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Abstract. In this work, we develop a new framework for dynamic network flow pro-
blems based on optimal transport theory. We show that the dynamic multicommodity 
minimum-cost network flow problem can be formulated as a multimarginal optimal 
transport problem, where the cost function and the constraints on the marginals are asso-
ciated with a graph structure. By exploiting these structures and building on recent 
advances in optimal transport theory, we develop an efficient method for such entropy- 
regularized optimal transport problems. In particular, the graph structure is utilized to 
efficiently compute the projections needed in the corresponding Sinkhorn iterations, and 
we arrive at a scheme that is both highly computationally efficient and easy to implement. 
To illustrate the performance of our algorithm, we compare it with a state-of-the-art linear 
programming (LP) solver. We achieve good approximations to the solution at least one 
order of magnitude faster than the LP solver. Finally, we showcase the methodology on a 
traffic routing problem with a large number of commodities.
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1. Introduction
Many phenomena in today’s society can be modeled as large-scale transportation or flow problems, and new 
technological advances create the need for solving larger and larger problems. An example is the introduction of 
self-driving cars to the road network, which will create both new opportunities and new challenges (Levinson 
et al. [44], Pasquale et al. [50]). Increasing automation and communication between vehicles will result in very 
large systems where all vehicles need to be routed simultaneously, taking into account destinations, vehicle 
properties, and urgency (Carlino et al. [13]). Another challenge is to direct large crowds in, for example, transit 
areas in airports, subways, or event venues (Aronson [2], Haghani and Oh [35], Yamada [61]), which is particu-
larly critical for evacuation scenarios in the case of emergencies but also essential for everyday use.

Many of these problems can be modeled as large-scale dynamic network flow problems (Aronson [2], Bertsi-
mas and Patterson [10], Kennington [41]). The most common strategy for handling such problems is to convert 
the dynamic flow problem to a static flow problem on a time-expanded network, and this strategy goes back to 
the classical work of Ford and Fulkerson [26]. In addition to this, there are typically several classes of groups of 
agents with heterogeneous properties and objectives in the system. For instance, each agent in a traffic network 
drives a vehicle with certain properties, and the objective is typically to reach a certain destination with a certain 
degree of urgency. Similar problems appear in air traffic planning, railroad traffic scheduling, communication, 
and logistics, and they are often treated as multicommodity flow problems over networks (Aronson [2], Bertsi-
mas and Patterson [10], Haghani and Oh [35], Kennington [41]). Although such problems are usually formulated 
as linear programming (LP) problems, for real applications the corresponding optimization problems are often 
too large to be handled by standard methods. Specialized methods exploit the structure of multicommodity flow 
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problems using, for example, column generation methods. These include price-directive decomposition (Jones et al. 
[38]), resource-directive decomposition (Kennington and Shalaby [40], McBride [48]), and basis partitioning methods 
(Farvolden et al. [24]). However, it has been reported that these methods typically decrease the solution time of stan-
dard (LP) solvers by at most one order of magnitude (Barnhart et al. [4], Khodayifar [42], Retvdri et al. [54]).

During the last few decades, there has been considerable development in the field of optimal transport theory. 
Traditionally, the optimal transport problem addresses a static scenario where one given distribution is trans-
ported to another, and this problem has been extensively used in areas such as economics and logistics (Villani 
[59]). There has recently been a rapid advancement of theory and applications for optimal transport, in particular 
toward applications in imaging, statistics, and machine learning (see Peyré and Cuturi [53] and references 
therein) and in systems and control (Benamou and Brenier [6], Chen et al. [15]), which has led to a mature frame-
work with computationally efficient algorithms (Peyré and Cuturi [53]) that can be used to address a wide range 
of problems. The optimal transport problem is a linear program, but the number of variables often makes it 
intractable to solve with general-purpose optimization methods for large-size problems. However, a recent com-
putational breakthrough in this area builds on introducing an entropic barrier term in the objective function. The 
resulting optimization problem can then be solved efficiently using the so-called Sinkhorn iterations (Cuturi 
[20]). This allows for computing an approximate solution of large transportation problems and has opened up 
the field for new applications where no computationally feasible method previously existed.

The optimal transport framework has in some cases been used for modeling several kinds of interacting classes 
(e.g., for transport of multiple species (Bacon [3], Chen et al. [16]) or flows with several phases (Benamou et al. 
[7])). In this paper, we will build on some of these results, and we propose to use a generalization of the optimal 
transport problem with several marginals to address multicommodity flow problems. This multimarginal opti-
mal transport problem (Gangbo and Świech [28], Pass [51], Rüschendorf [55], Rüschendorf and Uckelmann [56]) 
is computationally challenging because the number of variables grows exponentially in the number of marginals. 
Even though entropy regularization methods have been derived for the multimarginal optimal transport prob-
lem (Benamou et al. [8]), the cost for each iteration still grows exponentially in the number of marginals (see Lin 
et al. [45] for computational complexity bounds). However, in many cases the cost function has a structure that 
can be utilized for efficient computations, such as, for example, in barycenter, information fusion, and tracking 
problems (Benamou et al. [8], Elvander et al. [23], Haasler et al. [33]).

In this paper, we show that the dynamic flow problem can be formulated as a structured multimarginal opti-
mal transport problem. This structure can be visualized in a graph where the set of nodes corresponds to the 
marginals and where there is an edge between two nodes if there is a cost term or a constraint that depends 
jointly on the two nodes. For the single-commodity case, this structure is a path graph with one node for each 
time point that represents the flow in the network at that time. For the dynamic multicommodity network flow 
problem, there is one additional node in the graph that represents the distribution over the different commodity 
classes. The solution to this optimal transport problem then describes a joint distribution, which consists of the 
optimal flow for all commodities in the dynamic network problem.

We consider the corresponding entropy-regularized approximation of this problem, and by utilizing the struc-
ture in the cost function, we derive methods for solving this problem. Many of the classical methods for dynamic 
flow problems consider standard network flow methods on the time-expanded network. By instead formulating 
this problem as a multimarginal optimal transport problem, we can more efficiently utilize the sequential struc-
ture without explicitly setting up the time-expanded network. This results in an elegant and easily implementa-
ble method. We illustrate experimentally that this method is computationally competitive with state-of-the-art 
methods, and then, we apply it to a traffic routing problem.

The rest of the paper is structured as follows. Section 2 summarizes background material on dynamic multi-
commodity network flows and multimarginal optimal transport. In Section 3, we explain how to formulate net-
work flow problems as structured multimarginal optimal transport problems. Based on this, we develop 
numerical schemes to solve the problems in Section 4. Finally, in Section 5, we compare the performance of our 
methods with a commercial LP solver and showcase it in a traffic routing application.

2. Background
In this section, we review background on the two central topics of this paper: dynamic multicommodity network 
flows and multimarginal optimal transport. We also use this section to set up notation. In particular, boldfaced 
letters are used throughout to denote tensors, and ⌦ denotes the tensor (outer) product (e.g., for vectors v1 2 �n1 

and v2 2 �n2 , we have that v1 ⌦ v2 2 �n1⇥n2 and (v1 ⌦ v2)ij à (v1)i(v2)j). Moreover, by 1, we denote a column vector 
of ones of appropriate size; by �+, we denote the nonnegative real numbers, and we use �+ à �+ [ {1} and � à
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� [ {1} [ {�1} to denote the extended nonnegative real line and extended real line, respectively. Throughout, 
we will adopt the convention that 0 ·1à 0. Finally, by exp(·), log(·), � ,↵, and min(·, ·), we denote elementwise 
exponential, logarithm, product, division, and minimum, respectively.

2.1. Minimum-Cost Network Flow Problems
A minimum-cost network flow problem is to determine a flow from sources to sinks with minimum cost (Bertse-
kas and Tseng [9], Ford and Fulkerson [27]). More specifically, the flow is defined on a network N à (V,E) with 
vertices V and directed edges E, and the sources and sinks are sets of edges1 S+ ⇢ E and S� ⇢ E. Let each source 
e 2 S+ be equipped with a supply r+e 2 �+ and each sink e 2 S� with a demand r�e 2 �+, and we assume that the 
total supply matches the total demand (i.e., that 

P
e2S+r+e �

P
e2S�r�e à 0). In addition, let each edge e 2 E be 

assigned a cost ce 2 �+ of transporting a unit of flow on that edge. The goal of minimum cost-flow problems is to 
transport the flow from the sources to the sinks with minimal total transporting cost. We also include capacity 
constraints, which require that the total flow on an edge is limited by the edge capacity de 2 �+ on e 2 E.

There are two standard formulations for the network flow problem. One is the arc-chain formulation, where 
one optimizes over a set of flow paths (arc chains) from sources to sinks (Ford and Fulkerson [27], Tomlin [57]). 
This is the main formulation considered in this work and is described in detail. Another common formulation is 
the node-edge formulation, where one seeks the optimal amount of flow over each edge while maintaining flow 
balance in each node. For more details on this formulation and a comparison of both formulations, we refer the 
reader to Ford and Fulkerson [27] and Tomlin [57].

2.1.1. The Arc-Chain Formulation. Given a network N à (V,E), a path is a sequence of edges that joins two verti-
ces such that all edges and all visited vertices are distinct (i.e., they occur at most once in the sequence) (Diestel 
[21, p. 6]). A path is thus a subgraph, which we denote by p, and is defined by a list of edges (p1, p2, : : : , pN), 
where pj 2 E denotes the jth element of the path for j à 1, : : : , N. Here, N is called the length of the path p. More-
over, because p is a path, the edge pj ends in the initial node of pj+1 for j à 1, : : : , N� 1.

In the arc-chain formulation, we consider the paths or arc chains, which start in a source and end in a sink. Let 
P denote the set of all such paths, where the first element lies in S+ and its last element lies in S�. Moreover, let 
P+

e denote the paths starting from the edge e 2 S+, and let P�
e denote the paths ending in the edge e 2 S�. The 

cost of a path p 2 P is the sum of the costs of its edges cp à
P

e2pce. Next, let xp denote the amount of flow associ-
ated with path p 2 P. Then, the arc-chain formulation of the minimum-cost network flow problem reads

minimize
xp2�+, p2P

X

p2P
cpxp

subject to
X

p2P+
e

xp à r+e , for e 2 S+,

X

p2P�
e

xp à r�e , for e 2 S�,

X

p2P
δe2pxp  de, for e 2 E,

(1) 

where δe2p à 1 if the edge e is part of path p and δe2p à 0 otherwise. Here, the objective function corresponds to 
the total cost of the flow. The first two sets of constraints guarantee that the supply and demand for all sources 
and sinks are satisfied, and the last set of constraints enforces that the flow on each edge does not exceed the 
given capacity.

