
Learned Reconstruction of Protein Folding Trajectories from Noisy
Single-Molecule Time Series
Maximilian Topel, Ayesha Ejaz, Allison Squires, and Andrew L. Ferguson*

Cite This: J. Chem. Theory Comput. 2023, 19, 4654−4667 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Single-molecule Förster resonance energy transfer (smFRET) is an
experimental methodology to track the real-time dynamics of molecules using
fluorescent probes to follow one or more intramolecular distances. These distances
provide a low-dimensional representation of the full atomistic dynamics. Under
mild technical conditions, Takens’ Delay Embedding Theorem guarantees that the
full three-dimensional atomistic dynamics of a system are diffeomorphic (i.e.,
related by a smooth and invertible transformation) to a time-delayed embedding of
one or more scalar observables. Appealing to these theoretical guarantees, we
employ manifold learning, artificial neural networks, and statistical mechanics to
learn from molecular simulation training data the a priori unknown transformation
between the atomic coordinates and delay-embedded intramolecular distances
accessible to smFRET. This learned transformation may then be used to
reconstruct atomistic coordinates from smFRET time series data. We term this
approach Single-molecule TAkens Reconstruction (STAR). We have previously applied STAR to reconstruct molecular
configurations of a C24H50 polymer chain and the mini-protein Chignolin with accuracies better than 0.2 nm from simulated
smFRET data under noise free and high time resolution conditions. In the present work, we investigate the role of signal-to-noise
ratio, data volume, and time resolution in simulated smFRET data to assess the performance of STAR under conditions more
representative of experimental realities. We show that STAR can reconstruct the Chignolin and Villin mini-proteins to accuracies of
0.12 and 0.42 nm, respectively, and place bounds on these conditions for accurate reconstructions. These results demonstrate that it
is possible to reconstruct dynamical trajectories of protein folding from time series in noisy, time binned, experimentally measurable
observables and lay the foundations for the application of STAR to real experimental data.

■ INTRODUCTION
Probing single-molecule dynamics is crucial for understanding
protein folding and misfolding.1−5 The behavior of a single
protein can be characterized by recording the positions of each
of its N constituent atoms over time in a time series of R3N

dimensional vectors called a molecular trajectory. Computa-
tionally, molecular dynamics (MD) simulations can generate
all-atom trajectories of molecules by solving Newton’s
equations of motion under an interatomic potential defined
by an appropriate force field.6 MD simulations are subject to
numerical and finite precision errors7 and can become
prohibitively expensive for the simulation of large or slow
folding proteins due to the short time steps required to
propagate the simulations accurately. Experimentally, cryo-
electron microscopy and X-ray crystallography can provide
static reconstructions of protein structures at root-mean-square
deviation (RMSD) accuracies of the position of each atom of
∼0.1 nm.1−4 The structure of the proteins within these
crystalline or vitrified states may not correspond to the native
functional structure, and the static reconstructions cannot shed
light on the nature of the dynamical fluctuations and
transitions between metastable states.8 Study of protein
dynamics can be critical for understanding their function or

dysfunction, with more than 50 known disorders related to
misfolding of functional peptides and proteins.5 Single-
molecule fluorescence resonance energy transfer (smFRET)
is a popular technique to experimentally follow the dynamics of
biomolecular motions by optically recording energy transfer
between fluorescent dyes grafted to particular sites on the
molecule.3,9 This technique permits an observer to track
protein dynamics in a coarse-grained sense by following one or
more simple geometrical parameters such as the intramolecular
distance between the two dyes. No experimental techniques
are currently available to track the single-molecule dynamical
evolution of a protein with full atomistic resolution.
Takens’ Delay Embedding Theorem is a result from

dynamical systems theory, which asserts that time series data
recording a single scalar observable of a dynamical system can,
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under some weak technical conditions, contain sufficient
information to reconstruct the state of the full-dimensional
system up to a diffeomorphic (i.e., smooth and invertible)
transformation.10−19 In the context of the present application,
the theorem asserts that smFRET measurements can contain
sufficient information to reconstruct the full three-dimensional
atomic dynamics of the protein via an a priori unknown
transformation.
In previous work, we showed that it is possible to learn this

transformation from MD simulation training data and then use
this learned model to reconstruct molecular trajectories from
intramolecular distances accessible to smFRET.20 We refer to
this approach as Single-molecule TAkens’ Reconstruction
(STAR). Our application of STAR to computer simulations
of a C24H50 polymer chain and the Chignolin mini-protein
demonstrated RMSD reconstruction accuracies from simulated
smFRET data of better than 0.2 nm. Although this work served
as proof of principle of the technique, it was only validated for
long idealized synthetic smFRET time series that were sampled
at an extremely high time resolution and free of sampling
noise.
The motivation of the present work is to test the ability of

STAR to accurately reconstruct protein dynamics under
experimentally realistic constraints on the smFRET time series
associated with its temporal resolution, trajectory length, and
presence of sampling noise. The temporal resolution is limited
by the need to accumulate sufficient numbers of photons over

a specified time bin to extract a reliable reading of the
intramolecular distance between the fluorescent probes.3 The
length of a trajectory is primarily limited by photobleaching or
photoblinking of the fluorophores.21−23 Photobleaching is an
irreversible chemical process whereby changes in a fluoro-
phore’s electronic structure render it permanently non-
emissive.24 Photoblinking is intermittent emissivity of a
fluorophore that may result from temporary changes in
electronic structure such as electric charge or isomerization,
or from being trapped in a triplet state.22,24 The Poisson
statistics regulating photon emission combined with the ∼1 ns
lifetime of the (emitting) excited singlet state24 define this
limitation. Sampling noise within the time series arises due to
systematic effects and shot noise (i.e., Poisson statistics).3,9

Theoretical guarantees on the applicability of Takens’ theorem
in the presence of limited data, low sampling resolution, and
measurement noise are not available. Empirical testing of
STAR under physical constraints on these three key variables
can assess the degree to which STAR can accurately
reconstruct molecular configurations from experimentally
realistic smFRET trajectories. In this work, we lay the
foundations for the application of STAR to real data by
applying it to synthetic smFRET data generated from
computational MD trajectories for which the ground truth
atomic coordinates are exactly known and for which we can
precisely control the length, resolution, and noise of the
smFRET trajectories.

