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Fusion Learning of Functional Linear
Regression with Application to

Genotype-by-Environment Interaction Studies
Shan Yu , Aaron M. Kusmec, Li Wang, and Dan Nettleton

We propose a sparse multi-group functional linear regression model to simultaneously
estimate multiple coefficient functions and identify groups, such that coefficient func-
tions are identical within groups and distinct across groups. By borrowing information
from relevant subgroups of subjects, our method enhances estimation efficiency while
preserving heterogeneity in model parameters and coefficient functions.We use an adap-
tive fused lasso penalty to shrink coefficient estimates to a common value within each
group. We also establish theoretical properties of the proposed estimators. To enhance
computation efficiency and incorporate neighborhood information, we propose to use
graph-constrained adaptive lasso with a computationally efficient algorithm. TwoMonte
Carlo simulation studies have been conducted to study the finite-sample performance of
the proposed method. The proposed method is applied to sorghum flowering-time data
and hybrid maize grain yields from the Genomes to Fields consortium.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Genotype-by-environment (G×E) interaction analysis can reveal interplay between
genetic and environmental factors underlying observed phenotypes. The topic of G × E
has a long history in genetics and statistics and has garnered much attention recently (Li
et al. 2018). G×E interaction is essential to the development of breeding strategies, which
seek to customize genotypes to the characteristics of particular environments (Nelsen 2002).
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Grouping genotypes according to their responses to environmental characteristics is of sci-
entific interest.

Modern technologies enable data collection to be essentially continuous over time. In
precision agriculture, researchers record weather data at small time increments from real-
time local weather station andwireless sensors for environmental monitoring. The Genomes
to Fields initiative aims to accurately predict of the phenotypes of corn plants in diverse
environments (McFarland et al. 2020) by using daily recorded weather data from various
devices. Such data, recorded daily or more frequently, are usually treated as time-indexed
functional predictors. They are valuable because understanding how environmental char-
acteristics influence plant growth during various stages of development provides farmers
with a way of optimizing agricultural practices, e.g., the time of irrigation, fertilization,
harvesting, etc.

This paper considers multi-group functional linear models (FLMs) to describe the rela-
tionship between functional predictors and a scalar response (Ogden et al. 2002). Define
the subgroup k as a set of subjects (e.g., plants or plots) from the same analytic unit (e.g.,
genotype), k = 1, . . . , K . For the i th subject within subgroup k, i = 1, . . . , nk , let Yik be
a response variable, such as yield. Let {Xik(t), t ∈ T } = {Xik�(t), t ∈ T }L�=1 be a vector
of square-integrable random functions defined on a closed interval T , for example, time-
indexed weather data, such as temperature, soil moisture, etc. Let � be the index of the �th
functional predictor. The unknown coefficient functions αk� characterize the associations
between the scalar response variable and functional predictors by:

Yik = βk +
L∑

�=1

∫

T
Xik�(t)αk�(t)dt + εik, i = 1, . . . , nk, k = 1, . . . , K , (1)

where βk’s are unknown intercepts, αk�’s are unknown functions defined on T , and the
εik terms are independent random errors with zero means and variances bounded above
by a finite constant. This model assumes that the intercepts and coefficient functions for
environmental variables are subgroup-dependent. For each unknown model component (the
intercepts being one component, the coefficient functions on the first environmental variable
being another, etc.), subgroups can be partitioned into unknown groups, where the values
of the corresponding component are identical for subgroups in the same group but different
across groups. The proposed model allows different model components to have different
group structures. The G×E effect is described through genotype-dependent coefficient
functions, representing different response patterns to the environmental changes for various
genotypes. This paper aims to estimate the FLMs with heterogeneous coefficient functions
and automatically identify the underlying group structure.

Functional linear models (FLMs) have been widely used to describe the relationship
between functional predictors and a scalar response; see, for example, Cardot et al. (2003),
Giraldo et al. (2010), Wang et al. (2016), Lin et al. (2017) and Guan et al. (2020). However,
the standard approaches in the above FLMs do not explicitly considermulti-group functional
data with subgroups that may have different coefficient functions for one or more functional
predictors. In many applications, the available sample size in each subgroup greatly varies;
therefore, even if one could fit an FLM for each subgroup separately, the estimator of
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coefficient functions in an FLM based on a small number of subjects is often inefficient.
To address this challenge, instead of fitting FLMs separately to each subgroup, we propose
a novel fusion learning approach for a multi-group FLM, strategically combining similar
subgroups to enhance estimation efficiency while capturing G×E interaction by allowing
heterogeneous subgroup-specific coefficient functions. Several works have been conducted
to apply fusion learning to a suite of statistical models, including linear regression (Ma
and Huang 2017; Tang and Song 2016), longitudinal data analysis (Zhu and Qu 2018),
and confidence distribution (Shen et al. 2020). In this paper, we consider fusion learning
for functional data analysis. This approach is appealing for several reasons: (1) Fusion
learning combines information to improve estimation efficiency; (2) It preserves parameter
heterogeneity and can be used as a convenient tool to study G × E interaction; (3) By
merging similar subgroups, it reduces the estimation variance and enhances the prediction
performance.

Specifically, we utilize regularized likelihood methods to simultaneously identifying
grouping structure and estimating intercepts and coefficient functions. First, we can use
spline functions to approximate the coefficient functions and incorporate structural con-
straints on the coefficient functions through their spline coefficients; see Cardot et al. (2003),
Wang et al. (2011) and Xue et al. (2020). Second, we adopt pairwise fused penalty as the
regularization term to shrink similar estimators. In this paper, we consider the adaptive
lasso (Zou 2006) as the penalty function, which facilities efficient numerical optimization
using convex optimization methods. We use an Alternating DirectionMethod of Multipliers
(ADMM) algorithm in our optimization procedure.

In addition to considering a pairwise fused penalty, we implement a graph-constrained
adaptive lasso, which not only reduces the computation burden but also incorporates prior
information about the underlying group structure. The graph-constrained lasso has wide
applications in the literature. These includeworks on tree-based fused lasso in nonparametric
regression (Tibshirani et al. 2005) and spatial data analysis (Li and Sang 2019), K-nearest-
neighbors graphs in multivariate nonparametric regression (Madrid Padilla et al. 2020), and
genetic networks in variable selection for genomic studies (Li and Li 2010). In this paper,
we apply graph-constrained adaptive lasso in our model fitting, where each subgroup is
treated as a node, graph edges are determined by genetic similarity, and the edges determine
which pairwise differences in estimation are penalized. In addition, we propose a two-step
penalization procedure that improves estimation and prediction performance if the chosen
penalty graph is missing relevant edges.

The rest of the paper is structured as follows. Section 2 describes our model, then briefly
reviews univariate splines and introduces the penalized adaptive fused lasso estimation
method and the graph-constrained adaptive fused lasso estimator. Section 3 provides the
implementation details of the proposed methods. Section 4 provides the theoretical prop-
erties of the proposed estimators. In Section 5, we conduct simulation studies to evaluate
the finite-sample performance of the proposed method. Section 6 illustrates the newly pro-
posed method using two real datasets. Some concluding remarks are given in Section 7.
The proof of the asymptotic results and additional simulation studies are given in the online
Supplementary Material.
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2. METHODOLOGY

2.1. MULTI-GROUP FLMS

Consider the FLM (1) defined in Sect. 1. For � = 0, . . . , L , let G� = {G�,1, . . . ,G�,M�
}

be a partition of {1, . . . , K }, which represents the unknown underlying group structure. For
group G0,m , if k ∈ G0,m , then βk = βG

m , where βG
m is the common value for all the βk’s from

group G0,m . For group G�,m, � = 1, . . . , L , if k ∈ G�,m , then αk� = αG
m�, where αG

m� is the
common value for all the αk�’s from group G�,m .