2.1.2. Multicommodity Network Flow. The extension to multicommodity network flow problems deals with the 
case where there are multiple commodities present in the network (Ford and Fulkerson [25], Hall et al. [36], Ken-
nington [41], Tomlin [57], Wang [60]). Here, we let L denote the number of commodities, and let c"e denote the 
cost of a unit flow on edge e 2 E of commodity ", for " à 1, : : : , L. The supply and demand typically depend on 
the commodity; thus, each commodity " has specified sources S",+ 2 E with supplies r",+e for e 2 S",+ and sinks 
S",� 2 E with demands r",�e for e 2 S",�. Moreover, for each commodity " à 1, : : : , L, let P" denote the sets of paths 
from the sources to the sinks, let P",+e denote the paths starting in e 2 S",+, and let P",�e denote the paths ending in 
e 2 S",�. The cost of a unit flow of commodity " on a path p 2 P is the sum of the corresponding costs of the edges 
in the path c"p à

P
e2pc"e . Next, by letting x"p denote the amount of flow of commodity " on path p, the minimum- 
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cost multicommodity network flow problem in arc-chain formulation reads

minimize
x"p2�+, p2P"
"à1, : : : ,L

XL

"à1

X

p2P"
c"px"p

subject to
X

p2P",+e

x"p à r",+e , for e 2 S",+, " à 1, : : : , L,

X

p2P",�e

x"p à r",�e , for e 2 S",�, " à 1, : : : , L,

XL

"à1

X

p2P"
δe2px"p  de, for e 2 E:

(2) 

Here, the first two sets of constraints guarantee that the demand and supply for all commodities are satisfied. 
The third set of constraints enforces that the flow on each edge does not exceed the given capacity. In particular, 
note that the multicommodity Problem (2) with only one commodity (i.e., L à 1) boils down to the single- 
commodity Problem (1).

2.1.3. Dynamic Network Flow. In this work, we consider dynamic flows, also called flows over time, where the 
time that it takes for the flow to travel in the network is taken into account (Aronson [2], Ford and Fulkerson 
[26], Hall et al. [36]). In this work, we develop efficient methods that exploit the temporal structure. For this to 
work, we need to assume synchronous traveling times for all edges, but on the other hand, the efficient methods 
allow for handling problems with large networks and fine time discretization.

More precisely, we consider a flow problem on the network N à (V,E) over the time interval 0 to T . The prob-
lem is to transport a given flow at time 0 through the network to a final flow at time T with minimal cost while 
satisfying capacity constraints at all time points. We consider the discretized problem on the time steps 
0, 1, : : : ,T . Dynamic flow problems are typically solved as a static problem on the time-expanded network (Ford 
and Fulkerson [26]). The time-expanded network N exp is constructed by considering T + 1 copies of the vertices 
V, denoted by V0, : : : ,VT . Here, the copy Vt is associated with time instance t in the time-expanded network, and 
we denote these nodes by (t, v), where v 2 V in the original network.

The edges of N exp connect nodes corresponding to consecutive time instances according to the edges E in the 
original network: that is, Eexp à[T

tà1 Et, where Et consists of the directed edges ((t� 1, vt�1), (t, vt)) where 
(vt�1, vt) 2 E for t à 1, : : : ,T . The capacities and costs on these added edges are defined to be the same as the cor-
responding2 edges in the original network N . The time-expanded network is illustrated for a simple example in 
Figure 1.

To express the dynamic flow problem in arc-chain formulations similarly to (1) and (2), a path p is as before a 
tuple of edges (p1, : : : , pT ). Its element pt 2 Et denotes the edge, which the paths flow takes in the time interval 
[t� 1, t]. In the setting of one commodity, let P denote the set of feasible paths in the time-expanded network 
N exp (i.e., p 2 P if p is a path that starts in a source, p1 2 S+, and ends in a sink, pT 2 S�). The corresponding cost 
of unit flow on the path p 2 P is then cp à

PT
tà1 cpt . The dynamic minimum-cost network flow problem can then 

Figure 1. A network with three nodes and its time-expanded network for T à 3 time steps. 
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be written as

minimize
xp2�+, p2P

X

p2P
cpxp (3a) 

subject to
X

p2P
δeàp1 xp à r+e , for e 2 S+, (3b) 

X

p2P
δeàpT xp à r�e , for e 2 S�, (3c) 

X

p2P
δeàpt xp  de, for e 2 E, t à 2, : : : , T � 1: (3d) 

Note that the network flow Problem (1) on the time-expanded network N exp corresponds to (3) line by line.
To formulate the multicommodity counterpart of the dynamic flow Problem (3), let P" denote the set of feasi-

ble paths in the time-expanded network N exp for commodity " à 1, : : : , L. The corresponding cost of unit flow on 
the path for commodity " is then c"p à

PT
tà1 c"pt 

for a path p 2 P", and the dynamic minimum-cost multicommodity 
network flow problem reads

minimize

"à1, : : : ,L
x"p2�+, p2P"

XL

"à1

X

p2P"
c"px"p

subject to
X

p2P"
δeàp1 x"p à r",+e , for e 2 S",+, " à 1, : : : , L,

X

p2P"
δeàpT x"p à r",�e , for e 2 S",�, " à 1, : : : , L,

XL

"à1

X

p2P"
δeàpt x"p  de, for e 2 E, t à 2, : : : ,T � 1;

(4) 

see Khodayifar [42] for a similar problem formulation.
A problem with the arc-chain formulations is that the number of variables, corresponding to possible paths, 

grows exponentially with T . Thus, standard linear programming methods are not applicable when T is large. A 
way to circumvent this issue is to use specialized solvers building on, for example, column generation or to 
instead consider the corresponding node-edge formulations of the problem (cf. Ford and Fulkerson [27], Tomlin 
[57]). In this work, we take a different approach that builds on formulating the problem as an optimal transport 
problem that utilizes the structure in the arc-chain formulation.

2.2. Optimal Transport
The optimal transport problem is to find a mapping that moves the mass from one distribution to another with 
minimal cost based on an underlying metric (Villani [59]). In this paper, we consider the discrete setting where 
the two distributions are represented by two nonnegative vectors µ1 2 �n1

+ , µ2 2 �n2
+ with equal mass. In this set-

ting, the transport cost is defined in terms of a underlying nonnegative cost matrix C 2 �n1⇥n2
+ , where Cij denotes 

the cost3 of moving a unit mass from position i to j. Analogously, a transport plan M 2 �n1⇥n2
+ is a nonnegative 

matrix, where Mij represents the amount of mass moved from i to j. The optimal transport plan from µ1 to µ2 is 
then a minimizing solution of

minimize
M2�n1⇥n2

+

trace(CTM)

subject to M1 à µ1,
MT1 à µ2:

(5) 

Multimarginal optimal transport extends the concept of the classical optimal transport Problem (5) to the setting 
with a set of marginals µt 2 �nt

+ , for t à 1, : : : ,T , where T � 2 (Benamou et al. [8], Elvander et al. [23], Haasler et al. 
[33], Pass [51]). In this setting, the transport cost and transport plan are described by tensors C 2 �n1⇥n2 : : : ⇥nT

+ and 
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M 2 �n1⇥n2 : : : ⇥nT
+ . Here, Ci1 : : : iT denotes the unit cost associated with the tuple (i1, : : : , iT ), and Mi1 : : : iT denotes the 

amount of mass associated with this tuple. Then, the total transportation cost for a given transport plan M is

hC, Mi à
X

i1, : : : , iT
Ci1 : : : iT Mi1 : : : iT :

Moreover, M is a transport plan between the desired marginals if its projections on the marginals satisfy 
Pt(M) à µt, for t à 1, : : : ,T , where the projection on the tth marginal is defined by

(Pt(M))it :à
X

i1, : : : , it�1, it+1, : : : , iT
Mi1 : : : it�1itit+1 : : : iT : (6) 

The discrete multimarginal optimal transport problem thus reads
minimize
M2�n1⇥ : : : ⇥nT

+

hC, Mi

subject to Pt(M) à µt, for t 2 Γ:
(7) 

Here, Γ is an index set that describes the set of constrained marginals. In the original multimarginal optimal 
transport formulation, constraints are typically given on all marginals (i.e., for the index set Γ à {1, 2, : : : ,T }). 
However, in this work, we typically consider the case where constraints are only imposed on a subset of margin-
als (i.e., Γ ⇢ {1, 2, : : : ,T }) or when some of the constraints are inequality constraints.

Note that the standard bimarginal optimal transport Problem (5) is a special case of the multimarginal optimal 
transport Problem (7), where T à 2 and Γ à {1, 2}. It is also worth noting that the bimarginal optimal transport 
problem can be interpreted as a minimum-cost network flow problem. However, this interpretation does in gen-
eral not extend to the multimarginal case (Lin et al. [46]). In this work, we show how to formulate any dynamic 
network flow problem as a multimarginal optimal transport problem with a structured cost tensor.

2.2.1. Sinkhorn Iterations. Although linear, the number of variables in the multimarginal optimal transport Prob-
lem (7) is often too large to be solved directly. A popular approach for the bimarginal setting to bypass the size 
of the problem has been to add a regularizing entropy term to the objective (Cuturi [20]). In principle, the same 
approach can be used also for the multimarginal case. With the entropy term

D(M) à
X

i1, : : : , iT
(Mi1 : : : iT log(Mi1 : : : iT ) + Mi1 : : : iT � 1), (8) 

the entropy-regularized multimarginal optimal transport problem is defined as
minimize
M2�n1⇥ : : : ⇥nT

+

hC, Mi + ✏D(M)

subject to Pt(M) à µt, for t 2 Γ,
(9) 

where ✏ > 0 is a small regularization parameter. The introduction of the entropy term in Problem (9) allows for 
expressing the optimal solution M in terms of Lagrange dual variables, which may be computed by Sinkhorn 
iterations (Benamou et al. [8], Nenna [49]). In particular, it can be shown that the optimal solution of (9) is of the 
form (Elvander et al. [23])

M à K �U, (10) 
where K à exp(�C=✏) and where U can be decomposed as

U à u1 ⌦ u2⌦⋯ ⌦uT : (11) 
Here, the vectors ut 2 �nt

+ , for t à 1, 2, : : : ,T , are given by

ut à exp(λt=✏), if t 2 Γ
1, else;

