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Abstract— Turn-taking is a fundamental behavior during
human interactions and robots must be capable of turn-taking
to interact with humans. Current state-of-the-art approaches
in turn-taking focus on developing general models to predict
the end of turn (EoT) across all contexts. This demands an
all-inclusive verbal and non-verbal behavioral dataset from
all possible contexts of interaction. Before robot deployment,
gathering such a dataset may be infeasible and/or impractical.
More importantly, a robot needs to predict the EoT and decide on
the best time to take a turn (i.e. start speaking). In this research,
we present a learning from demonstration (LfD) system for a
robot to learn from demonstrations, after it has been deployed,
to make decisions on the appropriate time for taking a turn
within specific social interaction contexts. The system captures
demonstrations of turn-taking during social interactions and
uses these demonstrations to train a LSTM RNN based model
to replicate the turn-taking behavior of the demonstrator. We
evaluate the system for teaching the turn-taking behavior of an
interviewer during a job interview context. Furthermore, we
investigate the efficacy of verbal, prosodic, and gestural cues
for deciding when to begin a turn.

I. INTRODUCTION

Communicating with humans is a fundamental skill re-
quired of social robots. Humans communicate and interact
through both verbal and nonverbal behaviors, and social
robots should be equipped with human-like behaviors if
we want them to interact naturally with humans [1]. Turn-
taking is an especially essential nonverbal behavior used
between humans because it enables fluid conversations [2]-
[4]. This is because when a speaker takes the conversational
floor at an inappropriate time it can disrupt the flow of a
conversation [5], [6]. Namely, there are three ways to disrupt
the flow of a conversation when inappropriately taking the
conversational floor: 1) speaking before a turn has ended
(interruption, overlap), 2) speaking too early after a turn has
ended (short gap), or 3) speaking too late after a turn ended
(long gap). These situations lead to the conversational partner
perceiving the speaker’s behavior as inappropriate due to the
speaker not actively listening or not knowing when to take
the conversational floor [4], [6], [7].

Context is important in turn-taking because it influences
the appropriate time for a person to take the conversational
floor [3], [4], [8]. Social interaction context is defined
as any information that can be used to characterize a
social interaction such as the social status, interaction goals,
personalities, cultures, verbal and nonverbal behaviors, time,
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and environment of the interaction [9]. The influence of
context can be exemplified by contrasting turn-taking behavior
within a structured setting, such as an interview context,
to turn-taking behavior in a less structured controversial
debate. In an interview context, participants will seldom
interrupt each other because doing so would be considered
unprofessional. In contrast, it is often more common and
acceptable in a controversial debate to interrupt the other
speaker without waiting for them to finish their turn because
participants are more prone to voicing their opinion or refuting
the other’s claims. In these examples, the social norms of the
context affect participants’ turn-taking behavior [3], [4], [10].
Hence, it is vital that social robots exhibit context-specific
turn-taking behavior so they can effectively interact with
humans according to the context of the social interaction [10].
However, it is infeasible to pre-program the turn-taking
behavior of a social robot for all the potential social interaction
scenarios it will face prior to it being deployed.

Computational models of turn-taking behavior are rapidly
advancing from prior approaches that only considered single
feature vectors over a brief window of time to identify a
speaker’s End of Turn (EoT) [6], [11]. These recent research
works utilize state-of-the-art machine learning techniques
such as Long Short-Term Memory (LSTM) Recurrent Neural
Networks (RNNs) [12]-[14] and Transformer-based archi-
tectures [15] to model turn-taking behavior. These models
are often trained on datasets gathered within specific social
interaction contexts such as the MapTask corpus [11]-[13],
[16], puzzle solving corpus [14], or a variety of human-robot
interaction (HRI) scenarios [15], [17]. However, a general
turn-taking model that could be applicable to all possible
contexts has yet to be achieved, and models trained from data
gathered in one context (e.g., MapTask) cannot be utilized
in contexts it has not been trained on (e.g., HRI) [12]. It is
also infeasible to predict all the potential social interaction
contexts a social robot may face prior to deployment. Hence,
there is currently an open opportunity to develop an approach
to rapidly teach a robot context-specific turn-taking behavior
after it has been deployed.

