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Abstract10

The awake complexity of a distributed algorithm measures the number of rounds in which a node is11

awake. When a node is not awake, it is sleeping and does not do any computation or communication12

and spends very little resources. Reducing the awake complexity of a distributed algorithm can be13

relevant in resource-constrained networks such as sensor networks, where saving energy of nodes14

is crucial. Awake complexity of many fundamental problems such as maximal independent set,15

maximal matching, coloring, and spanning trees have been studied recently.16

In this work, we study the awake complexity of the fundamental distributed minimum spanning17

tree (MST) problem and present the following results.18

1. Lower Bounds.19

1. We show a lower bound of Ω(log n) (where n is the number of nodes in the network) on the20

awake complexity for computing an MST that holds even for randomized algorithms.21

2. To better understand the relationship between the awake complexity and the (traditional) round22

complexity (which counts both awake and sleeping rounds), we also prove a trade-off lower23

bound of Ω̃(n)1 on the product of round complexity and awake complexity for any distributed24

algorithm (even randomized) that outputs an MST.25

2. Awake-Optimal Algorithms.26

1. We present a distributed randomized algorithm to find an MST that achieves the optimal awake27

complexity of O(log n) (with high probability). Its round complexity is O(n log n) and by our28

trade-off lower bound, this is the best round complexity (up to logarithmic factors) for an29

awake-optimal algorithm.30

2. We also show that the O(log n) awake complexity bound can be achieved deterministically as31

well, by presenting a distributed deterministic algorithm that has O(log n) awake complexity and32

O(nN log n) round complexity, where N is an upper bound on the value of the maximum ID.33

3. Trade-Off Algorithms. To complement our trade-off lower bound, we present a parame-34

terized family of distributed algorithms that gives an essentially optimal trade-off (up to polylog n35

factors) between the awake complexity and the round complexity. Specifically we show a family of36

distributed algorithms that find an MST of the given graph with high probability in Õ(D+2k +n/2k)37

round complexity and Õ(n/2k) awake complexity, where D is the network diameter and integer k is38

an input parameter to the algorithm. When k ∈ [max{⌈0.5 log n⌉, ⌈log D⌉}, ⌈log n⌉], we can obtain39

useful trade-offs.40

Our work is a step towards understanding resource-efficient distributed algorithms for fundamental41

global problems such as MST. It shows that MST can be computed with any node being awake42

(and hence spending resources) for only O(log n) rounds which is significantly better than the43

fundamental lower bound of Ω̃(Diameter(G) +
√

n) rounds for MST in the traditional CONGEST44

1 Throughout, the Õ notation hides a polylog n factor and Ω̃ hides a 1/(polylog n) factor.
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model (bandwidth per edge per round is limited to O(log n) bits), where nodes can be active for at45
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1 Introduction61

We study the distributed minimum spanning tree (MST) problem, a central problem in62

distributed computing. This problem has been studied extensively for several decades starting63

with the seminal work of Gallagher, Humblet, and Spira (GHS) in the early 1980s [14]; for64

example, we refer to the survey of [29] that traces the history of the problem till the state65

of the art. The round (time) complexity of the GHS algorithm is O(n log n) rounds, where66

n is the number of nodes in the network. The round complexity of the problem has been67

continuously improved since then and now tight optimal bounds are known.2 It is now68

well-established that Θ(D +
√

n) is essentially (up to logarithmic factor) a tight bound for the69

round complexity of distributed MST in the standard CONGEST model [31, 12, 24, 10]. The70

lower bound applies even to randomized Monte Carlo algorithms [10], while deterministic71

algorithms that match this bound (up to logarithmic factor) are now well-known (see e.g.,72

[30, 27, 24, 28, 13]). Thus, the round complexity of the problem in the traditional CONGEST73

distributed model is settled (see also the recent works of [18, 16]). In the CONGEST model,74

any node can send, receive, or do local computation in any round and only O(log n)-sized75

messages can be sent through any edge per round.76

An MST serves as a basic primitive in many network applications including efficient77

broadcast [29]. For example, MST is useful for energy-efficient broadcast in wireless networks78

and has been extensively studied in this context, see e.g., [1, 21]. In resource-constrained79

networks such as sensor networks, where nodes spend a lot of energy or other resources over80

the course of an algorithm, a round complexity of Õ(D +
√

n) (which is essentially optimal)81

to construct an MST can be large. In particular, in such an algorithm, a node can be active82

over the entire course of the algorithm. It is worth studying whether MST can be constructed83

in such a way that each node is active only in a small number of rounds — much smaller84

than that taken over the (worst-case) number of rounds — and hence could use much less85

resources such as energy.86

2 Message complexity has also been well-studied, see e.g., [29], but this is not the focus of this paper,
although our algorithms are also (essentially) message optimal — see Section 1.2.

https://doi.org/10.4230/LIPIcs...
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Motivated by the above considerations, in recent years several works have studied energy-87

efficient distributed algorithms (see e.g., [5, 3, 4, 6, 2, 22]). This paper studies the distributed88

MST problem in the sleeping model [6]. In this model (see Section 1.1), nodes can operate in89

two modes: awake and sleeping. Each node can choose to enter the awake or asleep state at90

the start of any specified round. In the sleeping mode, a node cannot send, receive, or do91

any local computation; messages sent to it are also lost. The resources utilized in sleeping92

rounds are negligible and hence only awake rounds are counted. The goal in the sleeping93

model is to design distributed algorithms that solve problems in a small number of awake94

rounds, i.e., have small awake complexity (also called awake time), which is the (worst-case)95

number of awake rounds needed by any node until it terminates. This is motivated by the96

fact that, if the awake complexity is small, then every node takes only a small number of97

rounds during which it uses a significant amount of resources. For example, in ad hoc wireless98

or sensor networks, a node’s energy consumption depends on the amount of time it is actively99

communicating with nodes. In fact, significant amount of energy is spent by a node even100

when it is just waiting to hear from a neighbor [6]. On the other hand, when a node is101

sleeping — when all of its radio devices are switched off — it spends little or no energy.102

While the main goal is to minimize awake complexity, we would also like to minimize the103

(traditional) round complexity (also called time complexity or run time) of the algorithm,104

which counts the (worst-case) total number of rounds taken by any node, including both105

awake and sleeping rounds.106

The work of Barenboim and Maimon [2] shows that global problems such as broadcast107

and constructing a (arbitrary) spanning tree (but not an MST) can be accomplished in108

O(log n) awake rounds in the sleeping (CONGEST) model (see also the related result of109

[3] — Section 1.3.). This is significant because it shows that even such global problems110

can be accomplished in a very small number of awake rounds, bypassing the Ω(D) lower111

bound on the round complexity (in the traditional model). In this work, we focus on another112

fundamental global problem, namely MST, and study its awake complexity. We show that113