Figure 1. Cartoon of the layout of Single-Molecule TAkens Reconstruction (STAR). STAR takes time series in one or more coarse-grained
observables of the molecular system such as an intramolecular distance furnished by smFRET v t( ) 1 and reconstructs a molecular trajectory
within the Cartesian coordinate space of N atoms tr( ) N3 through the three-step pathway b → d → c → e. Each panel corresponds to a
different representation of a molecular trajectory, and the arrows between the panels correspond to learning tasks to convert one representation to
another. (a,b) For the purposes of training the STAR pipeline, we collect all-atom MD trajectories recording the Cartesian coordinates of the N
constituent atoms tr( ) N3 and from these construct synthetic smFRET time series in a single intramolecular distance v t( ) 1. Once the
STAR pipeline is trained, we no longer need any additional MD simulation data, and the pipeline can operate on new synthetic (or experimental)
smFRET data collected under similar conditions. Following the prescription of Takens’ Theorem, we construct a delay embedding of the scalar
time series as = [ ]t v t v t v t v t dy( ) ( ), ( ), ( 2 )... ( ( 1) ) d, where τ is the delay time and d is the delay dimensionality. (c) The k-
dimensional manifold containing the all-atom simulation trajectory k N3 and spanned by the nonlinear collective variables {Ψ1′, Ψ2′, ...,
Ψk′}. Collective couplings between the molecular degrees of freedom lead to an emergent low-dimensionality wherein k ≪ 3N. We learn from
the MD simulation trajectory r(t) using diffusion maps unsupervised nonlinear manifold learning. (d) The k-dimensional manifold containing the
smFRET delay embedding k d spanned by the nonlinear collective variables {Ψ1′, Ψ2′, ..., Ψk′}. We learn from the delay embedding
y(t) using diffusion maps. Takens’ Theorem asserts is an image of , and, under some technical conditions on symmetries and periodicities,
they are related by a diffeomorphism (i.e., a smooth and invertible transformation) : that we learn by training a simple fully connected
feedforward artificial neural network as a flexible and expressive nonlinear function approximator. (e) Reconstruction of the atomistic molecular
trajectory within the Cartesian coordinate space of N atoms r N3 . We learn the molecular reconstruction from the manifold using a second
fully connected feedforward artificial neural network. All molecular renderings were made using Visual Molecular Dynamics.29
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The primary outcome of this work is to show that STAR is
capable of the accurate recovery of molecular configurations to
accuracies of 0.12 and 0.42 nm for, respectively, the Chignolin
and Villin fast-folding mini-proteins under conditions that
bridge computationally tractable simulations to experimentally
realistic FRET conditions. These accuracies are achieved using
simulated smFRET trajectories of an aggregated length of
approximately 0.7−3.3× the characteristic protein folding time,
temporal resolutions of 1/120−1/280× the folding time, and
sampling noise commensurate with collection of ∼105 photons
per time bin. For Chignolin (τfold = 0.6 μs), this corresponds to
MD trajectories of approximately 2 μs and time bins shorter
than 5 ns, and for Villin (τfold = 2.8 μs) to trajectories of 2 μs
and time bins shorter than 10 ns.25 Extrapolation of these
constraints on trajectory length, time resolution, and signal-to-
noise ratio suggests that STAR may currently be deployed
upon proteins with characteristic folding times exceeding
approximately 100−1000 μs using state-of-the-art photon-by-
photon single-molecule instruments with dye pairs like Cy3/
Cy5 that have temporal resolutions of approximately 1−10
μs.26−28

The structure of this Article is as follows. In the Methods, we
summarize the previously reported STAR pipeline and discuss
application of noise, data restriction, and time resolution
limitations on STAR input data. In the Results and Discussion,
we present applications of STAR to MD simulations of the 10-
residue artificial mini-protein Chignolin and 35-residue protein
Villin under a variety of trajectory lengths, time resolutions,
and signal-to-noise ratios. In the Conclusions, we discuss the
impact of this work and scope for future development and
applications of STAR.

■ METHODS
Principles of STAR. A schematic illustration of the STAR

technique is presented in Figure 1. In this subsection, we
provide a brief overview of the approach that we previously
reported in ref 20. Details of the mathematical underpinnings
and numerical implementations including algorithms, training
protocols, and (hyper)parameters are provided in the
Supporting Information. Template Jupyter notebooks imple-
menting the STAR pipeline are available at https://github.
com/Ferg -Lab/L imi t s -o f - s ing l e -molecu le -Takens -
reconstruction-notebooks.
Takens’ Delay Embedding Theorem is a proven result from

dynamical systems theory asserting that, under some mild
technical conditions, there exists a diffeomorphism (i.e., a
smooth and invertible transformation) between the full
dimensional state of the system and a so-called delay
embedding of one or more coarse-grained observables.10−19

In the context of protein folding, this theorem implies that
smFRET time series may contain sufficient information to
reconstruct the all-atom configuration of the molecule. It is the
fundamental principle of STAR to learn this a priori unknown
transformation from MD simulation training data and then
apply the learned transformation to “upgrade” smFRET time
series into trajectories of a molecule tracking its Cartesian
coordinates. In the illustration of the STAR pipeline in Figure
1, each panel corresponds to a different representation of a
molecular trajectory, and the arrows between the panels
correspond to learning tasks to convert one representation to
another.
The STAR algorithm employs a combination of manifold

and nonlinear learning tools to convert a smFRET time series

v t( ) 1 (Figure 1b) through a three-step pathway (b → d →
c → e) to a reconstruction of the atomistic molecular
trajectory within the Cartesian coordinate space of N atoms
r N3 (Figure 1e). Depending on the application and data
quality, one may choose to reconstruct all atoms in the
molecule or just a subset, for example, the heavy or backbone
atoms. In principle, Takens’ Theorem asserts that one could
learn this transformation in a single step (i.e., b → e). In
practice, we make use of the generically low effective
dimensionality of molecular systems30,31 to recover a k ≪
3N dimensional manifold containing the smFRET trajectory

(Figure 1d) and learn the transformation to the analogous
k-dimensional manifold containing the all-atom trajectory
(Figure 1c). This is beneficial in defining a lower-dimensional
and better posed mapping that must be learned from the
smFRET to atomistic data. It also furnishes an informative and
interpretable k-dimensional free energy landscape supported
on the manifold that provides a wealth of information on
the metastable states and transition pathways of the molecular
system.
The existence of the transformation (d → c) is guaranteed

by Takens’ Theorem, but the expression is initially unknown
and must be learned from training data. We perform all-atom
molecular dynamics simulations to furnish both an all-atom
molecular trajectory r N3 (Figure 1a) and a synthetic
smFRET time series in a single intramolecular distance
v t( ) 1 (Figure 1b). In this work, we take v to be the
distance between two selected hypothetical fluorophore
attachment positions. A more realistic approximation would
explicitly model the FRET fluorophores within the MD
simulation.4 These trajectories constitute the training data
necessary to construct the k-dimensional embedding of the all-
atom simulation trajectory (a → c), construct the k-
dimensional embedding of the synthetic smFRET trajectory
(b → d), learn the transformation between them (d → c), and
learn the reconstruction of the molecular configuration from
the low-dimensional all-atom manifold (c → e). Once all steps
in the pipeline are learned from the training data, STAR can be
applied to reconstruct the molecular trajectories from new
synthetic (or real) smFRET trajectories collected under the
same conditions without conducting additional molecular
simulations via the pathway b → d → c → e.
The primary focus of the present work is to test the