Learning from Demonstration (LfD) enables non-technical
experts to teach a social robot new behaviors or tasks after
it has been deployed [18], [19]. LfD has primarily been used
to learn high-level social tasks, such as facilitating Bingo or
robot-mediated therapy, and discrete robot actions such as
a greeting [20]-[22]. LfD enables humans to demonstrate
ideal behaviors in a distinctive social interaction context,
and then teach the robot how to imitate these behaviors
in a similar context. Furthermore, teaching a social robot



using LfD enables it to implicitly capture and understand the
context of the situation. Hence, LfD could be a potentially
effective approach for teaching a social robot context-specific
turn-taking behavior. This can be accomplished by training
turn-taking models utilizing human demonstrations of the non-
verbal behavior in a specific context. However, to date there
has been limited research in learning nonverbal behaviors
(e.g., turn-taking) from human demonstrations.

In this paper, we present a LfD system for a human to teach
ideal turn-taking behavior within a specific social interaction
context via demonstration and enable a robot to exhibit such
turn-taking behavior within a similar context. Namely, we use
LfD to capture a demonstrator’s context-specific turn-taking
behavior in response to the verbal, prosodic, and gestural cues
of the individual they are interacting with during a specific
social interaction context. External observation-based LfD
is used to gather verbal, prosodic, and gestural data in a
human-human interaction. This demonstration data is then
used to train an LSTM RNN to model the demonstrator’s turn-
taking behavior. The model can then be applied to a robot to
exhibit context-specific turn-taking behavior in a human-robot
interaction based on the verbal, prosodic, and gestural cues
of the human partner. We evaluate the performance of this
LfD system in a dyadic interaction.

Overall, this paper has three primary research contributions.
First, we present a LfD system which learns nonverbal
behavior from human demonstration. Second, we extend
prior turn-taking models by learning from demonstration
context-specific turn-taking behavior from a limited number of
demonstrations. This contrasts prior work that trains a single
model of turn-taking behavior on a large dataset containing a
variety of contexts and attempts to generalize to new contexts;
but the results of these models have performed poorly in these
new contexts [12], [17]. Third, we extend current research on
turn-taking for chat bots and conversational agents to robots
and investigate the effect of verbal, prosodic, and gestural
cues on predicting the appropriate time for a robot to take
the conversational floor. Current research for chat bots and
conversational agents only utilize verbal and prosodic cues
to predict a turn shift during human-computer interactions
as opposed to selecting the most appropriate time to take a
speaking turn based on context-specific social norms [8].

II. RELATED WORKS

Current state-of-the-art turn-taking approaches aim to learn
a predictive and general model of turn-taking that can be
applicable to all contexts by training a model with datasets
containing a single or several contexts of conversational turn-
taking [12], [13], [15], [17]. Namely, current predictive turn-
taking models aim to predict a speaker’s end of turn so
that the model can be applied alongside other algorithms
to determine the appropriate time for an agent (e.g., robot,
chatbot, conversational agent) to take a speaking turn.

In [12], an LSTM RNN model was trained on the MapTask
[16] dataset for predicting an end of turn and generalizing
turn-taking predictions to new contexts. The dataset included
18 hours of spontaneous speech that was recorded from 128

dyadic conversations. A combination of the final Part of
Speech (POS) tags and prosody features were used to train
the LSTM RNN model. The model was evaluated on a subset
of the MapTask dataset and a separate HRI dataset consisting
of a robot actively listening (e.g., providing backchannels and
follow-up questions) to users while they recounted their past
travels. Results demonstrated that the LSTM RNN model
outperformed the baseline silence-based and Inter-Pausal
Units-based models in predicting turn-shifts. However, the
model could not accurately predict turn-shifts in the novel
HRI context without re-training in that context [12].

In [13], a larger RNN model with multiple LSTM layers
was again trained on the MapTask dataset. Using only
prosodic cues from the speaker, the trained model was more
accurate in predicting the EoT than the model presented in
[12]. The turn-taking model was also retrained on a Japanese
speaking dataset and a telephone call dataset consisting of
five different languages to investigate the effects of language
on the model’s performance. The model accurately predicted
end of turns across four languages but did not accurately
predict end of turns in Japanese. This suggests that prosodic
features alone cannot predict EoTs in Japanese. The authors
further elaborated that due to the variability in turn-taking,
future work has the potential to improve performance by
rapidly learning a novel style of interaction.

