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Abstract: The use of complex three-dimensional (3D) objects is growing in various applications

as data collection techniques continue to evolve. Identifying and locating significant effects

within these objects is essential for making informed decisions based on the data. This article

presents an advanced nonparametric method for learning and inferring complex 3D objects,

enabling accurate estimation of the underlying signals and efficient detection and localization of

significant effects. The proposed method addresses the problem of analyzing irregular-shaped

3D objects by modeling them as functional data and utilizing trivariate spline smoothing based

on triangulations to estimate the underlying signals. We develop a highly efficient procedure

that accurately estimates the mean and covariance functions, as well as the eigenvalues and

eigenfunctions. Furthermore, we rigorously establish the asymptotic properties of these esti-

mators. Additionally, a novel approach for constructing simultaneous confidence corridors to

quantify estimation uncertainty is presented, and the procedure is extended to accommodate

comparisons between two independent samples. The finite-sample performance of the proposed

methods is illustrated through numerical experiments and a real-data application using the

Alzheimer’s Disease Neuroimaging Initiative database.

Key words and phrases: Complex object analysis; Functional principal component analysis;

Localization; Simultaneous confidence corridors; Triangulation; Trivariate splines.
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1. Introduction

As data collection techniques continue to advance, complex three-dimensional (3D)

objects are becoming more prevalent in new statistical applications. To effectively

extract information from these objects, it is often necessary to utilize multiple images

captured from different perspectives. These 3D images play a critical role in areas such

as biomedical research, robotics, and engineering. For example, in medical imaging,

3D images are used to create detailed human body scans, such as magnetic resonance

imaging (MRI), functional MRI, and positron emission tomography (PET) imaging. All

these images can be used to diagnose and treat a variety of medical conditions. When

working with complex objects, one essential task is to identify and locate significant

effects. Localization, the process of identifying specific regions within the object where

the signal is strong or where differences exist between different groups of subjects,

plays a crucial role in making inferences about the underlying object or phenomenon.

In medical imaging, for instance, localization can be used to identify specific regions of

the brain or body that are associated with certain diseases or conditions.

In data analysis problems involving complex objects, the typical data structure

often consists of the repeated observation and alignment of functional observations or

images on a fine grid. This type of data exhibits several distinctive characteristics that

pose a number of challenges (Zhu et al., 2022). For example, a degree of spatial corre-

lation is almost universally presented (Scouten et al., 2006; Bowman et al., 2008), and

failure to take into account both spatial correlation and smoothness in statistical anal-

ysis can result in significant inaccuracies in both prediction and estimation, reducing

the overall statistical power (Zhu et al., 2014). Functional data analysis (FDA) offers

advanced tools to effectively analyze and understand these complex data structures
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(Wang et al., 2016). In this article, we present a functional regression framework that

incorporates FDA techniques and considers the 3D functional information of a complex

object as the response variable in the analysis. This approach is different from tradi-

tional multivariate data analysis as FDA considers the continuity of the underlying

function and models the data in the functional space rather than treating them as a

set of vectors (Ramsay and Silverman, 2005).

Specifically, we consider the observed data objects as realizations of a continuous

stochastic process Y (z), where z = (z1, z2, z3) ∈ Ω is a 3D coordinate in a bounded

domain Ω ⊂ R3, and Y (z) represents the real-valued outcome of interest. We have

n randomly selected objects, each with a corresponding functional observation Yi(z),

which are considered to be independent copies of the process Y (z). It is common

for data on complex objects to contain noise, for example, due to limitations in data

collection techniques. To account for individual variations and measurement errors in

our analysis, we propose the following general functional object response regression

model: for any z ∈ Ω,

Yi(z) = µ(z) + ηi(z) + σ(z)εi(z), i = 1, . . . , n, (1.1)

where µ(z) is the mean function, ηi(z) is the random process representing the functional

random effect of object i, σ(z) > 0 is a deterministic function, and ε(z) is a white

noise measurement error with mean zero and variance one. We assume that ηi(z)

and εi(z) are mutually independent, and ηi(z) are i.i.d. copies of a stochastic process

η(z) ∈ L2(Ω) with mean zero and covariance function Gη(z, z
′) = Cov{ηi(z), ηi(z′)}.

In this article, we present a comprehensive framework for estimation and inference

of the mean function µ(·) in model (1.1), along with theoretical support. Statistical

inference is crucial in data-driven decision making as it accounts for the uncertainty

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



4

caused by noise in the data collected for complex objects. The prevailing analytic

technique in 3D imaging analysis regards each voxel as a unit and makes a univariate

statistical inference, as noted by Lazar (2008) and Nathoo et al. (2019) among others.

In this case, many hypotheses are tested simultaneously, and the resulting multiple test-

ing corrections are stringent. Furthermore, the resulting P-values are not independent

because of spatial correlation in the complex object data. To address these challenges,

we propose a novel technique for constructing simultaneous confidence corridors (SCCs)

with guaranteed coverage probability to address the uncertainty in statistical inference

for complex 3D objects. SCCs provide valuable insights into the global behavior of

functions and can be used to identify significant regions, as well as quantify the dif-

ference between two groups. In medical imaging, SCCs can aid in locating effective

regions in the images with high confidence and enhance the interpretability of results

by visually representing effective regions, facilitating further analysis.

Several related studies on complex objects exist in the FDA literature. Petersen

et al. (2019) introduced the Fréchet regression model, which utilizes the conditional

Fréchet mean as a framework for regression analysis with responses that are metric

space-valued objects and predictors that are Euclidean vectors. Dubey and Müller

(2019) subsequently established the consistency of the sample Fréchet mean and de-

rived a central limit theorem for the sample Fréchet variance, providing a means to

quantify the variation around the Fréchet mean. Dai et al. (2018) considered an intrin-

sic principal component analysis for smooth Riemannian manifold-valued functional

data and studied its asymptotic properties. Zhu et al. (2014) proposed a multiscale

adaptive and sequential smoothing (MASS) method for studying the relationship be-

tween massive imaging data and a set of covariates of interest. While these studies have
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explored the limiting distributions of the proposed estimators, they have not provided

clear solutions for rigorous statistical inference.

In the literature, various methods have been proposed for constructing confidence

bands for mean functions of 1D/2D functional data, such as simulation-based tech-

niques (Degras, 2011; Cao et al., 2012b; Cao and Wang, 2018), functional principal

component (FPC) based approach (Goldsmith et al., 2013), and geometric approach

Choi and Reimherr (2018). Additionally, SCCs have also been developed for coefficient

functions for varying coefficient models for 1D/2D functional responses (Zhu et al.,

2012; Gu et al., 2014; Chang et al., 2017; Wang et al., 2020c). Despite these efforts,

constructing SCCs for complex 3D data objects remains a challenge and, to the best of

our knowledge, has not yet been addressed in the literature. In this article, we aim to

fill this gap by providing the first attempt at constructing SCCs for the mean function

of complex 3D objects.

Making inferences for complex 3D objects, such as the human brain in medical

imaging, presents significant challenges due to their irregular and complex boundaries.

These boundaries, which are not defined by simple geometric shapes like rectangles,

make it difficult to apply traditional statistical methods. While conventional techniques

such as kernel smoothing (Zhu et al., 2014), tensor smoothing (Li and Zhang, 2017)

and wavelet smoothing (Morris and Carroll, 2006) may be used for 3D objects on

rectangular domains, they often exhibit the “leakage problem.” This issue refers to poor

estimation performance over complex domains as information may be inappropriately

borrowed across boundaries, resulting in inaccurate estimation. To address this issue,

we consider using trivariate penalized spline smoothing based on triangulations (TPST)

introduced in Li et al. (2022), which was specifically developed for smoothing data

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



6

collected from point clouds of arbitrary shapes. This TPST method is effective in

handling complex domain boundaries, denoising, and preserving the inherent geometric

features and spatial structures of the data, making it a promising solution for analyzing

complex 3D objects.

To develop the SCC, efficient estimators for the covariance function Gη(v,v
′) as

well as the corresponding eigenvalue and eigenfunctions are necessary. Although various

approaches to estimate these components have been proposed for 1D/2D functional

data (Yao et al., 2005; Wang et al., 2020c), they are unsuitable for 3D functional

objects due to several challenges. Firstly, the method requires a smoother for a 6D

covariance function over a complex domain. Secondly, storing the covariances becomes

increasingly difficult as the number of observations from each object grows. Lastly,

traditional FPC analysis procedures become infeasible with a large amount of data.