As a simple example, suppose we have K = 3 genotypes and L = 1 time-indexed
functional predictor. One possible group structure would be given byG0 = {G0,1,G0,2} and
G1 = {G1,1,G1,2}, where G0,1 = {1, 2},G0,2 = {3},G1,1 = {1, 3}, and G1,2 = {2}. This
structure indicates that genotypes 1 and 2 have a common intercept that differs from the
intercept for genotype 3 (i.e., β1 = β2 �= β3) and that genotypes 1 and 3 share a functional
coefficient that differs from that of genotype 2 (i.e., α11 = α31 �= α21).

Our goal is to estimate intercepts and coefficient functions and simultaneously identify
distinct group patterns for intercepts and all coefficient functions. If, for a given time-indexed
covariates, multiple genotypes are in the same group, we can infer that their response to
the environmental factors measured by the covariate is the same (i.e., no G×E for those
genotypes and that environmental factor). We can also borrow or share information across
those genotypes to improve estimation of their shared coefficient function.

2.2. FLMS WITH ADAPTIVE FUSED LASSO PENALTY

In this project, we approximate the unknown coefficient functions via univariate polyno-
mial splines for their simplicity in computation and automatically identify the homogeneous
subgroups based on an adaptive pairwise fusion penalty.

We start with a brief review of univariate splines. Let υ be a partition of the interval
T = [a, b] with N interior knots, where υ = {a = υ0 < υ1 < · · · < υN < υN+1 = b}.
The polynomial splines of order � + 1 are polynomial functions with �-degree (or less)
on intervals [υ j , υ j+1), j = 0, . . . , N and

[
υN , υN+1

]
, and have � − 1 continuous deriva-

tives globally. Suppose that αk�’s can be approximated well by a spline function: αk�(t) ≈∑q
j=1 γk�jU j (t) = U(t)�γ k�,whereq = N+�+1,U(t) = {U1(t), . . . ,Uq(t)}� is a vector

of the B-spline basis functions with degree � and partition v, and γ k� = (
γk�1, . . . , γk�q

)�

is a vector of coefficients. Through spline approximation, the estimation of coefficient func-
tions has been simplified to obtain spline coefficients. Then, the subgroup-specific least
squares estimator (SSLS) is defined as

(β̂SSLS
k , γ̂ SSLS

k� ) = argmin
βk∈R

γ k�∈Rq ,1≤�≤L

nk∑

i=1

(
Yik − βk −

L∑

�=1

Z�
ik�γ k�

)2

+
L∑

�=1

λR� γ �
k�Pγ k�,

α̂SSLS
k� = U(t)�γ̂ SSLS

k� , (2)
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where Zik� = (Zik�1, . . . , Zik�q)
�, Zik�j = ∫

T Xik�(t)Uj (t)dt , P is a roughness penalty
matrix satisfying γ �

k�Pγ k� = ∫
T [∂2{U(t)�γ k�}/∂t2]2dt , and λR� is the roughness tuning

parameter. Note that when the number of subjects of each subgroup nk is small, the SSLS
estimator can be inefficient.

To combine subgroups with similar intercept terms and coefficient functions, we propose
a pairwise fusion penalized least squares approach where the penalty terms tend to shrink
the difference between subgroups. The penalty function is critical to the clustering results.
Similar to the variable selection situation where the L1 penalty gives biased estimates for
large coefficients, the estimates based on the lasso penalty tend to underestimate between-
group differences. This leads to biased estimates and unreliable clustering. Hence, penalties
like the adaptive lasso or SCAD (Fan and Li 2001), which can produce less biased estimates,
are more appealing.

In this paper, we focus on the adaptive lasso penalty as its convex property guarantees
the existence of a global optimizer and a faster convergence rate of the ADMM algorithm.
Then, the estimator of model (1) is given by minimizing the following regularized objective
function:

1

2

K∑

k=1

nk∑

i=1

(
Yik − βk −

L∑

�=1

Z�
ik�γ k�

)2

+
K∑

k=1

L∑

�=1

λR� γ �
k�Pγ k�

+
∑

1≤k<k′≤K

λF0ω0,kk′ |βk − βk′ | +
L∑

�=1

∑

1≤k<k′≤K

λF�ω�,kk′ ‖γ k� − γ k′�‖, (3)

where λR1 , . . . , λRL are the tuning parameters for roughness penalty, λF0, . . . , λ
F
L are the

tuning parameters for fused lasso, and ω�,kk′ , 0 ≤ � ≤ L are adaptive weights. The adaptive
penalty tends to shrink some of the pairs βk −βk′ and γ k� −γ k′� to zero. Combining similar
subgroups can be regarded as clustering analysis of the subgroups based on their response
patterns to changes in functional predictors. Based on this, we can arrange the subgroups
into clusters. We consider ω0,kk′ 	 |β̄k − β̄k′ |−τ ,w�,kk′ 	 ‖γ̄ k� − γ̄ k′�‖−τ , 1 ≤ � ≤ L , β̄k’s
and γ̄ k�’s are some consistent initial estimators of βk and γ k�, and τ is a tuning parameter.
In Section 3.3, we discuss how to obtain the initial estimators β̄k and γ̄ k�, the choice of τ .

Let β = (β1, . . . , βK )�, γ � = (γ �
1�, . . . , γ

�
K�)

�, γ = (γ �
1 , . . . , γ �

L )�, and ω0 =
(ω0,kk′ , 1 ≤ k, k′ ≤ K )�, and ω� = (ω�,kk′ , 1 ≤ k, k′ ≤ K )�. Next, let Y =
(Y�

1 , . . . ,Y�
K )�, where Yk = (Y1k,Y2k, . . . ,Ynkk)

�. Let Z0 and Z� be the block diago-
nal matrix with block matrices 1k and Zk�, 1 ≤ k ≤ K , 1 ≤ � ≤ L , respectively, where
1k is a vector of ones of length nk and Zk� = (Z1k�, . . . ,Znkk�)

�. Let h0,kk′ be a vector
of length K such that βk − βk′ = h�

0,kk′β. The vector h0,kk′ contains two nonzero entries,
1 at the kth element and −1 at the k′th element. Denote H0 = {h0,kk′ , k �= k′}� as a
(K − 1)K/2 × K matrix. Then, the objective function LP (β, γ ) is
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1

2

∥∥Y − Z0β −
L∑

�=1

Z�γ �

∥∥2 +
L∑

�=1

λR� γ �
� (IK ⊗ P)γ �

+ λF0‖H0β‖1,ω0 +
L∑

�=1

λF�‖(H0 ⊗ Iq)γ �‖q1,ω�
, (4)

where ‖ · ‖ is L2 norm of a vector, ‖ · ‖1,ω0 is L1 norm with adaptive weights ω0, and
‖ · ‖q1,ω�

be a mixed-norm with adaptive weights ω�. Let a vector a be partitioned into the
sub-vectors with length q and itsmixed-norm ‖a‖q1,ω�

is equal to the summation of L2 norms
of sub-vectors multiplied by the corresponding weights. Now, we denote the fusion function
linear model estimator by (β̂, γ̂ 1, . . . , γ̂ L), which is the minimizer of objective function
(4). Subsequently, the estimators of coefficient functions are α̂k�(t) = U(t)�γ̂ k�. Subgroups
with same intercepts or coefficients form one cluster. The estimated group structures are
denoted as Ĝ� = {Ĝ�,1 . . . , Ĝ�,M̂�

}, � = 0, . . . , L .

