10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

Awake Complexity of Distributed Minimum
Spanning Tree
John Augustine 2@

Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai,
India

William K. Moses Jr. @0

Department of Computer Science, Durham University, Durham, UK

Gopal Pandurangan 2@
Department of Computer Science, University of Houston, Houston, TX, USA

—— Abstract

The awake complexity of a distributed algorithm measures the number of rounds in which a node is
awake. When a node is not awake, it is sleeping and does not do any computation or communication
and spends very little resources. Reducing the awake complexity of a distributed algorithm can be
relevant in resource-constrained networks such as sensor networks, where saving energy of nodes
is crucial. Awake complexity of many fundamental problems such as maximal independent set,
maximal matching, coloring, and spanning trees have been studied recently.

In this work, we study the awake complexity of the fundamental distributed minimum spanning
tree (MST) problem and present the following results.

1. Lower Bounds.

1. We show a lower bound of Q(logn) (where n is the number of nodes in the network) on the
awake complexity for computing an MST that holds even for randomized algorithms.

2. To better understand the relationship between the awake complexity and the (traditional) round
complexity (which counts both awake and sleeping rounds), we also prove a trade-off lower
bound of Q(n)1 on the product of round complexity and awake complexity for any distributed
algorithm (even randomized) that outputs an MST.

2. Awake-Optimal Algorithms.

1. We present a distributed randomized algorithm to find an MST that achieves the optimal awake
complexity of O(logn) (with high probability). Its round complexity is O(nlogn) and by our
trade-off lower bound, this is the best round complexity (up to logarithmic factors) for an
awake-optimal algorithm.

2. We also show that the O(logn) awake complexity bound can be achieved deterministically as
well, by presenting a distributed deterministic algorithm that has O(logn) awake complexity and
O(nN logn) round complexity, where N is an upper bound on the value of the maximum ID.

3. Trade-Off Algorithms. To complement our trade-off lower bound, we present a parame-
terized family of distributed algorithms that gives an essentially optimal trade-off (up to polylog n
factors) between the awake complexity and the round complexity. Specifically we show a family of
distributed algorithms that find an MST of the given graph with high probability in O(D + 2 +n/2*)
round complexity and O(n/ 2’“) awake complexity, where D is the network diameter and integer k is
an input parameter to the algorithm. When k € [max{[0.5logn], [log D1}, [logn]], we can obtain
useful trade-offs.

Our work is a step towards understanding resource-efficient distributed algorithms for fundamental
global problems such as MST. It shows that MST can be computed with any node being awake
(and hence spending resources) for only O(logn) rounds which is significantly better than the
fundamental lower bound of Q(Diameter(G) + /n) rounds for MST in the traditional CONGEST

! Throughout, the O notation hides a polylog n factor and) hides a 1 /(polylog n) factor.

© John Augustine, William K. Moses Jr., and Gopal Pandurangan;
licensed under Creative Commons License CC-BY 4.0
Leibniz International Proceedings in Informatics

Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:augustine@cse.iitm.ac.in
https://orcid.org/0000-0003-0948-3961
mailto:wkmjr3@gmail.com
https://orcid.org/0000-0002-4533-7593
mailto:gopal@cs.uh.edu
https://orcid.org/0000-0001-5833-6592
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

Awake Complexity of Distributed Minimum Spanning Tree

model (bandwidth per edge per round is limited to O(logn) bits), where nodes can be active for at
least so many rounds.

2012 ACM Subject Classification Theory of computation — Distributed algorithms; Mathematics
of computing — Probabilistic algorithms; Mathematics of computing — Discrete mathematics

Keywords and phrases Minimum Spanning Tree, Sleeping model, energy-efficient, awake complexity,
round complexity, trade-offs

Digital Object Identifier 10.4230/LIPIcs...

Funding John Augustine: J. Augustine was supported, in part, by DST/SERB MATRICS Grant
MTR/2018/001198 and the Centre of Excellence in Cryptography Cybersecurity and Distributed
Trust under the II'T Madras Institute of Eminence Scheme and by the VAJRA visiting faculty
program of the Government of India.

William K. Moses Jr.: W. K. Moses Jr. was supported, in part, by NSF grants CCF-1540512,
1IS-1633720, and CCF-1717075 and BSF grant 2016419.

Gopal Pandurangan: G. Pandurangan was supported, in part, by NSF grants CCF-1540512, IIS-
1633720, and CCF-1717075 and BSF grant 2016419 and by the VAJRA visiting faculty program of

the Government of India.
1 Introduction

We study the distributed minimum spanning tree (MST) problem, a central problem in
distributed computing. This problem has been studied extensively for several decades starting
with the seminal work of Gallagher, Humblet, and Spira (GHS) in the early 1980s [14]; for
example, we refer to the survey of [29] that traces the history of the problem till the state
of the art. The round (time) complexity of the GHS algorithm is O(nlogn) rounds, where
n is the number of nodes in the network. The round complexity of the problem has been
continuously improved since then and now tight optimal bounds are known.? It is now
well-established that ©(D + /n) is essentially (up to logarithmic factor) a tight bound for the
round complexity of distributed MST in the standard CONGEST model [31, 12, 24, 10]. The
lower bound applies even to randomized Monte Carlo algorithms [10], while deterministic
algorithms that match this bound (up to logarithmic factor) are now well-known (see e.g.,
[30, 27, 24, 28, 13]). Thus, the round complexity of the problem in the traditional CONGEST
distributed model is settled (see also the recent works of [18, 16]). In the CONGEST model,
any node can send, receive, or do local computation in any round and only O(logn)-sized
messages can be sent through any edge per round.

An MST serves as a basic primitive in many network applications including efficient
broadcast [29]. For example, MST is useful for energy-efficient broadcast in wireless networks
and has been extensively studied in this context, see e.g., [1, 21]. In resource-constrained
networks such as sensor networks, where nodes spend a lot of energy or other resources over
the course of an algorithm, a round complexity of O(D + \/n) (which is essentially optimal)
to construct an MST can be large. In particular, in such an algorithm, a node can be active
over the entire course of the algorithm. It is worth studying whether MST can be constructed
in such a way that each node is active only in a small number of rounds — much smaller
than that taken over the (worst-case) number of rounds — and hence could use much less
resources such as energy.

2 Message complexity has also been well-studied, see e.g., [29], but this is not the focus of this paper,
although our algorithms are also (essentially) message optimal — see Section 1.2.

https://doi.org/10.4230/LIPIcs...

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

125

126

127

128

129

130

131

132

133

J. Augustine, W. K. Moses Jr., and G. Pandurangan

Motivated by the above considerations, in recent years several works have studied energy-
efficient distributed algorithms (see e.g., [5, 3, 4, 6, 2, 22]). This paper studies the distributed
MST problem in the sleeping model [6]. In this model (see Section 1.1), nodes can operate in
two modes: awake and sleeping. Each node can choose to enter the awake or asleep state at
the start of any specified round. In the sleeping mode, a node cannot send, receive, or do
any local computation; messages sent to it are also lost. The resources utilized in sleeping
rounds are negligible and hence only awake rounds are counted. The goal in the sleeping
model is to design distributed algorithms that solve problems in a small number of awake
rounds, i.e., have small awake complezity (also called awake time), which is the (worst-case)
number of awake rounds needed by any node until it terminates. This is motivated by the
fact that, if the awake complexity is small, then every node takes only a small number of
rounds during which it uses a significant amount of resources. For example, in ad hoc wireless
or sensor networks, a node’s energy consumption depends on the amount of time it is actively
communicating with nodes. In fact, significant amount of energy is spent by a node even
when it is just waiting to hear from a neighbor [6]. On the other hand, when a node is
sleeping — when all of its radio devices are switched off — it spends little or no energy.
While the main goal is to minimize awake complexity, we would also like to minimize the
(traditional) round complezity (also called time complexity or run time) of the algorithm,
which counts the (worst-case) total number of rounds taken by any node, including both
awake and sleeping rounds.

