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A Gaussian Variational Inference Approach to
Motion Planning

Hongzhe Yu

Abstract—We propose a Gaussian variational inference frame-
work for the motion planning problem. In this framework, motion
planning is formulated as an optimization over the distribution of
the trajectories to approximate the desired trajectory distribution
by a tractable Gaussian distribution. Equivalently, the proposed
framework can be viewed as a standard motion planning with an
entropy regularization. Thus, the solution obtained is a transition
from an optimal deterministic solution to a stochastic one, and
the proposed framework can recover the deterministic solution by
controlling the level of stochasticity. To solve this optimization, we
adopt the natural gradient descent scheme. The sparsity structure
of the proposed formulation induced by factorized objective func-
tions is further leveraged to improve the scalability of the algorithm.
We evaluate our method on several robot systems in simulated envi-
ronments, and show that it achieves collision avoidance with smooth
trajectories, and meanwhile brings robustness to the deterministic
baseline results, especially in challenging environments and tasks.

Index Terms—Motion and path planning, planning under
uncertainty, optimization and optimal control.

I. INTRODUCTION

OTION planning [1] is a fundamental problem in
M robotics where the goal is to obtain a sequence of states
in the space such that it connects a start and goal state while
remaining feasible along the plan. When considering motion
planning problems, ubiquitous uncertainties arise from imper-
fect system modeling and measurement noise. Robust motion
planning under uncertainties has attracted attentions in the com-
munity. Guaranteed robustness was achieved by control and
verification design [2], [3] where uncertainties are implicit in the
formulation. Stochasticity can also be explicitly brought into the
formulation [4]. Planning in belief space [5], [6] models states
and measurements as distributions named ‘belief’, and planning
and control are conducted in these spaces over distributions.
Explicitly encoding stochasticity in motion planning has been
shown [4] helpful in overcoming locally minimum determin-
istic solution for non-convex and multimodal [7] optimization
problem.
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In this work we propose a Gaussian variational inference
(GVI) approach to solve motion planning as a probability in-
ference. [8] solved this inference problem using maximum a
priori (MAP) estimation. Variational inference (VI) [9] used in
this paper, on the other hand, approaches inference problems by
solving an optimization within a proposed distribution family.
Operating on distributions, VI naturally accounts for stochas-
ticity in an explicit way. A natural gradient descent scheme is
used to solve the optimization. The linear Gaussian process (GP)
representation of the trajectory used in this paper has gained its
popularity in planning [8] and estimation [10] since it encodes
smoothness and enjoys a sparsity pattern. Our framework takes
into account uncertainties on top of Gaussian Process Motion
Planning (GPMP2) [8]. We show that the proposed method
is equivalently motion planning with entropy regularization.
Entropy maximization in motion planning and reinforcement
learning have been studied in [11], [12] and was shown to
increase system’s robustness to disturbances [ 13]. Different from
the existing works, our proposed method (1) uses a Newton-style
optimization scheme which does not need a sampling scheme or
learning process, and (2) is scalable by leveraging the sparsity.
(3) The proposed method is shown to be an interpolation from
a deterministic solution to a stochastic one. It recovers the
deterministic solution by controlling the uncertainty level. (4)
We show by experiment that the entropy term encodes the level
of risk, which then serves as a metric measuring robustness in
decision-making among multiple candidate plans. The optimiza-
tion scheme for GVI in this paper was first proposed in [14], and
has been applied in the robot estimation problems in [15], where
the factorized property of the problem was leveraged. To the best
knowledge of the authors this is the first work that GVI is used
in robot motion planning.

This paper is organized as follows. Section II discusses the
related works. In Section III we formulate the motion planning
problem as variational inference. The method to solve this
inference problem is presented in Section IV. Our framework
is illustrated in Section V through numerical experiments.

II. RELATED WORK

The study of motion planning has a long history in robotics
community. Sampling based methods such as Rapidly-exploring
random tree (RRT) and Probabilistic road map (PRM) [16]
[17] provide with optimal yet course paths as graphs or trees
connecting start and goal configurations. However they do not
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consider dynamical feasibility of the system in their formu-
lations. Trajectory optimization [18], [19], [20] uses optimal
control framework to generate trajectories by formulating the
problem as a constrained optimization. Direct or collocation
methods [4], [8], [18], [21] operate in control and trajectory
space while indirect methods [22] optimize only on control
inputs, both of which have gained successes in obtaining locally
optimal solutions.