�
(12) 

where λt 2 �
nt for t 2 Γ are optimal dual variables in the dual problem of (9). This dual problem takes the form

maximize
λt2�

nt , t2Γ
�✏hK, Ui+

X

t2Γ
λT

t µt, (13) 

where U depends on {λt}t2Γ as specified in (11) and (12). For details, the reader is referred to, for example, Bena-
mou et al. [8] and Elvander et al. [23].
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The Sinkhorn scheme for finding U in (11) is to iteratively update ut according to
ut  ut � µt ↵ Pt(K � U), (14) 

for all t 2 Γ. This scheme may, for instance, be derived as Bregman projections (Benamou et al. [8]) or a block- 
coordinate ascent in the dual (13) (Elvander et al. [23], Karlsson and Ringh [39], Tseng [58]). As a result, global 
convergence of the Sinkhorn scheme (14) is guaranteed (Bauschke and Lewis [5], Luo and Tseng [47], Tseng 
[58]). The computational bottleneck of the Sinkhorn iterations (14) is computing the projections Pt(K � U), for 
t 2 Γ, which in general, scale exponentially in T . In fact, even storing the tensor M is a challenge as it consists of QT

tà1 nt elements. However, in many cases of interest, structures in the cost tensors can be exploited to perform 
the sum operations in (6) in an appropriate order, which makes the computation of the projections feasible (Bena-
mou et al. [8], Elvander et al. [23], Haasler et al. [31], Haasler et al. [33], Haasler et al. [34]). More precisely, in 
many applications, the tensor K �U factorizes such that it can be described by a graph G à (V, E), where the ver-
tices V correspond to the tensor marginals and its dependencies are described by the set of edges E. The projec-
tions (6) can then be computed efficiently by first eliminating the variables (i.e., performing the sum operations) 
for the vertices that have few dependencies. For instance, when the tensor K �U factorizes according to a tree 
structure, the projections (6) can be computed by first eliminating the variables corresponding to the trees leaves 
and successively moving down the branches. Computing the projections requires then only matrix-vector multi-
plications, where the matrices are at most of size maxt(nt) (Haasler et al. [33], Haasler et al. [34]). In the case of 
more complex graphs, a similar approach can be utilized, but computations become more expensive. For 
instance, in case the graph is a cycle, the complexity is increased by a factor of maxt(nt) as compared with the 
tree setting (Benamou et al. [8], Haasler et al. [31]).

3. Network Flow Problems via Optimal Transport
In this section, we introduce a reformulation of the dynamic minimum-cost flow problem as a multimarginal 
optimal transport Problem (7). In the single-commodity, case this optimal transport problem has a path structure. 
The multicommodity case can be expressed as several single-commodity problems, which are coupled through 
the capacity constraints. Alternatively, this can be set up as one multimarginal optimal transport problem, where 
the cost function decouples as a graph that contains cycles.

3.1. The Dynamic Minimum-Cost Flow Problem
Let N exp be the time expansion of the network N for the time steps t à 0, : : : ,T , and let P denote the set of feasible 
paths in N exp. In order to solve an arc-chain formulation of a flow problem on this network, one has to identify all 
paths in this set. Clearly, the set of feasible paths P is a subset of the set P̃ à {(i1, : : : , iT ) : it 2 Et for t à 1, : : : ,T }, 
which contains all combinations of T edges in E. In fact, the set P̃ is generally much larger than P because it lifts the 
set of feasible paths to the set of all “paths” possible from purely combinatorial considerations (ignoring the graph 
structure).

However, using this representation, the network flow can be described by a tensor M 2 �nT

+ , where n à |E | and 
where the element Mi1, : : : , iT denotes the amount of flow on the path (i1, : : : , iT ). The vector Pt(M) 2 �n

+, where the 
projection operator is defined as in (6), then describes the flow distribution over the edges between time t � 1 
and t, as illustrated in Figure 2. That is, its element Pt(M)i denotes the amount of flow over edge i 2 Et.

Figure 2. Illustration of the optimal transport tensor M in the time-expanded network from Figure 1. The tensors marginal 
Pt(M) describes the distribution of flow over the edges in the time interval (t� 1, t). 
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Similarly, the evolution of flow between time intervals (t1 � 1, t1) and (t2 � 1, t2) is described by the bimarginal 
projections Pt1, t2(M) 2 �n⇥n

+ , which are defined as

(Pt1, t2(M))it1 it2
à

X

i1, : : : , iT \{it1 , it2 }
Mi1 : : : iT : (15) 

That is, the element (Pt1, t2(M))ij describes the amount of flow that is in edge i at time t1 and that is in edge j at 
time t2. Let c 2 �n

+, where ci denotes the cost of a unit flow on edge i 2 E, and let C 2 �n⇥n
+ encode the network 

topology (i.e., Cij à 0 if edge i leads to4 edge j and Cij à1 otherwise). Then, we define the cost of a transport plan 
M as

XT

tà1
cTPt(M) +

XT �1

tà1
trace(CTPt, t+1(M)) à hC, Mi, (16) 

where the tensor C 2 �n⇥n : : : ⇥n
+ is defined as

Ci1 : : : iT à
XT

tà1
cit +

XT �1

tà1
Citit+1 : (17) 

Note that hC, Mi à 1 here means that the transport plan contains paths that are not consistent with the network 
structure (i.e., for some t 2 {1, : : : ,T � 1} and some (i, j) � E, (Pt, t+1(M))ij > 0).

Let µ1 and µT be the supply and demand distributions, respectively. That is, (µ1)i à r+i for i 2 S+ and zero oth-
erwise and (µT )i à r�i for i 2 S� and zero otherwise. Moreover, let d 2 �n

+ encode the capacity constraints of the 
network; that is, di is the flow capacity on edge i 2 E. These supply, demand, and capacity constraints can be 
encoded as equality and inequality constraints on the flow distributions over the edges Pt(M). Based on this, we 
formulate the linear program

minimize
M2�nT

+

hC, Mi (18a) 

subject to P1(M) à µ1, (18b) 

PT (M) à µT (18c) 
Pt(M)  d, for t à 2, : : : , T � 1: (18d) 

The structure of Problem (18) with cost (17) can be illustrated by the path graph in Figure 3. This graph structure 
will be utilized in Section 4 to develop a numerical method for dynamic minimum-cost network flow problems. 
Indeed, Problem (18) with cost (17) is equivalent to the dynamic minimum-cost network flow Problem (3) in the 
sense described in the following theorem.
Theorem 1. The dynamic minimum-cost network flow Problem (3) and Problem (18) correspond to each other in the fol-
lowing sense. 

1. Assume that (18) has a feasible solution with finite objective value. Then, it has a finite optimal value, and (3) has the 
same optimal value. Moreover, if M is an optimal solution of (18), then there is an optimal solution {xp : p 2 P} of (3) such 
that

Mi1 : : : iT à
xp for (i1, : : : , iT ) 2 P, where p à (i1, : : : , iT )
0 for (i1, : : : , iT ) 2 P̃ \P:

�
(19) 

2. Assume that there is a feasible solution to (3). Then, it has a finite optimal value, and Problem (18) has the same optimal 
value. Moreover, if {xp : p 2 P} is an optimal solution of (3), then there is an optimal solution M of (18) such that (19) holds.

Figure 3. Illustration of the path graph for the single-commodity network flow problem. Gray and white circles describe equal-
ity and inequality constrained marginals, respectively. As described by (16), the costs c are acting on the marginals, and the costs 
C are acting on the bimarginals. 
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Proof. First, note that the amount of flow on edge e 2 E between time t � 1 and t is given in the optimal transport 
formulation (18) by

X

i2P̃, itàe
Mi1 : : : iT à Pt(M)e: (20) 

Thus, the flow distribution over Et is exactly the projection Pt(M) as defined in (6). Then, with

(µ1)i à
r+i , i 2 S+

0, otherwise; (µT )i à
r�i , i 2 S�

0, otherwise;

��

the sets of Constraints (3b)–(3c) and (18b)–(18c) both restrict the respective problems to paths that satisfy the sup-
ply and demand constraints. In the formulation (3), the total flow on edge e 2 Et is given by

X

p2P
δeàpt xp, (21) 

and thus, the inequality Constraints (3d) and (18d) restrict the flows in the respective problems to the same 
capacity constraints. Moreover, note that (Pt, t+1(M))ij describes the amount of flow moving from edge i 2 Et to 
edge j 2 Et+1. Therefore, the objective (18a) is finite if and only if Mi1 : : : iT à 0 for all (i1, : : : , iT ) 2 P̃ \P. Now, by 
associating the amount of flow on edge 

i 2 Et 
with (20) and (21), respectively, the cost of a feasible flow plan (i.e., a plan that satisfies Mi1 : : : iT à 0 for all 
(i1, : : : , iT ) 2 P̃ \P) can be written in the two formulations as

X

p2P
cpxp à

X

p2P

XT

tà1

X

e2E
δeàpt ce

 !

xp à
X

e2E

XT

tà1

X

p2P
δeàpt xp

 !

ce à
XT

tà1

X

e2E
Pt(M)ece à

XT

tà1
cTPt(M):

This completes the proof. w

Comparing Problem (18) with Problem (3), we have expanded the set of optimization variables by adding a 
large number of infeasible paths. However, the novel formulation (18) is structured as a multimarginal optimal 
transport problem as in (7), which opens up for efficiently computing an approximate solution. In particular, the 
structure of Problem (18) can be described by the path graph in Figure 3. Although Problem (18) lifts the set of 
optimization variables in (3) from the set of feasible paths to the set of all combinatorially possible paths in the 
network, the infinite values in the tensor (17) restrict the problem to the set of feasible paths as in (3).
Remark 1. The second term in (16) is needed only to restrict the solution of Problem (18) to the set of feasible 
paths P. Naturally, this could instead be imposed as a set of hard constraints Pt, t+1(M)  E, for t à 1, : : : ,T � 1, 
where Eij à1 if edge i leads to edge j and Eij à 0 otherwise. Instead, we choose to use the penalty terms in (16) 
for computational reasons. In Section 4, we develop a scheme, which is based on the methods introduced in Sec-
tion 2.2 (i.e., solving the dual of a regularization of Problem (18)). Note that adding more hard constraints to (18) 
leads to a larger number of dual variables, which makes it more expensive to solve the regularized dual problem. 
We thus impose the network structure through the penalty terms in (16), which yields a dual problem with con-
siderably fewer variables. Moreover, infinite values in C induce sparsity to the tensor K à exp(�C=✏) in (10), 
which can be exploited when computing the projections (6) needed for the Sinkhorn scheme.

3.2. The Dynamic Multicommodity Minimum-Cost Flow Problem
In this section, we extend the optimal transport formulation of the dynamic minimum-cost network flow prob-
lem from Section 3.1 to the multicommodity setting.