MST can be solved in O(log n) rounds awake complexity which we show is also optimal, by114

showing a matching lower bound. The upper bound is in contrast to the classical Ω̃(D +
√

n)115

lower bound on the round complexity (in the traditional CONGEST model) where nodes116

can be awake for at least so many rounds. Another key issue we study is the relationship117

between awake complexity and round complexity of MST. It is intriguing whether one can118

obtain an algorithm that has both optimal awake and round complexity. We answer this in119

the negative by showing a trade-off lower bound (see Section 1.2).120

1.1 Distributed Computing Model and Complexity Measures121

Distributed Network Model. We are given a distributed network modeled as an arbitrary,122

undirected, connected, weighted graph G(V, E, w), where the node set V (|V | = n) represent123

the processors, the edge set E (|E| = m) represents the communication links between them,124

and w(e) is the weight of edge e ∈ E. The network diameter is denoted by D, also called as125

the hop-diameter (that is, the unweighted diameter) of G, and in this paper by diameter we126

always mean hop-diameter. We assume that the weights of the edges of the graph are all127

distinct. This implies that the MST of the graph is unique.128

Each node hosts a processor with limited initial knowledge. We assume that nodes have129

unique IDs (of size O(log n) bits), and at the beginning of the computation each node is130

provided its ID as input and the weights of the edges incident to it. We also assume that131

nodes know n, the number of nodes in the network. For the deterministic algorithm, we132

make the additional assumption that nodes know the value of N , an upper bound on the133
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largest ID of any node. Nodes initially do not have any other global knowledge and have134

knowledge of only themselves.135

Nodes communicate through the edges of the graph G and it is assumed that communi-136

cation is synchronous and occurs in rounds. In particular, we assume that each node knows137

the current round number, starting from round 1. In each round, each node can perform138

some local computation (which happens instantaneously) including accessing a private source139

of randomness, and can exchange (possibly distinct) O(log n)-bit messages with each of its140

neighboring nodes. This is the traditional synchronous CONGEST model.141

As is standard, the goal, at the end of the distributed MST computation, is for every142

node to know which of its incident edges belong to the MST.143

Sleeping Model and Complexity Measures. The sleeping model [6] is a generalization144

of the traditional model, where a node can be in either of the two states — sleeping or awake145

— before it finishes executing the algorithm (locally). (In the traditional model, each node is146

always awake till it finished the algorithm). Initially, we assume that all nodes are awake.147

That is, any node v, can decide to sleep starting at any (specified) round of its choice; we148

assume all nodes know the correct round number whenever they are awake. It can wake up149

again later at any specified round and enter the awake state. In the sleeping state, a node150

does not send or receive messages, nor does it do any local computation. Messages sent to it151

by other nodes when it was sleeping are lost. This aspect makes it especially challenging152

to design algorithms that have a small number of awake rounds, since one has to carefully153

coordinate the transmission of messages.154

Let Av denote the number of awake rounds for a node v before termination. We define155

the (worst-case) awake complexity as maxv∈V Av. For a randomized algorithm, Av will156

be a random variable and our goal is to obtain high probability bounds on the awake157

complexity. Apart from minimizing the awake complexity, we also strive to minimize the158

overall (traditional) round complexity (also called time complexity), where both, sleeping and159

awake rounds, are counted.160

1.2 Our Contributions and Techniques161

We study the awake complexity of distributed MST and present the following results (see162

Table 1 for a summary).163

Table 1 Summary of our Results.

Algorithm Type Awake Time (AT) Run Time (RT) AT Lower Bound AT × RT Lower Bound
*Randomized-MST Randomized O(log n) O(n log n) Ω(log n) Ω̃(n)
Deterministic-MST Deterministic O(log n) O(nN log n) Ω(log n) Ω̃(n)
*♣Trade-Off-MST Randomized Õ(n/2k) Õ(D + 2k + n/2k) - -
*The algorithm outputs an MST with high probability.
♣This algorithm takes integer k as an input parameter.
Our lower bounds also apply to Monte Carlo randomized algorithms with constant success probability.
n is the number of nodes in the network and N is an upper bound on the the largest ID of a node.

1. Lower Bound on the Awake Complexity of MST. We show that Ω(log n) is a164

lower bound on the awake complexity of constructing a MST, even for randomized Monte165

Carlo algorithms with constant success probability (Section 2.1). We note that showing166

lower bounds on the awake complexity is different from showing lower bounds for round167

complexity in the traditional LOCAL model. In the traditional LOCAL model, locality plays168

an important role in showing lower bounds. In particular, to obtain information from a169

r-hop neighborhood, one needs at least r rounds and lower bounds use indistinguishability170

arguments of identical r-hop neighborhoods to show a lower bound of r to solve a problem.171

For example, this approach is used to show a lower bound of Ω(D) for leader election or172

broadcast even for randomized algorithms [23]. Lower bounds in the CONGEST model are173
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more involved and exploit bandwidth restriction to show stronger lower bounds for certain174

problems, e.g., MST has a round complexity lower bound of Ω̃(D +
√

n) rounds. In contrast,175

as we show in this paper, MST can be solved using only O(log n) awake rounds and requires176

a different type of lower bound argument for awake complexity.177

We first show a randomized lower bound of Ω(log n) awake complexity for broadcast on178

a line of n nodes. Our broadcast lower bound is an adaptation of a similar lower bound179

shown for the energy complexity model [3]. Our randomized lower bound is more general and180

subsumes a deterministic lower bound of Ω(log n) shown in [2] for computing a spanning tree181

called the Distributed Layered Tree (by a reduction this lower bound applies to broadcast182

and leader election as well). The deterministic lower bound follows from the deterministic183

message complexity lower bound of Ω(n log n) on leader election on rings (which also requires184

an additional condition that node IDs should be from a large range) to show that some node185

should be awake at least Ω(log n) rounds. Note that this argument does not immediately186

apply for randomized algorithms, since such a message complexity lower bound does not hold187

for randomized (Monte Carlo) leader election [23]. On the other hand, our lower bound uses188

probabilistic arguments to show that some node has to be awake for at least Ω(log n) rounds189

for accomplishing broadcast in a line. We then use a reduction to argue the same lower190

bound for MST problem on a weighted ring. We believe that the broadcast lower bound is191

fundamental to awake complexity and will have implications for several other problems as192

well.193

2. Lower Bounds Relating Awake and Round Complexities. An important question194

is whether one can optimize awake complexity and round complexity simultaneously or195

whether one can only optimize one at the cost of the other. Our next result shows the196

latter is true by showing a lower bound on the product of awake and round complexities.197

Specifically, we construct a family of graphs with diameters ranging between Ω̃(
√

n) to Õ(n).198

Time-optimal MST algorithms for these graphs will have round complexity within polylog n199

factors of their diameters. We show that any algorithm that requires only Õ(Diameter(G))200

rounds must have an awake complexity of at least Ω̃(n/Diameter(G)) for any distributed201

algorithm. This holds even for Monte-Carlo randomized algorithms with constant success202

probability. The precise result in stated in Theorem 6 (see Section 2.2). In other words, the203

product of the round complexity and awake complexity is Ω̃(n).204

Our lower bound technique for showing a conditional lower bound on the awake complexity205