The work of Barenboim and Maimon [2] shows that global problems such as broadcast
and constructing a (arbitrary) spanning tree (but not an MST) can be accomplished in
O(logn) awake rounds in the sleeping (CONGEST) model (see also the related result of
[3] — Section 1.3.). This is significant because it shows that even such global problems
can be accomplished in a very small number of awake rounds, bypassing the (D) lower
bound on the round complexity (in the traditional model). In this work, we focus on another
fundamental global problem, namely MST, and study its awake complexity. We show that
MST can be solved in O(logn) rounds awake complexity which we show is also optimal, by
showing a matching lower bound. The upper bound is in contrast to the classical Q(D +/n)
lower bound on the round complexity (in the traditional CONGEST model) where nodes
can be awake for at least so many rounds. Another key issue we study is the relationship
between awake complexity and round complexity of MST. It is intriguing whether one can
obtain an algorithm that has both optimal awake and round complexity. We answer this in
the negative by showing a trade-off lower bound (see Section 1.2).

1.1 Distributed Computing Model and Complexity Measures

Distributed Network Model. We are given a distributed network modeled as an arbitrary,
undirected, connected, weighted graph G(V, E, w), where the node set V (|]V| = n) represent
the processors, the edge set E (|E| = m) represents the communication links between them,
and w(e) is the weight of edge e € E. The network diameter is denoted by D, also called as
the hop-diameter (that is, the unweighted diameter) of G, and in this paper by diameter we
always mean hop-diameter. We assume that the weights of the edges of the graph are all
distinct. This implies that the MST of the graph is unique.

Each node hosts a processor with limited initial knowledge. We assume that nodes have
unique IDs (of size O(logn) bits), and at the beginning of the computation each node is
provided its ID as input and the weights of the edges incident to it. We also assume that
nodes know n, the number of nodes in the network. For the deterministic algorithm, we
make the additional assumption that nodes know the value of N, an upper bound on the

XX:3

XX:4

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161

162

163

164
165
166
167
168
169
170
171
172

173

Awake Complexity of Distributed Minimum Spanning Tree

largest ID of any node. Nodes initially do not have any other global knowledge and have
knowledge of only themselves.

Nodes communicate through the edges of the graph G and it is assumed that communi-
cation is synchronous and occurs in rounds. In particular, we assume that each node knows
the current round number, starting from round 1. In each round, each node can perform
some local computation (which happens instantaneously) including accessing a private source
of randomness, and can exchange (possibly distinct) O(logn)-bit messages with each of its
neighboring nodes. This is the traditional synchronous CONGEST model.

As is standard, the goal, at the end of the distributed MST computation, is for every

node to know which of its incident edges belong to the MST.
Sleeping Model and Complexity Measures. The sleeping model [6] is a generalization
of the traditional model, where a node can be in either of the two states — sleeping or awake
— before it finishes executing the algorithm (locally). (In the traditional model, each node is
always awake till it finished the algorithm). Initially, we assume that all nodes are awake.
That is, any node v, can decide to sleep starting at any (specified) round of its choice; we
assume all nodes know the correct round number whenever they are awake. It can wake up
again later at any specified round and enter the awake state. In the sleeping state, a node
does not send or receive messages, nor does it do any local computation. Messages sent to it
by other nodes when it was sleeping are lost. This aspect makes it especially challenging
to design algorithms that have a small number of awake rounds, since one has to carefully
coordinate the transmission of messages.

Let A, denote the number of awake rounds for a node v before termination. We define
the (worst-case) awake complezity as max,cy A,. For a randomized algorithm, A, will
be a random variable and our goal is to obtain high probability bounds on the awake
complexity. Apart from minimizing the awake complexity, we also strive to minimize the
overall (traditional) round complezity (also called time complexity), where both, sleeping and
awake rounds, are counted.

1.2 Our Contributions and Techniques
We study the awake complexity of distributed MST and present the following results (see

Table 1 for a summary).

Table 1 Summary of our Results.

I Algorithm I Type [Awake Time (AT) | Run Time (RT) [AT Lower Bound | AT x RT Lower Bound |
*RANDOMIZED-MST Randomized O(logn) O(nlogn) Q(logn) Q(n)
DETERMINISTIC-MST | Deterministic O(logn) O(nN logn) Q(logn) Q(n)
*&TRADE-OFF-MST | Randomized O(n/2F) O(D + 2F +n/2F) - -

*The algorithm outputs an MST with high probability.

&This algorithm takes integer k as an input parameter.

Our lower bounds also apply to Monte Carlo randomized algorithms with constant success probability.
n is the number of nodes in the network and N is an upper bound on the the largest ID of a node.

1. Lower Bound on the Awake Complexity of MST. We show that Q(logn) is a
lower bound on the awake complexity of constructing a MST, even for randomized Monte
Carlo algorithms with constant success probability (Section 2.1). We note that showing
lower bounds on the awake complexity is different from showing lower bounds for round
complexity in the traditional LOCAL model. In the traditional LOCAL model, locality plays
an important role in showing lower bounds. In particular, to obtain information from a
r-hop neighborhood, one needs at least r rounds and lower bounds use indistinguishability
arguments of identical r-hop neighborhoods to show a lower bound of r to solve a problem.
For example, this approach is used to show a lower bound of Q(D) for leader election or
broadcast even for randomized algorithms [23]. Lower bounds in the CONGEST model are

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

J. Augustine, W. K. Moses Jr., and G. Pandurangan

more involved and exploit bandwidth restriction to show stronger lower bounds for certain
problems, e.g., MST has a round complexity lower bound of Q(D + /n) rounds. In contrast,
as we show in this paper, MST can be solved using only O(logn) awake rounds and requires
a different type of lower bound argument for awake complexity.

We first show a randomized lower bound of Q(logn) awake complexity for broadcast on
a line of n nodes. Our broadcast lower bound is an adaptation of a similar lower bound
shown for the energy complexity model [3]. Our randomized lower bound is more general and
subsumes a deterministic lower bound of Q(logn) shown in [2] for computing a spanning tree
called the Distributed Layered Tree (by a reduction this lower bound applies to broadcast
and leader election as well). The deterministic lower bound follows from the deterministic
message complexity lower bound of Q(nlogn) on leader election on rings (which also requires
an additional condition that node IDs should be from a large range) to show that some node
should be awake at least Q(logn) rounds. Note that this argument does not immediately
apply for randomized algorithms, since such a message complexity lower bound does not hold
for randomized (Monte Carlo) leader election [23]. On the other hand, our lower bound uses
probabilistic arguments to show that some node has to be awake for at least (logn) rounds
for accomplishing broadcast in a line. We then use a reduction to argue the same lower
bound for MST problem on a weighted ring. We believe that the broadcast lower bound is
fundamental to awake complexity and will have implications for several other problems as
well.

2. Lower Bounds Relating Awake and Round Complexities. An important question
is whether one can optimize awake complexity and round complexity simultaneously or
whether one can only optimize one at the cost of the other. Our next result shows the

latter is true by showing a lower bound on the product of awake and round complexities.
Specifically, we construct a family of graphs with diameters ranging between Q(y/n) to O(n).

Time-optimal MST algorithms for these graphs will have round complexity within polylogn
factors of their diameters. We show that any algorithm that requires only O(Diameter(G))
rounds must have an awake complexity of at least Q(n/Diameter(G)) for any distributed
algorithm. This holds even for Monte-Carlo randomized algorithms with constant success
probability. The precise result in stated in Theorem 6 (see Section 2.2). In other words, the

product of the round complexity and awake complexity is Q(n).