To tackle these challenges, we propose a novel and efficient method for estimating the

model components. The approach can significantly accelerate the computation in FPC

analysis and makes it feasible to process 3D objects with hundreds of thousands of

observations.

In this paper, we propose an extension to the existing SCC construction procedure

that allows for statistically quantifying differences between two sets of imaging data,

which is often encountered in medical imaging studies. Our method provides a way to

identify and locate regions where significant differences exist between the two groups.

The proposed spline estimator and accompanying SCC have been shown to be asymp-

totically equivalent to the ideal scenario with known actual signal and computationally

efficient even for large data volumes. Furthermore, our simulation studies have demon-

strated the correct coverage probability, ensuring that the probability of the true mean
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function falling within the SCC is close to the nominal level. This framework provides

improved precision in statistical inference for complex 3D object analysis, particularly

in identifying significant regions.

The rest of the article is organized as follows. In Section 2, we describe the model

setup based on the observed data, the TPST estimator of the mean function µ(·) in

model (1.1) and establish its asymptotic properties under the FDA framework. In

Section 3, we propose asymptotic SCCs for the mean function based on the TPST es-

timators. The specific implementation details, including the selection of triangulation,

spline basis functions and smoothing parameters in the TPST estimation, and estima-

tion of other unknown components required for constructing the SCCs, are thoroughly

discussed in Section 4. Simulation studies and comparisons with existing methods are

presented in Section 5, and a case study on brain imaging is presented in Section 6.

In Section 7, we conclude the article with some discussions. Technical proofs of the-

oretical results and additional results from the simulation studies are provided in the

Supplementary Material.

2. Mean Function Estimation via Trivariate Penalized Spline Smoothing

In this section, we present an efficient smoothing technique for estimating the mean

function in the functional regression model (1.1).

2.1 Discretization of the Functional Response and Model Setup

As mentioned, we consider observations from n complex objects over a 3D domain Ω.

In many practical applications, the continuous response process Yi(z) is only observed

on a discrete location grid points {z1, z2, . . . ,zN}, where zj ∈ Ω indicates the jth
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location of observation. In the context of 3D imaging, zj refers to the jth voxel of

the image. The discretized observations for the ith object are represented as {Yij =

Yi(zj) : zj ∈ Ω}n,Ni=1,j=1. For clarity, we demonstrate our method with this uniform

spacing setting below. However, it is important to note that this uniform spacing is

not required. As long as the grid is sufficiently dense to ensure accurate numerical

integration, our method will perform effectively regardless of the spacing pattern.

In classical FPC analysis, we often assume there is a spectral decomposition:

Gη(z, z
′) =

∑∞
k=1 λkψk(z)ψk(z

′), where the pairs of eigenvalue and eigenfunction se-

quences {λk, ψk(z)}∞k=1 satisfy λ1 ≥ λ2 ≥ · · · ≥ 0,
∑∞

k=1 λk < ∞, and {ψk(·)}∞k=1 con-

stitute an orthonormal basis of L2(Ω). Using the Karhunen-Lo’eve expansion, the func-

tional random effect ηi(z) in model (1.1) can be represented as ηi(z) =
∑∞

k=1 ξikϕk(z),

where ϕk(z) =
√
λkψk(z), and the coefficients ξik’s are the FPC scores, which have

zero means, unit variance, and are mutually uncorrelated.

With the discretized data observations and the Karhunen-Lo’eve expansion, model

(1.1) can be equivalently written as

Yij = µ(zj) +
∞∑
k=1

ξikϕk(zj) + σ(zj)εij,

where µ(·) is the unknown mean function, typically assumed to be smooth in the FDA

framework, and εij = εi(zj). As aforementioned, complex 3D objects are typically col-

lected on an irregular domain with arbitrary shape, and the TPST method proposed

in Li et al. (2022) is one of the smoothing techniques that can effectively handle this

type of complex objects. Below, we delve into the details of the estimation procedure,

including triangulations, trivariate spline basis functions, and the construction of pe-

nalized spline estimators. The asymptotic results of the proposed mean estimator are

also presented.
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2.2 Trivariate Splines over Triangulations

In the following, let T be a tetrahedron, a 3D convex hull formed by four non-coplanar

points. A collection of H tetrahedra, △ = {T1, . . . , TH}, forms a triangulation of a

polygonal domain Ω = ∪H
h=1Th when any two tetrahedra in △ intersect at most at

a vertex, edge, or triangular face. There are various triangulation algorithms for 3D

domains, such as the MATLAB functions delaunay, distmesh/distmeshnd (Persson

and Strang, 2004), the TetGen software (Si, 2015), and the CGAL library (Project, 2020).

Next, we provide a brief overview of trivariate splines over a triangulation. More

in-depth descriptions can be found in Lai and Schumaker (2007) and Li et al. (2022).

Consider a non-degenerate tetrahedron T = ⟨v1,v2,v3,v4⟩, with vertices v1, v2, v3,

and v4. For any point z ∈ R3, there is a unique representation in the form z =

b1v1 + b2v2 + b3v3 + b4v4, with b1 + b2 + b3 + b4 = 1, where b1, b2, b3 and b4 are

called the barycentric coordinates of the point z relative to the tetrahedron T . The

Bernstein polynomials of degree d relative to tetrahedron T can be defined as BT,d
ijkl(z) =

d!/(i!j!k!l!)bi1b
j
2b

k
3b

l
4. Then for any T ∈ △, we can write the polynomial piece of spline s

restricted on T ∈ △ as s|T =
∑

i+j+k+l=d γ
T
ijklB

T,d
ijkl, where γT = {γTijkl, i+ j+k+ l = d}

are called B-coefficients of s.

For a nonnegative integer r, let Cr(Ω) be the set of all r-times continuously differ-

entiable functions over Ω. Given a triangulation △ and a positive integer d ≥ r, let

Sr
d(△) = {s ∈ Cr(Ω) : s|T ∈ Pd(T ), T ∈ △} be a spline space of degree d and smooth-

ness r over the triangulation △, where Pd is the space of all polynomials of degree less

than or equal to d. To simplify notation, we denote {Bm}m∈M be the set of degree-d

trivariate Bernstein basis polynomials for Sr
d(△), where M is the index set for all the

Bernstein basis polynomials. Then, for any function s ∈ Sr
d(△), we can represent it by
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the following basis expansion:

s(z) =
∑
m∈M

Bm(z)γm = B(z)⊤γ, (2.1)

where γ⊤ = (γm,m ∈ M) is the spline coefficient vector.

2.3 Penalized Spline Estimators for the Mean Function

We propose estimating µ(·) based on the pooled data from all n complex objects

{Yij}n,Ni=1,j=1 using the penalized spline method. To simplify notations, for any index

a = (a1, a2, a3) of order |a| = a1 + a2 + a3, we denote the derivatives of function s by

Das = ∂|a|s/∂a1x ∂
a2
y ∂

a3
z . We consider the following penalized least squares problem:

min
g∈Sr

d(△)

n∑
i=1

N∑
j=1

{Yij − g(zj)}2 + ρnE(g), (2.2)

where E(g) =
∑

|a|=2

(
2
a1

)(
2−a1
a2

) ∫
Ω
{Dag(z)}2dz is the roughness penalty, and ρn is the

roughness penalty parameter.

To ensure smoothness in the splines, linear constraints must be imposed on the

spline coefficients γ in (2.1). These constraints are satisfied by requiring γ to satisfy

Hγ = 0, where H is the matrix representing the smoothness conditions across shared

edges or faces of tetrahedra, and depends on the smoothness parameter r and the

structure of the triangulation. As a result, the minimization problem in (2.2) becomes

n∑
i=1

N∑
j=1

{Yij −B⊤(zj)γ}2 + ρnγ
⊤Pγ, subject to Hγ = 0, (2.3)

where the block diagonal penalty matrix P satisfies γ⊤Pγ = E(Bγ); see Li et al. (2022)

for the exact form of P.