(conditional on upper bounding the round complexity) can be of independent interest. We206

use a lower bound graph family that is similar to that used in prior work (e.g., [31, 10]), but207

our lower bound technique uses communication complexity to lower bound awake complexity208

by lower bounding the congestion caused in some node. This is different from the Simulation209

Theorem technique ([10]) used to show unconditional lower bounds for round complexity in210

the traditional setting. The main idea is showing that to solve the distributed set disjointness211

problem in less than c rounds, at least Ω̃(n/c) bits have to send through some node that has212

small (constant) degree. This means that the node has to be awake for essentially Ω̃(n/c)213

rounds. By using standard reductions, the same lower bound holds for MST. The technique214

is quite general and could be adapted to show similar conditional lower bounds on the awake215

complexity for other fundamental problems such as shortest paths, minimum cut, etc.216

3. Awake-Optimal Algorithms and Techniques. We present a distributed randomized217

algorithm (Section 3.2) that has O(log n) awake complexity which is optimal since it matches218

the lower bound shown. The round complexity of our algorithm is O(n log n). We then show219

that the awake-optimal bound of O(log n) can be obtained deterministically by presenting a220

deterministic algorithm (see Section 3.3). However, the deterministic algorithm has a worse221
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round complexity of O(nN log n), assuming that the node IDs are in the range [1, N ] and222

N is known to all nodes. We also show that one can significantly reduce the deterministic223

round complexity to O(n log n log∗ n) at the cost of slightly increasing the awake complexity224

to O(log n log∗ n) rounds.225

Our algorithms use several techniques for constructing an MST in an awake-efficient226

manner. Some of these can be of independent interest in designing such algorithms for other227

fundamental problems.3 Our main idea is to construct a spanning tree called the Labeled228

Distance Tree (LDT). An LDT is a rooted oriented spanning tree such that each node is229

labeled by its distance from the root and every node knows the labels of its parent and children230

(if any) and the label of the root of the tree. We show that an LDT can be constructed in231

O(log n) awake complexity and in a weighted graph, the LDT can be constructed so that it232

is an MST. While LDT construction is akin to the classic GHS/Boruvka algorithm [14], it is233

technically challenging to construct an LDT that is also an MST in O(log n) awake rounds234

(Section 3). As in GHS algorithm, starting with n singleton fragments we merge fragments235

via minimum outgoing edge (MOE) in each phase. The LDT distance property allows for236

finding an MOE in O(1) awake rounds, since broadcast and convergecast can be accomplished237

in O(1) rounds. On the other hand, maintaining the property of LDT when fragments are238

merged is non-trivial. A key idea is that we show that merging can be accomplished in O(1)239

awake rounds by merging only fragment chains of constant length (details under “Technical240

challenges” in Sections 3.2 and 3.3).4 We develop a technical lemma that shows that this241

merging restriction still reduces the number of fragments by a constant factor in every phase242

and hence the algorithm takes overall O(log n) awake rounds.243

Our tree construction is different compared to the construction of trees in [2, 3]. In244

particular, a tree structure called as Distributed Layered Tree (DLT) is used in Barenboim245

and Maimon [2]. A DLT is a rooted oriented spanning tree where the vertices are labeled,246

such that each vertex has a greater label than that of its parent, according to a given order247

and each vertex knows its own label and the label of its parent. Another similar tree structure248

is used in [3]. A crucial difference between the LDT construction and the others is that it249

allows fragments to be merged via desired edges (MOEs), unlike the construction of DLT,250

for example, where one has to merge along edges that connect a higher label to a lower label.251

This is not useful for MST construction. Another important difference is that the labels used252

in LDTs scale with the number of nodes, whereas the labels in DLTs scale with the maximum253

ID assigned to any node. As the running time for both constructions are proportional to the254

maximum possible labels and the ID range is usually polynomially larger than the number255

of nodes, the running time to construct a DLT is much larger than the running time to256

construct an LDT.257

4. Trade-Off Algorithms. We present a parameterized family of distributed algorithms258

that show a trade-off between the awake complexity and the round complexity and essentially259

(up to a polylog n factor) matches our product lower bound of Ω̃(n).5 Specifically we show a260

family of distributed algorithms that find an MST of the given graph with high probability in261

Õ(D + 2k + n/2k) running time and Õ(n/2k) awake time, where D is the network diameter262

3 As an example, the O(n log n log∗ n) deterministic algorithm is useful in designing an MIS algorithm
with small awake and round complexities [11] — see Section 1.3.

4 Consider the supergraph where the fragments are nodes and the MOEs are edges. A fragment chain
is one such supergraph that forms a path. The exact details of the supergraphs formed are slightly
different and explained in the relevant section, but this idea is beneficial to understanding.

5 The product lower bound of Ω̃(n) is shown for graphs with diameter at least Ω̃(
√

n). Hence, the near
tightness claim holds for graphs in this diameter range.
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and integer k ∈ [max{⌈0.5 log n⌉, ⌈log D⌉}, ⌈log n⌉] is an input parameter to the algorithm.263

Notice that when D = O(
√

n), the round complexity can vary from Õ(
√

n) to Õ(n), and we264

can choose (integer) k ∈ [⌈0.5 log n⌉, ⌈log n⌉] from to get the Õ(n) product bound for this265

entire range. On the other hand, when D = ω(
√

n), the round complexity can vary from266

Õ(D) to Õ(n), and we can choose k ∈ [⌈log D⌉, ⌈log n⌉] and get a family of algorithms with267

(essentially) optimal round complexities from Õ(D) to Õ(n).268

Due to lack of space, we refer the reader to the full paper (in Appendix) for the detailed269

descriptions of algorithms, analysis, and omitted proofs.270

1.3 Related Work and Comparison271

The sleeping model and the awake complexity measure was introduced in a paper by272

Chatterjee, Gmyr and Pandurangan [6] who showed that MIS in general graphs can be solved273

in O(1) rounds node-averaged awake complexity. Node-averaged awake complexity is measured274

by the average number of rounds a node is awake. The (worst-case) awake complexity of275

their MIS algorithm is O(log n), while the worst-case complexity (that includes all rounds,276

sleeping and awake) is O(log3.41 n) rounds. Subsequently, Ghaffari and Portmann [17]277

developed a randomized MIS algorithm that has worst-case complexity of O(log n), while278

having O(1) node-averaged awake complexity (both bounds hold with high probability).279

They studied approximate maximum matching and vertex cover and presented algorithms280

that have similar node-averaged and worst-case awake complexities. These results show281

that the above fundamental local symmetry breaking problems have O(log n) (worst-case)282

awake complexity as is shown for global problems such as spanning tree [2] and MST (this283

paper). In a recent result, Dufoulon, Moses Jr., and Pandurangan [11] show that MIS can284

be solved in O(log log n) (worst-case) awake complexity which is exponentially better than285

previous results. But the round complexity is O(poly(n)). It then uses the deterministic286

LDT construction algorithm of this paper to obtain an MIS algorithm that has a slightly287

larger awake complexity of O(log log n log∗ n), but significantly better round complexity of288