Assume that there are L different commodities present in the network N , and each of these is assigned an ini-
tial distribution µ"1 and a final distribution µ"T for " à 1, : : : , L. For each commodity, we define a cost vector 
c" 2 �n, where (c")i denotes the cost of a unit flow of commodity " on edge i 2 E. As in the single-commodity case 
in Section 3.1, the network structure is imposed by a matrix C 2 �n⇥n

+ , and the total flow capacity is bounded on 
all edges and described by a vector d 2 �n

+. One way to formulate an optimal transport problem for the multicom-
modity flow is to describe each commodity flow by a mass transport tensor M", for " à 1, : : : , L. Then, each of 
these transport tensors has to satisfy the respective supply and demand Constraints (18b)–(18c), and its cost is 
given by hC", M"i as defined in (16). The capacity constraints in the network need to hold for the sum of all com-
modity flows (i.e., the sum of the projections Pt(M") over all commodities " à 1, : : : , L). The dynamic 
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multicommodity minimum-cost flow Problem (4) can, therefore, be written as

minimize
M1, : : : ,ML2�nT

+

XL

"à1
hC", M"i (22a) 

subject to P1(M") à µ"1, for " à 1, : : : , L, (22b) 

PT (M") à µ"T , for " à 1, : : : , L, (22c) 

XL

"à1
Pt(M")  d, for t à 2, : : : , T � 1: (22d) 

Note here that the L optimal transport problems are each of the form in (18) and are coupled only through the 
capacity Constraint (22d).

We will now bring Problem (22) on a form similar to a multimarginal optimal transport Problem (7) (i.e., a for-
mulation containing only one mass transport tensor). This is done by combining all information from the 
T -mode transport plans M" 2 �n⇥ : : : ⇥n

+ , for " à 1, : : : , L, to a new mass transport tensor M 2 �L⇥n⇥ : : : ⇥n
+ with T + 1 

modes. That is, we let its element M", i1 : : : iT describe the amount of flow of commodity " over the path i1, : : : , iT . 
Accordingly, for the added mode in the tensor, we introduce a marginal µ0 2 �L

+, where (µ0)" à 1Tµ"1 à 1Tµ"T 

denotes the total supply and demand of commodity " 2 L. The initial and final distributions for the commodities 
can then be summarized in two matrices R(0, 1), R(0,T ) 2 �L⇥n

+ , defined as R(0, 1) à (µ1
1,µ2

1, : : : ,µL
1)

T and R(0,T ) à
(µ1

T ,µ2
T , : : : ,µL

T )
T. In particular, with this construction, it holds that R(0, 1)1 à R(0,T )1 à µ0. Moreover, define a 

matrix CL 2 �L⇥n as CL à (c1, c2, : : : , cL)T; that is, (CL)", i denotes the cost for commodity " 2 L to be on edge i 2 E.
Note that the objective function (22a) can be written as

XT �1

tà2
trace(CL

TP0, t(M)) +
XT �1

tà1
trace(CTPt, t+1(M)) à hC, Mi, 

where the cost tensor C 2 �L⇥nT

+ is given by

Ci0 : : : iT à
XT �1

tà2
(CL)i0it +

XT �1

tà1
Citit+1 : (23) 

Thus, the dynamic multicommodity minimum-cost network flow Problem (22) can be expressed as
minimize

M2�L⇥nT
+

hC, Mi

subject to P0, 1(M) à R(0, 1),
P0, T (M) à R(0, T ),
Pt(M)  dt, for t à 2, : : : , T � 1

: (24) 

Utilizing the result in Theorem 1, we have now proved that the solutions to (24) and the dynamic multicommod-
ity minimum-cost network flow Problem (4) are equivalent, as summarized in the following theorem.
Theorem 2. The dynamic minimum-cost network flow Problem (4) and Problem (24) correspond to each other in the fol-
lowing sense. 

1. Assume that (24) has a feasible solution with finite objective value. Then, (24) has a finite optimal value, and (4) has the 
same optimal value. Moreover, if M is an optimal solution of (24), then there is an optimal solution {x"p : p 2 P"," à 1, : : : , L}
of (4) such that

M", i1 : : : iT à
x"p for (i1, : : : , iT ) 2 P", where p à (i1, : : : , iT )
0 for (i1, : : : , iT ) 2 P̃ \P":

(

(25) 

2. Assume that there is a finite feasible solution to (4). Then, it has a finite optimal value, and Problem (24) has the same 
optimal value. Moreover, if {x"p : p 2 P"," à 1, : : : , L} is an optimal solution of (4), then there is an optimal solution M of (24) 
such that (25) holds.

The structure of Problem (24) with cost (23) can also be illustrated as a graph, as seen in Figure 4. The two 
graphs in Figures 3 and 4 motivate our interest in a general framework for graph-structured optimal transport 
problems, which will be developed in Section 4.
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3.3. Generalizations
In this section, we have introduced novel formulations for dynamic minimum-cost network flow problems based 
on the optimal transport framework. We will now discuss a few modifications and generalizations of the pro-
posed Problems (18) and (24) and show that the proposed formulations in fact provide a highly flexible frame-
work for dynamic network flow problems.

An advantage of our framework is that, because of the fact that the network structure is imposed by the cost 
matrix C, a time-varying network can be modeled in a straightforward way. Namely, the matrix C can simply be 
replaced by a set of time-dependent matrices Ct, for t à 1, : : : ,T � 1, where Ct encodes the network topology in 
the interval (t, t+ 1). Moreover, based on the formulation (22), where each commodity is described by a separate 
transport tensor, one can extend the problem to the setting, where different commodities enter and leave the net-
work at different times. In fact, the computational methods derived in this work can easily be modified to this 
setting, as we will argue in Remark 5.

In some applications, for instance in traffic flow problems, where edges and nodes describe streets and junc-
tions, respectively, it is natural to allow for intermediate storage on the edges. This can be easily incorporated in 
our framework by letting Cii denote the cost for staying on edge i 2 E. It should be noted that in this case, the cost 
c"i denotes the cost for commodity " to use edge i 2 E and not the cost for traveling between the two vertices. That 
is, the cost accumulates if flow remains on an edge for several time intervals, which is useful (e.g., in traffic rout-
ing problems, where the cost model should take the travel time of agents into account). However, we can achieve 
a cost that does not accumulate in the case where all commodities are described by the same cost ci à c"i for all 
" à 1, : : : , L by defining a negative cost Cii à�ci for staying on the edge i 2 E.

A more classical setting in network flow problems is to allow for storage in the vertices. One way to include 
this in the presented framework is to augment the support of the modes of the mass transport tensor by the set 
of vertices (i.e., by letting n à |E | + |V |). In particular, in the multicommodity Problem (24), the mass transport 
tensor is then of the size M 2 �L⇥( |E | + |V | )T

+ , and the distributions are of the size µt 2 � |E | + |V |
+ , for t à 1, : : : ,T . Anal-

ogously to before, the network structure is imposed by the cost matrices C 2 �( |E | + |V | )⇥( |E | + |V | )
+ (i.e., we define Cij 

à 0 if i 2 {E [ V} is adjacent5 to j 2 {E [ V} and Cij à1 otherwise). Similarly, the definition of the cost CL and the 
capacities d can be extended to the vertices. It is worth noting that this extension of the state space also allows for 
defining the set of sinks and sources on the vertices instead of the edges.

Another extension of the formulation, of particular interest for traffic routing problems, is the setting where 
the sinks and sources are defined on nodes but where intermediate storage is only allowed in the sinks and 
sources and agents are not permitted to enter sources or leave sinks. In this case, we let n à |E | + |S+ | + |S� | and 
define the network structure through the cost matrix as follows:

Cij à
0, if i 2 {E [ S+} is adjacent to j 2 {E [ S+ [ S�}
0, if i 2 {E [ S+ [ S�} is adjacent to j 2 {E [ S�}
1, otherwise:

8
><

>:
(26) 

A final extension worth mentioning is the possibility of introducing commodity-dependent capacity constraints (Gen-
dron et al. [29], Kennington [41]). This may be done by introducing the set of constraints P0, t(M)  D(0, t) for 
t à 2, : : : ,T � 1, with capacity matrices D(0, t) 2 �L⇥n

+ , where D(0, t)
"i denotes the capacity of commodity " on edge i 2 E.

Figure 4. Illustration of the dynamic multicommodity minimum-cost flow Problem (24). Gray and white circles describe equal-
ity and inequality constrained marginals, respectively. 
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4. The Graph-Structured Multimarginal Optimal Transport Problem
Motivated by the two graph-structured optimal transport Problems (17)–(18) and (23)–(24), we will in this section 
define the general graph-structured optimal transport problem and develop methods to solve the corresponding 
entropy-regularized problem. This generalizes some of the results in Altschuler and Boix-Adsera [1], Benamou 
et al. [8], Haasler et al. [33], and Haasler et al. [34]. We will also consider the dynamic flow problems in Section 3
in detail and show how to exploit the graph structures in order to derive efficient methods.

We have noted that the network flow Problems (18) and (24) can be seen as multimarginal optimal transport 
problems with the underlying graph structures in Figures 3 and 4. In particular, we let each mode of the trans-
port tensor M be associated with a vertex and let interaction terms be described by edges. This defines a graph 
G à (V, E) with vertices V and edges E. The interaction terms defining the edges are given by bimarginal con-
straints, as in (24), or by bimarginal cost terms in the cost tensor: that is, C 2 �n1⇥⋯⇥nT with

Ci1 : : : iT à
X

(t1, t2)2E
C(t1, t2)

it1 it2
:

We denote the set of marginals that are constrained by equality and inequality constraints by Ṽà ⇢ V and 
Ṽ ⇢ V, respectively. Moreover, the set of tuples that are associated with a bimarginal constraint is denoted by Ẽ. 
Thus, the dynamic network flow Problems (18) and (24) are special cases of the graph-structured optimal trans-
port problem

minimize
M2�n1⇥⋯⇥nT

+

hC, Mi

subject to Pt(M) à µt, for t 2 Ṽà

Pt(M)  dt, for t 2 Ṽ

Pt1, t2(M) à R(t1, t2), for (t1, t2) 2 Ẽ,

(27) 

where µt, dt 2 �nt
+ , and R(t1, t2) 2 �nt1⇥nt2

+ . Following the approach presented in Section 2.2.1, we develop a scheme 
for approximately solving optimal transport problems of this form. It is worth noting that the results in Theo-
rems 3 and 4 and Proposition 1 are only based on the structure of the constraints in (27), and thus, they hold for 
arbitrary cost tensors C. However, to derive the efficient schemes presented in Section 4.2, the graph structures 
in the objective function have to be exploited.