To eliminate the constraints, we employ the QR decomposition. This results in

H⊤ = QR, where Q is orthogonal and R is an upper triangular matrix. Let p denote

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



11

the rank of H. The first p columns of Q are represented by Q1, while R2 is a matrix of

zeros. Then, we have H⊤ = (Q1 Q2)
(
R1

R2

)
. The condition Hγ = 0 is equivalent to the

existence of θ such that γ = Q2θ. Denote Ȳ·,j = n−1
∑n

i=1 Yij, Ȳ = (Ȳ·,1, . . . , Ȳ·,N)
⊤,

U = BQ2, and D = Q⊤
2 PQ2. With these definitions, the minimization problem in

(2.3) can be converted to a penalized regression problem that is free of constraints:

∥∥Ȳ −BQ2θ
∥∥2

+
ρn
n
θ⊤Q⊤

2 PQ2θ =
∥∥Ȳ −Uθ

∥∥2
+
ρn
n
θ⊤Dθ, (2.4)

and the minimizer of (2.4) is given by θ̂ = (U⊤U + n−1ρnD)−1U⊤Ȳ. Thus, the

estimator of γ and µ(·) are γ̂ = Q2θ̂ and µ̂(z) = B⊤(z)γ̂, respectively.

2.4 Convergence of the Penalized Estimators

In this section, we examine the asymptotic behavior of the proposed trivariate spline

estimator µ̂(·). We begin by introducing some necessary notations and definitions.

According to (Lai and Wang, 2013), for a non-degenerate tetrahedron T ∈ △, we let

|T | denote its longest edge length, and ϱT be the radius of the largest ball that can be

inscribed in T . The shape parameter of T is then defined as πT = |T |/ϱT . The size of

△ is given by |△| := max{|T |, T ∈ △}, which is the length of the longest edge. Let

g(z) be a function defined on the closure of the domain Ω. The regular L2 norm of

g is denoted as ∥g∥L2(Ω), given by ∥g∥L2(Ω) = {
∫
Ω
g2(z)dz}1/2. The supremum norm

of g is denoted as ∥g∥∞,Ω and is defined as ∥g∥∞,Ω = supz∈Ω |g(z)|. In addition, we

use |g|υ,∞,Ω =
∑

|a|≤υ ∥Dag∥Lq(Ω) to denote the maximum norms of all the υth order

derivatives of g over Ω. For 1 ≤ q ≤ ∞ and ℓ ≥ 1, let Wℓ,q(Ω) = {g : |g|k,q,Ω <∞, 0 ≤

k ≤ ℓ} be the standard Sobolev space. We next introduce some technical conditions.

(A1) The trivariate function µ ∈ Wℓ+1,∞(Ω) for an integer ℓ ≥ 1.
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(A2) For any k ≥ 1, ξik’s are i.i.d. random variables with zero mean, unit variance,

and E|ξik|4+δ1 < +∞ for some constant δ1 > 0. For any i = 1, . . . , n, j =

1, . . . , N , εij’s are i.i.d with zero mean, unit variance, and E|εij|4+δ2 < +∞ for

some constant δ2 > 0.

(A3) For any z ∈ Ω, σ(z) ∈ C(1)(Ω) with 0 < cσ ≤ σ(z) ≤ Cσ ≤ ∞; for any k,

ψk(z) ∈ C(1)(Ω) and the variance function 0 < cG ≤ Gη(z, z) ≤ CG ≤ ∞.

(A4) The triangulations is π-quasi-uniform, that is, there exists a positive constant π

such that (minT∈△ ϱT )
−1|△| ≤ π.

(A5) As N → ∞, n→ ∞, N−1n3/2(ℓ+1) log(n) → 0, the triangulation size satisfies that

N−1 log(n) ≪ |△|3 ≪ min{n(2+δ2)/(4+δ2)N−1 log−1(n), n−3/(2ℓ+2)}, and penalty

parameter ρn = o{min(n1/2N |△|7/2, nN3/2|△|7, nN |△|11/2)}.

The above conditions are reasonable and commonly assumed in the literature.

Assumption (A1) is a standard requirement for the true underlying functions in non-

parametric estimation. It can be relaxed to µ(·) ∈ C(0)(Ω) if the underlying signal from

the complex objects is not very smooth. Assumptions (A2) and (A3) are commonly

used in the field, as seen in Cao et al. (2012b), Cao et al. (2012a), Wang et al. (2020c),

Yu et al. (2021) and Li et al. (2021). Assumption (A4) suggests using more uniformly

spaced triangulations with smaller shape parameters; see Lai and Wang (2013); Li et al.

(2022). This assumption emphasizes the importance of well-shaped triangles, without

small or obtuse angles, to ensure numerical stability and accurate representation of the

domain. Assumption (A5) imposes a condition on the relationship between the number

of objects n and the number of observations N per object and specifies the required

growth rate of the spline space dimension relative to n and N . This requirement aligns

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



13

with established practices in 1D and 2D FDA settings (Wang et al., 2020a,c), and can

guide us in determining the appropriate level of triangulation fineness.

The convergence rate of µ̂(·) is provided Theorem 1 for both L2 and uniform conver-

gence. Please refer to the Supplementary Material for a detailed proof of this theorem.

Theorem 1. Suppose Assumptions (A1)–(A4) are satisfied and N1/3|△| → ∞ as

N → ∞. Then, the TPST estimator of µ(·) is consistent and satisfies

∥µ̂− µ∥L2 =OP

{
ρn

nN |△|7/2
|µ|2,∞,Ω +

(
1 +

ρn
nN |△|11/2

)
|△|ℓ+1|µ|ℓ+1,∞,Ω +

1√
n

+
1√

nN |△|3/2

}
.

In addition, if Assumption (A5) holds, we have ∥µ̂ − µ∥∞ = OP{n−1/2 log1/2(n)} and

∥µ̂− µ∥L2 = OP (n
−1/2).

Remark 1. Theorem 1 provides the convergence rate of the TPST estimator µ̂(·) to

the true mean function µ(·). The first term in the order of ∥µ̂ − µ∥L2 shows the bias

brought by the roughness penalty. When the tuning parameter is sufficiently small,

the second term represents the bias arising from approximating an arbitrary function

µ using a trivariate spline. The last two terms demonstrate the estimation variances

arising from the individual variations ηi and random noise εi.

Note that various factors, such as the refinement of the triangulation, the smooth-

ness and degree of the trivariate spline, the choice of penalty parameter, and the char-

acteristics of the unknown mean function influence the convergence rate. As discussed

in Section 5, the polynomial degree d and the triangulation size |△| have a direct im-

pact on computational demands. This result also provides a guideline on how to choose

the triangulation. As the sample size increases and more data points become available,

a finer triangulation can be considered for a more accurate estimation of the mean
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function. In addition, a finer triangulation is needed when there are rapid changes in

the mean function or when the domain is highly curved or complex.

Remark 2. Theorem 1 also highlights the impact of the “curse of dimensionality” on

the convergence rate of the TPST estimator for the mean function of 3D images, in com-

parison to the BPST estimator for the mean function of 2D images introduced in Wang

et al. (2020c). Specifically, when considering data observed on a 2D domain, the BPST

estimator for the mean function µ(z), z ∈ R2, exhibits a faster convergence rate, repre-

sented asOP

{
ρn

nN |△|3 |µ|2,∞,Ω +
(
1 + ρn

nN |△|5

)
|△|ℓ+1|µ|ℓ+1,∞,Ω + n−1/2 + (nN)−1/2|△|−1

}
,

where N is the number of observations in one 2D object, and |△| is the size of the 2D

triangulation. On the other hand, the TPST estimator proposed in this paper for the

mean function µ(z) in 3D objects, where z ∈ R3, exhibits a slower convergence rate.

3. Simultaneous Confidence Corridors (SCCs)

In this section, we build upon the TPST estimators in Section 2 to develop SCCs to

quantify the uncertainty associated with the estimators. We begin by constructing

SCCs for the mean function in a one-sample scenario and propose an efficient FPC

method to estimate the required covariance function and associated eigen components.

We then expand our results to a two-sample scenario, providing a solution for charac-

terizing differences between the mean functions of two groups of complex objects.