Our lower bound technique for showing a conditional lower bound on the awake complexity
(conditional on upper bounding the round complexity) can be of independent interest. We
use a lower bound graph family that is similar to that used in prior work (e.g., [31, 10]), but
our lower bound technique uses communication complexity to lower bound awake complexity
by lower bounding the congestion caused in some node. This is different from the Simulation
Theorem technique ([10]) used to show unconditional lower bounds for round complexity in
the traditional setting. The main idea is showing that to solve the distributed set disjointness
problem in less than ¢ rounds, at least Q(n/c) bits have to send through some node that has
small (constant) degree. This means that the node has to be awake for essentially Q(n/c)
rounds. By using standard reductions, the same lower bound holds for MST. The technique
is quite general and could be adapted to show similar conditional lower bounds on the awake
complexity for other fundamental problems such as shortest paths, minimum cut, etc.

3. Awake-Optimal Algorithms and Techniques. We present a distributed randomized
algorithm (Section 3.2) that has O(logn) awake complexity which is optimal since it matches
the lower bound shown. The round complexity of our algorithm is O(nlogn). We then show
that the awake-optimal bound of O(logn) can be obtained deterministically by presenting a
deterministic algorithm (see Section 3.3). However, the deterministic algorithm has a worse

XX:5

XX:6

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262

Awake Complexity of Distributed Minimum Spanning Tree

round complexity of O(nN logn), assuming that the node IDs are in the range [1, N] and
N is known to all nodes. We also show that one can significantly reduce the deterministic
round complexity to O(nlognlog* n) at the cost of slightly increasing the awake complexity
to O(lognlog™ n) rounds.

Our algorithms use several techniques for constructing an MST in an awake-efficient
manner. Some of these can be of independent interest in designing such algorithms for other
fundamental problems.? Our main idea is to construct a spanning tree called the Labeled
Distance Tree (LDT). An LDT is a rooted oriented spanning tree such that each node is
labeled by its distance from the root and every node knows the labels of its parent and children
(if any) and the label of the root of the tree. We show that an LDT can be constructed in
O(logn) awake complexity and in a weighted graph, the LDT can be constructed so that it
is an MST. While LDT construction is akin to the classic GHS/Boruvka algorithm [14], it is
technically challenging to construct an LDT that is also an MST in O(logn) awake rounds
(Section 3). As in GHS algorithm, starting with n singleton fragments we merge fragments
via minimum outgoing edge (MOE) in each phase. The LDT distance property allows for
finding an MOE in O(1) awake rounds, since broadcast and convergecast can be accomplished
in O(1) rounds. On the other hand, maintaining the property of LDT when fragments are
merged is non-trivial. A key idea is that we show that merging can be accomplished in O(1)
awake rounds by merging only fragment chains of constant length (details under “Technical
challenges” in Sections 3.2 and 3.3).* We develop a technical lemma that shows that this
merging restriction still reduces the number of fragments by a constant factor in every phase
and hence the algorithm takes overall O(logn) awake rounds.

Our tree construction is different compared to the construction of trees in [2, 3]. In
particular, a tree structure called as Distributed Layered Tree (DLT) is used in Barenboim
and Maimon [2]. A DLT is a rooted oriented spanning tree where the vertices are labeled,
such that each vertex has a greater label than that of its parent, according to a given order
and each vertex knows its own label and the label of its parent. Another similar tree structure
is used in [3]. A crucial difference between the LDT construction and the others is that it
allows fragments to be merged via desired edges (MOEs), unlike the construction of DLT,
for example, where one has to merge along edges that connect a higher label to a lower label.
This is not useful for MST construction. Another important difference is that the labels used
in LDTs scale with the number of nodes, whereas the labels in DLTs scale with the maximum
ID assigned to any node. As the running time for both constructions are proportional to the
maximum possible labels and the ID range is usually polynomially larger than the number
of nodes, the running time to construct a DLT is much larger than the running time to
construct an LDT.

4. Trade-Off Algorithms. We present a parameterized family of distributed algorithms
that show a trade-off between the awake complexity and the round complexity and essentially
(up to a polylog n factor) matches our product lower bound of Q(n).5 Specifically we show a
family of distributed algorithms that find an MST of the given graph with high probability in
O(D + 2* + n/2%) running time and O(n/2*) awake time, where D is the network diameter

As an example, the O(nlognlog® n) deterministic algorithm is useful in designing an MIS algorithm
with small awake and round complexities [11] — see Section 1.3.

Consider the supergraph where the fragments are nodes and the MOEs are edges. A fragment chain
is one such supergraph that forms a path. The exact details of the supergraphs formed are slightly
different and explained in the relevant section, but this idea is beneficial to understanding.

The product lower bound of Q(n) is shown for graphs with diameter at least {(y/n). Hence, the near
tightness claim holds for graphs in this diameter range.

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

J. Augustine, W. K. Moses Jr., and G. Pandurangan

and integer k € [max{[0.5logn], [log D]}, [logn]] is an input parameter to the algorithm.
Notice that when D = O(y/n), the round complexity can vary from O(y/n) to O(n), and we
can choose (integer) k € [[0.51logn], [logn]] from to get the O(n) product bound for this
entire range. On the other hand, when D = w(4y/n), the round complexity can vary from
O(D) to O(n), and we can choose k € [[log D], [logn]] and get a family of algorithms with
(essentially) optimal round complexities from O(D) to O(n).

Due to lack of space, we refer the reader to the full paper (in Appendix) for the detailed
descriptions of algorithms, analysis, and omitted proofs.

1.3 Related Work and Comparison

The sleeping model and the awake complexity measure was introduced in a paper by
Chatterjee, Gmyr and Pandurangan [6] who showed that MIS in general graphs can be solved
in O(1) rounds node-averaged awake complexity. Node-averaged awake complexity is measured
by the average number of rounds a node is awake. The (worst-case) awake complexity of
their MIS algorithm is O(logn), while the worst-case complexity (that includes all rounds,
sleeping and awake) is O(log®*! n) rounds. Subsequently, Ghaffari and Portmann [17]
developed a randomized MIS algorithm that has worst-case complexity of O(logn), while
having O(1) node-averaged awake complexity (both bounds hold with high probability).
They studied approximate maximum matching and vertex cover and presented algorithms
that have similar node-averaged and worst-case awake complexities. These results show
that the above fundamental local symmetry breaking problems have O(logn) (worst-case)
awake complexity as is shown for global problems such as spanning tree [2] and MST (this
paper). In a recent result, Dufoulon, Moses Jr., and Pandurangan [11] show that MIS can
be solved in O(loglogn) (worst-case) awake complexity which is exponentially better than
previous results. But the round complexity is O(poly(n)). It then uses the deterministic
LDT construction algorithm of this paper to obtain an MIS algorithm that has a slightly
larger awake complexity of O(loglognlog” n), but significantly better round complexity of
O(polylogn). The existence of a deterministic LDT algorithm is crucial to obtaining their
result.

Barenboim and Maimon [2] showed that many problems, including broadcast, construction
of a spanning tree, and leader election can be solved deterministically in O(logn) awake
complexity. They also showed that fundamental symmetry breaking problems such as MIS
and (A + 1)-coloring can be solved deterministically in O(log A +log* n) awake rounds in the
LOCAL model, where A is the maximum degree. More generally, they also define the class
of O-LOCAL problems (that includes MIS and coloring) and showed that problems in this
class admit a deterministic algorithm that runs in O(log A + log* n) awake time and O(A?)
round complexity. Maimon [25] presents trade-offs between awake and round complexity for
O-LOCAL problems.