The most relevant works to our work is [8] and [15]. In [8]
the authors formulated planning as a inference problem and
solved it using MAP. [15] proposed a sparse Gaussian variational
inference method to solve inference problem in robot estima-
tion. Variational inference has been used in motion plannings
also in [7], [23]. We leverage the connection between motion
planning and estimation problems, and we also find interest-
ing connections between the GPMP formulation [8], stochastic
control problem, and variational inference problem, as discussed
in [24], [25].

Robustness to uncertainties is also one of the main motivations
of this formulation. Robust motion planning seeks robustness
against environment uncertainties. In [2], [3] the authors com-
pute verifiably safe reachable sets using Lyapunov analysis,
where the robustness is measured by the volume of the reachable
sets around a nominal trajectory. In this work robustness is
encoded in the system entropy which is also proportional to
the volume of the covariance matrix in Gaussian case.

III. PROBLEM FORMULATION

In this section we formulate motion planning as a variational
inference problem. Our formulation generalizes the Gaussian
process motion planning [21] that casts motion planning as a
MAP task.

A. Gaussian Process Motion Planning

Trajectory optimization formulates the motion planning prob-
lem as an optimization of the form

min F(x,u
x(-),u(-) ( )

S.t. gz (X,
Hi (X,

u) <0,i=1,....,m
w=0i=1,...,n (1)

where F is the cost function and G;’s, H;’s are constraints often
related to system dynamics, collision avoidance, or actuation
limits. The optimization is over the trajectory x(-) and the control
input u(+) jointly.

The GPMP framework, alternatively, formulates the motion
planning as a MAP problem

x* = arg max p(x|z)
= arg max p(z[x)p(x), &)
X

where the prior distribution p(x) promotes smoothness of the
solution, and the likelihood p(z|x) of some desired behavior
encoded by event z enforces collision avoidance. In particular,
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the prior distribution is associated with a linear Gaussian process
x(t) = A(t)x(t) + F(t)w(t) + b(t), 3)

where w denotes standard white noise with covariance Q...

After discretization over time steps t = [tg,...,tn], the
trajectory becomes a vector x = [z, ...,zx|’ and the prior
becomes a Gaussian distribution N'(p, K) where the inverse
covariance matrix K=' = BT Q!B has an interesting sparse
structure [10] with

I
—®(t1,t0) I
B=
—®(tn,ty1) 1

and

Q' =diag(K;', Qply -, Qv KRV 3)

Here @ is the state transition matrix associated
with A(t), Q is a Grammian defined as Q41 =
JIH ®(tigr, 8)F(s)QF(s) " ®(ti11,5) ds, and Ko, Ky

are desired covariances of the start and goal states.

We note that the likelihood probability p(z|x) describes in
general the probability of the feasibility of the current trajectory
candidate in (1). In this work we consider collision avoidance
likelihood

p(z%) o exp(~ ()13, ) ®)

where |h(x )Hz: 1 is a penalty for the collision constraints.

Clearly, the MAP problem (2) is equivalent to minimizing the
cost function

1
Sl = pllEes + I @

where || - ||x-1 and || - Hz: 1 denote weighted 2-norm.
The prior in (2) can be decomposed into factors

p(x)  fo(zo) fn(2N) ]:Ijol fop(@isxita) ®)
with

1
foGao) = exp (g o = ol ).
1
Itan) = exp (~gllen — vl ).
fap (@i, wig1) =

exp(—| B(ti40,13) (s — i)

=l )
and the collision cost (6) can also be factorized into

1
ex (=5 ImGolE ) =

N obs
), O

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2023 at 04:05:39 UTC from IEEE Xplore. Restrictions apply.



2520

where each factor

N 1
)t (~3helE, ) (0

represents the collision cost evaluated at corresponding support
states. The collision checking needs to be carried out at a
very dense set of points along the trajectory. Gaussian process
representation has the advantage that the intermediate collision-
checking between the support states can be done through inter-
polation [8], which keeps the sparsity of the representation.

The assumptions in (8) and (9) together with the GP interpola-
tion bring a sparse parameterization to our problem formulation
and is greatly beneficial to the scalability of the proposed algo-
rithm.

Finally, we remark that the MAP formulation (2) can be
viewed as a discretization of the following trajectory optimiza-
tion

tN 1
i ()3 h(x(t)||%- | dt
x(m)ym.) /to [2IIU()|Q61+|| (x( ))qugs

uf

1 1
+5lx(t0) —pollg;r + lIxtn) —pnlky (2

x(t) = A(t)x(t) + F(t)u(t) + b(t). (11b)
To see this, note that, if we only evaluate h(x) at discretized
time t = [tg,...,txy], then for a given x = [xg,...,2n]7, the
optimization over u(-) is a linear quadratic control problem for
each time interval (¢;, ¢; 1) and the corresponding closed-form
minimum is exactly the exponent of f} .