4.1. Sinkhorn’s Method
In order to apply the approach in Section 2.2.1, we regularize (27) with an entropy term (8), which yields the reg-
ularized problem

minimize
M2�n1⇥⋯⇥nT

+

hC, Mi + ✏D(M)

subject to Pt(M) à µt, for t 2 Ṽà

Pt(M)  dt, for t 2 Ṽ

Pt1, t2(M) à R(t1, t2), for (t1, t2) 2 Ẽ:

(28) 

Similarly to the standard multimarginal optimal transport problem, the solution to (28) can be expressed in terms 
of its optimal dual variables, as the following theorem describes.
Theorem 3. Assume C is finite and the prescribed marginals µt for t 2 Ṽà, dt for t 2 Ṽ, and R(t1, t2) for (t1, t2) 2 Ẽ are 
strictly positive. Moreover, assume that (28) has a feasible solution. Let Ṽ à Ṽà [ Ṽ. Then, the optimal solution to (28) 
has the structure M à K � U, where K à exp(�C=✏) and

Ui1 : : : iT à
 
Y

t2Ṽ
(ut)it

! 
Y

(t1, t2)2Ẽ
U(t1, t2)

it1 it2

!

, (29) 

where ut 2 �nt
+ , for t 2 Ṽ , and U(t1, t2) 2 �nt1⇥nt2

+ , for (t1, t2) 2 Ẽ.
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In particular, ut à exp(�λt=✏) and U(t1, t2) à exp(�Λ(t1, t2)=✏), where λt 2 �nt and Λ(t1, t2) 2 �nt1⇥nt2 , for t 2 Ṽ and 
(t1, t2) 2 Ẽ, respectively, are optimal variables for the dual problem of (28), which is given by

maximize
Λ(t1, t2) 2 �nt1⇥nt2 , (t1, t2) 2 Ẽ,

λt 2 �nt , t 2 Ṽà
λt 2 �nt

+ , t 2 Ṽ

�✏hK, Ui�
X

(t1, t2)2Ẽ
hΛ(t1, t2), R(t1, t2)i�

X

t2Ṽ
hλt,µti: (30) 

Proof. Define Lagrange multipliers Λ(t1, t2) 2 �nt1⇥nt2 , for (t1, t2) 2 Ẽ, and λt 2 �nt , for t 2 Ṽ . Moreover, let λ :à (λt)t2Ṽ 
and Λ :à (Λ(t1, t2))(t1, t2)2Ẽ . With these, a Lagrangian of (28) is

L(M,λ,Λ) :à hC, Mi+ ✏D(M) +
X

(t1, t2)2Ẽ
hΛ(t1, t2), Pt1, t2(M)�R(t1, t2)i+

X

t2Ṽ
hλt, Pt(M)�µti: (31) 

The minimum of (31) with respect to Mi1 : : : iT is achieved when its derivative vanishes: that is, when

Ci1 : : : iT + ✏log(Mi1 : : : iT ) +
X

(t1, t2)2Ẽ
Λ(t1, t2)

it1 it2
+
X

t2Ṽ
(λt)it à 0:

Thus, the optimal transport tensor is of the form M àK �U with K and U as defined in the theorem. Note that 
the entropy term D(K � U) reads

X

i1, : : : , iT
Ki1 : : : iT Ui1 : : : iT

1
✏

 

�Ci1 : : : iT �
X

(t1, t2)2Ẽ
Λ(t1, t2)

it1 it2
�
X

t2Ṽ
(λt)it

!

�Ki1 : : : iT Ui1 : : : iT + 1

0

@

1

A

à�1
✏
hK � U, Ci� 1

✏

X

(t1, t2)2Ẽ
hΛ(t1, t2), Pt1, t2(K �U)i� 1

✏

X

t2Ṽ
hλt, Pt(K �U)i� hK, Ui+

YT

tà1
nt:

Thus, plugging M à K �U into L(M,λ,Λ) in (31) and removing constants yield

�✏hK, Ui�
X

(t1, t2)2Ẽ
hΛ(t1, t2), R(t1, t2)i�

X

t2Ṽ
hλt,µti: (32) 

The dual to (28) is to maximize (32) with respect to Λ(t1, t2) for (t1, t2) 2 Ẽ and λt for t 2 Ṽ . Finally, given the assumptions, 
strong duality holds between the primal and the dual problem (see, e.g., Boyd and Vandenberghe [11, p. 226]). w

The assumptions in Theorem 3 are typically not satisfied for the network flow Problems (18) and (24). If the 
underlying network is not a complete graph, the cost tensor has infinite entries. Moreover, in most flow pro-
blems, the sources and sinks are a strict subset of the set of edges, which is modeled by zero entries in the pre-
scribed marginals µt, or R(t1, t2). The following theorem extends Theorem 3 to these cases.
Theorem 4. Let C 2 �n1⇥⋯⇥nT

+ , and assume that there is a feasible solution M of (28) for which Mi1 : : : iT > 0 if and only if 
Ci1 : : : iT <1, (µt)it > 0, (dt)it > 0, and R(t1, t2)

it1 it2
> 0. Then, the optimal solution to (28) has the structure M à K �U, where 

K à exp(�C=✏) and U factorizes as in (29).

Proof. Define the set of tuples

I à
�
(i1, : : : , iT ) | it 2 {1, : : : , n}, Ci1 : : : iT < 1, (µt)it > 0, (dt)it > 0, R(t1, t2)

it1 it2
> 0
⌧
:

For (i1, : : : , iT ) 2 I, we define Ĉi1 : : : iT à Ci1 : : : iT , (µ̂t)it à (µt)it , (d̂t)it à (dt)it , and R̂(t1, t2)
it1 it2

à R(t1, t2)
it1 it2

. Consider the problem

minimize
M̂ i1 : : : iT , (i1, : : : , iT )2I

X

(i1, : : : , iT )2I
C̃i1 : : : iT M̂i1 : : : iT + ✏D(M̂)

subject to Pt(M̂) à µ̃t, for t 2 Ṽà,
Pt(M̂)  d̂t, for t 2 Ṽ,
Pt1, t2(M̂) à R̂(t1, t2), for (t1, t2) 2 Ẽ,

(33) 

where the definition of D(M), Pt(M) and Pt1, t2(M) is relaxed to the case where the argument is not a tensor. The 
proof of Theorem 3 can be mirrored for the case where the variable is not a tensor. Thus, the optimal solution to 
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(33) can be written as M̂i1 : : : iT à K̂i1 : : : iT Ûi1 : : : iT , where K̂i1 : : : iT à exp(�Ĉi1 : : : iT =✏), and

Ûi1 : : : iT à
 
Y

t2Ṽ
(ût)it

! 
Y

(t1, t2)2Ẽ
Û(t1, t2)

it1 it2

!

, 

where (i1, : : : , iT ) 2 I. Now, define the tensors K à exp(�C=✏) and U 2 �n1⇥⋯⇥nT
+ , which are constructed as in (29), 

where

(ut)it à
(ût)it , if it is defined;
0, otherwise;

U(t1, t2)
it1 it2

à Û(t1, t2)
it1 it2

, if it is defined;
0, otherwise:

((

(34) 

Then, by construction, M àK �U is an optimal solution to (28). w

The Sinkhorn iterations for Problem (28) can be derived as a block-coordinate ascend method in the dual Prob-
lem (30), as summarized in the following proposition.
Proposition 1. Assume (28) has a feasible solution as in the assumptions of Theorem 4. Let K à exp(�C=✏) and U as 
defined in (29). Then, the iterative scheme

U(t1, t2)  U(t1, t2) � R(t1, t2) ↵Pt1, t2(K �U), for (t1, t2) 2 Ẽ (35a) 

ut  ut � µt ↵ Pt(K � U), for t 2 Ṽà (35b) 

ut  min
�
ut � dt ↵ Pt(K � U) , 1

⇥
, for t 2 Ṽ, (35c) 

converges linearly, and in the limit point, the optimal solution of (28) is given by M à K � U.

Proof. We first assume that the stronger assumptions from Theorem 3 hold. The scheme is derived as a block- 
coordinate ascent method in the dual (30). This is to maximize the objective with respect to one set of dual vari-
ables while keeping the other dual variables fixed: that is, to perform the updates

Λ(t1, t2)  arg max
Λ(t1, t2 )2�nt1 ⇥nt2

�✏hK, Ui� hΛ(t1, t2), R(t1, t2)i, for (t1, t2) 2 Ẽ (36a) 

λt  arg max
λt2�nt

�✏hK, Ui� hλt,µti, for t 2 Ṽà (36b) 

λt  arg max
λt2�nt

+

�✏hK, Ui� hλt, dti, for t 2 Ṽ: (36c) 

The objectives of the unconstrained Problems (36a) and (36b) are strictly concave, and thus, a necessary and suffi-
cient condition for optimality is that the respective gradient vanishes. Note that for each (t1, t2) 2 E, the gradient 
of (36a) with respect to Λ(t1, t2) is

exp(�Λ(t1, t2)=✏) �
 

X

i0, : : : , iT \{it1 , it2 }
Ki0 : : : iT

 
Y

t2Ṽ
(ut)it

! 
Y

(τ1,τ2)2Ẽ\(t1, t2)
U(τ1,τ2)

iτ1 iτ2

!!

�R(t1, t2), 

and setting it to zero gives (35a). Similarly, for t 2 Và, the gradient of (36b) with respect to λt is

exp(�λt=✏) �
 

X

i0, : : : , it�1, it+1, : : : , iT
Ki0 : : : iT

 
Y

τ2Ṽ\{t}
(uτ)iτ

! 
Y

(t1, t2)2Ẽ
U(t1, t2)

it1 it2

!!

�µt, 

which yields (35b). Finally, note that the objective in (36c) can be written as
X

it

 

� ✏e�(λt)it=✏
 

X

i0, : : : , it�1, it+1, : : : , iT
Ki0 : : : , iT

 
Y

τ2Ṽ\{t}
(uτ)iτ

! 
Y

(t1, t2)2Ẽ
U(t1, t2)

it1 it2

!!

� (λt)it dit

!

:

Thus, the maximization in (36c) can be performed in each element of λt individually. If the derivative of the 
objective in (36c) with respect to (λt)it vanishes for a feasible (i.e., nonnegative) point, then this is the global maxi-
mizer. Otherwise, the maximizer is the projection on the feasible set (i.e., (λt)it à 0). This yields (35c). The linear 
convergence of the scheme follows from Luo and Tseng [47] (cf. Haasler et al. [33, theorem 3.5]).
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In case only the assumptions in Theorem 4 are satisfied, we perform a block-coordinate ascent in the dual of 
(33). The dual variables can then be augmented by zero entries as in (34) to arrive at the scheme in the 
proposition. w

Computing the projections of K �U in Proposition 1 is in general still expensive because computing the sums 
in (6) and (15) requires O(nT ) operations. However, in the dynamic minimum-cost flow problems, there are addi-
tional structures in the cost tensor C and thus, in the tensor K. Namely, these tensors decouple according to the 
graphs in Figures 3 and 4. The next subsections describe how these structures can be utilized in order to effi-
ciently compute the projections needed to apply the scheme in Proposition 1.