2.3. GRAPH-CONSTRAINED ADAPTIVE FUSED LASSO (FGAFL)

Graphs and networks are common ways to describe biological information (Li and Li
2010). People use graphs to representmany different biological processes, such as regulatory
networks, gene co-expression network and between-/within- species interaction networks.
A prior use of such graphs can be a useful supplement to empirical data. With regard to
the computation, in the objective function (3), we consider pairwise differences for each
subgroups. There are (L + 1)

(K
2

)
penalty terms, and the total number of terms increases

by an order of O(K 2), which imposes challenges in computation. In our application, the
original maize yields data contain thousands of hybrids, which generates on the order of 106

penalty terms. To make use of the prior information and tackle computational challenges,
we consider a graph-constrained adaptive fused lasso method.

Consider an undirected graph G with vertices {1, . . . , K } representing the K subgroups
in the data. Let e(G) be the set of edges in the graph G, where each edge connects two
vertices k and k′. For example, in our application, the graph represents genetic relationships
among genotypes, where vertices are the genotypes, and an edge between genotypes k
and k′ on the graph indicates genetic similarity. We incorporate such information through
graph-constrained fused lasso. When there is an edge connecting k and k′, we add the
corresponding penalty term. Otherwise, there is no penalty term between two subgroups.
The basic intuition is that subgroups with an edge connecting them are more likely to
be placed into the same cluster. In our application, this penalty implies that genetically
similar subgroups are encouraged to have similar, or even identical, parameter estimates.
The objective function in (3) can be generalized as

1

2

∥∥Y − Z0β −
L∑

�=1

Z�γ �

∥∥2 +
L∑

�=1

λR� γ �
� (IK ⊗ P)γ �

+ λF0‖HGβ‖1,ω0 +
L∑

�=1

λF�‖(HG ⊗ Iq )γ �‖q1,ω�
, (5)
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whereHG = {h0,kk′ , (k, k′) ∈ e(G)}� is a |e(G)|×K matrix constructed from the graphG.
In this paper, we call the minimizer of (5) the f unctionalGraph-constrained Adaptive Fused
Lasso (fGAFL) estimator. When the graph G is a minimal spanning tree, for example, there
are at most K − 1 edges, which reduces the number of penalty terms from O(K 2) to O(K )

and dramatically reduces the computation burden. When the graph G is a complete graph,
the objective function (5) is equivalent to the objective function (3). Thus, the estimator
proposed in Sect. 2.2 is a special case of the fGAFL estimators, and we call it the fCGAFL
estimators. The fGAFL and fCGAFL methods use the same approaches to solve objective
functions and select proper hyperparameters.

3. IMPLEMENTATION

3.1. TUNING PARAMETERS FOR FGAFL

This section states the algorithmweuse to obtain the fGAFLestimators. Selecting suitable
values of tuning parameters is important to good model fitting. By selecting appropriate
fusion tuning parameters λF� ’s, the proper number of clusters for each functional predictor
or intercept term can be determined. For fixed tuning parameters, we can identify pairs
of subgroups with the same coefficient functions/intercepts. Then, the number of distinct
coefficient functions/intercepts across subgroups determines the number of clusters. In this
paper, we employ the Bayesian information criterion (BIC) to select appropriate tuning
parameter values. Algorithm 1 in Sect. S.1.2 in the Supplementary Material introduces
the overall model fitting structure. Given a set of candidate tuning parameters, we use the
ADMM to fit the models and obtain the corresponding solution path. The selection criterion
is defined as BIC = log(RSS) + n−1 log(n)d̂ f , where RSS is the residual sum of squares,
and d̂ f is the degrees of freedom of the fitted model; see Sect. S.1.1 in the Supplementary
Materials for the estimation of the degrees of freedom.

3.2. ADMM ALGORITHM FOR FGAFL

Studies in Hallac et al. (2015) developed an algorithm based on ADMM to solve the
network lasso optimization problem in a distributed and scalable manner, which allows for
guaranteed global convergence even on large graphs. In this paper, we adopt the results in
Hallac et al. (2015) and use ADMM to solve (5). In the following, we describe the details of
the ADMM algorithm. First of all, we re-frame the objective function into a typical ADMM
problem. Minimizing objective function (5) is equivalent to minimizing

S(β, γ , η) = 1

2

∥∥Y − Z0β −
L∑

�=1

Z�γ �

∥∥2 +
L∑

�=1

λR� γ �
� ((IK ⊗ P)γ �

+ λF0‖η0‖1,ω0 +
L∑

�=1

λF�‖η�‖q1,ω�
,

ssubject to η0 = HGβ, η� = (HG ⊗ Iq)γ �, for � = 1, . . . , L , (6)
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where η�,kk′ is a q vector and η = (η�
0 , . . . , η�

L )� with η0 = {(η0,kk′, (k, k′) ∈ e(G)}� and
η� = {(η�

�,kk′ , (k, k′) ∈ e(G)}�, � = 1, . . . , L . By the augmented Lagrangian method, (6)
can be solved by minimizing

L(β, γ , η, ν) =S(β, γ , η) + ν�
0 (HGβ − η0) +

L∑

�=1

ν�
� {(HG ⊗ Iq)γ � − η�}

+ θ

2

{
‖HGβ − η0‖2 +

L∑

�=1

‖(HG ⊗ Iq)γ � − η�‖2
}

, (7)

where ν = (ν�
0 , ν�

1 , . . . , ν�
L )� with ν0 = {ν0,kk′ , (k, k′) ∈ e(G)}� and ν� =

{ν�
�,kk′ , (k, k′) ∈ e(G)}� and all the elements of ν are larger than zero. We take the update

step size θ = 1. See Section S.1.3 in the Supplementary Material for details of the ADMM
algorithm.

3.3. WEIGHTS AND PENALTY GRAPH G FOR FGAFL

The weights of adaptive lasso ω�,kk′ , � = 0, . . . , L are critical to the performance of our
proposed estimators. Denote initial estimators by β̄k and γ̄ k�. Then, the weights of adaptive
lasso areω0,kk′ = |β̄k − β̄k′ |−τ andω�,kk′ = ‖γ̄ �k − γ̄ �k′ ‖−τ , � = 1, . . . , L , where τ is some
constant larger than zero. We can use the BIC to choose the best τ . In Sect. 5.1, we compare
our proposed method based on different τ ’s with the value of τ selected by BIC. The results
show that the BIC-selected τ provides the best estimation and clustering performance. In
practice, there are several options for initial estimators: subgroup-specific least squares
(SSLS), K-means, and fused lasso. Section S.1.4 in the Supplementary Materials provide
details for these methods.

The choice of graphG is crucial to the performance of the fGAFLmethod.We first define
a distance matrix measuring the pairwise dissimilarity among subgroups. Then, graph G is
constructed by connecting subgroups to their k-nearest neighbors. The distance matrix can
be created using one of the following two methods. The first approach is to use prior knowl-
edge and gauge subgroup dissimilarity based on that knowledge. For example, we use the
kinship matrix, which reflects the genetic covariance structure, to measure the dissimilarity
between genotypes. The second approach is data-driven. We first obtain the subgroup-
specific estimators. The distance matrix is based on the differences among these estimators.
The second step of fGAFL–2 estimators (defined Sect. 3.4) is an example of a data-driven
approach, where the distance matrix is defined as the L2 norm of pairwise differences for
subgroup-specific estimates from the first step.