B. Gaussian Variational Inference for Motion Planing

Though (2) is a probabilistic inference problem, the solution
obtained in GPMP is still deterministic in the sense that it
searches for a trajectory which maximizes the posterior prob-
ability. To better capture the uncertainties and risk presented in
motion planning [11], we instead propose to approximate the full
posterior distribution p(x|z) in (2). In particular, we propose the
Gaussian variational inference approach to motion planning that
seeks to minimize the distance between a Gaussian distribution
and the true posterior, measured by KL divergence. It reads

*

¢" = argmin KL[g(x)||p(x|z)]
qeQ

= arg Igin E,[log q(x) — log p(z|x) — log p(x)]
qe

= arg max Eqlog p(z|x) — KL[g(x)|[p(x)] (12)
qe

where Q denotes the Gaussian distribution family. The expres-
sion E,log p(z|x) — KL[¢(x)||p(x)] is known as the evidence
lower bound (ELBO). The optimal distribution ¢* encourages
putting mass on the likelihood p(z|x) while minimizing its
distance from the prior p(x). It shows the trade-off between
the smoothness and the collision avoidance.
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An alternative form of (12) is

¢ =arg max E,[log p(x|z) — log q(x)]
qe

= arg max E,[log p(x|z)] + H(q) (13)
qeQ

where H(q) = —E,[log(q)] is the entropy of the distribution.
The objective can thus be interpreted as Gaussian process motion
planning with an entropy regularization term.

To further balance the trade-off between the original prior-
collision cost and the entropy cost, a temperature 7' can be
introduced, pointing to

¢* = argmax E,[log p(x|z)| + TH(q)
qeQ

= arg max %Eq [log p(x|z)] + H(q). (14)

qeQ

When the temperature is low (small 7"), the optimization puts
more weight on maintaining smoothness while avoiding ob-
stacles. When the temperature is high, more weights are put
on the system entropy cost to find solutions which have larger
covariances so that they can tolerate larger uncertainties.

Remark: Formulation (14) shows an interpolation from the
deterministic smooth-collision-avoiding objective (2) to an en-
tropy regularized robust motion planning by changing the tem-
perature T'. To recover the deterministic solutions, as 7" ap-
proaches to 0, it can be shown [26] that obtained optimal
value will tend to the minimal value for the original objective
(2). Indeed, when 7" — 0, the objective in (14) approaches
E,[log p(x|z)] with respect to ¢ ~ N (p, ). In this case, when
3 shrinks to 0, the objective function E,[log p(x|z)] tends to
log p(p|z).

Finally, we note that the variational inference formulation (14)
can be viewed as a time discretization of the following stochastic
control problem

tNl
in E a3 1 + [h(x()|E . | dt
i Bl [ [0+ Il |

1 1
# 3llxta) sl + 3lx(tw) vl | 150

x(t) = A(t)x(t)+F(t)(u(t) + Tw(t))+b(t).  (15b)

The proof is based on an equivalence relation between the
quadratic control energy and the KL divergence KL(q||p) [24].
The only difference between (15) and (11) is that the dynamics
in (15) is disturbed by white noise T'w (). Thus, as T' goes to
zero, (15) should converge to (11).

IV. OPTIMIZATION SCHEME

GVI formulates the motion planing problem as an optimiza-
tion over Gaussian distributions ¢(x) ~ N (p, X).

Denote the concatenation of the mean and covariance in vector
formas a £ (p, vec(X71)). The inference objective then reads

V(g) = KL[g(x)[[p(x|z)] = Eq[log ¢(x) — log p(x|z)]. (16)
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To solve this optimization, we utilize the natural gradient
descent scheme. The factorized objective assumption which
leads to a sparsity pattern of the problem is also leveraged to
improve the scalability of our algorithm.

A. Natural Gradient Descent

For notation simplification, we denote 1)(x) = — log p(x|z).
The derivatives w.r.t. ;# and X' can be derived [14] explicitly
9V (q) _ g1 _
S = 2l — )] (17)
9V (q) _ -1 T -1_y-1
Srnt = 2l ) e pe()] 8 -2 Bl ()
(17b)
ov 1 1 1
0D LB 5Bl ) x ) V()] + 55

(17¢)

All expectations are taken w.r.t. ¢. Comparing (17b) and (17¢)
we obtain

*V(g) _ oV (q)

ououT ox!