In [17], a study was conducted to investigate differences
in the ability of LSTM RNN models to predict an EoT
when trained on a dataset containing multiple contexts versus
training on data collected in a specific context. A total of
105 human-robot interaction sessions were conducted with
participants over a wide range of ages and backgrounds.
Scenarios included a robot interviewing participants as candi-
dates for a job (30 sessions), actively listening to participants
(20 sessions), acting as a secretary during interactions with
participants (19 sessions), acting as a single woman during
a speed-dating scenario with participants (32 sessions), and
guiding participants through a tour of a lab (4 sessions). The
LSTM RNN models were trained using only prosodic features,
only linguistic (verbal) features, or a fusion of the two features.
The results of their study found that a model trained on all the
aforementioned scenarios using verbal and prosodic features
performed better than models trained in a single specific
scenario when the context of interaction was closely related
in structure (i.e., interview, speed-dating, secretary, active
listening) to the scenarios found in the aggregated dataset
but performed worse when the scenario’s structure (i.e., job
interview) was not close to those found in the aggregated
dataset. The authors further elaborated that a generalized
turn-taking model based on a large dataset is more suited
for unstructured informal conversation, and structured task-
dependent conversation would require training a model with
data derived from the context to perform successfully.

TurnGPT [15] is an adaptation of Open AI’'s GPT-2 [23]
and a transformer-based model for turn-taking. The TurnGPT
model was trained with eight verbal datasets including:
transcripts of dialogues between humans and automated
assistants, human-human written dialogues, and scripts from
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Fig. 1: Overview of the proposed LfD system for learning turn-taking
behavior from human demonstrations
the MapTask and Switchboard corpus. Compared to POS
model and text-based LSTM baselines, the TurnGPT model
significantly outperformed both in prediction of EoTs. This
advantage can be attributed to the fact that this model not
only considers completion of a turn syntactically but also
considers the pragmatic completion of a turn. However, the
Turn-GPT model is designed for text-based data and lacks
the important concept of time (i.e., when to take a turn given
a high probability EoT word), which is an important ability
for spoken dialogue.

Current approaches have focused on learning turn-taking
models which generalize to many different contexts [12], [15],
[17]. However, the results of these models have demonstrated
that models trained on data from one context struggle to
generalize to novel contexts [12], [17].

Lastly, current models determine an upcoming EoT using
inputs including: verbal [15], prosody [13], and a combination
of verbal and prosodic cues [12], [17]. To the best of our
knowledge, the combination of verbal, prosodic, and gestural
cues in detecting turn-shifts has yet to be explored. Studies
have found that gesture could be a potentially useful cue for
identifying whether a speaker is holding the conversational
floor [8], [24]-[26].

In this work, the aforementioned gaps were addressed by
investigating the impact of gesture, verbal, and prosodic cues
on the performance of a turn-taking model and creating a
LfD system which achieves the following: 1) learning context-
specific task-oriented turn-taking from human demonstrations
and 2) making discrete decisions of when to take a turn
instead of only predicting turn-shifts.

Learning
Model

III. LEARNING FROM DEMONSTRATION SYSTEM

Our LfD system for a social robot to learn contextual turn-
taking models is presented in Figure [I] The LfD system
first gathers demonstrations of turn-taking during dyadic
human-human social interactions within a specific context.
The demonstrations are then used to train a LSTM RNN turn-
taking model utilizing verbal, prosodic, and gestural cues
to decide the appropriate time for a robot to take the next
turn in the demonstrated context. This model can then be
implemented on a social robot to identify the beginning of
its turn to speak when it takes on the role of one of the
individuals within the dyad for the demonstrated context.
Namely, while predicting the EoT is the ultimate goal of
current turn-taking models, our LfD system is able to learn
a demonstrator’s decision-making process on when to take a
speaking turn during a conversation in a specific context.