3.4. TWO-STEP GRAPH-CONSTRAINED ADAPTIVE FUSED LASSO (FGAFL–2)

A sparse graph G can improve the computation efficiency with a smaller number of
penalty terms. However, if the graph G does not perfectly match the underlying group
structure, we may obtain more clusters than the true number of groups. Table 1 in Sim-
ulation 2 shows that the average number of the estimated clusters based on the sparse
graph-constrained fused lasso is larger than the true number of underlying groups, espe-
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cially when we increase the noise. One possible reason is that some subgroups within the
same group are far away from each other in the graph G and therefore less likely to be
shrunk into one cluster. This phenomenon motivates us to consider a second step of model
fitting, in which we update penalty graphs in (5) with graphs G ′

�, � = 0, . . . , L . The new
penalty graphs are constructed by the k-nearest neighbors method based on the pairwise
distance matrix of the estimates for each subgroup from the first step. Note that k can be
selected via BIC criterion. The objective function is formulated as

1
2

∥∥Y − Z0β − ∑L
�=1 Z�γ �

∥∥2 + ∑L
�=1 λR� γ �

� ((IK ⊗ P)γ � + λF0‖HG ′
0
β‖1,ω0

+∑L
�=1 λF�‖(HG ′

�
⊗ Iq)γ �‖q1,ω�

. (8)

The minimizer of (8), which we call the fGAFL–2 estimator, is our final estimator.

4. ASYMPTOTICS

We first introduce some technical notation. Denote the total number of subjects n =∑K
k=1 nk , the minimum number of subjects within a subgroup as nmin = min1≤k≤K nk ,

the maximum number of subjects within a subgroup as nmax = max1≤k≤K nk , the min-
imum number of subjects within a cluster as nmin(G) = min{∑k∈G�,m

nk, 1 ≤ m ≤
M�, � = 0, . . . , L}, the maximum number of subjects within a cluster as nmax(G) =
max{∑k∈G�,m

nk, 1 ≤ m ≤ M�, � = 0, . . . , L}. Let Mmax = max0≤�≤L M� be
the maximum number of clusters. For a scalar function φ(t), we define its L2 norm
by ‖φ‖ = {∫T φ(t)2dt}1/2. The covariance operator �X is defined as �Xφ(t) =∫
T E{X(t)X(s)�}φ(s)ds, and the corresponding induced norm is ‖φ‖�X = 〈φ, �Xφ〉1/2.

4.1. ORACLE ESTIMATORS

In this section, we study theoretical properties of oracle estimators, in which we
assume that the underlying cluster structure is known. Denote the space of the ora-
cle estimators as MG0 = {β = (β1, . . . , βK )� ∈ RK : βk = βk′ , if k, k′ ∈
G0,m for some m}, and the spline approximation space of the oracle estimators as MG�

=
{α� = (α1�, . . . , αK�)

� ∈ UK : αk� = αk′�, if k, k′ ∈ G�,m for some m}. The oracle

estimators (β̂
o�

, α̂o�
1 , . . . , α̂o�

L )� can be obtained by solving:

minβ∈MG0 ,α�∈MG�

1
2

∑K
k=1

∑nk
i=1

{
Yik − βk − ∑L

�=1

∫
T Xik�(t)αk�(t)dt

}2

+∑K
k=1

∑L
�=1 λR

�

∫
T {α′′

k�(t)}2dt, (9)

where β = (β1, . . . , βK )�, and α�(t) = {α1�(t), . . . , αK�(t)}�. Section S.4.1 in the
Supplementary Material gives the solution of (9).

Below, we first introduce some technical assumptions. Let ν be a nonnegative integer, and
δ ∈ (0, 1] such that � = δ +ν ≥ 1. DefineH(�)(T ) as the space of functionsψ on T whose
ν-th derivative exists and satisfies a Lipschitz condition of order δ : ∣∣ψ(ν)(x) − ψ(ν)

(
x ′)∣∣ ≤

Cv

∣∣x − x ′∣∣δ , for x, x ′ ∈ T .
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(A1) For 1 ≤ k ≤ K , � = 1, . . . , L , the coefficient functions αk� ∈ H(�)(T ).

(A2) For � = 1, . . . , L , Xik�(t) is a continuous function on T and its L2 norm is finite,
that is ‖Xik�‖ < ∞, almost surely. For any �, �′ = 1, . . . , L , E|X�(t)X�′(s)|3 < ∞,
for any (s, t) ∈ T × T , and EX�(t) = 0, for t ∈ T .

(A3) For k = 1, . . . , K , i = 1, . . . , nk , (Yik,Xik, εik) are independently distributed and
Var(εik) ≤ C < ∞ holds.

(A4) For 1 ≤ k ≤ K , the subgroup sample size nk satisfies that c1nK−1 ≤ nk ≤ C1nK−1,
0 < c1 < C1 < ∞. For � = 0, 1, . . . , L , 1 ≤ m ≤ M�, the number of subgroups
within each cluster satisfies c2K ζ ≤ |G�,m | ≤ C2K ζ , for some 0 ≤ ζ < 1 and
0 < c2 < C2 < ∞.

(A5) As the total number of subjects n goes to infinity, the number of interior knots
N and the roughness tuning parameter satisfy, for � = 1, . . . , L , λR� N

4n−1 → 0,

λR� Kn−1M1/2
max → 0, (λR� N

7/2)−1n1/2max(G)M1/2
max → 0, and M1/(2�+2)

max N−1 → 0.

The above assumptions are mild conditions that can be satisfied in many practical situa-
tions. Assumptions (A1–A3) are common assumptions in the literature of functional linear
regression; see Assumptions (H.1–H.3) in Cardot et al. (2003). Assumption (A1) assumes
each functional coefficient αk� is a smooth function (Li et al. 2019; Yu et al. 2020). Assump-
tion (A2) imposes requirements on the functional predictors. For model identification, we
assume EX�(t) = 0, for t ∈ T . Assumption (A3) assumes all the subjects are independent,
and the error terms have variances bounded above by some finite constant. Assumption
(A4) ensures that subgroup sample sizes are similar and clusters have similar numbers of
subgroups. Assumption (A5) states the requirement on the number of interior knots and the
roughness tuning parameter to ensure the consistency property of the spline estimator.

In the following, denote d1,n = ∑L
�=1 M

1/2
max(N−(�+1) +λR� Kn−1)+ (λR� N

4K ζ )−1n1/2,

and d2,n = ∑L
�=1 M

1/2
max(N−(�+1) +λR� Kn−1)+ (λR� N

7/2K ζ )−1n1/2. Theorem 1 shows the
convergence rate of the oracle estimators. See Section S.4.3 in the Supplementary Material
for its detailed proof.

Theorem 1. UnderAssumptions (A1)–(A5), the oracle estimators satisfy sup1≤k≤K |β̂o
k−

βk | = OP (d1,n), and sup1≤k≤K ‖α̂o
k − αk‖�X = OP (d2,n).

Remark 1. The convergence rate of the oracle estimators depends on the number of
subjects within each cluster. If the number of clusters is finite, the convergence rate of the
oracle estimator is consistent with Theorem 3.1 in Cardot et al. (2003). Results in Theorem
1 present a convergence rate for general cases where all the model components are allowed
to have different cluster structures. When the cluster structures are the same for all the
components, one can apply the conclusion in Cardot et al. (2003) and the convergence rate of
functional-coefficient estimators of themth cluster is N−(�+1) +∑L

�=1 λR� (
∑

k∈Gm
nk)−1 +

∑L
�=1 (λR� N

7/2)−1(
∑

k∈Gm
nk)1/2.
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4.2. CONSISTENCY OF THE FCGAFL ESTIMATOR

Theorem 2 states the L2 convergence rate of the adaptive fused lasso estimator. The
proof details are given in Section S.4.4 in the SupplementaryMaterial. Denote the difference
between the initial estimators and the true values as δ0 = sup1≤k≤K |β̄k − βk | and δ� =
sup1≤k≤K ‖ᾱ�k − α�k‖, for � = 1, . . . , L . We introduce some technical assumptions.

(B1) The noise vector ε = (ε11, . . . , εn11, . . . , εnK K )� has sub-Gaussian tails such that
pr(a�ε > ‖a‖x) ≤ 2 exp(−c1x2) for any vector a and x > 0, where 0 < c1 < ∞.