4.2. Sinkhorn’s Method for the Dynamic Minimum-Cost Flow Problem
Recall that the dynamic minimum-cost flow Problem (18) is a multimarginal optimal transport problem. In par-
ticular, it can be written on the form (27), where Ṽà à {1,T }, Ṽ à {2, : : : ,T � 1}, and E à ;. Adding the entropy 
term (8) yields then an entropy-regularized Problem (28), which in this case, explicitly reads

minimize
M2�nT

+

hC, Mi+ ✏D(M)

subject to Pt(M)  dt, for t à 2, : : : ,T � 1
P1(M) à µ1,
PT (M) à µt,

(37) 

where C is defined by

Ci1 : : : iT à
XT

tà1
cit +

XT �1

tà1
Citit+1 :

Remark 2. Without the inequality constraints Pt(M)  dt and with zero cost on the edges, c à 0, the entropy- 
regularized Problem (37) is a discrete Schrödinger bridge problem (Haasler et al. [32], Haasler et al. [33], Pavon 
and Ticozzi [52]). The Schrödinger bridge problem is tightly connected to optimal transport (Chen et al. [14], 
Léonard [43]). It is a popular tool in ensemble control applications, as it provides a framework for steering a 
given distribution (i.e., an ensemble of agents) to a target one (Brockett [12], Chen et al. [15]). In particular, net-
work flow problems of this form have previously been considered in Chen et al. [17], Chen et al. [18], and Chen 
et al. [19]. This connection to the Schrödinger bridge problem gives another motivation for adding the regulariz-
ing entropy term to the objective of (18). Namely, the Schrödinger bridge problem on a network can be inter-
preted as an ensemble of agents, which are each evolving according to a Markov chain (Haasler et al. [32], Pavon 
and Ticozzi [52]). The entropy term thus induces a stochastic component to the problem, which yields a more 
smoothed out solution. Therefore, the solutions to the regularized Problem (37) can be understood as robust 
transport plans (Chen et al. [17], Chen et al. [18], Chen et al. [19]).

According to Theorem 4, the solution to the regularized Problem (37) is of the form M àK � U, where

Ki1 : : : iT à
 
YT

tà1
kit

! 
YT �1

tà1
Kitit+1

!

, 

with k à exp(�c=✏) and K à exp(�C=✏), and U à u1⌦⋯ ⌦uT . The components of the tensor U can be found utiliz-
ing Proposition 1. In particular, the solution is found by iterating

ut  ut � µt ↵Pt(K � U), for t à 1,T ,

ut  min
�
ut � d↵

�
Pt(K �U)

⇥
, 1
⇥
, for t à 2, : : : ,T � 1:

(38) 

In this case, where the cost decouples according to a path graph, the projections can be computed efficiently 
(Elvander et al. [23, proposition 2]). Namely, the projections for this problem are of the form

Pt(K � U) à ut � kt � �̂t � �t, (39) 

for t à 1, : : : ,T , where
�̂t à KTdiag(ut�1 � kt�1)KT : : : diag(u2 � k2)KT(u1 � k1), (40a) 

�t à Kdiag(ut+1 � kt+1)K : : : diag(uT �1 � kT �1)K(uT � kT ): (40b) 

The Sinkhorn algorithm (38) is summarized in Algorithm 1.
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Algorithm 1 (Scheme for Solving the Dual of the Regularized Dynamic Flow Problem (37))
Initialize u1, : : : , uT , t à 1, �̂1 à 1,�T à 1
while Not converged do

for t à T � 1, : : : , 1 do
Update �t  K(ut+1 � kt+1 � �t+1)

end for
Update u1  µ1 ↵�1
for t à 2, : : : ,T � 1 do

Update �̂t  KT(ut�1 � kt�1 � �̂t�1)
Update ut  min(dt ↵ (�t � �̂t � kt), 1)

end for
Update �̂T  KT(uT �1 � kT �1 � �̂T �1)
Update uT  µT ↵ �̂T

end while
return u1, : : : , uT

Note that intermediate results of (40a) and (40b) are stored and that the updates in (38) are scheduled such that 
for each update, only one matrix-vector multiplication needs to be performed. Thus, in the case of a dense matrix 
K, one iteration sweep (i.e., once updating all vectors ut) for t à 1, : : : ,T is of complexity O(T n2). However, for 
sparse networks, the matrix K is also sparse, and thus, the matrix multiplications required to compute the projec-
tions (39) via (40) become even more efficient, as discussed in the following remark.
Remark 3. Note that Kij > 0 if the edges i and j are adjacent and Kij à 0 otherwise. Thus, multiplication with a vec-
tor v 2 �n can be performed as

(Kv)i à
X

j2N(i)
Kijvj:

This multiplication is of order O(�(N ) · n), where �(N ) is the maximum degree of N (i.e., the highest number of 
neighboring nodes among the nodes V). The complexity of one iteration sweep in Algorithm 1 is thus 
O(T n�(N )). The algorithm converges linearly by Proposition 1 to an optimal set of vectors u1, : : : , uT , which 
make up the components in the tensor U that defines the optimal solution tensor M àK �U for (37).

4.3. Sinkhorn’s Method for the Dynamic Multicommodity Minimum-Cost Flow Problem
Similarly to the previous section, the multicommodity Problem (24) is also a multimarginal optimal transport prob-
lem of the form (27). In particular, here the constraint sets are Ṽà à ;, Ṽ à {2, : : : ,T � 1}, and Ẽ à {(0, 1), (0,T )}. 
Regularizing the problem with an entropy term, it is of the form (28), which in this case, reads

minimize
M2�L⇥nT

+

hC, Mi+ ✏D(M)

subject to P0, 1(M) à R(0, 1),
P0,T (M) à R(0,T ),
Pt(M)  dt, for t à 2, : : : ,T � 1,

(41) 

where C is defined by

Ci0 : : : iT à
XT �1

tà2
(CL)i0it +

XT �1

tà1
Citit+1 :

The solution to (41) can again be expressed in terms of its dual variables, as described in Theorem 4. In particular, 
the optimal mass transport plan is of the form M àK �U, where K factorizes as

Ki0 : : : iT à
 
YT �1

tà2
(KL)i0it

! 
YT �1

tà1
Kitit+1

!

, (42) 

where KL à exp(�CL=✏) and K à exp(�C=✏). Moreover, the tensor U is of the form

Ui0 : : : iT àU(0, 1)
i0i1 U(0,T )

i0iT

YT �1

tà2
(ut)it , (43) 

Haasler et al.: Computation of Dynamic Flow Problems via Optimal Transport 
16 Mathematics of Operations Research, Articles in Advance, pp. 1–26, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

08
.2

28
.6

9.
76

] o
n 

16
 A

ug
us

t 2
02

3,
 a

t 2
1:

11
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



and its components can be found according to Proposition 1 by iteratively updating

U(0, t)  U(0, t) � R(0, t) ↵ P0, t(K � U), for t à 1, T ,

ut  min
�
ut � d ↵ Pt(K � U), 1

⇥
, for t à 2, : : : , T � 1: (44) 

Again, the tensor K �U has a graph structure, which is illustrated in Figure 4. This graph contains cycles, and 
thus, the results from Haasler et al. [33] cannot be utilized. Nevertheless, the projections can be computed rela-
tively efficiently, as demonstrated by the next theorem.
Theorem 5. Consider the tensors K à exp(�C=✏), with C defined as in (23) and ✏ > 0 and U in (43). With the matrices 
KL à exp(�CL=✏) and K à exp(�C=✏), define

Ψ̂t à
U(0, 1)K, t à 2,
(Ψ̂t�1 � KL)diag(ut�1)K, t à 3, : : : ,T ,

(

(45) 

and

Ψt à
U0, T KT, t à T � 1,
(Ψt+1 � KL)diag(ut+1)KT, t à 1, : : : , T � 2:

(

(46) 

Then, the bimarginal projections of the tensor K �U are

P0, 1(K �U) àU(0, 1) �Ψ1

P0,T (K �U) àU(0,T ) � Ψ̂T

P0, t(K �U) à (Ψ̂t �Ψt � KL)diag(ut), for t à 2, : : : ,T � 1: (47) 

Proof. Note that the tensor K à exp(�C=✏) is element-wise defined as in (42); thus, the bimarginal projections of 
the tensor K �U on the marginals 0 and t, where t 2 {2, : : : ,T � 1}, are given by

P0, t(K �U) à
X

it+1, : : : , iT
i1, : : : , it�1

 
YT �1

sà1
Kisis+1

! 
YT �1

sà2
(KL)i0is

!

U(0, 1)
i0i1 U(0,T )

i0iT

YT �2

sà2
(us)is

à (ut)it(KL)i0it(Ψ̂t)i0it(Ψt)i0it , 

where

Ψ̂t à
X

i1, : : : , it�1

U(0, 1)
i0i1 Ki1i2

 
Yt�1

sà2
(KLdiag(us))i0is Kisis+1

!

and

Ψt à
X

it+1, : : : , iT
U(0, T )

i0iT KiT �1iT

 
YT �1

sàt+1
(KLdiag(us))i0is Kis�1is

!