application of STAR to smFRET trajectories with constraints
on the number of individual smFRET measurements within
the trajectory (i.e., data volume, Dv), the temporal resolution
of the smFRET trajectory (i.e., bin size, λ), and the presence of
sampling noise that is controlled by the brightness of the
FRET donor fluorophore (ID). We train STAR models on
computational training data with different values of (Dv, λ, ID)
and then test the models on novel synthetic smFRET data to
assess the reconstruction accuracy. Importantly, we intention-
ally test our approach on synthetic smFRET data for which we
can explicitly control Dv, λ, and ID, and for which we possess
the ground truth atomistic molecular simulation trajectories
against which we can test the performance of our STAR
reconstruction. Having defined the regimes of these three
critical parameters within which STAR is determined to
perform well for two fast-folding mini-proteins computation-
ally amenable to simulation, we then prospectively identify
protein systems and experimentally realistic FRET conditions
capable of meeting these constraints and to which future
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applications of STAR to real experimental smFRET data may
be successful.
Training Data: Molecular Dynamics Simulations r(t) and

Synthetic smFRET Time Series v(t)). We use all-atom MD
simulations to furnish the training data necessary to learn the
transformations within the STAR pipeline. The MD trajectory
provides a time series of coordinates tr( ) N3 (Figure 1a)
from which we generate the synthetic smFRET trajectory
corresponding to a scalar time series of an intramolecular
distance between two hypothetical FRET fluorophores
v t( ) 1 (Figure 1b). In this work, we assume the
fluorophores to be placed at the beginning and end of the
linear proteins such that v(t) corresponds to the molecular
head-to-tail distance. We train STAR models on the synthetic
smFRET data extracted from the MD trajectory at particular
trajectory lengths Dv, time bin resolutions λ, and signal-to-
noise ratios ID. Models are trained over subsamples of the first
80% of each MD trajectory (vide infra), and the remaining
20% are held out as a test partition. To ensure good
configurational diversity in the training data, we bin the
training data into 10 equally spaced bins in the molecular head-
to-tail distance and randomly sample Dv/10 configurations
from each bin. As detailed below, Takens’ Theorem requires
access to the immediate time history of each point, and so we
also collect the configurations preceding each selected point as
far back as required, which, for the two protein systems
considered in this work, lies in the range 2−220 ns. The
training data may therefore be conceived as an ensemble of
short contiguous trajectories of the molecule distributed over a
variety of head-to-tail distances to ensure good sampling of its
full configurational space. Hyperparameters are tuned for each
component of the training pipeline using noiseless data at high
time resolution and large data volumes and then applied to
each (Dv, λ, ID) triplet. We note that we train a single STAR
model at a particular choice of parameters and apply it
transferably to all other parameter regimes. An alternative
strategy would be to train independent STAR models for each
choice of these three parameters to better mimic within the
training data the conditions of the testing set during model
deployment. In our experience, this did not lead to significant
improvements in performance.
Time Resolution, λ. The operating principle of smFRET is

to label two locations on a molecule with a pair of fluorophores
whose absorption and emissions are distinct but overlapping,
so that they may nonradiatively exchange energy upon
excitation. This exchange of energy is governed by the relative
geometry and spectra of the two fluorophores so that energy
flows from the higher-energy donor fluorophore to the lower-
energy acceptor at distances on the scale of 2−10 nm. The
experimentally observed relative fluorescence of the donor and
acceptor under donor-only excitation reports the efficiency of
energy transfer and can be used to directly estimate the
distance separating the two fluorophores as a “molecular
ruler”.3,32 Photon emission statistics are Poisson distributed, so
FRET efficiencies are computed over finite time bins to
mitigate the effects of noise. By recording the number of donor
and acceptor photons over the course of a single time bin, a
single intramolecular distance is computed corresponding to an
estimate of the average donor−acceptor distance over the time
bin. Bins of 1−105 μs have been used in practice,3,27,28 with
larger bins possessing improved signal-to-noise ratios but
sacrificing temporal resolution. To mimic time binning in our

synthetic smFRET trajectories, we bin the v(t) time series into
a sequence of bins of length λ and report for each bin the mean
value of v(t) recorded between time t and (t + λ) as v(t → t +
λ) = (1/λ) ∫ t

t+λ v(t) dt, where we approximate the integral as a
discrete sum at the resolution of the synthetic time series. We
perform an analogous operation for the corresponding MD
training data r(t) wherein the Cartesian coordinates of each
atom are averaged over the time bin λ. Typical values of λ for
smFRET are on the order of milliseconds for confocal FRET
setups,3,33 but can be pushed down to 1−10 μs for state-of-the-
art photon-by-photon single-molecule instruments.26−28 Train-
ing STAR models for different values of λ enables us to assess
how the temporal resolution affects the reconstruction
accuracy of the trained pipeline. In this work, we consider λ
= {0.2, 1, 2, 5, 10} ns for Chignolin and λ = {0.2, 1, 2, 10, 20}
ns for Villin as appropriate to capture the dynamics of these
ultrafast-folding mini-proteins with characteristic folding times
of τfold = 0.6 and 2.8 μs, respectively.25 These systems were
selected for this work as sufficiently small and fast-folding to be
amenable to good sampling with unbiased MD simulations. In
the analysis of our results, we focus on the reconstruction
accuracy as a function of the ratio λ/τfold, which enables us to
extrapolate our predictions to larger, slower-folding proteins
that are much more challenging to sample using MD but are
more readily studied by experimental smFRET.

Trajectory Length, Dv. Training of the STAR pipeline
requires MD training data for the protein of interest to learn
the mappings denoted by the arrows in Figure 1. MD
simulations are typically limited to time scales of microseconds
to milliseconds, even on high performance and bespoke
computational hardware.25,34 To assess the influence of
training data volume upon the reconstruction accuracy of the
trained STAR model, we consider a variety of training data
volumes defined by the number of synthetic smFRET distance
measurements Dv within the training ensemble. In this work,
we select Dv = {103, 104, 2 × 104, 4 × 104} observations using
our training data selection criteria. If less than Dv/10 points are
available in each head-to-tail decile, the total number of
training points selected may be slightly less than Dv. As a point
of comparison, experimental smFRET trajectories can vary in
length from milliseconds to tens of seconds3,33,35 and employ
temporal resolutions of several microseconds to milli-
seconds,26−28 meaning that an experimental trajectory can
contain 102−107 individual distance measurements.