(B2) The weights of adaptive lasso satisfy the conditions (i) δτ
0K

5/2−ζn−1/2d−1
1,n → 0,

and (ii) for 1 ≤ � ≤ L , δτ
� (λR� )−1N−3K 3/2−ζn1/2d−1

2,n → 0.

(B3) As the sample size n goes to infinity, the tuning parameters λF� , � = 0, . . . , L
satisfy the conditions (i) λF0K

1+ζn−1d−1
1,n → 0 and λF0δ

−τ
0 K ζ+1/2n−1/2 → ∞

(ii) for 1 ≤ � ≤ L , λF�K
2N−7/2d−1

2,n → 0 and λF�δ
−τ
� K ζ+1/2n−1/2N−1/2 → ∞.

Assumption (B1) is widely used in the high dimensional settings; see Condition (C2)
in Ma and Huang (2017). Assumption (B2) describes the requirements of the adaptive
weights in the adaptive lasso. Assumption (B3) illustrates the conditions of tuning parame-
ters. According to our theoretical studies, the convergence rate of the proposed estimators
depends on the subgroup sample size, weights in the adaptive lasso, and the number of
subgroups. If we use the SSLS estimators as the initial weights for the adaptive lasso and
τ = 1, by Theorem 1 and Assumption (B2), one can obtain that K 5/2−2ζn−1/2 → 0 and
K 2−2ζn−1/2

k → 0. To achieve the estimation consistency, the subgroup sample size should
increase as the number of subgroups or the number of clusters increases.

Theorem 2. Under Assumptions (A1) – (A5) and (B1) – (B3), the adaptive fused lasso
estimators satisfy sup1≤k≤K |β̂k−βk | = OP (d1,n) and sup1≤k≤K ‖α̂k−αk‖�X = OP (d2,n).

Define I0 = {(k, k′) : βk �= βk′ , k, k′ = 1, . . . , K } as the edge set for noniden-
tical intercepts and I� = {(k, k′) : αk� �= αk′�, k, k′ = 1, . . . , K }, 1 ≤ � ≤ L
as the edge set for nonidentical coefficient functions. Let b0 = min(k,k′)∈I0 |βk − βk′ |,
b1 = min(k,k′)∈∪1≤�≤LI�

‖αk − αk′ ‖�X .

Remark 2. Note that |β̂k − β̂k′ | ≥ |βk −βk′ |−|β̂k −βk − β̂k′ +βk′ |, and ‖α̂k − α̂k′ ‖�X ≥
‖αk − αk′ ‖�X − ‖α̂k − αk − α̂k′ + αk′ ‖�X . Therefore, if the conditions b0(d1,n)

−1 → ∞
and b1(d2,n)−1 → ∞ hold, we can discover the underlying group structure with probability
approaching one.

5. SIMULATION STUDY

5.1. SIMULATION STUDY 1

In this section, we conduct a Monte Carlo simulation study to examine the finite-
sample performance of the proposed methodology based on a complete graph. We con-
sider 40 subgroups and generate response variables from the following FLM: Yik =
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βk + ∫ 1
0 Xik(t)αk(t)dt + εik , i = 1, . . . , nk , k = 1, . . . , 40, where βk = 5, k = 1, . . . , 40,

αk(t) = cos(2π t), if k = 1, . . . , 20 and αk(t) = sin(2π t), if k = 21, . . . , 40. Therefore, the
underlying group structures areG0 = {G0,1}with G0,1 = {1, . . . , 40} andG1 = {G1,1,G1,2}
with G1,1 = {1, . . . , 20} and G1,2 = {21, . . . , 40}. We simulate the functional covariates
by Xik(t) = ∑9

s=1 ξiksφs(t), where φs(t) are orthonormal basis functions, and ξiks’s are
independently generated from N (0, 1) and truncated by [−3, 3]. Figure 1A shows true coef-
ficient functions. The noise term εik is generated from N (0, σ 2). We consider nk = 50, 100,
k = 1, . . . , 40, and the noise level σ = 0.1, 0.5 and 1.0.

We denote the proposed complete graph-constrained adaptive fused lasso estimator
described in Sect. 2.2 as fCGAFL, and we compare it with the oracle estimator (ORA-
CLE), the SSLS estimator (SSLS), and K-means estimator (K-Means), which are described
in Sect. 3.3. K-Means is implemented by R function kmeans with the number of clusters
selected via the Gap statistic using the R package cluster. We place knots on a grid of evenly
spaced sample quantiles based on the observed time points for spline smoothing. In this
simulation study, we use quadratic splines with four interior knots for all the estimators.

The fCGAFL estimator depends on the method used to obtain adaptive weights. By
convention, we use fCGAFL to denote the proposed graph-constrained adaptive fused lasso
with adaptiveweights given by the SSLS estimators.We also evaluate the performance of the
proposed fCGAFL method based on two other different adaptive weights: K-means and the
lasso; and the corresponding estimators are referred to as fCGAFL(K) and fCGAFL(L). For
the sakeof saving space,weonly report the simulation results of the fCGAFLestimators here,
and the simulation results of the fCGAFL(K) and fCGAFL(L) estimators are presented in
the SupplementaryMaterial. Tables 1 and 2 present the simulation results of fCGAFL based
on 100 Monte Carlo experiments. We find that fCGAFL, fCGAFL(K), and fCGAFL(L) all
have better performance than K-Means in most of the simulation scenarios. Compared with
fCGAFL and fCGAFL(K), fCGAFL(L) generates a more aggressive shrinkage among the
subgroups. When the sample size is 50 and σ is 1.0 (low signal-to-noise ratio), fCGAFL(L)
tends to shrink all the subgroups into one cluster, while fCGAFL and fCGAFL(K) give
an average cluster size of 1.45 and 1.82, respectively. However, the clustering fails for all
proposed methods in the low signal-to-noise ratio scenario.

Figures S.1 (A–B) in the Supplementary Material depict the solution path based on
fCGAFL of a typical simulation example. When we increase the tuning penalty parameters,
more subgroups can be shrunk. In Table 1, we report the clustering results based on K-
Means and fCGAFL. The clustering performance is evaluated by the following measures
(see Sect. S.2.1 in the Supplementary Material for the details of how these measures are
calculated): the adjusted rand index (aRI), and the Jaccard index (Jaccard), which should
be as close to one as possible. We also list the estimated number of groups (Size), which
should be close to the true number of clusters (one for intercept and two for coefficient
functions). We observe that the proposed fCGAFL outperforms K-Means. Table 2 presents
the root mean squared error (RMSE), the root mean integrated squared error (RMISE), and
the average computing time for K-Means and fCGAFL. The results of ORACLE serve as a
benchmark for comparison. When clustering results are reasonable, the RMSE and RMISE
for K-Means and fCGAFL are close to those of the ORACLE. Increasing the sample size
in each subgroup enhances the clustering performance and estimation performance, which
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supports our theoretical findings in Sect. 4. The clustering performance of fCGAFL(K) and
fCGAFL(L) is given in Table S.1 in the Supplementary Material, which reveals that both
fCGAFL(K) and fCGAFL(L) have better performance than K-Means and SSLS.

In addition, we study the performance of using BIC to choose the proper order τ in the
weights and the number of interior knots N . The simulation study is conductedwith subgroup
sample size nk = 100 at noise levels σ = 0.1, 0.5 and 1.0. According to our simulation
results, we observe that the BIC criterion can provide a reliable choice of τ and N . Figures
S.2 (A)–(B) in the Supplementary Material summarize the estimation performance. The
BIC-based method has better performance among the methods with different N ’s and τ ’s.
The value of aRI ranges from 0.997 to 1, and the average size ranges from 2.00 to 2.06.