O(polylog n). The existence of a deterministic LDT algorithm is crucial to obtaining their289

result.290

Barenboim and Maimon [2] showed that many problems, including broadcast, construction291

of a spanning tree, and leader election can be solved deterministically in O(log n) awake292

complexity. They also showed that fundamental symmetry breaking problems such as MIS293

and (∆ + 1)-coloring can be solved deterministically in O(log ∆ + log∗ n) awake rounds in the294

LOCAL model, where ∆ is the maximum degree. More generally, they also define the class295

of O-LOCAL problems (that includes MIS and coloring) and showed that problems in this296

class admit a deterministic algorithm that runs in O(log ∆ + log∗ n) awake time and O(∆2)297

round complexity. Maimon [25] presents trade-offs between awake and round complexity for298

O-LOCAL problems.299

While there is significant amount of work on energy-efficient distributed algorithms over300

the years we discuss those that are most relevant to this paper. A recent line of relevant301

work is that Chang, Kopelowitz, Pettie, Wang, and Zhan and their follow ups [5, 3, 4, 7, 8]302

(see also the references therein and its follow up papers mentioned below and also much303

earlier work on energy complexity in radio networks e.g., [26, 19, 20]). This work defines the304

measure of energy complexity which is the same as (worst-case) awake complexity (i.e., both305

measures count only the rounds that a node is awake). While the awake complexity used here306

and several other papers [6, 17, 2] assumes the usual CONGEST(or LOCAL) communication307

model (and hence the model can be called SLEEPING-CONGEST (or SLEEPING-LOCAL)),308

the energy complexity measure used in [5] (and also papers mentioned above) has some309

additional communication restrictions that pertain to radio networks (and can be called310
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SLEEPING-RADIO model). The most important being that nodes can only broadcast311

messages (hence the same message is sent to all neighbors) and when a node transmits, no312

other neighboring node can. (Also a node cannot transmit and listen in the same round.)313

The energy model has a few variants depending on how collisions are handled. There is a314

version of the SLEEPING-RADIO model called “Local” where collisions are ignored and315

nodes can transmit messages at the same time; this is essentially same as SLEEPING-LOCAL316

model, apart from the notion that in a given round a node can transmit only the same317

message to its neighbors. In particular, upper bounds in the radio model apply directly to the318

sleeping model. In particular, we use a recent result due to Dani and Hayes [8] that computes319

breadth-first search (BFS) tree with O(polylog(n)) energy complexity in the radio model as320

a subroutine in our MST tradeoff algorithm. Also, algorithms in the SLEEPING-CONGEST321

model can be made to work in the SLEEPING-RADIO model yielding similar bounds (with322

possibly a O(polylog(n)) multiplicative factor) to the energy/awake complexity.323

Lower bounds shown in the local version of the SLEEPING-RADIO model apply to other324

models including SLEEPING-LOCAL (and SLEEPING-CONGEST). For example, Chang,325

Dani, Hayes, He, Li, and Pettie [3] show a lower bound Ω(log n) on the energy complexity326

of broadcast which applies also to randomized algorithms. This lower bound is shown for327

the local version of their model, and this result holds also for the awake complexity in the328

sleeping model. We adapt this lower bound result to show a Ω(log n) lower bound on the329

awake complexity of MST even for randomized algorithms.330

2 Lower Bounds331

We first show that Ω(log n) is an unconditional lower bound on the awake time for MST.332

This shows that our algorithms presented in Section 3 achieve optimal awake complexity.333

We then show a lower bound of Ω̃(n) on the product of the awake and round complexities.334

This can be considered as a conditional lower bound on awake complexity, conditioned on335

an upper bound on the round complexity. This conditional lower bound shows that our336

randomized awake optimal algorithm (see Section 3.2) has essentially the best possible round337

complexity (up to a polylog n factor).338

2.1 Unconditional Lower bound on Awake Complexity of MST339

We consider a ring of Θ(n) nodes with random weights and edges. The two largest weighted340

edges will be apart by a hop distance of Ω(n) with constant probability and any MST algorithm341

must detect which one has the lower weight. Clearly, this will require communication over342

either one of the Ω(n) length paths between the two edges. Under this setting, we get the343

following theorem.344

▶ Theorem 1. Any algorithm to solve MST with probability exceeding 1/8 on a ring network345

comprising Θ(n) nodes requires Ω(log n) awake time even when message sizes are unbounded.346

2.2 Lower Bound on the Product of Awake and Round Complexity347

We adapt the lower bound technique from [9] to the sleeping model and show a lower bound348

on the product of the awake and round complexities, thus exposing an inherent trade off349

between them.350

Note that both endpoints of an edge must be awake in a round for O(log n) bits to be351

transmitted across in that round. Thus, if an edge e = (u, v) must transmit B bits when352

executing an algorithm in the CONGEST model, then, both u and v must be awake for at353

least Ω(B/ log n) rounds. Thus congestion increases awake time. Our goal is to exploit this354

intuition to prove the lower bound.355
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We use a communication complexity based reduction to reduce set disjointness (SD)356

in the classical communication complexity model to the distributed set disjointness (DSD)357

problem in the sleeping model and then extend DSD to the minimum spanning tree problem358

via an intermediate connected spanning subgraph (CSS), both to be solved in the sleeping359

model.360

In the SD problem, two players, Alice and Bob, possess two k-bit strings a = (ai)1⩽i⩽k361

and b = (bi)1⩽i⩽k, respectively. They are required to compute an output bit Disj(a, b) that362

is 1 iff there is no i ∈ [k] such that ai = bi = 1 (i.e., the inner product ⟨a, b⟩ = 0), and 0363

otherwise. Alice and Bob must compute Disj(a, b) while exchanging the least number of bits.364

It is well-known that any protocol that solves SD requires Ω(k) bits (on expectation) to be365

exchanged between Alice and Bob even if they employ a randomized protocol [32] that can366

fail with a small fixed probability ε > 0.367

Figure 1 Construction of network graph Grc for proving lower bound. The vertices in X are
shown as stars (there is a binary tree at the bottom having the nodes in X as its leaves). One such
x ∈ X is labeled. The cut induced by an Rj is shown in dotted lines.