Noise, ID. The signal-to-noise ratios in smFRET time series
are largely controlled by the intensity of the measured
fluorescence: brighter fluorophores produce higher signal-to-
noise ratios, whereas dimmer ones suffer more from the effects
of noise. There are a number of sources of noise in smFRET
emission measurements stemming from thermal fluctuations,
biases in dye orientations or spatial distributions relative to the
labeling sites, fluctuations in dye photophysical properties such
as quantum yield due to local chemical environments, and fast
blinking or other sub-time resolution kinetics.3 Because of the
discrete nature of photon counts, the noise in FRET
measurements can be modeled as shot or Poisson noise.3,36

Application of propagation of uncertainties to the relationship
between FRET efficiency and donor−acceptor distance v
allows us to derive a closed-form model for the relative
uncertainty σv/v in this distance (see derivation in the
Appendix):
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where ϕD is the quantum yield of the donor, ϕA is the quantum
yield of the acceptor, R0 is the characteristic FRET radius for
the donor−acceptor pair, and ID(λ) is the intensity of the
donor channel (i.e., number of photons collected over the time
bin λ) under direct excitation by the laser without acceptor
present in the system. We then sample from this noise
distribution to artificially corrupt the idealized bin-averaged
distances extracted from our MD simulation trajectories:

+v t v t( ) ( ) (0, )v
2

(2)

where (0, )v is a random Gaussian variable with mean zero
and variance σv

2. A Gaussian noise model is a good continuous
approximation for the underlying discrete Poisson statistics for
sufficiently large photon counts, which, as described below, is
the regime in which we operate.
In this work, we assume the FRET fluorophores to have

ideal quantum efficiencies ϕA = ϕD = 1 and a typical FRET
radius of R0 = 5 nm. The uncertainty in the donor−acceptor
distance v is then fully specified by the intrinsic brightness of
the donor dye and the time bin λ over which photons are
collected, which together define ID. Brighter donors produce
more photons in the donor and acceptor channels for a given
distance v, and larger time bins increase the absolute number
of photons collected in the detector. Both of these effects
therefore improve the signal-to-noise ratio in the calculated
donor−acceptor distance. By deploying our trained STAR
models on synthetic smFRET time series with different ID
values, we can quantify how the reconstruction accuracy
depends on the signal-to-noise ratio. Experimental setups
employing sophisticated burst-search algorithms36 can track on
the order of 1000−10 000 photon bursts per measurement.33

In this work, we consider ID = {103, 104, 105, 106, ∞}, where ID
= ∞ corresponds to the hypothetical limit of an infinitely
bright dye and noiseless conditions.
Molecular Dynamics Simulations. The MD simulations

of the mini-protein Chignolin and the actin-binding protein
Villin conducted by D.E. Shaw Research were used for STAR
training and validation.25 Simulations were performed on the
supercomputer Anton under the CHARMM22* force field37

with a compatible modified TIP3P water model.38 Lys, Arg,
Asp, and Glu residues and N- and C-termini were simulated in
their charged states.25 Each system was equilibrated in the
NPT ensemble using the Desmond software package on a PC
cluster, and equilibrium folding simulations were performed on
the Anton supercomputer in the NVT ensemble.25,39 The
initial structure for the NVT ensemble simulation was chosen
as the frame with the volume closest to the average volume.
The system was then coupled to a Nose-́Hover thermostat
with a 1 ps relaxation time.40,41 Equations of motion were
integrated at a 2.5 fs time step, and frames were recorded every
200 ps.25 All simulations were run in the NVT ensemble using
a Lennard-Jones potential with a 0.95 nm cutoff distance for
short ranged electrostatics and the Gaussian Split Ewald
method for long distance electrostatics with a 32 × 32 × 32
cubic grid.25,42

Chignolin. The 10-residue 166 atom mini-protein Chignolin
peptide (PDB ID: 1UAO)43 was solvated in a cubic box with 4
nm sides containing approximately 1900 water molecules.38

The (−2) peptide charge was neutralized with two Na+ ions. A
107 μs MD simulation in the NVT ensemble was conducted.25

Training data were subsampled from the first 80% of the
trajectory, and the last 20% was used for testing. The
characteristic folding time of Chignolin is τfold = 0.6 μs.25

Villin. The 35-residue 577 atom Villin polypeptide with
protonated HIS residue (PDB ID: 2F4K)44 was solvated in 40
mM NaCl in a cube with 5.4 nm sides containing
approximately 4400 water molecules. A 125.6 μs MD
simulation in the NVT ensemble was conducted.25 Training
data were subsampled from the first 80% of the trajectory, and
the last 20% was used for testing. The characteristic folding
time of Villin is τfold = 2.8 μs.25

■ RESULTS AND DISCUSSION
We now report the results of our parametric study of STAR
reconstruction accuracy as a function of (Dv, λ, ID) for each of
the two proteins Chignolin and Villin. Our general conclusions
are that for data volumes of Dv ≥ 104 observations, time
resolutions of λ ≤ 5 ns for Chignolin and λ ≤ 10 ns for Villin
(λ/τfold ≤ 8.3 × 10−3 and 3.5 × 10−3, respectively), and signal-
to-noise ratios corresponding to ID ≥ 105 photons per bin, we
are able to reconstruct Chignolin and Villin structures with
heavy atom RMSD accuracies of 0.1−0.4 nm. These
reconstruction fidelities lie in the same range as static
reconstruction techniques such as X-ray crystallography and
cryo-electron microscopy.1,2

Chignolin. STAR Training. Calibration of the STAR
hyperparameters is performed over configurations harvested
from the first 80% of the 107 μs simulation trajectory (85.6 μs
comprising 427 797 frames at 0.2 ns intervals) employing Dv =
40 000, λ = 0.2 ns, and ID = ∞. We choose to reconstruct the
N = 93 heavy atoms producing a MD trajectory tr( ) 279.
Diffusion maps were used to extract the manifold from r(t),
constructed with a kernel bandwidth ε = e−3 nm. A gap in the
eigenvalue spectrum informed a 2D embedding spanned by
{Ψ1, Ψ2} (Figure S1). Delay vectors y(t) were constructed
from the time series in the head-to-tail distance v(t) computed
between the terminal heavy atoms. A delay dimensionality of d
= 11 and delay time of τ = λ were employed. Diffusion maps
used to extract the manifold from y(t) were constructed
with a kernel bandwidth ε = 1 nm to produce 2D embeddings
into {Ψ1′, Ψ2′}. The map from to was parametrized by a
2−10−10−10−10−2 ANN trained over 100 epochs with a
batch size of 500 and a learning rate of 10−4 using the Adam
algorithm.45 The map from to r ̂ was parametrized by a 2−
4−189−374−558−279 ANN trained over 120 epochs with a
batch size of 400 and a learning rate of 10−5 using the Adam
algorithm.45