3.1 One-sample SCC

We start by considering the covariance operator Gη(z, z
′) =

∑κ
k=1 λkψk(z)ψk(z

′) for

z, z′ ∈ Ω. We define a standardized Gaussian process ζ(z) with zero mean and unit

variance such that Eζ(z) = 0, Eζ2(z) = 1, and covariance function Eζ(z)ζ(z′) =

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



15

Gη(z, z
′){Gη(z, z)Gη(z

′, z′)}−1/2, z, z′ ∈ Ω. We denote the 100(1− α)th percentile of

the distribution of the absolute maximum of ζ(z) as q1−α, such that P{supz∈Ω |ζ(z)| ≤

q1−α} = 1− α for α ∈ (0, 1).

To explore theoretical properties, we define an “oracle” estimator µ̄(z) = µ(z) +

n−1
∑n

i=1 ηi(z). Obviously, obtaining the true value of µ̄(z) is impossible since the

data are only observed on the finite location grid points {zj : j = 1, . . . , N} and are

subject to noise. To demonstrate that the difference between the TPST estimator and

the oracle estimator is negligible, we further make the following assumption.

(A6) For k ∈ {1, . . . , κ} and an integer s ≥ 0, ϕk(z) ∈ Ws+1,∞(Ω),
∑κ

k=1 ∥ϕk∥∞ < ∞.

ρnn
−1N−1|△|−7/2

∑κn

k=1 ∥ϕk∥2,∞ = o(1), (1+ρnn
−1N−1|△|−11/2)

∑κn

k=1 |△|s+1∥ϕk∥s+1,∞

= o(1) for a sequence {κn}∞n=1 of increasing integers, with limn→∞ κn = κ. Mean-

while,
∑κ

k=κn+1 ∥ϕk∥∞ = o(1). The number κ of nonzero eigenvalues is finite or

κ is infinite while the variables ξik’s are i.i.d. for 1 ≤ i <∞, 1 ≤ k <∞.

Assumption (A6) emphasizes the smoothness requirement of the FPCs and the

i.i.d. condition of FPC scores ξik’s is used to demonstrate the oracle efficiency of the

proposed estimator.

Theorem 2. Under Assumptions (A1)–(A6), for any α ∈ (0, 1), as N → ∞ and

n→ ∞, P
{
supz∈Ω n

1/2|µ̄(z)− µ(z)|Gη(z, z)
−1/2 ≤ q1−α

}
→ 1−α and supz∈Ω |µ̄(z)−

µ̂(z)| = oP (n
−1/2).

Remark 3. Theorem 2 explores the asymptotic properties of the “oracle” estimator.

Specifically, as the sample size n increases, the probability that the uniform difference

between the sample mean function and the true mean function, scaled by the standard

deviation of the estimation error, does not exceed the critical value q1−α approaches
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1−α. Therefore, we have P
{
µ(z) ∈ µ̄(z)± n−1/2q1−αGη(z, z)

1/2, z ∈ Ω
}
→ 1−α, as

n→ ∞. In addition, the theorem shows that the uniform bound of difference between

the TPST estimator µ̂(·) and the “oracle” smoother µ̄(·) is at oP (n1/2) rate. That is,

the TPST estimator µ̂(·) is oracally efficient.

Using Theorems 1 and 2, we can derive the following asymptotic SCCs for µ(z)

over z ∈ Ω.

Corollary 1. Suppose Assumptions (A1)–(A6) hold. For any α ∈ (0, 1), as N → ∞

and n→ ∞, an asymptotic 100(1− α)% exact SCC for µ(z) is

P
{
µ(z) ∈ µ̂(z)± n−1/2q1−αGη(z, z)

1/2, z ∈ Ω
}
→ 1− α.

3.2 Estimation of FPC analysis

In practice, to construct SCCs as derived in Section 3.1, it is necessary to estimate

the FPC, such as the variance-covariance function Gη(z, z
′) and its eigenvalues and

eigenfunctions.

For any object i = 1, . . . , n and grid point j = 1, . . . , N , we calculate the residual

by R̂ij = Yij − µ̂(zj). Then, we apply the TPST smoothing method again to these

residuals {(R̂ij, zj)}Nj=1 to obtain an estimator for each ηi(z). Specifically, for each

i = 1, . . . , n, we define the TPST estimator of ηi(z) as

η̂i(z) = argmin
gi∈Sr

d(△∗)

N∑
j=1

{
R̂ij − gi(zj)

}2

+ ρ∗nE(gi), (3.1)

where the triangulation △∗ and smoothness penalty ρ∗n used to estimate ηi(z) in this

context may differ from those introduced in Section 2.

Let η̂i(z) =
∑

m∈M̃ B̃m(z)γ̂
(i)
m be the TPST estimator defined in (3.1) and let
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β̂mm′ = n−1
∑n

i=1 γ̂
(i)
m γ̂

(i)
m′ . We can estimate Gη(·, ·) by

Ĝη(z, z
′) = n−1

n∑
i=1

η̂i(z)η̂i(z
′) =

∑
m∈M̃

∑
m′∈M̃

β̂mm′B̃m(z)B̃m′(z′), (3.2)

and we estimate the eigenfunctions ψk(·) using the following eigenequations:∫
Ω

Ĝη(z, z
′)ψ̂k(z)dz = λ̂kψ̂k(z

′), (3.3)

where ψ̂k’s satisfy
∫
Ω
ψ̂2
k(z)dz = 1 and

∫
Ω
ψ̂k(z)ψ̂k′(z)dz = 0 for k′ < k. If N is suffi-

ciently large, the left hand side of (3.3) can be approximated by
∑N

j=1 Ĝη(zj, zj′)ψ̂k(zj)A(zj),

where A(zj) is the volume of the voxel zj.

Theorem 3 below characterizes the uniform weak convergence of Ĝη(z, z
′) and the

convergence of ψ̂k and λ̂k. To establish Theorem 3, we require the following additional

assumption, which outlines the requirements for sample size and the triangulation

method employed to obtain the TPST estimator of {ηi}ni=1 as presented in (3.1).

(A7) As N → ∞, n → ∞, for some 0 < δ3 < 1 and s ≥ 0 given in Assumption (A6),

N−1n1/(s+1)+δ3 → 0, N |△η|3 → ∞, and n2|△η|6/ log n → ∞, where △η is the

triangulation used to obtain the TPST estimator of ηi, i = 1, . . . , n, in (3.1).

Theorem 3. Under Assumptions (A1)–(A7), we have the following results:

(i) The spline estimator Ĝη(z, z
′) in (3.2) uniformly converges to Gη(z, z

′) in prob-

ability, i.e., sup(z,z′)∈Ω2 |Ĝη(z, z
′)−Gη(z, z

′)| = oP (1).

(ii) ∥ψ̂k − ψk∥ = oP (1), |λ̂k − λk| = oP (1), for k = 1, . . . , κ.

Even though there is an infinite number of terms in the Karhunen-Loéve represen-

tation of the covariance function theoretically, in FPC applications, it is common to
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truncate the spectral decomposition at an integer κ. This integer is often chosen to ac-

count for a predetermined proportion of the variance (Hall et al., 2006; Li et al., 2013).

Alternatively, one can select the number of the principal components using the Akaike

information criterion (AIC) suggested by Yao et al. (2005), or the Bayesian information

criterion (BIC) proposed by Li et al. (2013). In our subsequent numerical studies, we

select κ as the number of eigenvalues required to explain 95% of the variation observed

in the data.

After κ is determined, we consider the following spline approximation for ψk(·).

Let B̃(z) = {B̃m(z)}⊤m∈M̃
, and denote B̃ =

{
B̃(z1), . . . , B̃(zN)

}⊤
. Then, for any k =

1, . . . , κ, we can approximate ψk(·) by ψ̂k(z) =
∑

m∈M̃ α̂kmB̃m(z), where α̂km’s are coef-

ficients of the spline estimator subject to α̂⊤
k B̃

⊤B̃α̂k = N with α̂k = (α̂k1, . . . , α̂k|M̃|)
⊤.