A. Human-Human Demonstration Data Gathering

Our setup for gathering demonstration data during dyadic
human-human social interactions within specific contexts
is depicted in Figure [T} In our setup, the two individuals

TABLE I: Set of Interviewer Behavioral Questions
How are you today?
Tell me about yourself.
Are you good at working in teams?
Can you make decisions quickly?
What kind of skills do you think are important in research?
Are you quick in completing tasks?
Why do you find social robotics interesting?
Would you please tell me about your strengths?
Would you like to discuss some of your weaknesses?
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Fig. 2: A sample of data collected using our LfD system

are standing and facing each other during a natural social
interaction. During the interaction two Microsoft Kinect depth
cameras, one directed at each individual, are being used
to record both participants’ skeleton joint locations. Each
individual is also wearing a lapel microphone which captures
their audio during the interaction.

B. Job Interview LfD Scenario and Dataset

We utilize a job interview scenario as a representative
example of a dyadic interaction where our LfD system could
be applied. The procedures for collecting this dataset with our
LfD system were reviewed and approved by the Institutional
Review Board at Oakland university (#IRB-FY2022-103).
Written informed consent was obtained from all participants
prior to the data collection and participants could withdraw
from the data collection at any time.

We had a researcher (32 years old and male) acting as an
interviewer in order to simulate an end-user demonstrating
a new turn-taking behavior to the robot within a specific
context. The interviewer had a set of nine behavioral interview
questions (Table [) which the interviewer could naturally
vary in phrasing. The interviewer conducted interviews with
undergraduate students using the set of behavioral questions
as well as greeting and closing statements. Each student
participated in three interview sessions consisting of the
same questions phrased differently to increase the number
of conversational turns taken and, consequently the size of
the dataset for training a turn-taking model. The students
were not provided any specific prompts on how to answer
the interview questions other than to answer them naturally.

A total of five students were interviewed. The students were
all English speakers with an age range of 21-24 years old (i
= 22). There were three male and two female participants.
The average duration of the interviews was 1 minute and
52 seconds and the entire dataset included 28 minutes and
7 seconds of dyadic conversations. In total there were 150
turns taken within the dataset. A sample of data from our
interview dataset is presented in Figure [2]

C. Feature Extraction

The features for our model can be divided into 3 cate-
gories: verbal, prosody, and gesture. All features are time-
synchronized and sampled over 50 millisecond frames. Verbal
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Fig. 3: Turn-taking model architecture

features are generated by applying an Automatic Speech
Recognition (ASR) service, Google Speech-to-Text, to raw
audio data and obtaining timestamped transcriptions as well as
word-level confidences. These transcriptions often contained
misrecognitions and we do not correct these so as to preserve
the unlabeled as well as LfD nature of our data gathering.
These transcriptions are then input to a TurnGPT model which
has been pre-trained on the turn-taking datasets used in [15].
The output is a score for the probability of a word being
an EoT. The scores on a word being an EoT are used as
features for all frames after the speaker has uttered the word
and before the end of the next word-level utterance. This
choice simulates a causal, real-time system, where the features
could not be computed until ASR outputs a word. The final
verbal features for our model are the time-transformed ASR
confidence and TurnGPT score.

For interviewee prosody features, we utilize a modified
feature set found in [12] which included: voice activity, pitch,
energy, and spectral flux. Voice activity was derived from the
ASR system. The other features were computed using librosa
[27] and z-normalized per speaker. Note that we use spectral
flux rather than the spectral stability used by Skantze [12]
because Ward [13] achieved better results using flux.

Finally, we derive interviewee gesture features via principle
component analysis (PCA). The skeleton joint positions of
the interviewee are first transformed to be relative to the torso
frame. We sample the 3D euclidean position of both hands,
both elbows, and the head and z-normalize these 15 features.
We then perform PCA to reduce the dimensionality of the
features to obtain five output features.

D. Turn-taking Model Architecture

Once the features have been extracted from the dataset,
they are utilized to train a LSTM RNN based turn-taking
model, Figure 3] Our model consists of one LSTM layer
with 15 hidden neurons per LSTM cell. The model output
is the probability that the interviewer should speak in each
prediction frame for the next three seconds. Each frame
comprises 50ms of data and we use 60 frames for a total of 3
seconds of prediction time. The LSTM output is transformed
to the 60-dimensional output vector via a fully connected layer.
Both our recurrent and fully connected layers use sigmoid
activation functions, while the LSTM inputs use tanh.