:

These terms lead to the recursive definitions of Ψ̂t and Ψt in (45) and (46). The projections P0, 1(K � U) and 
P0,T (K � U) are derived similarly. w

The projections on one marginal can then be found by projecting the bimarginal projections in (47) on one of 
the marginals, which yields the following.
Corollary 1. The marginals of the tensor K � U in Theorem 5 are given by

Pt(K �U) à ut � (Ψ̂t �Ψt � KL)T1, for t à 2, : : : ,T � 1,
P0(K �U) à (Ψ̂t �Ψt � KL)ut:

Theorem 5 and Corollary 1 describe an efficient way to compute the projections required for the Sinkhorn 
scheme (44), and the resulting computational method is summarized in Algorithm 2. Similarly to the algorithm 
for the single-commodity setting, intermediate results can be stored and utilized.
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Algorithm 2 (Scheme for Solving the Dual of the Regularized Dynamic Multicommodity Flow Problem (41))
Initialize u2, : : : , uT �1, U(0, 1), U(0,T )

Compute Ψt, for t à 1, : : : ,T
while Not converged do

Update U(0, 1)  R(0, 1) ↵Ψ1
Update Ψ̂2  U(0, 1)K
for t à 2, : : : ,T � 1 do

Update ut  min
�
d↵ ((Ψ̂t �Ψt � K)T1) , 1

⇥

Update Ψ̂t+1  (Ψ̂t � KL)diag(ut)K
end for
U(0,T )  R(0,T ) ↵ Ψ̂T

Update ΨT �1  U(0,T )KT

for t à T � 1, : : : , 2 do
Update Ψt�1  (Ψt � KL)diag(ut)KT

end for
end while
return u2, : : : , uT �1, U(0, 1), U(0,T )

Remark 4. The computational bottleneck of the Sinkhorn iterations lies in computing the projections. One itera-
tion sweep of the Sinkhorn iterations requires updating each of the matrices in (45) and (46) once. For dense 
matrices K, each of these updates is of complexity O(Ln2), and thus, one full iteration sweep can be done in 
O(T Ln2). However, as noted in Remark 3, the matrix K inherits the sparsity of the network, and this can be 
exploited to perform the matrix multiplications in (45) and (46) more efficiently. Thus, the complexity of the 
matrix-matrix multiplication is decreased to O(�(N ) · Ln), and one full iteration sweep can be done in 
O(T �(N )Ln). Moreover, by Proposition 1, Algorithm 2 converges linearly to an optimal set of components of the 
tensor U in (43), which defines the optimal solution tensor M àK �U for (41).
Remark 5. In Section 3.2, we have formulated the multitensor Problem (22) as the one-tensor Problem (24) in 
order to bring it on the form of a graph-structured optimal transport Problem (27) and then solve it. Alterna-
tively, we could have regularized each of the L optimal transport problems in (22) separately, yielding the regu-
larized problem

minimize
M1, : : : , ML2�nT

+

XL

"à1

�
hC, M"i + ✏D(M")

⇥

subject to P1(M") à µ"1, " à 1, : : : , L,
PT (M") à µ"T , " à 1, : : : , L,
XL

"à1
Pt(M")  d t à 2, : : : , T � 1, 

where C is defined as in (16). In fact, this problem is equivalent to the regularized Problem (41). Moreover, in this 
representation, the Sinkhorn iterations are given by

u"1  u"1 � µ"1 ↵ P1(K" � U"), for " à 1, : : : , L

ut  min
 

ut � d ↵
 
X

"2L
Pt(K" � U")

!

, 1
!

, for t à 2, : : : , T � 1

u"T  uL
T � µ"T ↵ (PT (K" � U")), for " à 1, : : : , L

, 

and these are equivalent to the Sinkhorn iterations derived (cf. (44)). Recall from Section 3.3 that one convenient 
feature of formulation (22) is that it can be easily extended to allow for commodities that enter and leave the net-
work at different times. Therefore, as can be seen here, such problems can also be solved efficiently.

5. Simulations
In this section, we illustrate the computational efficiency of our proposed framework. First, we compare its per-
formance with the state-of-the-art LP solvers CPLEX and Gurobi on two different types of networks.6 Finally, we 
illustrate it in a traffic routing problem with a large number of commodities.
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5.1. Performance Study on a Sparse Grid Network
We first consider a dynamic multicommodity minimum-cost network flow problem on a sparse network. To this 
end, let N be a grid of nodes, let the source S+ for all commodities be an incoming edge to one corner of the 
square, and let the sink S� be an outgoing edge from the opposite corner. In this setup, the sink and source can 
be understood as the two corner vertices. We let the total flow of each commodity be one: that is, µ0 à 1. More-
over, the capacity vector d 2 �n

+ is defined as di à L for i 2 {S+ [ S�} and di à 1 otherwise. The cost for a unit flow 
of each commodity on each edge is randomly assigned from a uniform distribution on [0,1]; that is, we let 
c"e ~ Unif([0, 1]), for " à 1, : : : , L, and e 2 E. Here, we do not allow for intermediate storage on the vertices or the 
edges, except in the sink and source.

We consider several combinations of the following three parameters: number of edges, number of commodi-
ties, and number of time steps. The dynamic multicommodity network flow problem is then solved utilizing 
Algorithm 2 with different values of the regularization parameter ✏. The output of the algorithm is used to com-
pute an approximate transport plan as M à K � U, where the components are given by (42) and (43). To evaluate 
the solution M, we plug it into the unregularized objective of (24), hC, Mi, and compute the constraint violation

violation(M) à kP0, 1(M)�R(0, 1)k1 + kP0,T (M)�R(0,T )k1 +
X

tà2, : : : ,T
kmax(0, Pt(M)� dt)k1:

Because Algorithm 2 is a block-coordinate ascent in the dual of the regularized objective in (41), the algorithm 
converges to the fixed point of (44) as the constraint violation goes to zero. Therefore, the constraint violation of 
the iterates is a measure for the distance between the current and the optimal solution. As a baseline, we also 
solve the problem in node-edge formulation (cf. Ford and Fulkerson [27], Tomlin [57]) in the time-expanded net-
work using the solvers Gurobi Optimization LLC [30] and IBM ILOG CPLEX [37]. The results are presented in 
Tables 1–3.

One can see that our method achieves close approximations to the optimal solution. The value of hC, Mi con-
verges to a value that is slightly larger than the true optimal value because our method solves the regularized 
Problem (41). Moreover, we achieve close approximations of the optimal objective value even before the method 
is converged. The smaller the regularization parameter ✏, the closer we get to a true optimal solution.7 In all 
experiments, our proposed algorithm reaches a close to optimal solution significantly faster than the LP solvers. 
For the smallest problem in Table 1, it converges in less than 3% of the run time of the fastest LP solver, CPLEX’s 
dual simplex method. For the largest problem in Table 3, we are able to achieve a close to optimal solution in less 
than 0.4% of the fastest LP solvers run time.

5.2. Performance Study on a Dense Random Network
Next, we study the performance of Algorithm 2 in a less favorable setting.

Here, we consider a dense network with n à 50 nodes, where with probability 1/2, a directed edge is created 
between each (ordered) pair of nodes. The expected value of the number of edges in the network is thus 
⌘50

2
✓
à 1225. Moreover, we allow for intermediate storage in the nodes but not in the edges. Therefore, we aug-

ment the state space by the set of nodes as described in Section 3.3. We equip each of the L commodities with a 
random source and sink on the set of nodes. The total flow of each commodity is set to one (i.e., µ0 à 1), and we 
consider the dynamic problem with T time intervals. The capacity vector d 2 �n

+ is defined as di à L=(NT ), if 
i 2 E, and di à L, if i 2 V. As in the previous example, the cost for each commodity and each edge is assigned from 
a uniform distribution on [0,1]. Moreover, the cost for intermediate storage on the nodes is zero.

Table 1. Performance of Algorithm 2 on a 5⇥ 5 grid (i.e., n à 84 edges) for T à 60 time steps and L à 50 commodities.

Run time (seconds)

✏ à 0:04 ✏ à 0:02 ✏ à 0:01

hC, Mi Violation (M) hC, Mi Violation (M) hC, Mi Violation (M)

0.03125 153.56 1.22 e+02 152.41 2.54 e+01 152.03 2.52 e+01
0.0625 153.72 1.75 e+01 152.42 2.85 e+00 152.05 8.68 e�01
0.125 154.13 1.67 e�15 152.37 3.77 e�15 152.05 1.78 e�15

Optimal objective value Run time (seconds) Primal simplex Dual simplex

151.89 CPLEX 99.14 4.53
Gurobi 8.51 22.65
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We solve the problem using Algorithm 2 and solve its node-edge formulation in the time-expanded network 
with the dual simplex algorithm in CPLEX and Gurobi. The performance measures introduced in the previous 
subsection are presented in Tables 4–7. As in the previous set of experiments, we see that the value of hC, Mi is 
closest to the optimal objective value for the smallest tested regularization parameter ✏. In three of the experi-
ments (see Tables 4, 6, and 7), the method also converges fastest for the small regularization parameter. How-
ever, we can see that for the simulation with the smallest number of commodities, which is presented in Table 5, 
a larger regularization leads to faster convergence of the method. In fact, in this setting, all of our variants of 
Algorithm 2 take more time than the fastest LP solver. Nevertheless, in the experiments where the number of 
commodities is larger, our method is faster than the LP solvers. For the setting in Table 6, the proposed algorithm 
finds a close approximation to the optimal solution in 3.5% of the LP solver’s run time. Here, we only compare 
with CPLEX’s dual simplex method because this outperforms all the other LP methods in the previous experi-
ments (i.e., Tables 1–5). Moreover, it is worth noting that for small-enough ✏, the run time of our method does 
not significantly increase when the number of commodities is increased further; see Table 7. In the latter, we 
only show the results from the proposed method because the LP solvers do not converge within a reasonable 
time.

To conclude, even in the less favorable setting of a dense network with intermediate storage on the nodes, we 
may still get an approximate solution in less than an order of magnitude of CPLEX’s run time (e.g., when large 
numbers of commodities are present in the network).

5.3. Traffic Routing Problem with a Large Number of Commodities
We apply our framework to a synthetic traffic routing problem in the street network illustrated in Figure 5, 
which consists of 57 nodes and 150 directed edges. Let every node be both a sink and a source, and as described 
in Section 3.3, we thus let the state space be of size n à 150+ 2 · 57 à 264. An agent in the network is modeled by a 
unit of flow in a dynamic multicommodity network flow problem. Assume that there is an equal number of 10 
agents traveling between every pair of nodes. This can be modeled by defining a commodity as the set of agents 
that share the same final destination. That means that every commodity has a total amount of flow (i.e., agents) 
10 |V | à 570, which is initially uniformly distributed on the set of sources and in the end, has traveled to the asso-
ciated sink node. That is, for each commodity ", the set of sources is defined as S+

" à V, and the sink is one node 
S�
" 2 V. Moreover, the set of sinks of all commodities is a disjoint set, and its union is V. In particular, this means 

that the number of commodities is Là57, and the two matrix constraints in (24) are defined by the matrices 
R(0, 1), R(0,T ) 2 �L⇥n

+ with entries

Table 3. Performance of Algorithm 2 on a 10⇥ 10 grid (i.e., n à 364 edges) for T à 120 time steps and L à 100 commodities.

Run time (seconds)

✏ à 0:08 ✏ à 0:04 ✏ à 0:02

hC, Mi Violation (M) hC, Mi Violation (M) hC, Mi Violation (M)

0.125 607.24 6.26 e+02 579.51 4.20 e+02 572.50 4.34 e+02
0.5 588.95 7.95 e+01 576.20 6.68 e+01 572.18 6.33 e+01
2 595.93 7.24 e�02 578.05 2.42 e�02 572.37 4.88 e�15

Optimal objective value Run time (seconds) Primal simplex Dual simplex

570.02 CPLEX >3,600 427.04
Gurobi >3,600 >3,600

Table 2. Performance of Algorithm 2 on a 5⇥ 5 grid (i.e., n à 84 edges) for T à 110 time steps and L à 100 commodities.

