
IT

interaction
IT

bath
IT= + + (28)

where the three individual termsmay be considered as mappable
to the three parts of eq 27 ,and while system

IT has an identical
definition as in eq 13, bath components have the form

N a a

a a( )

bath
IT

interaction
IT

i
i

, ,

=

= +

†

†

(29)

Here, as usual, σi
γ are the Pauli spin operators for the ith spin

acting along the γ direction of the Bloch sphere, and aα and aα
† are

phonon annihilation and creation operators for vibrational
mode α. In eqs 28, κα describes the coupling strength between
the effective spin-1/2 system and a quantum harmonic bath,
which contains Nα phonons in mode α.
Thus, while the paper is primarily based on exposing the

analogy between Boltzmann machines and Feynman path
integrals, it is also evident through the connections between eqs
10 and 13 on the one hand, and eqs 27 and 28 on the other hand,
that quantum computing implementations may be developed in
future that may have similar algebraic structure for machine
learning problems as well as quantum chemical dynamics
problems.

8. QUANTUM CIRCUIT DESCRIPTIONS FOR
BOLTZMANN MACHINES AND PATH INTEGRALS

In Figure 8, we present a circuit model for both the RBM shown
and also for the Feynman path integral that is represented by
Figure 8(a). In this quantum circuit, the single-qubit Ry gates
acting only on the visible and hidden units have rotation angles
parametrized by the matrix elements as shown in the figure, the
biases in eq 11, and are responsible for creating the
noninteracting part of the distribution, that is

while the interaction terms are turned on through using CCRy
gates acting on an ancilla register as the target. For example, after
the first CCRy gates, the resultant state is

The rotation angles of these doubly controlled Ry gates are
parametrized by the weights in eq 11 and are different for
different configurations of the control qubits. It must be
emphasized that even though for a system requiring n = m = 2,
one needs n*m ancillary qubits, the total gate depth is 2
(constant), the circuit width is n m mn( )+ + , and the total
number of gates is n m mn( )+ + and so is the number of
variational parameters in the model. Thus, the asymptotic
scaling of all important metrics for the cost of the circuit is
polyn(n). However, an alternative implementation is possible

Figure 7. Neural network with activation function depicted using bath
variables. See Section VII. One my view this as a special case of the k-
local description provided in Section VI and Figure 6.
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too involving a single ancillary qubit which is reused n*m times
through midcircuit measurements. Since the measurement is
conditioned on the collapse of this single ancilla in state |1⟩ (only
then phase-kickback ensures correct state on the data register),
one can reset the ancilla to state |0⟩ thereafter and reuse it for
mediating the interaction between a different hidden and visible
unit. However, in this scheme, the depth is O(2mn) while the
number of qubits required is O(n + m + 1). A very different and
yet another implementation of simulating a Restricted
Boltzmann Machine is to directly prepare the Gibbs state of
the Ising Model on a quantum device through a double
optimization protocol as has been devised recently.56 This
scheme requires O(n + m + 1) qubits, gate depth is D (variable

usually poly(n)), and the number of quantum gates isO(D*(n +
m + 1)). Thus, in short we can say that there are many different
versions of quantum circuit now which can prepare a sampler
from the RBM distribution. Even though the internal resource
requirements of each may vary, but all of them have O(poly(n))
cost in number of qubits, number of gates, and depth.

9. CONCLUSION
Machine learning has had great impact recently in a number of
areas of science. Recently, quantum versions of machine learning
protocols have also been constructed. As machine learning
grows in impact, there has been a wide discussion in the
literature that deals with the interpretation of hidden layers as

Figure 8. Illustration of the approach in Section 4 for two hidden layers and one input layer RBM system. The left visible layer is simply reproduced for
convenience on the right side of panel (a). Panel (b) not only provides a circuit model for the neural in panel (a), but it also provides a circuit model for
a Feynman path integral problem referred to in panel (a). The |ai⟩ represent the ancilla, xi represent the visible layer (or end points of the Feynman
path), and hi are the hidden layers (or path elements that are used to construct the superposition in the Feynman path description).
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they appear in these formalisms. In this paper, we provide a
general description for many problems in machine learning, and
more precisely Boltzmann machines, by finding an analogy
between these and the Feynman path integral description of
quantum and statistical mechanics. We find that the basic
mathematical structure of RBMs reminds us of a superposition
of (or sum over) paths structure, which is a critical hallmark of
Feynman’s description of quantum and statistical mechanics.
This then allows us to reinterpret the hidden layers in machine
learning as being akin to the intermediate, or virtual, states
visited by quantum systems as part of the path integration for
quantum propagation in real and imaginary time. As a direct
consequence of this argument, we are able to introduce a general
quantum circuit that encompasses both RBMs and Feynman
path integrals.
We then find that while 2-local Hamitonians within the

Feynman path integral formalism are reminiscent of RBMs, k-
local Hamiltonians naturally yield a structure that looks like a
Boltzmann machine without restrictions. In fact, in such cases,
the neural networks obtained look more like a simplical complex
to allow connections that go beyond nearest neighbor of hidden
layers. Given the isomorphism to graphs and simplicial
complexes, we are also able to provide general expressions for
entropy by applying the inclusion−exclusion principle directly
to the simplicial complexes.
We have recently demonstrated50 that how information

between the two spin-registers of the network can flow in real-
time during training and how such a finding can be leveraged to
identify robust yet emergent training principles. We have further
analytically related such information transport quantifiers to
usual measures of correlation and have established rigorous
bounds satisfied by the two quantities. A connection to Feynamn
path integrals might shed light on such training dynamics and
open a new path to analyze how footprints of quantum
correlation within the physical system studied gets imprinted
onto the learner network.
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