While there is significant amount of work on energy-efficient distributed algorithms over
the years we discuss those that are most relevant to this paper. A recent line of relevant
work is that Chang, Kopelowitz, Pettie, Wang, and Zhan and their follow ups [5, 3, 4, 7, §]
(see also the references therein and its follow up papers mentioned below and also much
earlier work on energy complexity in radio networks e.g., [26, 19, 20]). This work defines the
measure of energy complexity which is the same as (worst-case) awake complexity (i.e., both
measures count only the rounds that a node is awake). While the awake complexity used here
and several other papers [6, 17, 2] assumes the usual CONGEST (or LOCAL) communication
model (and hence the model can be called SLEEPING-CONGEST (or SLEEPING-LOCAL)),
the energy complexity measure used in [5] (and also papers mentioned above) has some
additional communication restrictions that pertain to radio networks (and can be called

XX:7

XX:8

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330

331

332
333
334
335
336
337

338

339

340
341
342
343

344

345

346

347

348
349
350
351
352
353
354

355

Awake Complexity of Distributed Minimum Spanning Tree

SLEEPING-RADIO model). The most important being that nodes can only broadcast
messages (hence the same message is sent to all neighbors) and when a node transmits, no
other neighboring node can. (Also a node cannot transmit and listen in the same round.)
The energy model has a few variants depending on how collisions are handled. There is a
version of the SLEEPING-RADIO model called “Local” where collisions are ignored and
nodes can transmit messages at the same time; this is essentially same as SLEEPING-LOCAL
model, apart from the notion that in a given round a node can transmit only the same
message to its neighbors. In particular, upper bounds in the radio model apply directly to the
sleeping model. In particular, we use a recent result due to Dani and Hayes [8] that computes
breadth-first search (BFS) tree with O(polylog(n)) energy complexity in the radio model as
a subroutine in our MST tradeoff algorithm. Also, algorithms in the SLEEPING-CONGEST
model can be made to work in the SLEEPING-RADIO model yielding similar bounds (with
possibly a O(polylog(n)) multiplicative factor) to the energy/awake complexity.

Lower bounds shown in the local version of the SLEEPING-RADIO model apply to other
models including SLEEPING-LOCAL (and SLEEPING-CONGEST). For example, Chang,
Dani, Hayes, He, Li, and Pettie [3] show a lower bound (logn) on the energy complexity
of broadcast which applies also to randomized algorithms. This lower bound is shown for
the local version of their model, and this result holds also for the awake complexity in the
sleeping model. We adapt this lower bound result to show a Q(logn) lower bound on the
awake complexity of MST even for randomized algorithms.

2 Lower Bounds

We first show that Q(logn) is an unconditional lower bound on the awake time for MST.
This shows that our algorithms presented in Section 3 achieve optimal awake complexity.
We then show a lower bound of Q(n) on the product of the awake and round complexities.
This can be considered as a conditional lower bound on awake complexity, conditioned on
an upper bound on the round complexity. This conditional lower bound shows that our
randomized awake optimal algorithm (see Section 3.2) has essentially the best possible round
complexity (up to a polylogn factor).

2.1 Unconditional Lower bound on Awake Complexity of MST

We consider a ring of ©(n) nodes with random weights and edges. The two largest weighted
edges will be apart by a hop distance of Q(n) with constant probability and any MST algorithm
must detect which one has the lower weight. Clearly, this will require communication over
either one of the Q(n) length paths between the two edges. Under this setting, we get the
following theorem.

» Theorem 1. Any algorithm to solve MST with probability exceeding 1/8 on a ring network
comprising ©(n) nodes requires Q(logn) awake time even when message sizes are unbounded.

2.2 Lower Bound on the Product of Awake and Round Complexity

We adapt the lower bound technique from [9] to the sleeping model and show a lower bound
on the product of the awake and round complexities, thus exposing an inherent trade off
between them.

Note that both endpoints of an edge must be awake in a round for O(logn) bits to be
transmitted across in that round. Thus, if an edge e = (u,v) must transmit B bits when
executing an algorithm in the CONGEST model, then, both » and v must be awake for at
least Q(B/logn) rounds. Thus congestion increases awake time. Our goal is to exploit this
intuition to prove the lower bound.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

J. Augustine, W. K. Moses Jr., and G. Pandurangan

We use a communication complexity based reduction to reduce set disjointness (SD)
in the classical communication complexity model to the distributed set disjointness (DSD)
problem in the sleeping model and then extend DSD to the minimum spanning tree problem
via an intermediate connected spanning subgraph (CSS), both to be solved in the sleeping
model.

In the SD problem, two players, Alice and Bob, possess two k-bit strings a = (a;)1<i<k
and b = (b;)1<i<k, respectively. They are required to compute an output bit Disj(a,b) that
is 1 iff there is no ¢ € [k] such that a; = b; = 1 (i.e., the inner product {(a,b) = 0), and 0
otherwise. Alice and Bob must compute Disj(a, b) while exchanging the least number of bits.
It is well-known that any protocol that solves SD requires (k) bits (on expectation) to be
exchanged between Alice and Bob even if they employ a randomized protocol [32] that can
fail with a small fixed probability ¢ > 0.

c columns

T rOows

Alice- -~ Bob

Figure 1 Construction of network graph G,. for proving lower bound. The vertices in X are
shown as stars (there is a binary tree at the bottom having the nodes in X as its leaves). One such
x € X is labeled. The cut induced by an R; is shown in dotted lines.

The DSD problem is defined on a graph G, that is schematically shown in Figure 1.
Let r and ¢ be two positive integers such that rc + ©(logn) = n (the network size). We
focus on the regime where ¢ € w(y/nlog?n) and r € o(y/n/log?n). The graph comprises r
rows (or parallel paths) ps, 1 < £ < r, with p; referring to the parallel path at the bottom.
Each parallel path comprises ¢ nodes arranged from left to right with the first node referring
to the leftmost node and the last node referring to the rightmost node. The first and last
nodes in p; are designated Alice and Bob because they are controlled by the players Alice
and Bob in our reduction. Alice (resp., Bob) is connected to first node (resp., last node) of
each py, 2 < ¢ < r. Additionally, we pick O(logn) equally spaced nodes X (of cardinality
that is a power of two) from p; such that the first and last nodes in p; are included in X.
For each =z € X, say at position j in p;, we add edges from z to the jth node in each py,
2 < ¢ < r. Using X as leaves, we construct a balanced binary tree. We will use I to denote
the internal nodes of this tree. Alice is in possession of bit string a and Bob is in possession
of b and, to solve DSD, they must compute Disj(a, b) in the sleeping model over the network
Gre. The outputs of all other nodes don’t matter; for concreteness, we specify that their
outputs should be empty .

In the CSS problem defined again on G,.., some edges in G,.. are marked and at least one
node in the network must determine whether the marked edges form a connected spanning
subgraph of G,... For the MST problem, we require edges in G, to be weighted and the goal
is to construct a minimum spanning tree of G,.. such that the endpoints of each MST edge e
are aware that e is an MST edge. Both CSS and MST must be solved in the sleeping model.

XX:9

XX:10

389
390

391

392
393

394

395

396

397

398
399
400
401

402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
47
418
419
420
421
422
423
424
425
426
427
428

429

Awake Complexity of Distributed Minimum Spanning Tree

G is constructed such that any node can reach some x € X within O(c/logn) steps
and any pair of nodes in X are within O(loglogn) steps (through the tree). Recall that
¢ € w(y/nlog®n). Thus, we have the following observation.

» Observation 2. The network graph G,. has diameter D € ©(c/logn). Moreover, D €
w(y/nlog* n). Therefore, DSD, CSS, and MST (if edges in G,. are assigned weights) can be
computed in O(D) = O(c/logn) rounds [15].

2.2.0.1 Reduction from SD — DSD

Recall that in DSD, Alice is in possession of a and Bob is in possession of b. They must
compute Disj(a, b) in the sleeping model.

» Lemma 3. Consider an algorithm P in the sleeping model that solves DSD on G . with
c € w(y/nlog®n) and r € o(y/n/log®n) in T (worst-case) rounds such that T € o(c) (and we
know such an algorithm exists from Observation 2, in particular because D € O(c/logn)).
Then, the awake time of P must be at least Q(r/log>n). This holds even if P is randomized
and has an error probability that is bounded by a small constant € > 0.