To evaluate the performance of the fGAFL–2 method, in this simulation study, we take
the fCGAL estimator in step 1 and obtain graph G for step 2 based on the distance among
the estimated intercepts and coefficient functions for each subgroup. Tables 1 and 2 show
that the fGAFL–2 estimator has better clustering and estimation performance than fCGAL.
According to Table 2, the average computing time of fGAFL–2 is smaller than that of
fCGAL, indicating a sparse penalty graph can help improve the computational efficiency.

5.2. SIMULATION STUDY 2

In this simulation study, we investigate the performance of the proposed fGAFL and
fGAFL–2 methods describe in Sect. 3, in which a graph is used to provide some prior
information about the underlyinggroup structure.Wegenerate our dataset from the following
model with 165 different subgroups: Yik = βk +∫ 1

0 Xik(t)αk(t)dt+εik , i = 1, . . . , nk , k =
1, . . . , 165, where Xik(t) = ∑9

s=1 ξiksφs(t) and φs(t) are orthonormal basis functions, and
ξik’s are independently generated from N (0, 1) and truncated by [−3, 3]. The noise term εik

is generated from N (0, σ 2). The underlying group structures are denoted asG0 for intercepts
andG1 for coefficient functions. There are two clusters for interceptG0 = {G0,1,G0,2}, and
five clusters for coefficient functions G1 = {G1,1, . . . ,G1,5} with |G0,1| = 84, |G0,2| = 81,
and |G1,1| = 37, |G1,2| = 42, |G1,3| = 12, |G1,4| = 27, |G1,5| = 47. True intercepts
and coefficient functions are βG = (βG

1 , βG
2 ) = (5, 6) and αG

1 (t) = cos(2π t), αG
2 (t) =

sin(2π t), αG
3 (t) = 1.5(t − 0.5), αG

4 (t) = 1 − 2 exp(−6t), and αG
5 (t) = 2 exp(−6t) − 1.

Figure 1B presents plots of true coefficient functions.
Figure 1C, D shows the graph G used in this simulation. Each circle represents one

subgroup, and the gray lines connecting circles represent the edges in the graph G. We
use different colors to indicate different clusters in G0 and G1. To mimic real data in the
second application example, we consider nk = 30, 50, k = 1, . . . , 165, and noise level
σ = 0.1, 0.5 and 1.0.

In this simulation example, we compare the following methods: ORACLE, SSLS, K-
Means, fGAFL, and fGAFL–2. Figure 1E, G depicts the solution path based on fGAFL
of a typical simulation example. Tables 1 and 3 present the clustering performance, esti-
mation accuracy, and the average computing time based on 100 Monte Carlo experiments
using different methods. According to Table 1, fGAFL and fGAFL–2 have better clustering
performance than K-Means. Table 3 shows that our proposed methods have better estima-
tion accuracy than SSLS and K-Means. As expected, the estimation accuracy for all the



414 S. Yu et al.

Table 1. Clustering results in simulation studies

Simu nk σ Method β α

aRI Jaccard Size aRI Jaccard Size

1 50 0.1 K-Means 0.85 0.87 2.05 1.00 1.00 2.00
fCGAFL 1.00 1.00 1.00 1.00 1.00 2.00
fGAFL–2 1.00 1.00 1.00 1.00 1.00 2.00

0.5 K-Means 0.82 0.85 2.28 0.70 0.70 4.40
fCGAFL 1.00 1.00 1.00 0.81 0.81 5.74
fGAFL–2 1.00 1.00 1.00 0.99 0.99 2.02

1 K-Means 0.82 0.85 2.30 0.27 0.44 4.51
fCGAFL 1.00 1.00 1.00 0.02 0.49 1.45
fGAFL–2 1.00 1.00 1.00 0.16 0.42 11.73

100 0.1 K-Means 0.74 0.78 2.90 1.00 1.00 2.00
fCGAFL 1.00 1.00 1.00 1.00 1.00 2.00
fGAFL–2 1.00 1.00 1.00 1.00 1.00 2.00

0.5 K-Means 0.73 0.77 2.89 0.77 0.76 3.90
fCGAFL 1.00 1.00 1.00 1.00 1.00 2.04
fGAFL–2 1.00 1.00 1.00 1.00 1.00 2.00

1 K-Means 0.74 0.78 2.82 0.62 0.62 4.94
fCGAFL 1.00 1.00 1.00 0.85 0.84 5.10
fGAFL–2 1.00 1.00 1.00 1.00 1.00 2.03

2 30 0.1 K-Means 1.00 1.00 2.00 0.79 0.72 6.68
fGAFL 1.00 1.00 2.00 1.00 1.00 5.00
fGAFL–2 1.00 1.00 2.00 1.00 1.00 5.00

0.5 K-Means 1.00 1.00 2.00 0.81 0.74 6.48
fGAFL 1.00 1.00 2.02 1.00 1.00 5.29
fGAFL–2 1.00 1.00 2.00 1.00 1.00 5.00

1 K-Means 0.98 0.98 2.00 0.77 0.70 4.36
fGAFL 0.99 0.99 2.80 0.98 0.96 6.92
fGAFL–2 1.00 1.00 2.00 0.99 0.98 5.04

50 0.1 K-Means 1.00 1.00 2.00 0.76 0.69 6.89
fGAFL 1.00 1.00 2.00 1.00 1.00 5.00
fGAFL–2 1.00 1.00 2.00 1.00 1.00 5.00

0.5 K-Means 1.00 1.00 2.00 0.78 0.71 6.80
fGAFL 1.00 1.00 2.02 1.00 1.00 5.08
fGAFL–2 1.00 1.00 2.00 1.00 1.00 5.00

1 K-Means 1.00 1.00 2.00 0.83 0.78 4.81
fGAFL 1.00 1.00 2.20 0.99 0.99 5.69
fGAFL–2 1.00 1.00 2.00 1.00 1.00 5.00

Simu, simulation setting; aRI, average of the adjusted rand index; Jaccard, average of the Jaccard index; Size,
average of the estimated number of groups

methods improves as the sample size increases or the noise level decreases. We observe
the average computing time varies with sample size and noise level. The fGAFL–2 is more
time-consuming than the fGAFL with its two-step fitting procedure. As one can observe
from Figure 1 (G), there are clusters with similar estimated coefficient functions. To avoid
the influence of the graph G and combine the similar clusters, we implement the fGAFL–2.
Figure 1 (F) and (H) presents the solution path based on fGAFL–2. From Table 1 and 3, we
can tell fGAFL–2 can improve the estimation performance of fGAFL.

Comparedwith Simulation 1, sparse graph-constrained adaptive lasso allows us to handle
datasets with a large number of subgroups and improves the clustering and estimation
accuracy.
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Table 2. RMISEs (RMSEs) of the coefficient functions (intercepts) in Simulation 1

nk σ Method RMSE (×10) RMISE (×10) Time

β α1 α2

50 0.1 ORACLE 0.00 0.15 0.19 1.28
SSLS 0.15 4.76 4.71 4.61
K-Means 0.02 0.15 0.17 2.56
fCGAFL 0.00 0.15 0.18 481.30
fGAFL–2 0.00 0.15 0.18 52.76

0.5 ORACLE 0.01 0.47 0.49 1.25
SSLS 0.76 4.83 4.79 4.57
K-Means 0.13 0.88 0.95 2.52
fCGAFL 0.02 0.92 0.92 135.80
fGAFL–2 0.01 0.48 0.45 70.29

1.0 ORACLE 0.01 0.91 0.93 1.47
SSLS 1.51 5.05 5.00 5.61
K-Means 0.29 3.68 3.64 3.11
fCGAFL 0.09 4.93 4.99 168.85
fGAFL–2 0.08 4.23 4.71 17.55