The estimates of eigenfunctions and eigenvalues correspond ψk and λk can be obtained

by solving the eigenequations,∫
Ĝη(z, z

′)ψ̂k(z
′)dz′ = λ̂kψ̂k(z), k = 1, . . . , κ. (3.4)

By Equation (3.2), solving (3.4) is equivalent to solve, for k = 1, . . . , κ,∑
m∈M̃

∑
m′∈M̃

∑
l∈M̃

α̂klβ̂mm′B̃m(z)

∫
B̃m′(z′)B̃l(z

′)dz′ = λ̂k
∑
m∈M̃

α̂kmB̃m(z),

that is, let β̂ = {β̂mm′}m,m′∈M̃, then N−1B̃(z)⊤β̂B̃⊤B̃α̂k = λ̂kB̃(z)⊤α̂k. By simple al-

gebra, one needs to solve N−1β̂B̃⊤B̃α̂k = λ̂kα̂k, for any k = 1, . . . , κ. Consider the fol-

lowing Cholesky decomposition: B̃⊤B̃ = LBL
⊤
B. Therefore, solving (3.4) is equivalent

to solve λ̂kL
⊤
Bα̂k = N−1L⊤

Bβ̂LBL
⊤
Bα̂k, that is, λ̂k and N

−1/2L⊤
Bα̂k, k = 1, . . . , κ, are the

eigenvalues and unit eigenvectors of N−1L⊤
Bβ̂LB, satisfying that ∥N−1/2L⊤

Bα̂k∥2 = 1.

In other words, α̂k is obtained by multiplying N1/2(L⊤
B)

−1 immediately after the unit

eigenvectors of N−1L⊤
Bβ̂LB, hence ψ̂k(·) is obtained.
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3.3 Statistical Comparison of Two Independent Groups Using SCCs

While one-sample SCCs are often the focus of many analyses, there are cases where it is

also essential to compare two groups, such as healthy control subjects versus patients.

In this section, we expand our method to cover two-sample problems and build SCCs

for the difference between the mean functions of two independent groups, similar to

a two-sample t-test. These two-sample SCCs enable us to evaluate the differences

between two groups with quantified uncertainty.

Suppose we have two groups of objects, each with sample sizes n1 and n2, re-

spectively, defined on a common region Ω. For group H = 1, 2, let GHη(z, z
′) =∑κ

k=1 ϕHk(z)ϕHk(z
′) be a positive definite function and µ̂H(·) be the spline estimates

for the group mean function µH(·).

Let V (z, z′) = G1η(z, z
′) + τG2η(z, z

′), where τ = limn1→∞ n1/n2. We define

W (z), z ∈ Ω, as a standardized Gaussian process with mean 0, variance 1, covariance

E[W (z)W (z′)] = {V (z, z)}−1/2V (z, z′){V (z′, z′)}−1/2, and denote q12,α as the (1−α)-

th quantile of the absolute maximal distribution of W (z).

Theorem 4. Suppose Assumptions (A1)–(A6) hold. For any α ∈ (0, 1), as n1, n2 →

∞, limn1/n2 → τ > 0,

P

{
sup
z∈Ω

n
1/2
1 |(µ̂1 − µ̂2)(z)− (µ1 − µ2)(z)|√

V (z, z)
≤ q12,α

}
→ 1− α.

Remark 4. According to Theorem 4, we can construct an asymptotic 100(1 − α)%

exact SCC for (µ1 − µ2)(z) as (µ̂1 − µ̂2)(z)± n
−1/2
1 q12,α{V (z, z)}1/2.

Remark 5. It is important to note that the assumption of equal resolution for objects

from both groups is made for the simplicity of the proof. However, this assumption

can be relaxed without significantly affecting the validity of the theorem. In practical
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applications, it is not uncommon for objects collected from different groups to have

different spatial resolutions, and Theorem 4 can still be applied in such scenarios by

making necessary modifications.

4. Implementation

In this section, we address the key considerations in selecting the triangulation, spline

basis, and penalty parameters in the TPST estimation, and provide systematic and

effective strategies for choosing these parameters. Furthermore, we provide a procedure

for constructing the SCCs described in Section 3 and propose a modification to deal

with situations where the measurement errors do not satisfy the assumptions. This

modification allows for a more robust and practical application of the SCC method to

a broader range of analysis scenarios.

4.1 Triangulation Selection

The selection of an appropriate triangulation is a crucial aspect of estimating the mean

functions µ and the individual variation function ηi(·), as well as constructing the SCCs.

Several factors influence the level of triangulation required to estimate the regression

function accurately. One such factor is the inherent complexity of the domain itself.

3D domains characterized by high curvature or intricate shapes typically necessitate a

finer triangulation.

According to Theorem 1, the characteristics of the function being estimated also

play a vital role in selecting the level of triangulation. Functions with rapid changes or

localized features may require finer triangulation to capture these nuances accurately.

Moreover, Theorem 1 also indicates that the number of objects n and the number of
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observations N per object impact the appropriate level of triangulation. With larger n

and N , finer triangulation can be considered to attain more precise estimations of the

target function. However, to ensure reliable estimation, it is recommended that each

tetrahedron contains a minimum of ⌊
(
d+3
3

)
/2⌋ observations, depending on degree d of

the spline basis.

To strike a balance between accuracy and computational efficiency in the estima-

tion, we suggest prioritizing a finer triangulation when estimating the overall mean

function µ compared to the individual variation ηi. This is because the mean function

represents the overall trend or pattern in the data, and its accuracy is typically crucial

in constructing the SCC. Finer triangulation helps capture the subtle variations and

details in the mean function, which may lead to a more precise estimation. However,

this doesn’t mean we need to choose a really fine triangulation. The theoretical find-

ings from Section 3 indicate that the choice of triangulation has a minimal effect on the

performance of the TSSS estimator as long as the triangulation is fine enough to cap-

ture the underlying pattern. On the other hand, ηi describes the individual variation

from the mean function. While it is still important to obtain a reasonably accurate

estimation, it often exhibits more localized variations and may require a different level

of detail than the mean function. Therefore, a coarser triangulation can be used to

estimate ηi, as long as it adequately captures the major patterns and variations.

4.2 Spline Basis Selection

Selecting the spline basis is generally more manageable than choosing the triangulation.

The parameters for the spline space Sr
d(△), specifically d and r, can be predetermined

by the user or chosen using techniques such as K-fold cross-validation (CV) or general-
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ized cross-validation (GCV). For a fixed triangulation, we consider a sequence of values

d = 2, 3, . . . , 9. For each value of d, a TPST estimator can be obtained by selecting

the smoothing parameter λ that minimizes the GCV as described in Section 4.3, and

we choose d that minimizes the GCV. Simulation studies in Section 5 and Section S1

of the Supplementary Material provide evidence that the choice of d may impact the

accuracy of the estimator. Specifically, a higher value of d provides greater flexibility

in the estimator but increases the risk of overfitting. Conversely, a lower value of d

may lead to underfitting and insufficient capture of the true underlying pattern.

Similar to the choice of triangulation, it is advisable to use a higher value of d when

the goal is to enhance accuracy and capture local structures in the estimation of the

mean function. This allows for a more detailed representation of the complex features

in the data. On the other hand, when estimating the individual variation ηi, it may

be more appropriate to employ a slightly oversmoothed function achieved by using a

lower degree of d. This can help reduce noise and highlight the overall trends in the

individual variation while avoiding excessive complexity.

Similarly, the smoothness condition r also affects the estimation accuracy and

computational complexity. In practice, commonly used smoothness conditions include

r = 0 and r = 1. A higher smoothness condition (such as r = 1) results in smoother

estimates but may oversmooth the data, leading to the loss of important details. Con-

versely, a lower smoothness condition (such as r = 0) allows for more flexibility in

capturing local variations but may result in a rougher estimation. The choice of r

should be guided by the specific characteristics of the data and the desired trade-off

between smoothness and fidelity to the underlying patterns.
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4.3 Roughness Penalty Parameter Selection

A suitable value of the roughness penalty parameter ρn needs to be chosen to achieve

a good fit of the data. A smoother fitted function with more significant fitting errors

is enforced with a large value of ρn, while overfitting may result from a small ρn.

To measure the out-of-sample performance of the fitted model, we consider the GCV

criterion, as recommended in the literature (Mu et al., 2018; Wang and Wang, 2019;

Wang et al., 2020b; Yu et al., 2020; Mu et al., 2020; Kim and Wang, 2021). Specifically,

the roughness penalty parameter is chosen by minimizing the following expression over

a grid of values of ρn: GCV(ρn) = ∥Ȳ − S(ρn)Ȳ∥2/[N{1 − tr{S(ρn)}/N}2], where

S(ρn) = U(U⊤U+ n−1ρnD)−1U⊤ is the smoothing matrix.