E. Model Training

We employ k-fold cross validation to train the model and
split our dataset of five speakers into four training samples and
one test sample. This is due to the relatively small size of our
dataset (28 mins) in comparison to typical turn-taking datasets
(e.g., the popular Switchboard dataset which contains 240
hours of data [28]). We consider the participant’s turn-taking
behavior within the test sets as ground truth for the evaluation
of the model’s performance. In contrast to prior work that train
models for both speakers on the dataset, we train our model
from the perspective of a single speaker (i.e., the interviewer).
The verbal features of both speakers are input to the TurnGPT
model so its internal state can gain context from both sides
of the conversation. However, the verbal features from the
interviewer’s current speaking turn is masked out from the
output of TurnGPT because it would not be available while
making a real-time decision on turn-taking for the interviewer.
For prosody and gesture, we use only the features from the
interviewee. These model design/training decisions ensure
that the output of the model (i.e., turn-taking decision) is
only determined by information available to the interviewer
including history of the conversation and interviewee verbal
as well as nonverbal behaviors. Specifically, our loss function
targets the demonstrator’s (interviewer) decisions on taking
the turn for training the model while the loss functions for
current state-of-the-art turn-taking models target the EoTs.

Given the small size of our dataset, we select hyperpa-
rameters that minimize the chance of overfitting. We train
for 60 epochs using a batch size of 4 and a learning rate of
0.005. We use a 0.2 dropout on the LSTM inputs but do not
apply dropout on recurrent connections. We also apply 0.001
L2 regularization on the LSTM and output layer weights to
reduce overfitting. We use a loss function of mean squared
error for training. To divide our data into training samples,
we select windows of 10 seconds, using features from the
first seven and labels from the last three. We designed our
models in Tensorflow and trained our models on a 32-core
AMD Ryzen CPU with 128 GBs of memory. The average
model training time was 76 minutes.

F. Turn Decision Making

The output of the learned LSTM Model only provides
probabilities on whether the interviewer will speak for each
frame over the next 3 seconds. However, the choice in making
a turn is discrete. Herein, we make discrete decisions with our
model by first accumulating the predictions over a fixed time
window of past predictions.sil*;cgrmally, this can be defined as:

pred; = (Z pz_n)/size (1)

n=0
where pred; is the probability of whether to take a turn

in the current frame i, size is the number of frames of
past predictions to accumulate, and pzfn is the probability
predicted at frame ¢*~" of whether to take a turn at time
frame t*. In this case, a small window size of 10 frames
(i.e., 0.5 seconds) will take into account more short-term
predictions and be more responsive, whereas a larger window
of 3s will take into account more long-term predictions, thus



having a filtering effect on any short-term variance. Applying
a threshold to pred; will then allow us to make a discrete
decision to take a turn or not.

IV. EXPERIMENTS

We evaluate our system’s ability to learn a model that
replicates a demonstrator’s turn-taking behavior in a dyadic
social interaction utilizing an ablation test and F} scores.

A. Ablation Test

We evaluate how different features contribute to turn taking
and identify the best performing model by conducting an
ablation test while using Mean Absolute Error (MAE) as our
measure of performance. We evaluated models using silence,
verbal, prosodic, and gestural cues, as well as combinations
of these cues. All models included silence (VAD) as a feature
due to its critical importance for turn-taking [8].