The DSD problem is defined on a graph Grc that is schematically shown in Figure 1.368

Let r and c be two positive integers such that rc + Θ(log n) = n (the network size). We369

focus on the regime where c ∈ ω(
√

n log2 n) and r ∈ o(
√

n/ log2 n). The graph comprises r370

rows (or parallel paths) pℓ, 1 ⩽ ℓ ⩽ r, with p1 referring to the parallel path at the bottom.371

Each parallel path comprises c nodes arranged from left to right with the first node referring372

to the leftmost node and the last node referring to the rightmost node. The first and last373

nodes in p1 are designated Alice and Bob because they are controlled by the players Alice374

and Bob in our reduction. Alice (resp., Bob) is connected to first node (resp., last node) of375

each pℓ, 2 ⩽ ℓ ⩽ r. Additionally, we pick Θ(log n) equally spaced nodes X (of cardinality376

that is a power of two) from p1 such that the first and last nodes in p1 are included in X.377

For each x ∈ X, say at position j in p1, we add edges from x to the jth node in each pℓ,378

2 ⩽ ℓ ⩽ r. Using X as leaves, we construct a balanced binary tree. We will use I to denote379

the internal nodes of this tree. Alice is in possession of bit string a and Bob is in possession380

of b and, to solve DSD, they must compute Disj(a, b) in the sleeping model over the network381

Grc. The outputs of all other nodes don’t matter; for concreteness, we specify that their382

outputs should be empty .383

In the CSS problem defined again on Grc, some edges in Grc are marked and at least one384

node in the network must determine whether the marked edges form a connected spanning385

subgraph of Grc. For the MST problem, we require edges in Grc to be weighted and the goal386

is to construct a minimum spanning tree of Grc such that the endpoints of each MST edge e387

are aware that e is an MST edge. Both CSS and MST must be solved in the sleeping model.388
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Grc is constructed such that any node can reach some x ∈ X within O(c/ log n) steps389

and any pair of nodes in X are within O(log log n) steps (through the tree). Recall that390

c ∈ ω(
√

n log2 n). Thus, we have the following observation.391

▶ Observation 2. The network graph Grc has diameter D ∈ Θ(c/ log n). Moreover, D ∈392

ω(
√

n log∗ n). Therefore, DSD, CSS, and MST (if edges in Grc are assigned weights) can be393

computed in O(D) = O(c/ log n) rounds [15].394

2.2.0.1 Reduction from SD → DSD395

Recall that in DSD, Alice is in possession of a and Bob is in possession of b. They must396

compute Disj(a, b) in the sleeping model.397

▶ Lemma 3. Consider an algorithm P in the sleeping model that solves DSD on Grc with398

c ∈ ω(
√

n log2 n) and r ∈ o(
√

n/ log2 n) in T (worst-case) rounds such that T ∈ o(c) (and we399

know such an algorithm exists from Observation 2, in particular because D ∈ O(c/ log n)).400

Then, the awake time of P must be at least Ω(r/ log2 n). This holds even if P is randomized401

and has an error probability that is bounded by a small constant ε > 0.402

Proof. Suppose for the sake of contradiction P runs in time T and has an awake complexity403

of o(r/ log2 n). Then, we can show that Alice and Bob can simulate P in the classical404

communication complexity model and solve SD on r bits by exchanging only o(r) bits which405

will yield a contradiction to the SD lower bound. We establish this by showing that Alice406

and Bob can simulate P to solve SD in the classical communication complexity model.407

We show this simulation from Alice’s perspective. Bob’s perspective will be symmetric.408

Recall that pℓ is the ℓth parallel path. Let pj
ℓ , 1 ⩽ j ⩽ c, denote the first j vertices of path pℓ.409

We define Rj to be the union of all pj
ℓ and I (recall that I is the set of the internal nodes of410

the binary tree), i.e., Rj = (
⋃r

ℓ=1 pj
ℓ) ∪ I. Note that Rj induces a cut (Rj , R̄j) that is shown411

in Figure 1. Alice begins by simulating Rc−1 in round 1 as she knows the state of all nodes412

in Rc−1. At each subsequent round t, Alice simulates Rc−t. Initially, all the information413

needed for the simulation is available for Alice because the structure of Grc is fully known414

(except for Bob’s input).415

As the simulation progresses, in each round t > 1, t ⩽ T ∈ o(c), all inputs will be available416

except for the new bits that may enter I through nodes in R̄c−t. Alice will not need to ask for417

the bits needed by pc−t
ℓ because she simulated all nodes in pc−t+1

ℓ , 1 ⩽ ℓ ⩽ r, in the previous418

round. Note that the portion simulated by Bob will encompass the portion from which Alice419

may need bits from Bob, so Bob will indeed have the bits requested by Alice. In order to420

continue the simulation, Alice borrows bits that P transmitted from ¯Rc−t to I ∩ Rc−t from421

Bob. Suppose during the course of the simulation in the communication complexity model,422

B bits are borrowed from Bob. Then nodes in I must have been awake for a collective total423

of at least Ω(B/ log n) rounds (because each message of O(log n) bits must be received by a424

node that is awake in P ).6 This implies that at least one node in I must have been awake425

for Ω(B/ log2 n) rounds because |I| ∈ O(log n) and the number of edges incident to nodes in426

I is also O(log n) (since nodes in I are of constant degree).427

Since the node awake time is o(r/ log2 n) for P , B must be o(r). But this contradicts the428

fact that SD requires Ω(r) bits in the communication complexity model. ◀429

6 Note that all the B bits cannot solely come through a row path of length c, since we are restricting
T ∈ o(c). In other words, each of the bits has to go through at least one node in I.
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2.2.0.2 Reduction from DSD → CSS430

We now show a reduction from DSD → CSS by encoding a given DSD problem instance as a431

CSS instance in the following manner. Recall that in DSD, Alice and Bob have bit strings a432

and b, respectively, of length r each. Furthermore, recall that Alice (resp., Bob) is connected433

to first node (resp., last node) of each pℓ, 2 ⩽ ℓ ⩽ r.434

▶ Lemma 4. Suppose there is a protocol Q in the sleeping model that solves CSS on Grc435

with c ∈ ω(
√

n log2 n) and r ∈ o(
√

n/ log2 n) in T rounds such that T ∈ o(c). Then, the node436

awake time of Q must be at least Ω(r/ log2 n). This holds even if Q is randomized and has437

an error probability that is bounded by a small constant ε > 0.438

2.2.0.3 Reduction from CSS → MST439

Recall that CSS is a decision problem that requires a subset of the edges in the network graph440

Grc to be marked; we are to report whether the marked edges form a spanning subgraph of441

Grc. MST on the other hand is a construction problem. It takes a weighted network graph442

and computes the minimum spanning tree. A reduction from CSS to MST can be constructed443

by assigning a weight of 1 for marked edges in the CSS instance and n for all other edges and444

asking if any edge of weight n is included in the MST. This leads to the following lemma.445

▶ Lemma 5. Suppose there is a protocol M in the sleeping model that solves MST on Grc446

with c ∈ ω(
√

n log2 n) and r ∈ o(
√

n/ log2 n) in T rounds such that T ∈ o(c). Then, the node447

awake time of M must be at least Ω(r/ log2 n). This holds even if M is randomized and has448

an error probability that is bounded by a small constant ε > 0.449

Generalizing to arbitrary graphs, we can conclude with the following theorem.450

▶ Theorem 6. Consider positive integers r and c such that rc + Θ(log n) = n (the network451

size) and c ∈ ω(
√

n log2 n). (Thus, c can range between Ω̃(
√

n) to Õ(n) with r ∈ Θ(n/c).)452

Suppose there exists a randomized algorithm M for MST in the sleeping model that runs453

in time T ∈ o(c) rounds and guaranteed to compute the MST with probability at least 1 − ε454

for any small fixed ε > 0. Then, the (worst case) awake complexity of M must be at least455