4.4 Estimating the Quantile in SCCs

Since the quantile q1−α used in Corollary 1 cannot be obtained analytically, we use

a numerical simulation method to approximate it. First, we consider the bootstrap

technique and simulate ζb(z) by Ĝ
−1/2
η (z, z)

∑κ
k=1 λ̂

1/2
k Zk,bψ̂k(z), where {Zk,b, k =

1, . . . , κ, b = 1, . . . , B} are independent standard normal variables. Then, the quan-

tile q1−α can be estimated by the corresponding empirical quantile of these maximum

values by taking the maximal absolute value for each copy of ζb(z).

For two-sample case, denote V̂ (z, z′) = Ĝ1η(z, z
′) + τĜ2η(z, z

′), then we simulate

Ŵb(z) = {V̂ (z, z)}−1/2

{
κ1∑
k=1

λ̂
1/2
1k Z1k,bψ̂1k(z)− (n1/n2)

1/2

κ2∑
k=1

λ̂
1/2
2k Z2k,bψ̂2k(z)

}
, z ∈ Ω.

Similarly, the quantile q12,α can be estimated by the empirical quantile of level 1 − α

of the B simulated ∥Ŵb∥∞’s, b = 1, . . . , B.
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4.5 Adapting SCC to Account for Measurement Error

In this subsection, we propose a modification to the SCC procedure presented in Section

3 to handle objects that may not be feasible to satisfy Assumptions (A2) completely

and (A3) regarding measurement errors.

In one-sample case, we first compute the estimate of σ2(zj), for any j = 1, . . . , N ,

using σ̂2(zj) = n−1
∑n

i=1 ε̂ij ε̂ij, where ε̂ij = R̂ij − η̂i(zj), R̂ij is the residual for the

ith object at the j-th voxel and η̂i(z) is the TPST estimator given in (3.1). Next,

we denote ε̂(z) = B̃(z)⊤Γ−1
N,ρ× n−1N−1

∑n
i=1

∑N
j=1 B̃(zj)σ(zj)εij. We estimate the

variance-covariance function of ε̂(z), G̃ε(z, z
′) = Cov{ε̂(z), ε̂(z′)}, by

Ĝε(z, z
′) = n−1N−2B̃(z)⊤Γ−1

N,ρ

{
N∑
j=1

B̃(zj)σ̂
2(zj)B̃(zj)

⊤

}
Γ−1

N,ρB̃(z′),

where ΓN,ρ is given in (S2.9) in the Supplementary Material. We introduce a modified

estimator Σ̂(z, z′) = Ĝη(z, z
′)+nĜε(z, z

′) and adjust the approximation procedure of

quantile q1−α as follows. First, we simulate

ζb(z) = Σ̂−1/2(z, z)

{
κ∑

k=1

λ̂
1/2
k ψ̂k(z)Z

(b)
k,ξ + B̃(z)⊤Γ−1

N,ρ

1

N

N∑
j=1

B̃(zj)σ̂(zj)Z
(b)
j,ε

}
,

where Z
(b)
k,ξ and Z

(b)
j,ε are independent standard normal variables with 1 ≤ k ≤ κ, 1 ≤

j ≤ N . Then, the q1−α can be estimated by the corresponding empirical quantile

of the B simulated values of ∥ζb∥∞. Finally, the SCC can be constructed as µ̂(z) ±

n−1/2q1−αΣ̂(z, z)
1/2, z ∈ Ω.

For the two-sample case, we can modify the procedure similarly. First, for H = 1, 2,

we define σ̂H(z) be the estimator of σH(z), Σ̂H(z, z
′) = Ĝη,H +nHĜε,H , and Ξ̂(z, z′) =
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Σ̂1(z, z
′) + n1/n2Σ̂2(z, z

′). Then, to estimate q12,α, we simulate

Ŵb(z) =
{
Ξ̂(z, z)

}−1/2
{

κ2∑
k=1

λ̂
1/2
1k Z

(b)
1k,ξψ̂1k(z)−

(
n1

n2

)1/2 κ2∑
k=1

λ̂
1/2
2k Z

(b)
2k,ξψ̂2k(z)

+ B̃(z)⊤Γ−1
N,ρ1

1

N

N∑
j=1

B̃(zj)σ̂1(zj)Z
(b)
1j,ε −

(
n1

n2

)1/2

B̃(z)⊤Γ−1
N,ρ2

1

N

N∑
j=1

B̃(zj)σ̂2(zj)Z
(b)
2j,ε

}
,

where Z
(b)
Hk,ξ and Z

(b)
Hj,ε are independent standard normal variables with 1 ≤ k ≤ κH , 1 ≤

j ≤ N for H = 1, 2. Next, to estimate q12,α, we calculate the empirical quantile of the

B simulated ∥Ŵb∥∞, where b = 1, . . . , B. Finally, based on this estimate, we construct

a modified SCC for µ1(z)− µ2(z) as (µ̂1 − µ̂2)(z)± n
−1/2
1 q12,α{Ξ̂(z, z)}1/2.

5. Simulation Studies

In this section, we conduct Monte Carlo simulations to evaluate the finite-sample per-

formance of the proposed SCCs for the mean functions of complex 3D objects. To

further demonstrate the superiority of the TPST estimators, a comparison with other

competitors in the literature is provided in Section S1 of the Supplementary Material.

The results highlight the superior performance of TPST, especially its ability to handle

irregular domains.

The data are generated from the following model

Yij = µ(zj) +
κ∑

k=1

√
λkξikψk(zj) + σ(zj)εij, zj = (z1j, z2j, z3j) ∈ Ω, (5.1)

for i = 1, . . . , n and j = 1, . . . , N . We consider two irregularly shaped domains: a

rectangle with a hole defined as Ω1 = {z ∈ [0, 1]3 : z1 /∈ [1/3, 2/3] or z2 /∈ [1/3, 2/3]}

and a ball-shaped domain defined as Ω2 = {z ∈ [0, 1]3 : (z1 − 0.5)2 + (z2 − 0.5)2 +

(z3 − 0.5)2 ≤ 0.52}. Data are generated on these domains using model (5.1) by first

creating data onM3 equally spaced grid points in [0, 1]3, withM being 25 and 35, then
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removing the points outside of Ω, resulting in N points. The sample size n is varied to

evaluate the performance under both small and large sample sizes, with values of 50,

150, 300, and 600. To examine the performance under different scenarios, we choose

the following mean functions: µ1(z) = 32{(z1 − 0.5)2 + (z2 − 0.5)2 + (z3 − 0.5)2};

µ2(z) = 1.25(z1 + z2 + z3)
3; and µ3(z) = 4 exp{(z1 − 0.5)2 + (z2 − 0.5)2 + (z3 − 0.5)2}.

The random noise εij is i.i.d as N(0, 1) for i = 1, . . . , n and j = 1, . . . , N with

σ(z) = 0.2{1 − (z1 − 0.5)2 − (z2 − 0.5)2 − (z3 − 0.5)2}. To simulate the within-object

dependence, we set ξik
i.i.d∼ N(0, 1) for i = 1, . . . , n and k = 1, . . . , κ, with κ = 3.

The eigenvalues and eigenfunctions are λ1 = 0.5, λ2 = 0.2, λ3 = 0.1 and ψ1(z) =

c11 sin(πz1) + c12, ψ2(z) = c2 cos(πz2), ψ3(z) = c3(z3 − 1/2). The constants c11, c12, c2

and c3 are chosen separately for different domains to ensure that
∫
Ωi
ψ2
k(z)dz = 1 and∫

Ωi
ψk(z)ψk′(z)dz = 0 for i = 1, 2, k, k′ = 1, . . . , κ and k′ ̸= k. Specifically, c

(1)
11 = 1,

c
(1)
12 ≈ 0.3674, c

(1)
2 = 1.3342 and c

(1)
3 = 3.3665 when Ω1 is considered, while c

(2)
11 = 1,

c
(2)
12 ≈ 0.2240, c

(2)
2 ≈ 1.6154 and c

(2)
3 ≈ 4.1552 for Ω2.

5.1 Coverage Rate of One Sample SCC

The effectiveness of the TPST method proposed depends on d, r, and the choice of

triangulations. In our simulations, we set smoothness of r = 1 and degrees d = 4, and

use two different triangulations for each domain, △1 and △2. For the rectangle with

a hole domain Ω1, Figure 1 (a) and (b) show that there are 96 and 144 tetrahedra in

△1,1 and △1,2, respectively. For the ball-shaped domain Ω2, Figure 1 (c) and (d) show

that there are 176 and 332 tetrahedra in △2,1 and △2,2, respectively.