Run time (seconds)

✏ à 0:04 ✏ à 0:02 ✏ à 0:01

hC, Mi Violation (M) hC, Mi Violation (M) hC, Mi Violation (M)

0.03125 302.05 5.74 e+02 300.60 4.61 e+02 300.26 4.62 e+02
0.125 303.74 1.22 e+02 301.23 1.08 e+02 300.47 9.68 e+01
0.5 306.13 3.07 e�04 302.12 3.89 e�15 300.57 6.11 e�15

Optimal objective value Run time (seconds) Primal simplex Dual simplex

300.13 CPLEX >3,600 38.86
Gurobi 187.7917 67.5105
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Table 4. Performance of Algorithm 2 on a dense network with N à 50, T à 50, L à 500.

Run time (seconds)

✏ à 5 · 10�3 ✏ à 2:5 · 10�3 ✏ à 1:25 · 10�3

hC, Mi Violation (M) hC, Mi Violation (M) hC, Mi Violation (M)

8 94.33 8.93 e+00 91.34 3.68 e+01 90.15 4.10 e+02
32 92.56 9.39 e�02 90.23 5.66 e�02 89.91 1.01 e�01
128 92.59 2.66 e�11 90.23 7.97 e�15 89.87 1.83 e�15

Optimal objective value Run time (seconds) Primal simplex Dual simplex

89.75 CPLEX >3,600 447.94
Gurobi >3,600 769.23

Table 5. Performance of Algorithm 2 on a dense network with N à 50, T à 100, and L à 250.

Run time (seconds)

✏ à 5 · 10�3 ✏ à 2:5 · 10�3 ✏ à 1:25 · 10�3

hC, Mi Violation (M) hC, Mi Violation (M) hC, Mi Violation (M)

8 50.61 1.21 e+02 46.81 2.42 e+02 45.39 3.47 e+02
32 48.19 2.52 e+00 46.58 2.28 e+00 45.62 5.69 e+00
128 48.49 5.07 e�04 45.24 1.23 e�02 44.86 1.66 e�01
256 48.49 7.88 e�08 45.24 1.01 e�04 44.85 6.62 e�02
512 48.49 4.72 e�14 45.24 9.46 e�06 44.85 2.79 e�02

Optimal objective value Run time (seconds) Primal simplex Dual simplex

44.76 CPLEX >3,600 454.77
Gurobi >3,600 744.20

Table 6. Performance of Algorithm 2 on a dense network with N à 50, T à 100, and L à 500.

Run time (seconds)

✏ à 5 · 10�3 ✏ à 2:5 · 10�3 ✏ à 1:25 · 10�3

hC, Mi Violation (M) hC, Mi Violation (M) hC, Mi Violation (M)

8 95.58 6.05 e+02 91.71 7.05 e+02 90.27 7.99 e+02
32 96.14 2.25 e+00 92.59 7.99 e+00 90.70 3.49 e+01
128 97.96 4.34 e�01 90.66 1.95 e�02 89.98 9.22 e�02
256 97.96 2.28 e�05 90.68 7.76 e�09 89.97 4.70 e�08
512 97.96 4.69 e�13 90.68 5.65 e�15 89.97 1.35 e�15

Optimal objective value Run time (seconds) Dual simplex

89.75 CPLEX 14,810

Table 7. Performance of Algorithm 2 on a dense network with N à 50, T à 100, and L à 1,000.

Run time (seconds)

✏ à 5 · 10�3 ✏ à 2:5 · 10�3 ✏ à 1:25 · 10�3

hC, Mi Violation (M) hC, Mi Violation (M) hC, Mi Violation (M)

8 184.28 5.01 e+02 180.00 5.70 e+02 178.58 5.86 e+02
32 185.83 9.30 e+02 181.15 8.68 e+02 178.88 1.22 e+03
128 186.77 3.01 e�01 181.75 1.10 e+00 179.43 7.34 e+00
256 190.34 5.00 e+00 180.12 4.95 e�02 178.86 3.01 e�01
512 198.58 2.82 e�01 180.67 1.16 e�10 178.59 1.55 e�15
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R(0, 1)
", i à

(
10, if i 2 S+

" à V,
0, otherwise; R(0,T )

", i à
(

570, if i 2 S�
" ,

0, otherwise:

We consider the scenario with intermediate storage in the edges but without storage on the nodes. However, 
agents are permitted to stay in their respective sink and source, but once they leave their source, they may not 
return to it; also, once they reach their sink, they may not leave it. This structure is imposed by the cost matrix C 
as defined in (26). The wider streets in Figure 5 describe highways, and we denote the set of highways as H. 
Because our framework assumes uniform travel time on all edges, the fact that the roads in H are longer than the 
other roads models that agents can drive faster on the highway. Let li denote the Euclidean length of road i 2 E. 
We define the capacities for each state as

di à
100li, if i 2H,
20li, if i 2 E \H,
100L, if i 2 S:

8
><

>:

The cost for an agent to be in any of the states is defined in the matrix CL. The costs are assumed equal for all 
agents and defined for all commodities " à 1, : : : , L as

(CL)"i à
0:01, if i 2 S+,
0:1, if i 2 E,
0, if i 2 S�:

8
><

>:
(48) 

Thus, the central controller aims to minimize the time agents spend inside the network and makes them reach 
the sink early rather than wait in the source. We consider the problem with final time T à 30. The problem is 
solved using Algorithm 2 with regularization parameter ✏ à 0:01. To illustrate the solution of the traffic routing 
problem, we will have a closer look at the flow of three commodities, namely the ones that correspond to the 
three sinks that are highlighted in Figure 5. The optimal flows for these three commodities are visualized in 
Figure 6. One can see that traffic is sent at all places in the network and finally concentrates toward the three 
sinks. For each commodity, we count the number of agents in the sources, roads, and sinks at each time interval. 
The number of agents in these three groups and for the three commodities is plotted over time in Figure 7(a). We 
also look at the total flow distribution (i.e., the accumulated distribution of the agents of all 57 commodities). The 
total flows distribution over source, roads, and sink over time can be seen by the blue lines in Figure 7(b). At the 
first time instance, many agents are sent from the sources into the network. Toward the end of the time interval, 
fewer and fewer agents are on the roads.

Figure 5. (Color online) Map of a street network. Every edge represents two directed edges, one in each direction. Broader edges 
represent highways. The three stars represent three different commodities’ sinks. 
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We now vary the cost for agents to stay in the source; see Figure 7(b). Clearly, if the cost for being in a source 
is increased to (CL)"i à 0:1, for i 2 S+ and " à 1, : : : , L, more agents are sent into the network early on. If the cost 
for being in a source is equal to being in a sink (i.e., (CL)"i à 0) for i 2 S+ and " à 1, : : : , L, the amount of flow on 
the roads over time looks very symmetric.

Finally, we consider a scenario where a second type of commodity is present in the network. Therefore, the 
total number of commodities is increased to 2L à 114. We interpret the first set of L commodities as cars and 
denote them as LC. The second set of L commodities is interpreted as trucks and denoted by LT. For each set of 
commodities, the initial and final distributions are defined as before, but the number of agents in each commod-
ity is halved in order to get the same total number of agents. That is, we define the new constraint matrices 
R̂(0, 1), R̂(0,T ) 2 �2L⇥n

+ as

R̂(0, 1) à 1
2

�
R(0, 1)

R(0, 1)

�
, R̂(0,T ) à 1

2

�
R(0,T )

R(0,T )

�
:

Figure 6. (Color online) The optimal traffic flow over time for three of the commodities. 

Figure 7. (Color online) Agents status over time. (a) Number of agents in sources, roads, and sinks over time for three commodi-
ties, where each color corresponds to one of the commodities in Figure 6. (b) Blue curves correspond to all agents in the scenario 
in Figure 6. Green and red curves describe the scenario, where the cost for staying in a source is equal to the cost on the roads 
(0.1) and to the cost for staying in a sink (0), respectively. 
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For the agents in LC, the costs to be on an edge, sink, or source are defined as before (i.e., for " 2 LC, it is given by 
(48)). Trucks are incentivized to use highways as much as possible by an increased cost for agents in LT to be on 
small roads. Thus, we define the modified cost matrix ĈL 2 �2L⇥n

+ by

(ĈL)"i à

(CL)"i, if " 2 LC

0:01, if " 2 LT, i 2 S+,
0:1, if " 2 LT, i 2H,
0:7, if " 2 LT, i 2 E \H,
0, if " 2 LT, i 2 S�:

8
>>>>>><

>>>>>>:

The rest of the problem is set up as before, and we solve it with Algorithm 2 and regularization parameter 
✏ à 0:01. For each of the three sinks highlighted in Figure 5, we consider the two associated commodities and 
show the number of agents on the small roads and highways over time in Figure 8. As expected, the trucks avoid 
the small roads and mainly use the highways. In order to not exceed the capacity constraints on the highways, 
the cars are thus forced to the small roads.

6. Conclusion
We have developed a novel framework for dynamic network flow problems, which is based on formulating the 
problem as a structured multimarginal optimal transport problem. Regularizing the problem with an entropy 
term opens up for efficiently finding an approximate solution. By taking advantage of the graph structure in the 
optimal transport formulations, we derived a scheme that is computationally highly efficient, as well as easy to 
implement. Its competitiveness with state-of-the-art methods for network flow problems is experimentally illus-
trated in performance studies and on a traffic routing problem with a huge number of commodities.

Endnotes
1 Often, the sources and sinks are defined on the nodes V, not the edges E. In this work, we consider the latter case; however, the framework 
introduced herein can easily be modified to define the sources and sinks on the nodes V instead.
2 Note that there is a canonical bijection (v1, v2)$ ((t� 1, v1), (t, v2)) between the edges E and the edges Et.
3 If transport of mass is not allowed from position i to position j, then we let Cij à1.
4 That is, the second vertex of edge i is the first vertex of edge j in the network N .
5 A vertex is adjacent to all edges it connects to and to itself.
6 We are not aware of any open-source solvers that are tailored for multicommodity network flow problems. However, state-of-the-art meth-
ods for multicommodity flows can typically not be expected to improve the run time by more than an order of magnitude as compared with 
standard LP solvers (Barnhart et al. [4], Khodayifar [42], Retvdri et al. [54]).
7 Note that the standard Sinkhorn iterations typically converge slowly for small values of ✏ (Cuturi [20], Dvurechensky et al. [22]). Surpris-
ingly, in these numerical experiments, the constraint violation decreases to machine precision faster for small values of ✏. However, when ✏
becomes too small, the algorithm runs into numerical issues.

Figure 8. (Color online) Distribution of the six commodities on small roads and highways over time, where each color corre-
sponds to the two commodities (cars and trucks) associated with the sink highlighted in the same color in Figure 5. 
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