Having the relations in (17) and (18), for Gaussian distribu-

tion ¢ ~ N'(w, X), a natural gradient descent update step w.r.t.
objective function V' can be calculated straightforward [27] as

oV
ouT )
e
(19)

Using properties of the kronecker product and vectorizations of
matrices, the update step in natural gradient is

v ov
on’ oxt

>l _oxn-! >t

(18)

by 0
0 2= 'ex

op
vec(6X 1)

> lop = ol =%t >

(20)

Notice that we write (20) in terms of X! to fully leverage its
sparsity pattern. Comparing (17) and (20), we have

- 32”(1) -
1 _ 1
= T 21

Equations (20) and (21) tells that, to calculate the update
S, 031, we only need to compute (17a) and (17b). The new
variables are calculated using the updates, a step size y < 1, and
a constant R in a backtracking fashion as

0X

pi—p+yExop, T l44Bxsmt (22)

where R > 1 is increasing to shrink the step size for backtrack-
ing until the cost decreases. Line search algorithms [28] can
also be deployed to obtain locally minimum solutions for this
non-convex optimization.

B. Factorized Objectives

We next show that with factorized cost functions, the up-
date step in the algorithm will preserve the sparsity pattern of
>~ 1. Under the factorized assumptions (8) and (9), and denote
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Y (xy) = —log p(xk|z), (16) also factorizes

Wk

V(g) = Eqlogg(x)] = > Eq [thr(xk)]

ol
Il

1

Wk

= Eqllogq(x)] — ) Egy,[logp(xy) + log p(z|xy)]

=
Il
—

1
2 S log(IZ7H) +

5 Vie(qr)

(23)

NE

B
Il

1

where Vi (qy)’s are factored costs and x;, are the corresponding
subsets of variables to the kth factor. We assume that x; can
be transformed from x using a linear mapping My, i.e., X;, =
M x, and the marginal Gaussian g, ~ N (., X). The relation
between the joint and the factorized variables reads

= Mpp, X =M,EM;!. (24)
In view of (17) and (20), to compute the updates d g and 5% 1,

we need to calculate the derivatives of the joint objective which
also factorizes as

- k ) (25a)
ow = Oy,
PV(Q) _ g1 Vilar)
= M M (25b)
opuop” kz::l " oppopd
The factorized derivatives gﬁ and a?va will have the
178 Opp ey,

same expressions as in (17) w.r.t. marginal distributions g ~
N (py,, X)) and marginal factors 1)(xy)

v

87/1’]; = EklEQk[(Xk — ) (%)), (26a)
02V ) )
Wa’;i« = EklEqk[(xk - N}c)(xk — ug)w(xk”z}kl

— B B [v(xp)]. (26b)
From (21), (25) and (26) we see that the sparsity pattern of the
precision matrix 37! is preserved after the transitions between
the joint and factorized updates.

From (24) we know that a joint covariance matrix 3 is
computed in each update step. Throughout the iterations X'
remains sparse, but 3 need not to be. However, because of
the consistent sparsity pattern, efficient methods [29] exist in
sparse linear algebra literature to compute only the parts of 3
corresponding to the non-zero elements in X', Alternatively,
Gaussian belief propagation [30] [31] can also solve the marginal
covariance efficiently. The expectations in (26) are approxi-
mately evaluated using Gauss-Hermite quadrature [32] in this
work. We note that when the posterior p(x|z) is linear, then
expectations in (17) have closed-form, which greatly accelerates
the algorithm.
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Fig. 1. Converging process with 7= 10,Q. = 0.8I,3,,s = 0.004I,

€ = 0.7. Linear interpolated initialization for g and 101 for 371,

V. EXPERIMENTS

In all our experiments, we consider a constant-velocity model
in (3). Let

0 I 0
sb(t) =

A(t) =
®) 0 0 0 I

27)

The transition matrix ®, matrices Q;, Qi_l, Q,and B in (4) can
be calculated explicitly [10]. The likelihood function is defined
the same as in [8] [18] by

h(x) = c.(d(FK(x))) (28)

where F'K(-) is the forward kinematics, d(-) is the signed
distance function given a signed distance field (SDF), and c.(-)
is the hinge loss function

0, ify>e

. (29)
e—vy, ify<e

c(y) =

When evaluating the signed distance function d(+), robots are
modeled as balls with fixed radius r [8] at designated locations.
The minimum distance from robots to obstacles is efficiently
computed using the distance between centers of the balls to
the obstacles and the ball radius. In this paper, to highlight the
convergence of the algorithm, GP interpolation is not involved
in any experiments.