B. F Score Evaluation

While MAE provides an overall metric of the continuous
prediction accuracy of the model, we note that evaluating
a model only in the continuous domain fails to provide an
idea of how the model will perform for real-world robot
decision making on discrete turn or no turn decisions. To
account for this, we utilize F; scores and precision-recall
to evaluate the robot’s discrete turn-taking decisions. The
discretization approach previously explained in Sub-Section
F of Section III requires tuning of the parameters including
the accumulation window size and the probability threshold
value. First, to find the optimal window size, we identified
the best-performing model from the ablation test and plot the
F'; score versus threshold value for different window sizes.
Maximizing the F; score gives us an idea of an optimal
balance between False Positives (FP) and False Negatives
(FN). For the purpose of this evaluation, a True Positive (TP)
is counted as any prediction within two seconds of the ground
truth turn-taking event. This two-second tolerance is according
to studies on the distribution of human turn-taking latency
[7]. Also, note that we do not consider probability thresholds
below 0.2 due to the limitation that for very low thresholds,
the model predicts always speaking, and given our rising-edge
method of discretization, we would only predict a single turn
for the whole sequence. For traditional classification tasks,
lowering thresholds would increase FPs and lower precision
(and consequentially F; score) but in this case lowering
thresholds too far decreases FPs. Given that the metric does
not provide meaningful information past this point, we omit
evaluating probability thresholds below 0.2. Once we obtain
the plot with the F; score versus threshold value for different
window sizes we select the optimal accumulation window
from it. This optimal accumulation window is then used to
plot the F} score performance of the different models.

V. RESULTS

The results of our ablation test and Fj score evaluations
are summarized in Table [[] and Figure

A. Ablation Test

The results of our overall ablation test are described in
Table [l We observe that the model with verbal and prosodic
features performs best over all prediction lengths. Prosody
scores second over all prediction lengths, in agreement with
prior work [13]. Notably, gesture and the model with all
features including gestures perform worst in this test. We
attribute this to strong overfitting on the gesture features
(training loss was 0.148 and evaluation loss was 0.217).

B. Fy Score Evaluation

The plots for the F; score versus threshold value for
different windows sizes for the verbal and prosody model are
shown in Figure da] The optimal accumulation window was
ten previous frames. The plot using this accumulation window
to determine the performance of the different models based
on changing probability thresholds is presented in Figure 4b]
These results suggest overall performance remains mostly
stable across a significant range of thresholds from 0.2 to 0.7.
We note that aside from the worst-performing models which
used gesture cues, the others appear marginally different.
Given this result, we turn to a more granular approach of
plotting precision and recall to determine the differences in
FPs and FNs. We plot precision and recall using the same
value of accumulation window size of ten in Figure j4c} From
this figure, we can see that the verbal and prosodic model
skews toward optimizing precision while simpler models such
as silence sacrifice precision for recall.

VI. DISCUSSION

In this study, we present a LfD based system capable
of making decisions on the appropriate time to take a
turn during a one-on-one social interaction context such as
in an interview scenario. We argue that creating a model
generalizable to numerous contexts can be difficult and may
not be necessary in some cases. Instead, gathering small
amounts of data using a LfD approach has proven valid for
learning turn-taking behavior as demonstrated in our interview
context. Our model is also the first to demonstrate the
benefits of including transformer-based verbal features from
TurnGPT in combination with nonverbal features for turn-
taking. Including this data provides a sense of grammatical
sentence completion and helps indicate whether the interview
question was completely answered; these are features that
simpler POS verbal features could not capture [15].

In terms of adapting a model to a specific context, our
results show that we can use a limited dataset of interviewer
turn-taking behavior to build a performant model for that con-
text. Both gathering and labeling of data can be prohibitively
difficult. Our approach limits the former and eliminates the
latter, which is a significant finding for adapting robots to
new social interaction contexts after they have been deployed.
However, overfitting is a significant challenge with high-
dimensional features like gesture. Our findings demonstrated
that the lower-dimensional features provided by prosody and
verbal features were better for generalization in this context.

One phenomenon that we also observed in our data was
that FPs were strongly correlated with the interviewees’ use



TABLE II: Mean absolute error ablation test results (mean =+ std. dev. across participants)

Prediction Length Silence Verbal* Prosody* Gesture* Verbal+Prosody*  Verbal+Prosody+Gesture*
250ms 0.2704+0.031  0.272+0.024  0.263+0.027  0.32740.045 0.25840.023 0.3074:0.045
500ms 0.27440.028 0.277£0.021  0.268+0.025  0.3344-0.042 0.26410.022 0.31540.043
1s 0.28740.023  0.290+£0.016  0.281+0.021  0.35140.033 0.27840.021 0.33440.038
2s 0.31940.018  0.321£0.013  0.312+0.017  0.38140.016 0.311+0.019 0.36740.024
3s 0.3424+0.016  0.343+0.013  0.3354+0.014  0.396£0.011 0.334+0.018 0.385+0.015
* Feature set also includes the silence feature.
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(b) Model response on an interaction that includes filler sounds