100 0.1 ORACLE 0.00 0.13 0.17 2.70
SSLS 0.10 4.76 4.71 7.97
K-Means 0.03 0.13 0.16 4.26
fCGAFL 0.00 0.13 0.16 206.11
fGAFL–2 0.00 0.13 0.16 10.27

0.5 ORACLE 0.00 0.37 0.38 2.44
SSLS 0.50 4.79 4.74 7.19
K-Means 0.13 0.61 0.61 3.85
fCGAFL 0.01 0.66 0.66 101.17
fGAFL–2 0.00 0.35 0.35 64.36

1.0 ORACLE 0.01 0.69 0.71 2.76
SSLS 1.00 4.90 4.84 8.17
K-Means 0.26 1.59 1.58 4.37
fCGAFL 0.02 1.63 1.61 185.82
fGAFL–2 0.01 0.64 0.68 29.39

RMSE, average of the root mean squared error of intercept terms; RMISE, average of the root mean integrated
squared error of coefficient functions. Time, the average computing time (in seconds)

6. APPLICATION

Characterization of a plant variety’s response to the environment is a key challenge for
plant breeders (Nicotra et al. 2010). Traits, such as flowering time and grain yield, are the
primary targets of breeding efforts but are responsive to environmental conditions. These
conditions are integrated across the growing season, and in certain developmental periods,
plants are often more sensitive to some environmental factors than others (Van de Pol et al.
2016). To make breeding decisions, plant breeders require flexible methods (1) to estimate
the responses of different varieties to the environment to identify target response patterns
and (2) to distinguish the responses of varieties from each other to choose the parents of
the next generation. The proposed multi-FLM is useful to study the above problems. By
combining the genotypeswith similar response patterns, we obtainmore efficient estimators.
Meanwhile, the proposedmulti-FLMautomatically identifies the different response patterns,
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Figure 1. Plot of the true coefficient functions in Simulation 1 (A) and Simulation 2 (B). The penalty groupG used
in Simulation 2 for the intercept term (C), and the coefficient function (D). Each circle represents one subgroup,
and gray lines connecting circles represent the edges in the graph G, and different colors indicate the true group
structure. Solution paths of fGAFL (E) and (G) and fGAFL–2 (F) and (H) in Simulation 2 with nk = 50 and
σ = 1.0. (E) and (F) are solution paths for intercept terms for a given λF1 and λR. (G) and (H) are solution paths for

coefficient functions for a given λF0 and λR. The color for each curve indicates its true group. The selected tuning

parameters are λF0 = 0.32 (E), λF0 = 3.16 (F), λF1 = 100 (G), and λF1 = 100 (H) .

which serves as a tool to study genotype-by-environmental (G×E) effects. In the following,
we consider two plant datasets in plant science to illustrate the proposed method.

6.1. EXAMPLE 1: SORGHUM FLOWERING TIME

We first consider a study focusing on the G×E effects on flowering time, which has a
significant bearing on evolution and adaptation of plants to different environments (Li et al.
2018). The dataset contains 206 recombinant inbred lines (RILs) from two parental inbreds,
evaluated in nine environments with two replications in each environment. Our study uses
flowering time in Growing Degree Days (GDD) as our response variable. Photothermal time
(PT) within a growth period is a major environmental determinant for flowering time and
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Table 3. RMISEs (RMSEs) of the coefficient functions (intercepts) in Simulation 2

nk σ Method RMSE (×10) RMISE (×10) Time

β1 β2 α1 α2 α3 α4 α5

30 0.1 ORACLE 0.01 0.01 0.15 0.18 0.17 0.13 0.10 2.93
SSLS 0.21 0.2 4.76 4.73 2.93 5.51 5.51 7.39
K-Means 0.02 0.03 0.41 0.58 2.17 1.21 0.33 11.56
fGAFL 0.01 0.01 0.15 0.16 0.16 0.14 0.12 741.38
fGAFL–2 0.01 0.01 0.15 0.16 0.17 0.13 0.11 882.81

0.5 ORACLE 0.06 0.06 0.47 0.44 0.74 0.53 0.42 2.97
SSLS 0.98 0.98 4.88 4.91 3.02 5.58 5.58 7.34
K-Means 0.06 0.07 0.84 0.98 2.74 1.44 0.85 11.06
fGAFL 0.06 0.07 0.54 0.54 0.68 0.66 0.7 416.16
fGAFL–2 0.06 0.06 0.52 0.46 0.62 0.54 0.46 650.55

1.0 ORACLE 0.11 0.12 0.83 0.79 1.37 0.96 0.73 2.96
SSLS 1.92 1.95 5.36 5.43 3.16 5.73 5.74 7.29
K-Means 0.54 0.55 2.44 2.87 5.18 2.44 2.45 11.37
fGAFL 0.29 0.27 1.85 1.64 2.14 1.49 1.93 334.34
fGAFL–2 0.17 0.15 1.15 1.11 1.21 0.95 0.92 463.46

50 0.1 ORACLE 0.01 0.01 0.13 0.17 0.13 0.1 0.09 5.79
SSLS 0.15 0.15 4.76 4.72 2.93 5.50 5.50 11.28
K-Means 0.01 0.02 0.3 0.66 2.54 1.31 0.49 18.59
fGAFL 0.01 0.01 0.13 0.15 0.13 0.10 0.10 656.68
fGAFL–2 0.01 0.01 0.13 0.16 0.13 0.10 0.09 960.09

0.5 ORACLE 0.04 0.04 0.38 0.34 0.59 0.39 0.34 5.72
SSLS 0.73 0.73 4.83 4.83 2.97 5.56 5.56 10.99
K-Means 0.04 0.05 0.59 0.93 2.54 1.31 0.93 18.21
fGAFL 0.04 0.05 0.4 0.39 0.52 0.47 0.54 402.41
fGAFL–2 0.04 0.04 0.4 0.35 0.52 0.39 0.37 765.65

1.0 ORACLE 0.08 0.09 0.68 0.63 1.11 0.72 0.61 5.75
SSLS 1.45 1.45 5.14 5.23 3.05 5.67 5.68 10.95
K-Means 0.14 0.13 1.24 1.64 4.07 2.02 1.59 18.2
fGAFL 0.14 0.14 1.05 1.07 1.25 1.01 1.32 271.39
fGAFL–2 0.09 0.11 0.80 0.77 0.91 0.72 0.71 499.28

RMSE, average of the root mean squared error of intercept terms; RMISE, average of the root mean integrated
squared error of coefficient functions; Time, the average computing time (in seconds)

can be used as an environmental index. Figure S.3A in the Supplementary Material shows
the observed daily PTwithin each environmental setting.We are interested in (1) identifying
how daily PT influences flowering time and (2) detecting whether the influence of PT varies
across different RILs.

For each RIL, we first conduct a simple linear regression of flowering time on the average
of daily photothermal time from 18 to 43 days after planting. Figure S.3B in the Supple-
mentary Materials presents the histogram of estimated slopes. There are two peaks in the
histogram indicating for some of the RILs, the increase in PT leads to a larger increase in
flowering time.

Motivated by our findings in Figure S.3B, we consider the following multi-group FLM:

Yik = βk +
∫

T
PTik(t)αk(t)dt + εik, (10)
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where Yik is the logarithm of flowering time for plot i and RIL k, T is from one to eighty
days after planting, and PTik(t) is the measurements of photothermal time at time t for
plot i , RIL k. We use our proposed method to fit the model and consider quadratic splines
with one interior knot. As an example of how prior information can be incorporated in our
method, we consider a ten-nearest neighbor graph, based on genetic similarity at loci Ma6
and FT among RILs, as the graph G in our fused lasso penalty function. More specifically,
we use 40 single nucleotide polymorphisms (SNPs) located near loci Ma6 and FT studied
by Li et al. (2018), to compute a kinship matrix using the method of VanRaden (2008). The
kinship matrix describes the genetic covariance structure among RILs with respect to these
SNPs. Each RIL was connected with an edge in the graph to the ten most genetically similar
RILs based on kinship matrix entries. We use BIC to select the number of neighbors in the
penalty graph. See Figure 2A for plot of the graph G.