We evaluate the reliability of the proposed one-sample SCCs of the mean functions

by calculating the empirical coverage rate (ECR) for each replication. The ECR is
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(a) △1,1 (b) △1,2 (c) △2,1 (d) △2,2

Figure 1: Triangulation of domain Ω1 and Ω2.

determined by testing if the true mean function is covered by the SCC at all grid

points. Table 2 summarizes the results of 500 replications on the ball domain Ω2 for

the true mean functions µ1, µ2 and µ3, with a nominal coverage level of 1 − α, where

α is set to 0.10, 0.05, and 0.01, respectively. The corresponding average width (AWD)

of the SCC for each setting is also reported.

Table 2 reveals that as the sample sizes increase, the ECRs approach to the nominal

confidence level and the AWDs decrease. These findings support our conclusion in

Corollary 1. The majority of the cases show that the ECRs reach the nominal coverage

level at around n = 150 ∼ 300 regardless of the settings. Additionally, we observe

that the choice of triangulation has minimal impact on the performance of the SCC,

demonstrating the robustness of the proposed method. Our results in Section S1 of

the Supplementary Materials also show that the estimation performance of TPST is

not significantly impacted as long as the triangulation is sufficiently fine and properly

constructed.

5.2 Power of hypothesis test based on Two Sample SCC

The SCC can also be used to calculate P-values in hypothesis testing. For example,

when comparing the means of two independent populations, the P-value calculated
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Table 1: Empirical coverage rates (ECRs) in percentage and corresponding average
widths (AWDs) of the SCCs for mean functions µ1, µ2, and µ3 over domain Ω1. The
AWDs are shown in parentheses.

Number of Grid Points (M 3)

Sample 25× 25× 25 35× 35× 35

Size α = .10 α = .05 α = .01 α = .10 α = .05 α = .01

n △1,1 △1,2 △1,1 △1,2 △1,1 △1,2 △1,1 △1,2 △1,1 △1,2 △1,1 △1,2

Mean Function: µ1

50 85.2 85.4 91.4 91.2 98.0 97.4 85.4 85.4 91.8 91.2 97.8 97.4
(.614) (.617) (.684) (.688) (.821) (.825) (.608) (.610) (.678) (.681) (.815) (.818)

150 90.2 90.0 94.6 94.8 98.2 98.4 90.4 90.0 94.6 94.6 98.2 98.4
(.360) (.362) (.400) (.403) (.481) (.483) (.356) (.358) (.397) (.399) (.478) (.479)

300 90.8 91.0 94.4 94.2 98.8 98.8 90.8 90.8 94.2 94.2 98.8 98.8
(.255) (.257) (.284) (.286) (.341) (.343) (.252) (.254) (.281) (.283) (.339) (.340)

600 89.8 90.0 94.6 94.6 99.4 99.4 90.0 89.8 94.8 94.8 99.4 99.4
(.180) (.182) (.201) (.202) (.241) (.243) (.179) (.179) (.199) (.200) (.240) (.241)

Mean Function: µ2

50 85.2 85.2 91.2 91.4 97.6 97.4 85.2 85.4 91.6 91.0 97.6 97.4
(.610) (.613) (.681) (.683) (.818) (.821) (.606) (.608) (.677) (.678) (.814) (.816)

150 90.0 88.2 94.2 94.2 98.0 98.2 90.2 89.8 94.6 94.6 98.2 98.4
(.358) (.358) (.399) (.399) (.480) (.480) (.355) (.356) (.396) (.397) (.477) (.478)

300 90.8 90.8 94.4 94.2 98.8 98.8 90.8 90.6 94.4 94.4 98.8 98.8
(.255) (.256) (.284) (.285) (.341) (.343) (.252) (.253) (.281) (.282) (.339) (.340)

600 89.8 89.8 94.6 94.6 99.4 99.4 89.6 89.6 94.8 94.8 99.4 99.4
(.180) (.181) (.201) (.202) (.241) (.242) (.178) (.179) (.199) (.200) (.239) (.240)

Mean Function: µ3

50 85.2 85.4 91.2 91.4 97.8 97.4 85.4 85.4 91.2 90.8 97.6 97.4
(.610) (.613) (.681) (.683) (.818) (.821) (.606) (.608) (.677) (.678) (.814) (.816)

150 90.2 89.6 94.6 94.8 98.2 98.2 90.4 90.2 94.6 94.6 98.2 98.4
(.359) (.361) (.400) (.402) (.480) (.482) (.355) (.357) (.396) (.398) (.477) (.479)

300 90.8 91.0 94.4 94.2 98.8 98.8 90.8 90.6 94.4 94.4 98.8 98.8
(.255) (.256) (.284) (.285) (.341) (.343) (.252) (.253) (.281) (.282) (.339) (.340)

600 89.6 89.8 94.6 94.6 99.4 99.4 89.6 89.6 94.6 94.8 99.4 99.4
(.180) (.181) (.201) (.202) (.241) (.242) (.178) (.179) (.199) (.200) (.239) (.240)

using the two-sample SCC provides an indication of the strength of evidence against

the null hypothesis of equal means. In this study, we evaluate the power of the two-

sample test based on the two-sample SCC by conducting the hypothesis test for the

difference of the following two independent population means:

H0 : µ1(z) = µ2(z), for all z ∈ Ω2 v.s. Ha : µ1(z) ̸= µ2(z) for some z ∈ Ω2.

As with the data generation process outlined in Section 5.1, two groups of data are
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Table 2: Empirical coverage rates (ECRs) in percentage and corresponding average
widths (AWDs) of the SCCs for mean functions µ1, µ2, and µ3 over domain Ω2. The
AWDs are shown in parentheses.

Number of Grid Points (M 3)

Sample 25× 25× 25 35× 35× 35

Size α = .10 α = .05 α = .01 α = .10 α = .05 α = .01

n △2,1 △2,2 △2,1 △2,2 △2,1 △2,2 △2,1 △2,2 △2,1 △2,2 △2,1 △2,2

Mean Function: µ1

50 86.2 85.6 91.8 92.0 98.2 97.6 86.0 86.4 91.2 91.4 98.0 98.0
(.609) (.612) (.678) (.682) (.812) (.816) (.595) (.599) (.665) (.668) (.801) (.805)

150 90.0 89.6 93.8 94.6 98.2 98.0 90.2 89.8 94.8 94.6 98.0 97.4
(.356) (.358) (.396) (.398) (.476) (.478) (.348) (.350) (.389) (.391) (.468) (.470)

300 91.2 91.4 94.0 94.2 99.0 99.0 91.6 91.2 94.4 94.8 99.0 99.0
(.252) (.254) (.281) (.282) (.338) (.339) (.247) (.248) (.275) (.277) (.333) (.334)

600 89.8 89.6 95.0 94.8 99.2 99.0 90.4 90.4 96.0 96.2 99.4 99.4
(.178) (.180) (.199) (.200) (.239) (.240) (.175) (.176) (.195) (.196) (.235) (.236)

Mean Function: µ2

50 86.2 85.8 91.8 91.4 98.2 97.8 86.0 86.4 91.0 91.4 98.0 98.0
(.606) (.608) (.675) (.677) (.810) (.812) (.594) (.598) (.664) (.667) (.800) (.804)

150 89.6 89.6 94.0 94.2 98.0 98.0 90.4 89.8 94.8 94.8 97.8 97.6
(.354) (.356) (.394) (.396) (.474) (.476) (.347) (.349) (.388) (.390) (.468) (.470)

300 91.0 91.6 94.0 94.2 99.0 99.0 91.6 91.2 94.4 94.8 99.0 99.0
(.252) (.254) (.281) (.282) (.337) (.339) (.247) (.248) (.275) (.277) (.333) (.334)

600 89.8 89.6 95.0 94.8 99.2 99.0 90.4 90.6 96.0 96.2 99.4 99.4
(.178) (.180) (.199) (.200) (.239) (.240) (.175) (.176) (.195) (.196) (.235) (.236)