Fig. 5: Comparison of the predicted probability to take a turn against
the ground-truth turns for two different test inputs

of filler sounds such as ’um’. This is illustrated in Figure
[l Figure [5a] shows model performance with a speaker who
did not use filler sounds and the model correctly identifies
all TPs and produces no FNs or FPs. On the other hand, the
speaker in [3b] frequently utilized filler sounds. Our ASR and
VAD detection systems did not detect such occurrences but
instead labeled these instances as silence because recognition
of disfluencies (e.g., filler sounds) remains an open research
challenge and tools are still unavailable to reliably recognize
them [29]. The model falsely predicts to take the turn

when presented with these misrecognitions of long silences.
Future models should aim to address such disfluencies
because they are common in human speech and play an
important role in signaling an incomplete turn in natural
human social interactions [30]. Hence, it is necessary to
address these challenges with disfluencies in future work
and we hypothesize that representing these instances in our
feature set would greatly improve the model’s performance.

Another notable finding in the data is the seeming disparity
between the MAE evaluation and precision-recall evaluation.
The verbal and prosody model performs best on MAE but not
necessarily on precision-recall. This suggests that the model is
better at predicting near and long-term speaking activity than
when predicting exact speaking onset. In other words, this
model makes conservative judgments about when to speak
whereas the other models are more eager. We hypothesize
that this phenomenon is also correlated with the issue of
filler sounds because such instances may penalize the model
for being eager and prompt during training. Consequently,
the model utilizes late turn-taking to better optimize the loss
function. We again expect that the results would improve on
recall-precision if filler sounds were better represented.

We believe that in future work it is important to further
study the ideal trade-off between early turns and late turns
from a human-robot interaction perspective. Objective metrics
such as I score weigh each equally but this does not account
for subjective human evaluations on socially appropriate turn-
taking policies or their specific expectations of robot turn-
taking. Prior work further indicates that the context affects
this trade-off [3], [4], [10]. For example, in a job interview
one would be more wary of interruption than in casual
conversation with a friend. Moreover, it may be possible



to recover from mistakes in turn taking. An example would
be identifying an interruption has occurred and yielding the
turn much like a human would.

Lastly, interviews are fairly structured, and interruption
patterns, filler words, and backchanneling are likely to be
different in other unstructured contexts [8], [10]. Our approach
performed successfully in a structured setting and we plan to
evaluate this approach for training a model in unstructured
settings (e.g., a controversial discussion) as our future work.
Also, interruptions during HRIs have been studied in several
other contexts but as far as we are aware, interruptions during
turn-taking has yet to be explored [31]. Such scenarios are
challenging to study as systems that change the flow of
conversation are closed-loop in nature and less friendly to
offline training and evaluation. Often the solution for closed-
loop learning in robotics involves simulation environments,
but this approach is infeasible for this task given that we still
lack a full model of turn-taking [7].

VII. CONCLUSION

In this paper, we present a LfD approach for a robot to
learn appropriate context-specific turn-taking behavior from
human demonstrations. In comparison to existing work in
turn-taking that learns a model that predicts the EoT for a
speaker and has an agent speak immediately after, our model
specifically learns when a robot should speak in a given
context. This accounts for differences in social norms as well
as appropriate uses of short gaps, long gaps, and interrupts
in turn-taking within different social contexts. Results from
experiments on applying our LfD approach to a job interview
context demonstrates that our system can learn a turn-taking
model that replicates human-like turn-taking behavior in the
given context. Furthermore, we evaluated the role of verbal,
prosodic, and gestural turn-taking features for enabling a
learned model to accurately make a decision on when a
robot should take a speaking turn. Ablation analysis on these
features suggest that the combination of verbal and prosodic
features perform better in training a context-specific model,
with limited demonstration data, to determine when a robot
should take a speaking turn.
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