Proof. Suppose for the sake of contradiction P runs in time 7" and has an awake complexity
of o(r/log*n). Then, we can show that Alice and Bob can simulate P in the classical
communication complexity model and solve SD on r bits by exchanging only o(r) bits which
will yield a contradiction to the SD lower bound. We establish this by showing that Alice
and Bob can simulate P to solve SD in the classical communication complexity model.

We show this simulation from Alice’s perspective. Bob’s perspective will be symmetric.
Recall that py is the fth parallel path. Let pi, 1 < j < ¢, denote the first j vertices of path py.
We define R; to be the union of all pg and I (recall that I is the set of the internal nodes of
the binary tree), i.c., R; = (j_, p}) U I. Note that R; induces a cut (R;, R;) that is shown
in Figure 1. Alice begins by simulating R._; in round 1 as she knows the state of all nodes
in R._1. At each subsequent round ¢, Alice simulates R._;. Initially, all the information
needed for the simulation is available for Alice because the structure of G, is fully known
(except for Bob’s input).

As the simulation progresses, in each round ¢ > 1, ¢t < T € o(c), all inputs will be available
except for the new bits that may enter I through nodes in R._;. Alice will not need to ask for
the bits needed by pz_t because she simulated all nodes in pZ‘tH, 1 < ¢ < r, in the previous
round. Note that the portion simulated by Bob will encompass the portion from which Alice
may need bits from Bob, so Bob will indeed have the bits requested by Alice. In order to
continue the simulation, Alice borrows bits that P transmitted from Re_: to IN R._; from
Bob. Suppose during the course of the simulation in the communication complexity model,
B bits are borrowed from Bob. Then nodes in I must have been awake for a collective total
of at least Q(B/logn) rounds (because each message of O(logn) bits must be received by a
node that is awake in P).6 This implies that at least one node in I must have been awake
for Q(B/log®n) rounds because |I| € O(logn) and the number of edges incident to nodes in
I is also O(logn) (since nodes in I are of constant degree).

Since the node awake time is o(r/log” n) for P, B must be o(r). But this contradicts the
fact that SD requires £2(r) bits in the communication complexity model. <

6 Note that all the B bits cannot solely come through a row path of length ¢, since we are restricting
T € o(c). In other words, each of the bits has to go through at least one node in I.

430

431

432

433

434

435

436

437

438

439

440

441

442

443

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

J. Augustine, W. K. Moses Jr., and G. Pandurangan

2.2.0.2 Reduction from DSD — CSS

We now show a reduction from DSD — CSS by encoding a given DSD problem instance as a
CSS instance in the following manner. Recall that in DSD, Alice and Bob have bit strings a
and b, respectively, of length r each. Furthermore, recall that Alice (resp., Bob) is connected
to first node (resp., last node) of each py, 2 < £ < 7.

» Lemma 4. Suppose there is a protocol Q in the sleeping model that solves CSS on G
with ¢ € w(y/nlog?n) and r € o(\/n/log*n) in T rounds such that T € o(c). Then, the node
awake time of Q must be at least Q(r/log®n). This holds even if Q is randomized and has
an error probability that is bounded by a small constant € > 0.

2.2.0.3 Reduction from CSS — MST

Recall that CSS is a decision problem that requires a subset of the edges in the network graph
G, to be marked; we are to report whether the marked edges form a spanning subgraph of
Grc. MST on the other hand is a construction problem. It takes a weighted network graph
and computes the minimum spanning tree. A reduction from CSS to MST can be constructed
by assigning a weight of 1 for marked edges in the CSS instance and n for all other edges and
asking if any edge of weight n is included in the MST. This leads to the following lemma.

» Lemma 5. Suppose there is a protocol M in the sleeping model that solves MST on G
with ¢ € w(v/nlog®n) and r € o(y/n/log?n) in T rounds such that T € o(c). Then, the node
awake time of M must be at least Q(r/log®n). This holds even if M is randomized and has
an error probability that is bounded by a small constant € > 0.

Generalizing to arbitrary graphs, we can conclude with the following theorem.

» Theorem 6. Consider positive integers r and ¢ such that rc + ©(logn) = n (the network
size) and ¢ € w(y/nlog®n). (Thus, ¢ can range between Q(y/n) to O(n) with r € O(n/c).)
Suppose there exists a randomized algorithm M for MST in the sleeping model that runs
in time T € o(c) rounds and guaranteed to compute the MST with probability at least 1 — ¢
for any small fized € > 0. Then, the (worst case) awake complexity of M must be at least
Q(r/log?n).

3 MST Algorithms with Optimal Awake Complexity

In this section, we present our algorithms to construct an MST that take optimal awake
complexity. Due to space constraints, we only cover the most salient points of the algorithms
as well as the technical challenges overcome. Interested readers may refer to the full version
in the Appendix for detailed descriptions of the algorithms and their analysis.

3.1 Main ldeas

Both of the algorithms we develop in this section can be seen as variations of the classic GHS
algorithm to find the MST, adapted to optimize the awake time of the algorithm. Recall that
each phase of the GHS algorithm consists of two steps. Step (i) corresponds to finding the
minimum outgoing edges (MOEs) for the current fragments and step (ii) involves merging
these fragments.

Our algorithms work in phases where at the end of each phase, we ensure that the original
graph has been partitioned into a forest of node-disjoint trees that satisfy the following
property. For each such tree, all nodes within the tree know the ID of the root of the tree
(called fragment ID), the IDs of their parents and children in the tree, if any, and their

XX:11

XX:12

472
473
474
475
476
477
478
479
480
481
482
483
484

485

486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

512

Awake Complexity of Distributed Minimum Spanning Tree

distance from the root (note that it is the hop distance, ignoring the weights) of that tree.
We call each such tree a Labeled Distance Tree (LDT) and a forest of such trees a Forest of
Labeled Distance Trees (FLDT). By the end of the algorithms we design, our goal is to have
the FLDT reduced to just one LDT which corresponds to the MST of the original graph.
The challenge is to construct an LDT (which will also be an MST) in an awake-optimal
manner.

The purpose of maintaining such a structure is that we know how to design fast awake
procedures to propagate information within an LDT. By making use of blocks of 2n + 1
rounds, we can design schedules for nodes to wake up so that procedures associated with
GHS, such as broadcast, upcast-min, etc. can be implemented in O(1) awake complexity
and O(n) round complexity. In the course of our algorithms, we ensure that nodes stay
synchronized, i.e., time can be viewed in blocks of 2n + 1 rounds such that all nodes start
their first schedule at the same time (and end them at the same time) and continue to start
(and end) future schedules at the same time.

3.2 Awake-Optimal Randomized Algorithm

Technical Challenges. As mentioned above, one of the key changes we make is to restrict
the MOEs to a subset of “valid” ones. This is to address a key technical challenge. When we
merge two fragments together, one of those fragments must internally re-orient itself and
update its internal values (including distance to the root). This re-alignment and updation
takes O(1) awake time. If we have a chain of fragments, say of diameter d, we may have
to perform this re-alignment procedure d — 1 times since the re-alignment of fragments is
sequential in nature.” As a result, if we do not control the length of chains of connected
components formed by the fragments and their MOESs, we risk blowing up the awake time of
the algorithm. We use randomness to ensure the diameter of any such connected component
is a constant.

As a result of the above change, we have a second technical challenge. Because we

reduce the number of valid MOEs, we have to be careful to argue that a sufficient number of
fragments are merged together in each phase so that after O(logn) phases, we end up with
exactly one fragment with high probability. We provide such a careful argument, which is
somewhat different from the usual argument used in GHS style algorithms.
Detailed Algorithm. Algorithm RANDOMIZED-MST consists of nodes participating in
4[log, /3] + 1 phases of the following computations. Recall that between phases we want to
maintain an FLDT that is eventually converted into a single LDT. In each phase, there are
three steps. The first step corresponds to finding the MOE of each fragment, the second step
relates to finding valid MOEs, and the third step corresponds to merging fragments along
valid MOEs.