Mean Function: µ3

50 86.2 85.8 91.8 91.4 98.2 97.8 86.0 86.4 91.0 91.4 98.0 98.0
(.606) (.608) (.675) (.678) (.810) (.812) (.594) (.598) (.664) (.667) (.800) (.804)

150 90.0 89.8 93.8 94.2 98.0 98.0 90.4 89.6 94.8 94.8 97.8 97.6
(.354) (.356) (.394) (.396) (.474) (.476) (.347) (.349) (.388) (.390) (.468) (.470)

300 91.0 91.6 94.0 94.2 99.0 99.0 91.6 91.2 94.6 94.8 99.0 99.0
(.252) (.254) (.281) (.282) (.337) (.339) (.247) (.248) (.275) (.277) (.333) (.334)

600 89.8 89.8 95.2 94.8 99.2 99.0 90.4 90.6 96.0 96.2 99.4 99.4
(.178) (.180) (.199) (.200) (.239) (.240) (.175) (.176) (.195) (.196) (.235) (.236)

generated in the ball domain Ω2 with 35× 35× 35 grid points using the model

YH,ij = µH(zj) +
κ∑

k=1

√
λkξijψk(zj) + σ(zj)εij, H = 1, 2,

where with abusing of notations, µ1(z) = 32{(z1 − 0.5)2 + (z2 − 0.5)2 + (z3 − 0.5)2},

µ2(z) = µ1(z) + δ(z1 + z2 + z3)
3 and σ(z) = 0.15. The parameter δ measures the

discrepancy between mean functions µ1 and µ2; thus, larger values δ shift the second
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Figure 2: Design of µ1 and µ2 in the simulation study of two-sample SCC.

group data further away from the first, therefore more in favor of Ha. The design of

the two sample mean functions within the domain Ω2 is depicted in Figure 2. In this

simulation experiment, we select δ from 0, 0.005 and another 10 grid points evenly

spaced from 0.01 to 0.1.

We reject H0 if the constant function of zero is not covered entirely by the SCC

constructed for the µ2 − µ1. Figure 3 displays the rejection rates out of 500 iterations

as δ varies, for significance level α = 0.10, 0.05 and 0.01, respectively. At δ = 0, the

rejection rate represents the empirical probability of Type I error, while for δ > 0, the

rejection rate corresponds to the empirical power. We can tell from Figure 3 that our

method provides an efficient and powerful tool for two-sample inference. At δ = 0, the

rejection rates are close to or equal to the significance level α. As the sample size n

and discrepancy parameter δ increase, the empirical power increases rapidly to reach

a maximum of 1. As the significance level α decreases, the empirical power increases

more quickly. Even with a moderately small sample size n = 150 and a significance

level of α = 0.05, the proposed method can detect slight differences between two groups

of data. This highlights the robustness of the method, even with small sample sizes
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and stringent significance levels.

(a) Ω1 (b) Ω2

Figure 3: Empirical type I error and power of two-Sample test for different significance
levels (α) in simulation studies on Ω1 and Ω2 domains.

6. Real Data Analysis

Today’s medical studies rely heavily on large imaging data to gain insights into diseases

like Alzheimer’s disease (AD), which is the most common cause of dementia in the aging

population. Despite its high prevalence, there is currently no cure or specific treatment

to halt its progression. Early diagnosis of AD is crucial as new drug therapies may

potentially slow down its progression, as per recent studies (Leifer, 2003). FDG-PET

is a widely available in vivo method of investigating brain metabolism regionally (Ishii,

2014), and it has become one of the most promising tools for the early diagnosis of AD

(Brown et al., 2014). In this section, we implement the proposed procedures to locate

the significant effect of AD and understand the association between PET images and

cognitive impairment.

The data for this study was obtained from the Alzheimer’s Disease Neuroimag-
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ing Initiative (ADNI) study, which can be found at http://adni.loni.usc.edu. In

ADNI1 and ADNI GO studies, a total of 447 FDG-PET scans were acquired from

participants aged between 55 to 90 years, including 112 cognitively normal (CON)

subjects, 213 subjects with mild cognitive impairment (MCI), and 122 subjects diag-

nosed with Alzheimer’s disease (AD). Figure 4 illustrates examples of slices of the PET

images and the triangulations used to analyze the scans.

In this study, the TPST method is applied with a smooth parameter of r = 1 and a

degree of d = 8 for both mean and covariance function estimation. The proposed two-

sample SCC procedure is then implemented by grouping the subjects based on their

diagnosis results. Figure 4 (c) reports the significant regions identified by comparing

neural FDG-PET scans between AD and CON groups. As shown, there is less glucose

uptake in classic default mode network areas (d-f) as expected, in AD patients com-

pared to CON participants. These areas are most active “at rest” and are thought to

be critical for integrating attention, autobiographical memory, and associated memory

traces. Learning and memory, as well as recognition areas, are also seen for a large

region extending from inferior to medial temporal cortices (a-b) in Figure 4 (c). While

atrophy in these areas is a quintessential MR biomarker for AD onset and progression,

hypometabolism is seen in this region for patients showing pronounced memory decline.

Finally, the head to the main body of the caudate (c) in Figure 4 (c) was seen. While

this is a classic if often ignored finding, the extent here is larger and more posterior.

Curiously, by contrast, more uptake was seen in pre- and post-central gyri (1), the tha-

lamus (2), and most of the hindbrain, including the brainstem and cerebellum. These

are basic sensory processing areas, including the “what” and “where” visual pathways,

somatosensory pathways, and the primary motor cortex for initiating movement. These
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(a) Example of PET Image (b) Triangulation (c) Significant regions

Figure 4: (a) An example of a PET image; (b) the triangulated domain of a human
brain; and (c) visual representation of significant regions in the comparison between
subjects in the CON and AD groups, based on the coverage of zero by the SCC. The
regions marked in red indicate areas where zero exceeds the upper SCC threshold, while
regions in blue indicate areas where zero falls below the lower SCC threshold.

results may support the Sensory Deficit Theory, which suggests that decline in sensory

processing leads to cognitive decline. Similar findings have been discussed in existing

works, such as Mullins et al. (2018); Halawa and Marshall (2018); Yassine et al. (2022).

These works suggest that our proposed statistical inference procedure for analyzing

complex 3D objects may contribute to the understanding of factors associated with

Alzheimer’s Disease (AD) and aid in the detection of AD development.

7. Conclusions and Discussion

The challenge of analyzing complex objects such as 3D imaging in medical research

has long been a difficult problem due to the complexities in developing statistical

methods that effectively handle irregularly shaped data. In this study, we proposed a

statistical inference procedure that overcomes these difficulties and provides a powerful

tool for identifying specific regions within the object where the signal is strong or where

differences exist between different groups of subjects.
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The contributions of this article are significant in several ways. From a scientific

perspective, our proposed method provides a general procedure and systematic solution

for complex object/image analysis problems, specifically the localization of significant

regions. From a mathematical analytics viewpoint, our approach is efficient and sys-

tematic, addressing the complex 3D object analysis with irregular domains, unlike ex-

isting methods that are restricted to regular boundaries and require large memory and

computation power. From a statistical methodology perspective, our proposed method

provides a general statistical framework for functional regression models with complex

object responses, which can be used to develop many models and extensions, such as

function on scalar regression. Lastly, fusing images of the same target acquired with

varying resolutions from multiple sensors or study groups is a crucial issue in the field

of image fusion. Our proposed estimation and inference framework enables seamless

extension of the SCC to accommodate objects collected with diverse resolutions.

Given the positive outcomes of this study, there are various avenues for future

research. One area of investigation could be focused on overcoming the challenges

posed by the enormous size of complex 3D object data. With the increasing availability

of high-resolution imaging technology, the size of complex object datasets continues to

grow, making them difficult to handle and analyze efficiently. A potential solution is

to investigate parallel computing techniques, such as distributed computing, to speed

up the analysis process. It is essential, however, to thoroughly evaluate the theoretical

guarantees of these methods before implementation. This presents a valuable area for

future study and exploration.

Finally, it would be worthwhile to extend the procedure to a larger and more diverse

dataset to determine its ability to generalize across different populations. Through on-
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going improvement and refinement of techniques for analyzing complex medical imaging

data, we can continue to expand our understanding of the underlying mechanisms of

diseases like Alzheimer’s and improve treatments for these debilitating conditions.
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