STAR Deployment and RMSD Dependence on (Dv, λ, ID).
Using the hyperparameters detailed in the previous subsection,
we trained 100 independent STAR models at each
combination of λ = {0.2, 1, 2, 5, 10} ns, Dv = {103, 104, 2 ×
104, 4 × 104}, and ID = {103, 104, 105, 106, ∞}. The heavy
atom RMSD reconstruction accuracies of each model on the
20% hold-out test partition (21.4 μs comprising 106 946
frames at 0.2 ns intervals) are illustrated in Figure 2. In general,
we observe quite good RMSD reconstruction accuracies
between 0.10 and 0.25 nm for all (Dv, λ, ID) triplets
considered with the exception of ID = 103 triplets where the
signal-to-noise ratio was too low to converge training of an
ANN to learn the diffeomorphism and the results
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are not reported. We must regard this accuracy with two
important caveats. First, Chignolin is a very small protein
comprising only 10 residues, so the per residue RMSD lies in
the range 0.010−0.025 nm. Second, we can achieve a baseline
RMSD accuracy on the test data of 0.155 nm by approximating
each configuration by a single configuration from the test
trajectory that results in the lowest overall RMSD averaged
over all other configurations. The predictive power of the
trained STAR models should therefore be viewed in light of
improvements beyond this baseline accuracy.
The most obvious trend in Figure 2 is the influence of ID, for

which we see an approximate halving in the RMSD
reconstruction error from ∼0.25 to ∼0.12 nm in moving
from ID = 104 to 105. Further increasing ID to 106 or ∞ leads to
relatively minor improvements in accuracy on the order of 3%.
We were unable to learn a mapping between and at ID
= 103. These trends indicate a clear floor on the signal-to-noise
ratio necessary for reliable and accurate training of a STAR
pipeline. We find reconstruction accuracy to be quite
insensitive to data volume Dv. For a particular choice of ID
and λ, modulating Dv over the full range of 103 to 4 × 104
observations leads to only 1% changes in the RMSD accuracy
except for λ = 0.2 ns triplets. One exception to this trend
occurs for {Dv = 103, λ = 0.2 ns, ID ≥ 104} (Figure 2a), where
we observe substantially poorer reconstruction accuracies than
at larger data volumes Dv (Figure 2a) and lower time
resolutions λ (Figure 2b−e). We hypothesize that the high
temporal resolution of the training data at λ = 0.2 ns means
that larger data volumes are required for STAR to effectively
learn the system dynamics than at larger λ values for two
interlinked reasons. First, at fixed Dv, a larger λ corresponds to
a sampling of a longer time Dv × λ = Dv × τ that samples a
longer period of the evolution of the system. Second, a larger λ
coarse-grains over the sub-λ temporal fluctuations that may
improve the reconstruction accuracy by attenuating the high
frequency system dynamics. Finally, the reconstruction error is
moderately sensitive to the time resolution λ. For fixed ID and
Dv, increasing λ over the range 0.2−10 ns (λ/τfold = 3.3 × 10−4

to 1.6 × 10−2) leads to a progressive 20−30% degradation in
the RMSD.
Taken together, our analysis reveals that for training data

volumes Dv ≥ 104 samples, photon counts per bin of ID ≥ 105,
and time resolutions of λ ≤ 5 ns (λ/τfold ≤ 8.3 × 10−3), we are
able to achieve RMSD reconstruction accuracies of 0.12 nm or
better, which is 23% better than the RMSD = 0.155 nm
baseline. Conversely, in low signal-to-noise ratio (i.e., ID ≤
104) regimes, the reconstruction accuracy is worse than this
baseline, or the training data are too noisy to permit
convergence of a trained model.

Analysis of . For signal-to-noise ratios produced by ID ≥
105 photons per bin, the dependence of the RMSD
reconstruction accuracy upon data volume Dv and donor dye
brightness ID is relatively weak, and the primary determinant of
reconstruction accuracy is the temporal time binning λ. To
understand how the observed trends in the reconstruction
accuracy as a function of λ can be attributed to the all-atom
manifold , we present in Figure 3a the manifold
recovered from the MD trajectory r(t) at each λ value for Dv =
4 × 104 samples and ID = 105 photons per bin. Taking the
highest resolution manifold at λ = 0.2 ns as the ground truth
(Figure 3a-A), we observe two metastable free energy minima
at (Ψ1 ≈ 1.6 × 10−6, Ψ2 ≈ 9.5 × 10−5) and (Ψ1 ≈ 1.6 × 10−4,
Ψ2 ≈ −8.5 × 10−5) corresponding, respectively, to the native

Figure 2. Heavy atom RMSD reconstruction accuracies for Chignolin
as a function of training data volumes Dv, time bin resolution λ, and
signal-to-noise ratio ID.
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and unfolded metastable macrostates. The high free energy
region connecting them corresponds to the transition paths
linking these two states. Prior work has reported two-state or
three-state free energy landscapes corresponding to folded,
unfolded, and misfolded states,46,47 with variations attributed
to differences in the simulated molecules and simulation
protocols. Our results are in good agreement with those of
Schaffer et al.,47 who report a deep free energy well separated
from a second metastable extended state by a relatively high

free energy transition state. Taking the highest resolution
manifold at λ = 0.2 ns as the ground truth, we observe that the
primary impact of increasing bin size is an attenuation in the
sampling of the transition region. This results in more sparse
sampling of this region and an elevation in the apparent free
energy of the transition pathways. This can be understood as a
consequence of the enlarged window over which atomic
positions are averaged with increasing λ that reduces the
influence of transition states that are only fleetingly occupied