Step (i): Finding MOE of each fragment. Consider a single fragment. All nodes in
it participate in a combination of broadcasts and convergecasts to send the smallest MOE to
the fragment root, which in turn transmits this info to all nodes in the fragment.

Step (ii): Finding “valid” MOEs. In step (ii), each fragment’s root flips a coin and
only MOEs from fragments whose roots flipped tails to those that flipped heads are “valid”.®

7 To observe the sequential nature of the re-alignment, consider a chain with three fragments, say
A < B <+ C. Suppose A maintains its orientation. The nodes in B must be processed first and must
update their distance to A. Only then can the nodes of C accurately update their distance to A (after
the node u in C' connected to the node v in B learns v’s updated distance to A).

8 TIntuitively, stars are formed by fragments and MOEs as a result of this process. In each such star, the
center fragment is one whose root flipped heads and the leaves, if any, are fragments whose roots flipped

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

J. Augustine, W. K. Moses Jr., and G. Pandurangan

Henceforth, if a fragment’s root flipped a heads (tails), then we say that the fragment flipped
a heads (tails). Alternatively, we can say that the fragment is considered a heads (tails)
fragment. Each fragment root flips an unbiased coin and broadcasts the result to its fragment
nodes. Each node communicates its fragment’s coin flip result to its neighbors. As a result,
each node adjacent to an MOE knows if that MOE is a valid one or not. This information
can be transmitted to all nodes in the fragment via an upcast and broadcast in the fragment.

Step (iii): Merging fragments. In step (iii), we merge each subgraph formed by
fragments and valid MOEs into a single fragment. Consider a subgraph consisting of
several tails fragments whose MOEs lead to a single heads fragment. The heads fragment
retains its fragment ID while the remaining fragments take on the ID of the heads fragment.
Furthermore, these other fragments also re-orient themselves such that they form subtrees of
the heads fragment. Specifically, consider a tails fragment T" with root rootr and an MOE
to a heads fragment H where nodes up and ug are the nodes of the MOE belonging to T’
and H, respectively. The nodes in fragment T re-orient themselves such that ur is the new
root of the tree. Additionally, ur considers uy its parent in the merged graph. The process
is similar to that in [2] and is illustrated in Figures 2, 3, 4, and 5 which are found in the
Appendix.

Analysis. We now prove that the algorithm correctly outputs the MST of the original
graph with the desired running time and awake time. Recall that the number of fragments
can never increase from one phase to the next. Let phase P correspond to the last phase in
which there is more than one fragment at the beginning of the phase. We will show that
P = 4[log,/3n]. The following lemma shows that for the first P phases of the algorithm,
the number of fragments is reduced by a constant factor in each phase with high probability.

» Lemma 7. For each phase of Algorithm RANDOMIZED-MST where there are initially at
least two fragments at the start of that phase, the number of fragments is reduced by at least
a factor of 4/3 in that phase on expectation. Furthermore, by phase 4[10g4/3 n| + 1, there is
at most one fragment in the graph.

We are now ready to argue that the algorithm is correct.

» Lemma 8. Algorithm RANDOMIZED-MS'T results in each node of the initial graph knowing
which of its edges are in the MST with high probability.

We also bound the running time and awake time of the algorithm below.

» Lemma 9. Algorithm RANDOMIZED-MST takes O(nlogn) running time and O(logn)
awake time.

» Theorem 10. Algorithm RANDOMIZED-MST is a randomized algorithm to find the MST
of a graph with high probability in O(nlogn) running time and O(logn) awake time.

3.3 Awake-Optimal Deterministic Algorithm

Technical Challenges. We experience similar technical challenges as those faced when
designing Algorithm RANDOMIZED-MST. However, we resolve those issues quite differently
here. As before, when we construct connected components of fragments and their MOEs, we
want that the diameter of each of these components is a constant, so that we can re-orient
fragments quickly during the merging process. Since we do not have access to randomness,

tails.

XX:13

XX:14

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

599

Awake Complexity of Distributed Minimum Spanning Tree

we rely on the somewhat standard approach of using a deterministic maximal matching over
these components to reduce the diameter. However, while the approach is standard, the
execution is not. In order to maintain a small awake time, we first reduce every component to
a set of bounded degree components and then run a tailored algorithm to color all fragments
in O(1) awake time. Subsequently, converting this coloring to a maximal matching is done
as usual.

Once again, due to the above changes, we must deal with a second technical challenge.
Because we reduce the number of valid MOEs, we have to be careful to argue that a sufficient
number of fragments are merged together in each phase so that after O(logn) phases, we
end up with exactly one fragment. We utilize an interesting combinatorial approach to argue
this.

Detailed Algorithm. We now give a detailed break up of each phase of the algorithm.
Let ¢ = 240000. Recall that there are [log, /1) n| + ¢ phases and in each phase, there are
three steps.” We describe each in detail separately.

Step (i): Finding MOE of each fragment. Each fragment finds it MOE in the same
way as step (i) of Algorithm RANDOMIZED-MST.

Step (ii): Finding “valid” MOEs. Each node in a given fragment knows, for each
of its edges adjacent to it, whether that edge is an MOE from some other fragment to the
given fragment. Let us differentiate these MOEs to the fragment from the MOE from the
fragment by calling the former INCOMING-MOEs. Now, we have each fragment select up to
3 “valid” MOEs from its INCOMING-MOEs, chosen arbitrarily. This is in contrast to how the
valid MOEs were chosen during Algorithm RANDOMIZED-MST, where we used coin flips to
determine valid MOEs. Define an incoming MOFE node v of fragment f as a node v belonging
to fragment f such that v is adjacent to an edge that is an MOE from some other fragment
to f. In the context of a given fragment f, define a valid MOE child node v of a node u as a
child node of u such that in the subtree rooted at v, there exists an incoming MOE node of
f- At a high level, the total number of INCOMING-MOEs is communicated to the root of
the fragment. The root then allots up to 3 virtual “tokens” (i) to its valid MOE child nodes
to be used to select INCOMING-MOEs and (ii) to itself if the root is an incoming MOE node.
Any node that receives one or more such tokens distributes them among its valid MOE child
nodes and itself if it is an incoming MOE node. This process is repeated until all tokens are
transmitted to incoming MOE nodes of the fragment.

Step (iii): Merging fragments. We first make each fragment f’s nodes aware of the
fragment IDs from and to which it has valid MOEs. We first collect information about
valid MOEs (both incoming & outgoing) at the root of the fragment f and then broadcast
this information to all nodes in the MOE. Subsequently, we color the fragments and then
selectively merge them. Consider a color palette consisting of colors Blue, Red, Orange,
Black, and Green. Furthermore, let there exist a total ordering on this palette based on
the relation of priority, where we say that a color A has a higher priority than color B and
denote the relation by A > B, such that Blue > Red > Orange > Black > Green. Let us
consider the supergraph G’ where the nodes are the set of fragments present at the beginning
of the phase and the edges are the valid MOEs, as computed from step (ii). Recall that
the maximum degree of any node in G’ is 4, so 5 colors are sufficient for coloring (there
always exists a A+ 1 coloring of a graph with maximum degree A). At a high level, we wake
fragments up in order of the fragment IDs and color them with the first available color, i.e.,
the highest priority color not chosen by any of its neighbors. Neighboring fragments become

9 We have not chosen to optimize the constants in our analysis.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

J. Augustine, W. K. Moses Jr., and G. Pandurangan

aware of a given fragment F’s chosen color by having F' AND its neighboring fragments
wake up in the rounds that F' was assigned. As a given fragment has O(1) neighbors, it does
not have to stay awake for too long.

Now, we describe the selective merging in more detail. We first identify the set of
fragments that will merge into other fragments and will thus “not survive” the phase. These
are all fragments that were colored Blue. Recall that there are two types of fragments that
are colored Blue. Those with neighbors in G’ and those without, which we call singleton
fragments.