Ω(r/ log2 n).456

3 MST Algorithms with Optimal Awake Complexity457

In this section, we present our algorithms to construct an MST that take optimal awake458

complexity. Due to space constraints, we only cover the most salient points of the algorithms459

as well as the technical challenges overcome. Interested readers may refer to the full version460

in the Appendix for detailed descriptions of the algorithms and their analysis.461

3.1 Main Ideas462

Both of the algorithms we develop in this section can be seen as variations of the classic GHS463

algorithm to find the MST, adapted to optimize the awake time of the algorithm. Recall that464

each phase of the GHS algorithm consists of two steps. Step (i) corresponds to finding the465

minimum outgoing edges (MOEs) for the current fragments and step (ii) involves merging466

these fragments.467

Our algorithms work in phases where at the end of each phase, we ensure that the original468

graph has been partitioned into a forest of node-disjoint trees that satisfy the following469

property. For each such tree, all nodes within the tree know the ID of the root of the tree470

(called fragment ID), the IDs of their parents and children in the tree, if any, and their471



XX:12 Awake Complexity of Distributed Minimum Spanning Tree

distance from the root (note that it is the hop distance, ignoring the weights) of that tree.472

We call each such tree a Labeled Distance Tree (LDT) and a forest of such trees a Forest of473

Labeled Distance Trees (FLDT). By the end of the algorithms we design, our goal is to have474

the FLDT reduced to just one LDT which corresponds to the MST of the original graph.475

The challenge is to construct an LDT (which will also be an MST) in an awake-optimal476

manner.477

The purpose of maintaining such a structure is that we know how to design fast awake478

procedures to propagate information within an LDT. By making use of blocks of 2n + 1479

rounds, we can design schedules for nodes to wake up so that procedures associated with480

GHS, such as broadcast, upcast-min, etc. can be implemented in O(1) awake complexity481

and O(n) round complexity. In the course of our algorithms, we ensure that nodes stay482

synchronized, i.e., time can be viewed in blocks of 2n + 1 rounds such that all nodes start483

their first schedule at the same time (and end them at the same time) and continue to start484

(and end) future schedules at the same time.485

3.2 Awake-Optimal Randomized Algorithm486

Technical Challenges. As mentioned above, one of the key changes we make is to restrict487

the MOEs to a subset of “valid” ones. This is to address a key technical challenge. When we488

merge two fragments together, one of those fragments must internally re-orient itself and489

update its internal values (including distance to the root). This re-alignment and updation490

takes O(1) awake time. If we have a chain of fragments, say of diameter d, we may have491

to perform this re-alignment procedure d − 1 times since the re-alignment of fragments is492

sequential in nature.7 As a result, if we do not control the length of chains of connected493

components formed by the fragments and their MOEs, we risk blowing up the awake time of494

the algorithm. We use randomness to ensure the diameter of any such connected component495

is a constant.496

As a result of the above change, we have a second technical challenge. Because we497

reduce the number of valid MOEs, we have to be careful to argue that a sufficient number of498

fragments are merged together in each phase so that after O(log n) phases, we end up with499

exactly one fragment with high probability. We provide such a careful argument, which is500

somewhat different from the usual argument used in GHS style algorithms.501

Detailed Algorithm. Algorithm Randomized-MST consists of nodes participating in502

4⌈log4/3 n⌉ + 1 phases of the following computations. Recall that between phases we want to503

maintain an FLDT that is eventually converted into a single LDT. In each phase, there are504

three steps. The first step corresponds to finding the MOE of each fragment, the second step505

relates to finding valid MOEs, and the third step corresponds to merging fragments along506

valid MOEs.507

Step (i): Finding MOE of each fragment. Consider a single fragment. All nodes in508

it participate in a combination of broadcasts and convergecasts to send the smallest MOE to509

the fragment root, which in turn transmits this info to all nodes in the fragment.510

Step (ii): Finding “valid” MOEs. In step (ii), each fragment’s root flips a coin and511

only MOEs from fragments whose roots flipped tails to those that flipped heads are “valid”.8512

7 To observe the sequential nature of the re-alignment, consider a chain with three fragments, say
A← B ← C. Suppose A maintains its orientation. The nodes in B must be processed first and must
update their distance to A. Only then can the nodes of C accurately update their distance to A (after
the node u in C connected to the node v in B learns v’s updated distance to A).

8 Intuitively, stars are formed by fragments and MOEs as a result of this process. In each such star, the
center fragment is one whose root flipped heads and the leaves, if any, are fragments whose roots flipped
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Henceforth, if a fragment’s root flipped a heads (tails), then we say that the fragment flipped513

a heads (tails). Alternatively, we can say that the fragment is considered a heads (tails)514

fragment. Each fragment root flips an unbiased coin and broadcasts the result to its fragment515

nodes. Each node communicates its fragment’s coin flip result to its neighbors. As a result,516

each node adjacent to an MOE knows if that MOE is a valid one or not. This information517

can be transmitted to all nodes in the fragment via an upcast and broadcast in the fragment.518

Step (iii): Merging fragments. In step (iii), we merge each subgraph formed by519

fragments and valid MOEs into a single fragment. Consider a subgraph consisting of520

several tails fragments whose MOEs lead to a single heads fragment. The heads fragment521

retains its fragment ID while the remaining fragments take on the ID of the heads fragment.522

Furthermore, these other fragments also re-orient themselves such that they form subtrees of523

the heads fragment. Specifically, consider a tails fragment T with root rootT and an MOE524

to a heads fragment H where nodes uT and uH are the nodes of the MOE belonging to T525

and H, respectively. The nodes in fragment T re-orient themselves such that uT is the new526

root of the tree. Additionally, uT considers uH its parent in the merged graph. The process527

is similar to that in [2] and is illustrated in Figures 2, 3, 4, and 5 which are found in the528

Appendix.529

Analysis. We now prove that the algorithm correctly outputs the MST of the original530

graph with the desired running time and awake time. Recall that the number of fragments531

can never increase from one phase to the next. Let phase P correspond to the last phase in532

which there is more than one fragment at the beginning of the phase. We will show that533

P = 4⌈log4/3 n⌉. The following lemma shows that for the first P phases of the algorithm,534

the number of fragments is reduced by a constant factor in each phase with high probability.535

▶ Lemma 7. For each phase of Algorithm Randomized-MST where there are initially at536

least two fragments at the start of that phase, the number of fragments is reduced by at least537

a factor of 4/3 in that phase on expectation. Furthermore, by phase 4⌈log4/3 n⌉ + 1, there is538

at most one fragment in the graph.539

We are now ready to argue that the algorithm is correct.540

▶ Lemma 8. Algorithm Randomized-MST results in each node of the initial graph knowing541

which of its edges are in the MST with high probability.542

We also bound the running time and awake time of the algorithm below.543

▶ Lemma 9. Algorithm Randomized-MST takes O(n log n) running time and O(log n)544

awake time.545

▶ Theorem 10. Algorithm Randomized-MST is a randomized algorithm to find the MST546

of a graph with high probability in O(n log n) running time and O(log n) awake time.547