A. 2 d Point Robot Collision Avoidance

The first experiment is conducted with a planar point robot,
which better captures the covariances by plotting ellipsoids.
Fig. 1 shows the convergence of the support states. Black dots
represent p, and the red ellipsoids draw the 0.997 confidence
region contour. We initialize p using a linear interpolation be-
tween the start and goal states, and initialize ¥~ ' using isotropic
matrices.

a) Trade-off between motion planning and system entropy:
The cost function in (23) contains two parts: a motion planning
including prior and collision costs, and a regularized entropy
cost. Fig. 2 shows the evolution of different costs and the total
cost, where the prior and collision costs are factorized, and
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Factored Prior Costs. Factored Collision Costs. Entropy Cost
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Fig. 2. Decomposed and total costs. Prior and collision costs on the factor
level and the entropy cost on the joint level.

the cost on the entropy %10g(\271 |) is computed on the joint

level. As shown in Fig. 2, during the first several iterations the
prior and collision costs on each factor decreases, meaning that
the system gets rid of the obstacle while maximizing trajectory
smoothness and system dynamics assumptions imposed by the
prior. Meanwhile, the entropy costs increase. After the system
is safe and smooth, the algorithm moves to the region where
the entropy cost decreases. During the two phases, the total loss
decreases. This trade-off process is also reflected in the Fig. 1.
The covariance pivots shrink while the system is avoiding the
obstacles, and increase after the system is safe and smooth.

b) Planning with high temperature: In (14), a temperature
T is introduced to alter the weights between planning and
entropy objectives. To achieve feasible trajectories, we use small
T. However in low temperature regions, little changes on 3 will
happen due to the low weight on the entropy cost. One motivation
of the proposed formulation is to leverage the entropy in order
to have wider-spread distributions in all areas, since the 3 o
area measures the size of the safe regions in a probabilistic
sense. Higher temperature promotes the system’s entropy, but
put less weights on the feasibility part. A compromise is to
use a near-feasible initialization with high temperature. The
initialization for the mean g can either be the output of a lower
temperature optimization as a re-planning, or from a higher level
sampling based planner. Fig. 3 shows the converging process of
the iterations for a high temperature re-planning. We note that the
low temperature planning and the high temperature re-planning
can be done in a consecutive manner in the optimization.

B. More Challenging Planning Problems

In the next set of experiments we show that by introducing
entropy regularization to the deterministic formulation, we gain
flexibility in solution searching as well as a risk-measuring
metric. We illustrate using several experiments. In paragraph
(a), to test the performance in hard tasks, we conduct long
range planning in cluttered environments. In (b) we use a narrow
gap environment to show that stochasticity brings flexibility in
choosing collision-checking radius, compared with determin-
istic baseline; In (c) we show that stochasticity help explore

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 17,2023 at 04:05:39 UTC from IEEE Xplore. Restrictions apply.



YU AND CHEN: GAUSSIAN VARIATIONAL INFERENCE APPROACH TO MOTION PLANNING
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Fig. 12.  Mean values and samples for selected support states.

samples distribute wider, representing higher entropy, and in the
more constrained areas, there are less freedom.

b) 7-DOF WAM arm model: Solving the optimization in
the space of distributions brings additional computation com-
plexities compared with the deterministic formulation. However,
the factorized cost function (23) and partial update schemes
(26) mitigate the problem. In addition, there exist more efficient
methods in evaluating the integrals in (26), which can further
accelerate the algorithm. We evaluated the proposed algorithm
on a 7-DOF WAM Arm robot in a more realistic dataset, the
optimized mean and samples are shown in Figs. 11 and 12.

VI. CONCLUSION

In this work we proposed a Gaussian variational inference
framework to approach motion planning as a probability in-
ference. On top of the Gaussian process representation of the
trajectory, we calculate an optimal Gaussian distribution over the
trajectories. Natural gradient descent scheme was deployed to
solve the GVI. Factorized cost functions brings a sparsity pattern
into the framework, and Gaussian assumption brings an explicit
update scheme which converges quickly to locally minimum so-
lutions. Alternatively, the proposed framework can be viewed as
motion planning with entropy regularization. Experiments show
that the proposed method achieves smooth collision-free trajec-
tories, and also provides more robust solutions than determin-
istic baseline methods, especially in challenging environments.
The limitation of the proposed algorithm is the computation
complexity increased by introducing additional optimization
variables, which is a trade-off for the additional distributional
information gain. However, this issue can be mitigated by
leveraging the problem’s sparsity pattern and more advanced
integration estimation techniques.
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