Those Blue fragments with neighbors pick one of their neighbors in G’ arbitrarily (which
is of course a non-Blue fragment) and then merge into them. This can be achieved by using
the merging process of Algorithm RANDOMIZED-MST where we consider Blue fragments as
Tails fragments and all non-Blue fragments as Heads fragments. The merged fragment takes
on the fragment ID of the fragment that acted as the Heads fragment.

Now we have singleton Blue fragments merge into the fragments at the end of their MOEs
in a manner similar to above. But before doing that, each node in these singleton fragments
becomes aware of any changes to fragment IDs and level numbers of neighboring nodes (and
corresponding neighboring fragments) by having all nodes in the graph swap information
with their neighbors.

Analysis. We now prove that the algorithm correctly outputs the MST of the original
graph with the desired running time and awake time.

Recall that we use the notation ¢ = 240000. We show that the number of phases needed to
reduce the number of fragments to one is at most [log,/._1yn]+¢c. Correctness immediately
follows as we implement GHS. We first argue that in each phase of the algorithm where
there is initially a sufficient number of fragments ¢, the number of fragments is reduced by a
constant factor of ¢/(c — 1). We then show that in an additional ¢ phases, we can reduce the
number of fragments to one. As we only add MST edges and all nodes will be in this one
fragment, the final fragment represents the MST of original graph.

Let P represent the phase by which the number of fragments at the beginning of the
phase is less than c. We eventually show that P = [log./._1)n]|. We first argue that in
every phase up to P, the number of fragments is reduced by a constant factor. We do this
by considering an arbitrary phase ¢ and identifying a set of fragments in that phase that are

guaranteed to merge into other fragments, thus “being lost” or “not surviving” in that phase.

We show that this set is at least a constant fraction of the total set of fragments that existed
at the start of the phase.

Consider an arbitrary phase i such that at the beginning of the phase there exists a set JF;
of fragments and define F; = |F;|. Furthermore, define the supergraph H as the undirected
graph where the nodes are the set F; and the edges are the valid MOEs between the different
fragments, i.e., the graph obtained after pruning MOEs in step (ii) of the phase. In the

subsequent analysis we use nodes and fragments interchangeably in the context of graph H.

We now show that the number of Blue fragments (which by the algorithm are all merged
into other fragments) constitute a sufficiently large constant fraction of F;.

» Lemma 11. Let H' be a connected subgraph of H. If |H'| > 342, then at least ||H'|/342]
of the fragments are Blue.

The above lemma by itself is insufficient to show that the required number of fragments
are removed in each phase. The reason is that H may consist of a set of disjoint connected
subgraphs. Let us assume that |H| > ¢. Let S denote the set of all disjoint connected

subgraphs (i.e., connected components) in H. Now, either |S| > |H|/3422 or |S| < |H|/3422.

XX:15

XX:16 Awake Complexity of Distributed Minimum Spanning Tree

e We show that in either case, the number of fragments that survive the current phase is
648 (C—l)‘HVC.

640 If |S| > |H|/3422, then since each subgraph in S contains at least one Blue fragment
o0 which disappears in the phase, the total number of fragments that survive the phase is at
en most |H| — |H|/342%2 < (¢ — 1)|H]|/c.10

652 Now let us look at the situation where |S| < |H|/3422. Divide S into the sets S and S
63 which contain the disjoint connected subgraphs of H which have < 342 fragments and > 342
s« fragments, respectively. Observe that S = Sy |JS2. (It is easy to see that |Sz| > 1 since
ess otherwise if all subgraphs belonged to Sy, there would be less than |H| total fragments.) We
66 now show that a sufficient number of fragments in the subgraphs in set S5 are Blue fragments,
67 thus resulting in a sufficient number of fragments being removed in the phase. Let us lower
s bound how many fragments are present in the subgraphs in set S2. Recall that |S1| < |S|, we
e are considering the situation where |S| < |H|/3422, and each subgraph in |S;| can have < 342
oo fragments. We lower bound the fragments in Sy by pessimistically ignoring the less than 342
s1 fragments from each of the | S| subgraphs (recall that |S1| < |S]), i.e., the number of fragments
e in Sois > |H|—(|H|/342%)-342 (since the total number of subgraphs is at most |H|/342%) =
o 341 H|/342.

664 We now lower bound the number of Blue fragments in subgraphs in S3. Let the subgraphs
s in S be denoted by Hy, Ha,..., Hs,. Since each subgraph in Sy is of size at least 342,

s we can use Lemma 4. Now, the number of Blue fragments in Sy is = Zlizll [|H;|/342] >

s SN (|H| /342 — 1) = 1/342 - (XI5 | Hy|) — [So] = 1/342 - (341|H;|/342) — [So| > 1/342 -
e (341|H;|/342) — |H|/3422 (since |So| < |S| < |H|/3422) = 340|H|/3422.

669 Recall that all Blue fragments do not survive a phase. Thus, the number of fragments
e that survive the current phase is < |H| — 340|H|/3422 < (c — 1)|H|/c.
671 Thus, in both situations, we see that the number of fragments that survive the present

ez phase is upper bounded as desired.

oz » Lemma 12. After [logc/(c_l) n| phases, there are at most ¢ fragments at the beginning of
e the phase.

675 An easy observation is that whenever F; > 2, at least one fragment is Blue and will not
ers survive the phase. Thus, if there are at most ¢ fragments at the beginning of the phase, then
ez running an additional ¢ phases guarantees that only one fragment will remain. Initially, each
es node is a fragment by itself and over the course of the algorithm, only possible MST edges
oo are added to any fragment. Thus, we have the following lemma.

s » Lemma13. Algorithm DETERMINISTIC-MS'T correctly outputs an MST after [log..—1yn]+
61 C phases.

682 The running time and awake time are analyzed in the Appendix, leading to the following
63 lemma.

s« » Lemma 14. Each phase of Algorithm DETERMINISTIC-MST takes O(1) awake time and
s O(nN) running time.

686 Thus, combining Lemma 13 and Lemma 14, we get the following theorem.

s7 » Theorem 15. Algorithm DETERMINISTIC-MST is a deterministic algorithm to find the
s MST of a given graph in O(logn) awake time and O(nN logn) running time.

107t is easy to see that each subgraph contains a Blue fragment because Blue is the highest priority color
and so the first fragment that colors itself in any given subgraph colors itself Blue.

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

J. Augustine, W. K. Moses Jr., and G. Pandurangan

Remark. The coloring procedure, FAST-AWAKE-COLORING, is the main reason for
the large run time. As we noted near the beginning of this section, we can replace this
procedure with one that can accomplish this deterministically in O(log™ n) run time even
in the traditional model (see e.g., [28]). However, we suffer an overhead of O(log™ n) factor
in the awake time. As a result, using this modified procedure would allow us to get the
following corollary.

» Corollary 16. There exists a deterministic algorithm to find the MST of a given graph in
O(lognlog™n) awake time and O(nlognlog™ n) run time.

4 MST Algorithm with a Trade-off

In this section, we present an algorithm to create an MST that shows a trade-off between its
running time and awake time. We only give a high-level overview of the algorithm and defer
the detailed explanation of the algorithm along with analysis to the full paper.
High-level Overview. We present algorithm TRADE-OFF-MST, which finds the MST
of the given graph with high probability in O(D + 2¥ + n/2*) running time and O(n/2")
awake time, where integer k is an input parameter to the algorithm. It is an awake time
efficient version of the Controlled-GHS algorithm from Chapter 7 of [27] (itself a version of
the optimized version of the algorithm from [15]) adapted to reduce the awake complexity.
We describe it as a 3 stage algorithm.