3.3 Awake-Optimal Deterministic Algorithm548

Technical Challenges. We experience similar technical challenges as those faced when549

designing Algorithm Randomized-MST. However, we resolve those issues quite differently550

here. As before, when we construct connected components of fragments and their MOEs, we551

want that the diameter of each of these components is a constant, so that we can re-orient552

fragments quickly during the merging process. Since we do not have access to randomness,553

tails.
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we rely on the somewhat standard approach of using a deterministic maximal matching over554

these components to reduce the diameter. However, while the approach is standard, the555

execution is not. In order to maintain a small awake time, we first reduce every component to556

a set of bounded degree components and then run a tailored algorithm to color all fragments557

in O(1) awake time. Subsequently, converting this coloring to a maximal matching is done558

as usual.559

Once again, due to the above changes, we must deal with a second technical challenge.560

Because we reduce the number of valid MOEs, we have to be careful to argue that a sufficient561

number of fragments are merged together in each phase so that after O(log n) phases, we562

end up with exactly one fragment. We utilize an interesting combinatorial approach to argue563

this.564

Detailed Algorithm. We now give a detailed break up of each phase of the algorithm.565

Let c = 240000. Recall that there are ⌈logc/(c−1) n⌉ + c phases and in each phase, there are566

three steps.9 We describe each in detail separately.567

Step (i): Finding MOE of each fragment. Each fragment finds it MOE in the same568

way as step (i) of Algorithm Randomized-MST.569

Step (ii): Finding “valid” MOEs. Each node in a given fragment knows, for each570

of its edges adjacent to it, whether that edge is an MOE from some other fragment to the571

given fragment. Let us differentiate these MOEs to the fragment from the MOE from the572

fragment by calling the former INCOMING-MOEs. Now, we have each fragment select up to573

3 “valid” MOEs from its INCOMING-MOEs, chosen arbitrarily. This is in contrast to how the574

valid MOEs were chosen during Algorithm Randomized-MST, where we used coin flips to575

determine valid MOEs. Define an incoming MOE node v of fragment f as a node v belonging576

to fragment f such that v is adjacent to an edge that is an MOE from some other fragment577

to f . In the context of a given fragment f , define a valid MOE child node v of a node u as a578

child node of u such that in the subtree rooted at v, there exists an incoming MOE node of579

f . At a high level, the total number of INCOMING-MOEs is communicated to the root of580

the fragment. The root then allots up to 3 virtual “tokens” (i) to its valid MOE child nodes581

to be used to select INCOMING-MOEs and (ii) to itself if the root is an incoming MOE node.582

Any node that receives one or more such tokens distributes them among its valid MOE child583

nodes and itself if it is an incoming MOE node. This process is repeated until all tokens are584

transmitted to incoming MOE nodes of the fragment.585

Step (iii): Merging fragments. We first make each fragment f ’s nodes aware of the586

fragment IDs from and to which it has valid MOEs. We first collect information about587

valid MOEs (both incoming & outgoing) at the root of the fragment f and then broadcast588

this information to all nodes in the MOE. Subsequently, we color the fragments and then589

selectively merge them. Consider a color palette consisting of colors Blue, Red, Orange,590

Black, and Green. Furthermore, let there exist a total ordering on this palette based on591

the relation of priority, where we say that a color A has a higher priority than color B and592

denote the relation by A > B, such that Blue > Red > Orange > Black > Green. Let us593

consider the supergraph G′ where the nodes are the set of fragments present at the beginning594

of the phase and the edges are the valid MOEs, as computed from step (ii). Recall that595

the maximum degree of any node in G′ is 4, so 5 colors are sufficient for coloring (there596

always exists a ∆ + 1 coloring of a graph with maximum degree ∆). At a high level, we wake597

fragments up in order of the fragment IDs and color them with the first available color, i.e.,598

the highest priority color not chosen by any of its neighbors. Neighboring fragments become599

9 We have not chosen to optimize the constants in our analysis.
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aware of a given fragment F ’s chosen color by having F AND its neighboring fragments600

wake up in the rounds that F was assigned. As a given fragment has O(1) neighbors, it does601

not have to stay awake for too long.602

Now, we describe the selective merging in more detail. We first identify the set of603

fragments that will merge into other fragments and will thus “not survive” the phase. These604

are all fragments that were colored Blue. Recall that there are two types of fragments that605

are colored Blue. Those with neighbors in G′ and those without, which we call singleton606

fragments.607

Those Blue fragments with neighbors pick one of their neighbors in G′ arbitrarily (which608

is of course a non-Blue fragment) and then merge into them. This can be achieved by using609

the merging process of Algorithm Randomized-MST where we consider Blue fragments as610

Tails fragments and all non-Blue fragments as Heads fragments. The merged fragment takes611

on the fragment ID of the fragment that acted as the Heads fragment.612

Now we have singleton Blue fragments merge into the fragments at the end of their MOEs613

in a manner similar to above. But before doing that, each node in these singleton fragments614

becomes aware of any changes to fragment IDs and level numbers of neighboring nodes (and615

corresponding neighboring fragments) by having all nodes in the graph swap information616

with their neighbors.617

Analysis. We now prove that the algorithm correctly outputs the MST of the original618

graph with the desired running time and awake time.619

Recall that we use the notation c = 240000. We show that the number of phases needed to620

reduce the number of fragments to one is at most ⌈logc/(c−1) n⌉ + c. Correctness immediately621

follows as we implement GHS. We first argue that in each phase of the algorithm where622

there is initially a sufficient number of fragments c, the number of fragments is reduced by a623

constant factor of c/(c − 1). We then show that in an additional c phases, we can reduce the624

number of fragments to one. As we only add MST edges and all nodes will be in this one625

fragment, the final fragment represents the MST of original graph.626

Let P represent the phase by which the number of fragments at the beginning of the627

phase is less than c. We eventually show that P = ⌈logc/(c−1) n⌉. We first argue that in628

every phase up to P, the number of fragments is reduced by a constant factor. We do this629

by considering an arbitrary phase i and identifying a set of fragments in that phase that are630

guaranteed to merge into other fragments, thus “being lost” or “not surviving” in that phase.631

We show that this set is at least a constant fraction of the total set of fragments that existed632

at the start of the phase.633

Consider an arbitrary phase i such that at the beginning of the phase there exists a set Fi634

of fragments and define Fi = |Fi|. Furthermore, define the supergraph H as the undirected635

graph where the nodes are the set Fi and the edges are the valid MOEs between the different636

fragments, i.e., the graph obtained after pruning MOEs in step (ii) of the phase. In the637

subsequent analysis we use nodes and fragments interchangeably in the context of graph H.638

We now show that the number of Blue fragments (which by the algorithm are all merged639

into other fragments) constitute a sufficiently large constant fraction of Fi.640