Figure S.4A in the SupplementaryMaterial shows the fGAFL estimated clusters for coef-
ficient functions, in which we use different colors to represent different clusters. Figure S.4B
in the Supplementary Material presents the fGAFL estimate of the coefficient functions of
the clusters containing more than one subgroup. Note that there are some clusters whose
subgroups are sparsely connected in the graph G while with similar estimates. To combine
RILs with similar estimates, we construct G ′

0 and G ′
1 based on the similarity among the

estimated intercepts and coefficient functions, respectively, and then, fit model (10) with
the graph G ′

0 and G ′
1. Through the second step of model fitting, we shrink the coefficient

functions of RILs into two major clusters. According to Figure 2 (D), the values of both
coefficient functions are positive from 1 to 60 days after planting. The value of the coeffi-
cient function in the blue cluster (61 RILs) is higher than that of the red cluster (145 RILs),
indicating a stronger association between the flowering time and PT for the RILs in blue
cluster. Both coefficient functions reach their peak around 30 days after planting. Figure
2E, F presents the estimated coefficient functions for two RILs with 95% pointwise confi-
dence intervals. We use the wild bootstrap to construct pointwise intervals; see Sect. S.3.3
in the Supplementary Material for detailed descriptions. Table S.3 in the Supplementary
Material shows the number of RILs in each intercept cluster using fGAFL and fGAFL–2.
To compare differences between two clusters, for each SNP and cluster, we calculate the
relative frequency of the SNP genotype coded as zero. Figure 2C displays a boxplot of the
genotype relative frequency differences between the two identified clusters, based on 1,462
SNPs. There are 16 SNPs with differences larger than 0.6, indicating a discrepancy between
two clusters. See Sect. S.3.1 in the Supplementary Material for a list of these 16 SNPs. One
thing to note is that all 16 SNPs are located at the same chromosome.

Finally, we use leave-one-field-out cross-validation to evaluate the prediction perfor-
mance. Table 4 lists the mean squared prediction error for each field and total average.
Figure S.5 in the Supplementary Materials presents the boxplots of the absolute value of
prediction errors. Both fGAFL and fGAFL–2 outperform SSLS and K-Means. By creating
graphs based on the fGAFL estimate, fGAFL–2 improves the prediction performance of
fGAFL. With only 18 subjects per subgroup, SSLS has bad predictive performance. The
fGAFL and fGAFL–2, which fuse the coefficient functions from a same group into one
function, reduce the large variance of SSLS estimators.
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Figure 2. Plots of the graph G used in fGAFL in Application Example 1 A and Application Example 2 B. C
boxplot of genotype relative frequency differences between clusters for 1,462 SNPs. D two identified clusters
based on fGAFL–2, and the 95% pointwise confidence intervals of coefficient functions for RIL5 E and RIL10 F.
The estimated coefficient functions with 95% pointwise confidence intervals in Application Example 2: G GDD,
H CDD, I EDD, J PPT, K SR, and L VPD. The dashed blue horizontal and vertical lines represent the zero line
and the anthesis date .



420 S. Yu et al.

Table 4. The mean squared prediction error based on leave-one-field-out cross-validation

Field IA13 IA14 KS11 KS12 PR11
(Sample size) (396) (410) (412) (404) (406)

SSLS 0.055 0.764 1.568 2.308 1.011
K-Means 0.310 0.114 1.054 0.781 0.135
fGAFL 0.189 0.089 0.516 0.197 0.260
fGAFL–2 0.059 0.051 0.405 0.250 0.145

Field PR12 PR14S IA15 IA16 Average (SD)
(Sample size) (412) (398) (409) (407)

SSLS 1.235 0.305 0.131 0.080 0.829 (0.779)
K-Means 0.085 0.639 0.227 0.289 0.404 (0.341)
fGAFL 0.189 0.214 0.142 0.119 0.213 (0.125)
fGAFL–2 0.111 0.199 0.080 0.078 0.153 (0.116)

6.2. EXAMPLE 2: HYBRID MAIZE GRAIN YIELD

In this application example, we illustrate our proposed method for a multi-dimensional
functional linearmodel.We consider a dataset of hybridmaize grain yield from theGenomes
to Fields consortium (AlKhalifah et al. 2018; McFarland et al. 2020). These hybrids were
grown in 44 environments (combinations of location and year) where data on daily temper-
atures, rainfall, and incident solar radiation were collected by in-field weather stations.

We use a subset of these hybrids that were grown in at least 20 environments, yielding
a final dataset of 165 hybrids with 5448 field plots total. We consider daily growing degree
days (GDD), cold degree days (CDD; time exposed to temperatures below 10 ◦C), extreme
degree days (EDD; time exposed to temperatures above 30 ◦C), total daily precipitation
(PPT), incident solar radiation (SR) and vapor pressure deficit (VPD) as the environmental
variable of interest due to their effects on maize grain yield (Tollenaar et al. 2017). We
consider the following multi-group FLM:

Yik = βk +
∫

T
GDDik(t)α1k(t)dt +

∫

T
CDDik(t)α2k(t)dt +

∫

T
EDDik(t)α3k(t)dt

+
∫

T
PPTik(t)α4k(t)dt +

∫

T
SRik(t)α5k(t)dt +

∫

T
VPDik(t)α6k(t)dt + εik,

where Yik is yield for plot i and hybrid k, T = [0, 2] is the range of relative GDD time
from zero to two, and GDDik(t),CDDik(t),EDDik(t),PPTik(t),SRik(t) and VPDik(t) are
the measurements of the environmental variables at the relative GDD time t with respect to
plot i for hybrid k. Section S.3.2 in the Supplementary Material shows the construction of
relative GDD time index.

Similar to the flowering-time example, we consider a ten-nearest neighbor graph, based
on genetic similarity among hybrids, as the graph G in our fused lasso penalty function. See
Figure 2 (B) for the plot of the graph G. We consider natural cubic splines with nine interior
knots (selected by BIC criterion). One cluster is identified for each model component,
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indicating that all the genotypes have similar response patterns to environmental changes.
Figure 2 G–L shows the estimated coefficient functions with 95% pointwise confidence
intervals. Sect. S.3.2 in the Supplementary Materials discusses the estimated coefficient
curves.

7. DISCUSSION

In plant breeding studies, understanding heterogeneity among subgroups is essential to
study the G × E interaction. This article proposes a fusion learning approach for multi-
group functional linear regression, which simultaneously estimates FLMs and identifies the
underlying group structure. By detecting homogeneous groups and merging them together,
we can build a parsimonious model with great explanatory power, estimation efficiency and
better interpretation. To reduce the computation burden and include prior information, we
propose a graph-constrained adaptive fused lasso (fGAFL) estimator, in which the penalty
graph can be constructed by measuring similarities among subgroups based on genetic
information. In addition, a two-stepmethod (fGAFL–2) is proposed to improve performance
when a penalty graph lacks relevant edges. The merits of the proposed method have been
illustrated by simulation studies and application examples.

Many issues still merit further research. The basic setup of FLMs can be extended to
more flexible parametric and semiparametric models. For instance, we may develop a func-
tional single index model. It is also feasible to extend our proposed methodology to many
other types of functional data, such as next-generation functional data including 2D or 3D
neuroimaging data.
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2203207,National Institute of Food andAgricultureHatch project IOW03617, IowaStateUniversity Plant Sciences
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