Figure 3. Manifolds and position-dependent heavy atom RMSD reconstruction accuracy for Chignolin as a function of time bin resolution λ.
(a) All-atom manifolds within STAR pipelines trained at Dv = 4 × 104 samples and ID = 105 for each value of λ = {0.2, 1, 2, 5, 10} ns. Manifolds
are represented as scatter plots showing the embedding of each of the Dv = 4 × 104 MD configurations r into the two diffusion map eigenvectors
{Ψ1, Ψ2} spanning each manifold. Each point is colored by the associated free energy βF(Ψ1, Ψ2) of that point computed by collecting histograms
over the empirical probability distribution at a bin size of {ΔΨ1 = 5 × 10−7, ΔΨ2 = 5 × 10−7}. The arbitrary zero of free energy in each panel is
specified by subtracting the computed energy of the minimum free energy point on the landscape from all other points. Five representative
configurations A−E are selected from the MD test trajectory and projected onto each manifold: A and B reside in the folded macrostate, C in the
transition region, and D and E in the unfolded ensemble. (b) Visualizations of the reconstructions r ̂ of each configuration A−E at each time
resolution λ = 0.2 ns (blue), 1 ns (green), 2 ns (cyan), 5 ns (magenta), and 10 ns (yellow). For visual clarity, configurations are represented as
ribbons tracing the backbone of the protein and are superposed upon the true configuration extracted from the MD test trajectory r (red). (c)
Heavy atom RMSD reconstruction corresponding to each state is listed next to each image employing the same color-coding as the reconstructions.
All molecular visualizations are constructed using VMD.29
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relative to the comparatively long-lived metastable states.
Conversely, the relative location of the metastable free energy
basins is insensitive to the value of λ but becomes more
smeared out and loses definition with increasing λ due to
increased averaging over molecular configurations.
Analysis of changes in the free energy landscape as a

function of λ leads us to hypothesize that configurations within
the transition region are likely to be more poorly reconstructed
than those within the metastable basins due to the relatively
poorer sampling of this region that is exacerbated at large λ. To
test this hypothesis, we select from our validation trajectory
five representative configurations A−E and project them onto
each manifold in Figure 3a. Configurations A and B reside
within the folded macrostate, C within the transition region,
and D and E within the unfolded ensemble. In Figure 3b we
present the reconstruction of each configuration r ̂ at each value
of λ superposed together with the true configuration r. The
folded configurations A and B possess RMSD reconstruction
accuracies of 0.08−0.13 nm, the unfolded configurations D and
E possess accuracies of 0.20−0.28 nm, and the transition
configuration C accuracies of 0.16−0.24 nm. Infrequent
observation of transition states and metastable extended
configurations results in poorer reconstruction of these
transitory states, and this effect is indeed amplified at larger λ.
Although it is the case that transitory states are more poorly

reconstructed than those residing in the folded well, transition
states are occupied by only ∼1% of the test trajectory and
therefore make only a small contribution to the overall mean
RMSD accuracy. The overwhelming determinant of the
degradation in the RMSD accuracy with increasing λ is
therefore the globally poorer reconstruction of all config-
urations, even those within the relatively well sampled
metastable wells, due to the loss of temporal resolution
associated with the more severe degree of temporal averaging
that results from larger time bins.
Villin. STAR Training. STAR hyperparameters are calibrated

over configurations harvested from the first 80% of the 125.6
μs simulation trajectory (100.5 μs with 502 325 frames at 0.2
ns intervals) using Dv = 37 465, λ = 0.2 ns, and ID = ∞. We
reconstruct the N = 287 heavy atoms of Villin to produce an
MD trajectory tr( ) 861. Diffusion maps with a kernel
bandwidth ε = e−2.5 nm were used to extract the manifold
from r(t), and a gap in the eigenvalue spectrum was used to
determine a 3D embedding spanned by {Ψ1, Ψ2, Ψ3} (Figure
S2). Delay vectors y(t) were constructed from head-to-tail
distance time series data v(t) computed between terminal
heavy atoms. A delay dimensionality of d = 11 and delay time
of τ = λ were employed. Diffusion maps with a kernel
bandwidth ε = 1 nm were used to extract the manifold
from y(t), producing 3D embeddings spanned by {Ψ1′, Ψ2′,
Ψ3′}. The map from to was parametrized by a 3−15−
15−15−15−3 ANN trained over 200 epochs with a batch size
of 750 and a learning rate of 10−5 using the Adam algorithm.45

The map from to r ̂ was parametrized by a 3−6−578−
1150−1722−861 ANN trained over 240 epochs with a batch
size of 1000 and a learning rate of 5 × 10−7 using the Adam
algorithm.45

STAR Deployment and RMSD Dependence on (Dv, λ, ID).
Using the hyperparameters specified in the previous sub-
section, we trained 100 independent STAR models at each
combination of λ = {0.2, 1, 2, 10, 20} ns, Dv = {103, 104, 2 ×
104, 4 × 104}, and ID = {103, 104, 105, 106, ∞} triplet. The

heavy atom RMSD reconstruction accuracies of each model on
the 20% hold-out test partition (25.1 μs comprising 125 581
frames at 0.2 ns intervals) are illustrated in Figure 5. We
observe RMSD reconstruction accuracies between 0.35 and
0.46 nm for all (Dv, λ, ID) triplets excluding ID = 103 triplets
where, as was the case for Chignolin, the low signal-to-noise
ratio prevented the ANN from learning a converged
diffeomorphic map. Villin is a medium-sized protein
comprising 35 residues, so the per residue RMSD lies in the
range 0.010−0.013 nm. We can calculate a baseline RMSD
accuracy from test data of 0.51 nm by computing the RMSD of
every frame against the configuration from the test trajectory
that results in the lowest overall RMSD averaged over all other
configurations. STAR reconstruction performance should be
judged relative to this baseline.
As with Chignolin, the clearest trend is the variation in

reconstruction accuracy with the signal-to-noise ratio ID, for
which we observe in Figure 4 a nearly 10% increase in RMSD
reconstruction error from ∼0.39 nm to ∼0.44 nm in moving
from ID = 105 to 104 averaged across the λ and Dv values.
Further increases of ID result in ∼1% improvements averaging
across all tested values of Dv and λ upon reaching the ID → ∞
limit. We note that the degree of improvement varies
substantially with time resolution, approaching 10−16% in
high time resolution regimes but falling to less than 1% at low
time resolutions. We were unable to learn a mapping between

and at ID = 103. These trends reflect a floor on the test
data signal-to-noise ratio required to reliably train the STAR
pipeline. We find the reconstruction accuracy to be largely
insensitive to data volume Dv. For a particular choice of ID and
λ, modulating Dv over the full range of 103 to 4 × 104 leads to
an average of less than 1% changes in the RMSD accuracy.
Finally, for a fixed ID and Dv, increasing λ over the range 0.2−
20 ns (λ/τfold = 3.6 × 10−2 to 3.6 × 10−3) leads to up to 14%
degradation in the RMSD for ID ≥ 104, suggesting the
reconstruction quality is also quite sensitive to the time
resolution λ.
For training data volumes Dv ≥ 104 samples, photon counts

per bin of ID ≥ 105, and time resolutions of λ ≤ 10 ns (λ/τfold
≤ 3.6 × 10−3), we can achieve heavy atom RMSD
reconstruction accuracies of 0.42 nm or better, representing
an 18% improvement over the RMSD = 0.51 nm baseline.
These conditions are largely the same as for Chignolin.
However, for Villin, even in the low signal-to-noise ratio
regime (i.e., ID = 104), reconstruction accuracy is better than
baseline value up until the failure to produce a map at ID = 103.