▶ Lemma 11. Let H ′ be a connected subgraph of H. If |H ′| ⩾ 342, then at least ⌊|H ′|/342⌋641

of the fragments are Blue.642

The above lemma by itself is insufficient to show that the required number of fragments643

are removed in each phase. The reason is that H may consist of a set of disjoint connected644

subgraphs. Let us assume that |H| ⩾ c. Let S denote the set of all disjoint connected645

subgraphs (i.e., connected components) in H . Now, either |S| ⩾ |H|/3422 or |S| < |H|/3422.646
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We show that in either case, the number of fragments that survive the current phase is647

(c − 1)|H|/c.648

If |S| ⩾ |H|/3422, then since each subgraph in S contains at least one Blue fragment649

which disappears in the phase, the total number of fragments that survive the phase is at650

most |H| − |H|/3422 ⩽ (c − 1)|H|/c.10
651

Now let us look at the situation where |S| < |H|/3422. Divide S into the sets S1 and S2652

which contain the disjoint connected subgraphs of H which have < 342 fragments and ⩾ 342653

fragments, respectively. Observe that S = S1
⋃

S2. (It is easy to see that |S2| ⩾ 1 since654

otherwise if all subgraphs belonged to S1, there would be less than |H| total fragments.) We655

now show that a sufficient number of fragments in the subgraphs in set S2 are Blue fragments,656

thus resulting in a sufficient number of fragments being removed in the phase. Let us lower657

bound how many fragments are present in the subgraphs in set S2. Recall that |S1| ⩽ |S|, we658

are considering the situation where |S| < |H|/3422, and each subgraph in |S1| can have < 342659

fragments. We lower bound the fragments in S2 by pessimistically ignoring the less than 342660

fragments from each of the |S1| subgraphs (recall that |S1| ⩽ |S|), i.e., the number of fragments661

in S2 is ⩾ |H|−(|H|/3422)·342 (since the total number of subgraphs is at most |H|/3422) =662

341|H|/342.663

We now lower bound the number of Blue fragments in subgraphs in S2. Let the subgraphs664

in S2 be denoted by H1, H2, . . . , H|S2|. Since each subgraph in S2 is of size at least 342,665

we can use Lemma 4. Now, the number of Blue fragments in S2 is =
∑|S2|

i=1⌊|Hi|/342⌋ ⩾666 ∑|S2|
i=1(|Hi|/342 − 1) = 1/342 · (

∑|S2|
i=1 |Hi|) − |S2| ⩾ 1/342 · (341|Hi|/342) − |S2| ⩾ 1/342 ·667

(341|Hi|/342) − |H|/3422 (since |S2| ⩽ |S| < |H|/3422) = 340|H|/3422.668

Recall that all Blue fragments do not survive a phase. Thus, the number of fragments669

that survive the current phase is ⩽ |H| − 340|H|/3422 ⩽ (c − 1)|H|/c.670

Thus, in both situations, we see that the number of fragments that survive the present671

phase is upper bounded as desired.672

▶ Lemma 12. After ⌈logc/(c−1) n⌉ phases, there are at most c fragments at the beginning of673

the phase.674

An easy observation is that whenever Fi ⩾ 2, at least one fragment is Blue and will not675

survive the phase. Thus, if there are at most c fragments at the beginning of the phase, then676

running an additional c phases guarantees that only one fragment will remain. Initially, each677

node is a fragment by itself and over the course of the algorithm, only possible MST edges678

are added to any fragment. Thus, we have the following lemma.679

▶ Lemma 13. Algorithm Deterministic-MST correctly outputs an MST after ⌈logc/(c−1) n⌉+680

c phases.681

The running time and awake time are analyzed in the Appendix, leading to the following682

lemma.683

▶ Lemma 14. Each phase of Algorithm Deterministic-MST takes O(1) awake time and684

O(nN) running time.685

Thus, combining Lemma 13 and Lemma 14, we get the following theorem.686

▶ Theorem 15. Algorithm Deterministic-MST is a deterministic algorithm to find the687

MST of a given graph in O(log n) awake time and O(nN log n) running time.688

10 It is easy to see that each subgraph contains a Blue fragment because Blue is the highest priority color
and so the first fragment that colors itself in any given subgraph colors itself Blue.



J. Augustine, W. K. Moses Jr., and G. Pandurangan XX:17

Remark. The coloring procedure, Fast-Awake-Coloring, is the main reason for689

the large run time. As we noted near the beginning of this section, we can replace this690

procedure with one that can accomplish this deterministically in O(log∗ n) run time even691

in the traditional model (see e.g., [28]). However, we suffer an overhead of O(log∗ n) factor692

in the awake time. As a result, using this modified procedure would allow us to get the693

following corollary.694

▶ Corollary 16. There exists a deterministic algorithm to find the MST of a given graph in695

O(log n log∗ n) awake time and O(n log n log∗ n) run time.696

4 MST Algorithm with a Trade-off697

In this section, we present an algorithm to create an MST that shows a trade-off between its698

running time and awake time. We only give a high-level overview of the algorithm and defer699

the detailed explanation of the algorithm along with analysis to the full paper.700

High-level Overview. We present algorithm Trade-Off-MST, which finds the MST701

of the given graph with high probability in Õ(D + 2k + n/2k) running time and Õ(n/2k)702

awake time, where integer k is an input parameter to the algorithm. It is an awake time703

efficient version of the Controlled-GHS algorithm from Chapter 7 of [27] (itself a version of704

the optimized version of the algorithm from [15]) adapted to reduce the awake complexity.705

We describe it as a 3 stage algorithm.706

In stage one, we elect a leader node among all the nodes. We then construct a Breadth707

First Search (BFS) tree rooted at this leader (using the algorithm of [8]), which will be used708

later on. In stage two, we switch gears and have all nodes perform the controlled version of709

the GHS algorithm for k − 1 phases until ⩽ n/2k fragments are formed, each of size ⩾ 2k
710

and diameter ⩽ 5 · 2k. In stage three, each node now uses the BFS tree formed in stage711

one to send its MOE (inter-fragment MOE) for each of the at most n/2k fragments with712

corresponding node IDs and fragments IDs to the leader using pipelining. Using the red rule713

to prevent cycles, we ensure that this is done quickly. The leader then locally computes which714

O(n/2k) edges between the O(n/2k) fragments are a part of the MST and sends messages715

about those edges down to the respective nodes.716

▶ Theorem 17. Algorithm Trade-Off-MST is a randomized algorithm to find the MST of717

a graph with high probability and takes Õ(D + 2k + n/2k) running time and Õ(n/2k) awake718

time, where k is an input to the algorithm.719

5 Conclusion720

We presented distributed algorithms for the fundamental MST problem that are optimal with721

respect to awake complexity. We also showed that there is an inherent trade-off bottleneck722

between awake and round complexities of MST. In other words, one cannot attain optimal723

complexities simultaneously under both measures. We also presented an algorithm that shows724

a trade-off between awake complexity and round complexity, complementing our trade-off725

lower bound. Interesting lines of future work including designing awake-efficient algorithms726

for other fundamental global problems such as shortest path and minimum cut.727
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