In stage one, we elect a leader node among all the nodes. We then construct a Breadth
First Search (BFS) tree rooted at this leader (using the algorithm of [8]), which will be used
later on. In stage two, we switch gears and have all nodes perform the controlled version of
the GHS algorithm for k — 1 phases until < n/2* fragments are formed, each of size > 2F
and diameter < 5-2%. In stage three, each node now uses the BFS tree formed in stage
one to send its MOE (inter-fragment MOE) for each of the at most n/2* fragments with
corresponding node IDs and fragments IDs to the leader using pipelining. Using the red rule
to prevent cycles, we ensure that this is done quickly. The leader then locally computes which
O(n/2*) edges between the O(n/2F) fragments are a part of the MST and sends messages
about those edges down to the respective nodes.

» Theorem 17. Algorithm TRADE-OFF-MST is a randomized algorithm to find the MST of
a graph with high probability and takes O(D + 2F + n/2F) running time and O(n/2%) awake
time, where k is an input to the algorithm.

5 Conclusion

We presented distributed algorithms for the fundamental MST problem that are optimal with
respect to awake complexity. We also showed that there is an inherent trade-off bottleneck
between awake and round complexities of MST. In other words, one cannot attain optimal
complexities simultaneously under both measures. We also presented an algorithm that shows
a trade-off between awake complexity and round complexity, complementing our trade-off
lower bound. Interesting lines of future work including designing awake-efficient algorithms
for other fundamental global problems such as shortest path and minimum cut.

—— References

1 Christoph Ambiihl. An optimal bound for the MST algorithm to compute energy efficient
broadcast trees in wireless networks. In Automata, Languages and Programming, 32nd
International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings,
volume 3580 of Lecture Notes in Computer Science, pages 1139-1150. Springer, 2005.

XX:17

XX:18 Awake Complexity of Distributed Minimum Spanning Tree

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

e

778

779

780

781

782

783

10

11

12

13

14

15

16

17

Leonid Barenboim and Tzalik Maimon. Deterministic logarithmic completeness in the dis-
tributed sleeping model. In Seth Gilbert, editor, 35th International Symposium on Distributed
Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume
209 of LIPIcs, pages 10:1-10:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.
doi:10.4230/LIPIcs.DISC.2021.10.

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.
The energy complexity of broadcast. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, pages 95-104, 2018.

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie. The energy complexity of
bfs in radio networks. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, pages 273282, 2020.

Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. Exponential
separations in the energy complexity of leader election. ACM Trans. Algorithms, 15(4):49:1—
49:31, 2019. Conference version: STOC 2017.

Soumyottam Chatterjee, Robert Gmyr, and Gopal Pandurangan. Sleeping is efficient: MIS in
O(1)-rounds node-averaged awake complexity. In Yuval Emek and Christian Cachin, editors,
PODC ’20: ACM Symposium on Principles of Distributed Computing, pages 99—-108, 2020.
Varsha Dani, Aayush Gupta, Thomas P. Hayes, and Seth Pettie. Wake up and Join Me! an
Energy-Efficient Algorithm for Maximal Matching in Radio Networks. In 35th International
Symposium on Distributed Computing (DISC), pages 19:1-19:14, 2021.

Varsha Dani and Thomas P. Hayes. How to wake up your neighbors: Safe and nearly
optimal generic energy conservation in radio networks. In Christian Scheideler, editor, 36th
International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta,
Georgia, USA, volume 246 of LIPIcs, pages 16:1-16:22. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2022. doi:10.4230/LIPIcs.DISC.2022.16.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. In Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, STOC ’11, page 363-372, New York, NY, USA, 2011. Association for
Computing Machinery.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM J. Comput., 41(5):1235-1265, 2012.

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan. Distributed MIS in o(log log
n) awake complexity. In Proceedings of the Symposium on Principles of Distributed Computing
(PODC), 2023.

Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In Proc. of the ACM Symposium on Theory of
Computing, pages 331 — 340, 2004.

Michael Elkin. A simple deterministic distributed MST algorithm, with near-optimal time and
message complexities. In Proceedings of the 2017 ACM Symposium on Principles of Distributed
Computing (PODC), pages 157163, 2017.

R. Gallager, P. Humblet, and P. Spira. A distributed algorithm for minimum-weight spanning
trees. ACM Transactions on Programming Languages and Systems, 5(1):66-77, January 1983.
Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing, 27(1):302-316, 1998.
Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 202—219. STAM, 2016.
Mohsen Ghaffari and Julian Portmann. Average awake complexity of MIS and matching. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 45-55, 2022.

https://doi.org/10.4230/LIPIcs.DISC.2021.10
https://doi.org/10.4230/LIPIcs.DISC.2022.16

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

J. Augustine, W. K. Moses Jr., and G. Pandurangan

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms
for known topologies. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1166-1179. ACM, 2021.

Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski. Efficient algorithms for leader
election in radio networks. In Aleta Ricciardi, editor, Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Distributed Computing, PODC 2002, Monterey, California,
USA, July 21-24, 2002, pages 51-57. ACM, 2002.

Marcin Kardas, Marek Klonowski, and Dominik Pajak. Energy-efficient leader election protocols
for single-hop radio networks. In 42nd International Conference on Parallel Processing, I[CPP
2013, Lyon, France, October 1-4, 2013, pages 399-408. IEEE Computer Society, 2013.
Maleq Khan, Gopal Pandurangan, and V. S. Anil Kumar. Distributed algorithms for con-
structing approximate minimum spanning trees in wireless sensor networks. IEEFE Trans.
Parallel Distributed Syst., 20(1):124-139, 20009.

Valerie King, Cynthia A. Phillips, Jared Saia, and Maxwell Young. Sleeping on the job:
Energy-efficient and robust broadcast for radio networks. Algorithmica, 61(3):518-554, 2011.
d0i:10.1007/s00453-010-9422-0.

Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the complexity of universal leader election. J. ACM, 62(1), 2015.

Shay Kutten and David Peleg. Fast distributed construction of small k-dominating sets and
applications. J. Algorithms, 28(1):40-66, 1998.

Tzalik Maimon. Sleeping model: Local and dynamic algorithms, 2021. arXiv:2112.05344.
Koji Nakano and Stephan Olariu. Randomized leader election protocols in radio networks
with no collision detection. In D. T. Lee and Shang-Hua Teng, editors, Algorithms and
Computation, 11th International Conference, ISAAC 2000, Taipei, Taiwan, December 18-20,
2000, Proceedings, volume 1969 of Lecture Notes in Computer Science, pages 362—-373. Springer,
2000.

Gopal Pandurangan. Distributed network algorithms. In Distributed Network
Algorithms, 2021. URL: https://sites.google.com/site/gopalpandurangan/home/
distributed-network-algorithms.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-optimal
distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual ACM
Symposium on the Theory of Computing (STOC), pages 743-756, 2017.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. The distributed minimum
spanning tree problem. Bull. EATCS, 125, 2018.

David Peleg. Distributed Computing: A Locality Sensitive Approach. STAM, 2000.

David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. STAM J. Comput., 30(5):1427-1442,
2000.

Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput.
Sci., 106(2):385-390, 1992.

https://doi.org/10.1007/s00453-010-9422-0
http://arxiv.org/abs/2112.05344
https://sites.google.com/site/gopalpandurangan/home/distributed-network-algorithms
https://sites.google.com/site/gopalpandurangan/home/distributed-network-algorithms
https://sites.google.com/site/gopalpandurangan/home/distributed-network-algorithms

XX:20 Awake Complexity of Distributed Minimum Spanning Tree

824

&5 Appendix: Full version of paper

	1 Introduction
	1.1 Distributed Computing Model and Complexity Measures
	1.2 Our Contributions and Techniques
	1.3 Related Work and Comparison

	2 Lower Bounds
	2.1 Unconditional Lower bound on Awake Complexity of MST
	2.2 Lower Bound on the Product of Awake and Round Complexity

	3 MST Algorithms with Optimal Awake Complexity
	3.1 Main Ideas
	3.2 Awake-Optimal Randomized Algorithm
	3.3 Awake-Optimal Deterministic Algorithm

	4 MST Algorithm with a Trade-off
	5 Conclusion