Analysis of . For ID ≥ 105 photons per bin, the temporal
time binning λ determines the majority of variation in
reconstruction accuracy, with the dependence of the RMSD
reconstruction accuracy on data volume Dv and donor dye
brightness ID being comparatively weak. We present in Figure
5 the all-atom manifold at each λ value for Dv = 4 × 104
samples and ID = 105 photons per bin. For visual clarity, we
consider a 2D projection of the 3D manifold into the Ψ1 − Ψ2
plane spanned by the two leading eigenvectors. This 2D
projection is sufficient to illuminate the changes in global
structure and free energy landscape over the manifold as a
function of λ. Additional projections of the manifold are
presented in Figure S3. Considering the highest resolution
manifold at λ = 0.2 ns as the ground truth (Figure 5a-A), we
observe a single free energy minimum at (Ψ1 ≈ −3.1 × 10−4,
Ψ2 ≈ −9.9 × 10−4) corresponding to the folded state. The
higher free energy region surrounding this region contains
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members of the unfolded ensemble. Previous work applying
dimensionality reduction to molecular dynamics simulations of
Villin similarly reflects this single free energy well.48 Other
works reflect the emergence of multiple energy wells at higher
temperatures or due to denaturing.49 The most obvious effect
of increasing λ from 0.2 to 20 ns is the translation and
shrinkage of the free energy surface into the lower left corner
of the Ψ1 − Ψ2 projection (Figure 5a). The absolute values
and magnitudes of Ψ1 − Ψ2 between different embeddings are
not meaningful, only the relative locations of points within
each embedding. As such, it is more informative to compare
the zoomed insets of each image Figure 5a-A−E that rescale
each manifold onto approximately the same scale. These
visualizations reveal that increases in λ result in increased
averaging over contiguous molecular configurations and a
concomitant mixing of configurations between the folded and
unfolded states that smears out of the free energy minimum. At
values of λ greater than 2 ns, this results in a large free energy
minimum that encapsulates both folded and unfolded states. In
all cases, however, the relative locations of the folded and
unfolded configurations are insensitive to the value of λ.
Again, we hypothesize that configurations within the

transition region and extended states outside of the metastable
unfolded state are more likely to be poorly reconstructed than
those within the metastable basins due to relatively poorer
sampling at large λ. To test this hypothesis, we select from our
validation trajectory five representative configurations A−E
and project them onto each manifold in Figure 5a.
Configurations A and B belong to the folded macrostate, while
C, D, and E are part of the unfolded ensemble. In Figure 5b,
we present each reconstructed configuration r ̂ at each value of
λ superposed together with the true configuration r. The
folded configurations A and B possess RMSD reconstruction
accuracies of 0.15−0.42 nm, while the unfolded configurations
C, D, and E possess accuracies of 0.33−0.55 nm. Although we
see that STAR can adequately track the overall features of the
protein conformational state over the five selected points, our
analysis confirms that less frequently observed (i.e., higher free
energy) states tend to have poorer reconstruction accuracies
and that this effect is amplified with increasing λ as illustrated
in Figure 5c.

■ CONCLUSIONS
In this work, we have demonstrated the use of an approach
based on Takens’ Delay Embedding Theorem termed Single-
molecule TAkens Reconstruction (STAR) to predict the
molecular structure of proteins from low-dimensional time
series of intramolecular distances. The fundamental motivation
of this approach is to provide a means to “upgrade”
experimental measurements of intramolecular distances
accessible to experimental techniques such as smFRET to a
prediction for the atomistic coordinates of the molecule. In this
manner, we can use a trained STAR model to furnish a time-
resolved molecular trajectory directly from experimental data.
The STAR models are trained over molecular simulation
trajectories that provide the molecular configurations and
intramolecular distances needed to learn the mapping from the
latter to the former. The trained model may then may be
applied to novel smFRET data without the need to conduct
any additional simulations. Provided the molecular simulation
model employed is a good representation of the protein under
the conditions of interest, the simulation trajectories are
sufficiently long to sample the experimentally relevant

Figure 4. Heavy atom RMSD reconstruction accuracies for Villin as a
function of training data volumes Dv, time bin resolution λ, and
signal-to-noise ratio ID.
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configurational states, and the STAR model is properly trained,
we anticipate that the model should be able to accurately
predict molecular configurations from new (or hold-out)
simulated smFRET trajectories and, ultimately, experimental
smFRET data.
The primary contribution of the present work is to

demonstrate that we can construct STAR models for two
fast-folding mini-proteins, Chignolin (τfold = 0.6 μs) and Villin
(τfold = 2.8 μs), under conditions of trajectory length, time

resolution, and signal-to-noise ratio (i.e., dye intensity) that
bridge computationally tractable simulations to experimentally
realistic FRET conditions. The trained models achieve heavy
atom RMSD reconstruction accuracies over a hold-out
molecular dynamics test set of 0.12 and 0.42 nm, respectively.
As a point of comparison, these accuracies are commensurate
with the ∼0.1 nm accuracies attainable by cryo-electron
microscopy and X-ray crystallography.1,2 In each case, we
achieve these results by training over molecular simulation

Figure 5. Manifolds and heavy atom RMSD reconstruction accuracies for Villin as a function of time bin resolution λ. (a) All-atom manifolds
within STAR pipelines trained at Dv = 4 × 104 samples and ID = 105 for each value of λ = {0.2, 1, 2, 10, 20} ns. Manifolds are represented as

scatter plots showing the embedding of each of the Dv = 4 × 104 MD configurations r projected into the two leading diffusion map eigenvectors
{Ψ1, Ψ2} spanning each manifold. Zoomed-in cutouts are provided for the subpanels B−E. Color distributions characterize associated free energy
βF(Ψ1, Ψ2) of each point computed by collecting histograms over the empirical probability distribution at a bin size of {ΔΨ1 = 5 × 10−7, ΔΨ2 = 5
× 10−7}. The arbitrary zero of free energy in each panel is specified by subtracting the computed energy of the minimum free energy point on the
landscape from all other points. Five representative configurations A−E are selected from the MD test trajectory and projected onto each manifold.
A and B reside in the folded macrostate, while the C, D, and E are in the unfolded ensemble. (b) Visualizations of the reconstructions r ̂ of each
configuration A−E at each time resolution λ = 0.2 ns (blue), 1 ns (green), 2 ns (cyan), 10 ns (yellow), and 20 ns (black). For visual clarity,
configurations are represented as ribbons tracing the backbone of the protein and are superposed upon the true configuration extracted from the
MD test trajectory r (red). (c) RMSD reconstruction corresponding to each state are listed next to each image employing the same color-coding as
the reconstructions. All molecular visualizations are constructed using VMD.29
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trajectories of 0.7−3.3× the characteristic protein folding time,
with a temporal resolution of 1/120−1/280× the folding time,
and signal-to-noise ratios commensurate with ∼105 photons
per time bin.
The present work demonstrates and validates STAR against

synthetic smFRET trajectories generated from hold-out
molecular simulation trajectories. This is vital for validation
of the method because the ground truth atomic coordinates of
the testing trajectories are exactly known, but it would be
desirable in future work to apply a trained STAR model to real
experimental smFRET data. The mini-proteins studied herein
are too fast folding to be accessible to existing smFRET
technology, but our results lay the foundations and specify the
experimental conditions necessary to perform extrapolative
identification of putative target systems. State-of-the-art
photon-by-photon single-molecule instruments can produce
observations at λ = 1−10 μs with a fluorophore pair such as
Cy3/Cy5.26−28 The constraints on data volume, time
resolution, and signal-to-noise ratio identified in this work
suggest that STAR could be deployed on proteins with
characteristic folding times of τfold = 100−1000 μs. Such a
protein system would be simultaneously amenable to
sufficiently high temporal resolution smFRET measurements
using state-of-the-art probes and sufficiently fast-folding that it
would require simulation trajectory training trajectories
totaling 100−3000 μs. STAR training only requires temporally
continuous blocks of molecular simulation trajectories of
length dτ, where d is the delay dimensionality and τ is the delay
time, meaning that the training data can comprise a large
number of short, discontinuous training trajectories efficiently
generated by parallel computation. All-atom molecular
dynamics simulations at these time scales are expensive but
relatively accessible on high-performance supercomputing
hardware.25,50−52 This analysis suggests as one possible target
system the 54-residue engrailed homeodomain protein (PDB:
1ENH), which possesses a characteristic unfolding time of 910
μs at 25 °C that can be modulated to 4.8 μs at 63 °C,53 has
been extensively studied by molecular simulation,54,55 and is
sufficiently large to accommodate FRET fluorophores
operating within the preferred range of 2−8 nm.53,56

In future work, we plan to increase the robustness of STAR
to noise, integrate multichannel smFRET information, and
explore the transferability of our models. Reduction in noise
effects via kernel choice57 or integration of hidden Markov
models58 may help reduce photon count requirements.
Multichannel smFRET signals simultaneously recording multi-
ple intramolecular distances between multiple pairs of probes
can be harnessed in conjunction with multivariate Takens’
Theorem14,59 to improve reconstruction quality through
multiplexed dynamical observations. Study of optimal FRET
fluorophore placement can help identify preferred grafting
positions for the probes to maximize the dynamical
information captured by smFRET observables and minimize
reconstruction errors.60,61 Investigation of transferability of
latent space manifolds and STAR mappings across temper-
ature, pressure, molecular force field, coarse graining, and
solvent viscosity would improve the versatility of trained STAR
models while reducing training requirements. Furthermore,
transitory and extended state reconstruction can be improved
by adaptive sampling of infrequently sampled states62 and
facilitate applications of STAR to larger and slower folding
molecules by judicious selection and generation of training
data. Beyond protein reconstruction, we would like to study

other biomolecules such as DNA and RNA and also consider
the incorporation of solvent-based observables.15,16,63,64 Lastly,
we also see opportunities for applications of STAR to other
fields where it is of interest to reconstruct the state of a high-
dimensional dynamical system that is implicitly observed
through an incomplete set of low-dimensional variables,
including epidemiology, climatology, and econometrics.

■ APPENDIX

Synthetic smFRET Noise Model
The distance between a smFRET donor and acceptor pair is
computed from the measured FRET efficiency, the fraction of
donor excitons that is transferred to the acceptor, by measuring
the emission intensities (“brightnesses”) of the donor and
acceptor fluorophores, assuming isotropic dye orientations.3,33

Mathematically, the distance r is related to the emission
intensities as3,33
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where ϕD is the quantum yield of the donor, ϕA is the quantum
yield of the acceptor, R0 is the characteristic FRET radius for
the donor−acceptor pair, IA is the intensity of the acceptor
channel under direct excitation by the laser without donor
present in the system, IDA is the intensity of the donor channel
when acceptor is present, and IAD is the intensity of the
acceptor channel when donor is present. The quantum yields
and FRET radius are determined by the particular choice of
donor and acceptor fluorophores. Ideal quantum yields
correspond to ϕD = ϕA = 1. Experiments typically use dyes
with quantum yields on the order of 0.1−1, with dyes like
Rhodamine 6G having a yield of 0.95.3,65 Typical FRET radii
are on the order of 1−10 nm.3

Assuming no correlations between independent variables, no
detector noise, isotropic dye orientations, and no direct
excitation of the acceptor fluorophore by the excitation laser
(IA = 0), propagation of uncertainties yields
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where σr is the standard deviation in r, σIdDA
is the standard

deviation in IDA, and σIdAD
is the standard deviation in IAD. The

partial derivatives follow straightforwardly from eq 3 as
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Assuming Poisson statistics in photon counting, σI dDA
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Because IDA and IAD are not directly available from our MD
simulation trajectory, it is convenient to re-express the right-
hand side as a function of r and any fluorophore-specific
constants. To do so, we first rearrange eq 3 to eliminate IDA/
IAD:
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and substitute into eq 8 to yield
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To eliminate IDA, we require an additional equation. Equation
3 computes r from experimental measurements of IAD and IDA
that include both the donor and the acceptor channels. It is
also possible to estimate r using the donor channel alone:33,66
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where ID is the intensity of the donor channel under direct
excitation by the laser without acceptor present in the system,
which is dictated by the choice of donor fluorophore and laser
power and is not a function of r. Rearranging this expression
for IDA yields
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Inserting eq 12 into eq 10 results in our noise model:
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In Fig. 6, we present a plot of eq 13 to illustrate the variation
of σr/r as a function of r parameterized by ID. We observe the
lowest uncertainties in the vicinity of the FRET radius R0 and
an asymmetric increase as the donor−acceptor pair moves to
smaller or larger separations. Physically, this is due to increased
shot noise in IDA at shorter distances as the FRET efficiency
increases and the donor becomes less bright (i.e., fewer
emitted donor photons), and increased shot noise in IAD at
longer distances as the FRET efficiency decreases and the
acceptor becomes less bright. As anticipated, the relative error
in r is mitigated by the use of brighter donors with larger values
of ID.
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Figure 6. Variation of σr/r defining the relative uncertainty in r as a function of the donor−acceptor distance r at various values of donor intensity
ID (eq 13). For the purposes of this calculation, we adopt prototypical values of ϕD = ϕA = 1 for the donor and acceptor quantum yields and R0 = 5
nm for the FRET radius of the donor−acceptor pair.
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