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Abstract: The use of complex three-dimensional (3D) objects is growing in various applications
as data collection techniques continue to evolve. Identifying and locating significant effects
within these objects is essential for making informed decisions based on the data. This article
presents an advanced nonparametric method for learning and inferring complex 3D objects,
enabling accurate estimation of the underlying signals and efficient detection and localization of
significant effects. The proposed method addresses the problem of analyzing irregular-shaped
3D objects by modeling them as functional data and utilizing trivariate spline smoothing based
on triangulations to estimate the underlying signals. We develop a highly efficient procedure
that accurately estimates the mean and covariance functions, as well as the eigenvalues and
eigenfunctions. Furthermore, we rigorously establish the asymptotic properties of these esti-
mators. Additionally, a novel approach for constructing simultaneous confidence corridors to
quantify estimation uncertainty is presented, and the procedure is extended to accommodate
comparisons between two independent samples. The finite-sample performance of the proposed
methods is illustrated through numerical experiments and a real-data application using the

Alzheimer’s Disease Neuroimaging Initiative database.
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Localization; Simultaneous confidence corridors; Triangulation; Trivariate splines.



1. Introduction

As data collection techniques continue to advance, complex three-dimensional (3D)
objects are becoming more prevalent in new statistical applications. To effectively
extract information from these objects, it is often necessary to utilize multiple images
captured from different perspectives. These 3D images play a critical role in areas such
as biomedical research, robotics, and engineering. For example, in medical imaging,
3D images are used to create detailed human body scans, such as magnetic resonance
imaging (MRI), functional MRI, and positron emission tomography (PET) imaging. All
these images can be used to diagnose and treat a variety of medical conditions. When
working with complex objects, one essential task is to identify and locate significant
effects. Localization, the process of identifying specific regions within the object where
the signal is strong or where differences exist between different groups of subjects,
plays a crucial role in making inferences about the underlying object or phenomenon.
In medical imaging, for instance, localization can be used to identify specific regions of
the brain or body that are associated with certain diseases or conditions.

In data analysis problems involving complex objects, the typical data structure
often consists of the repeated observation and alignment of functional observations or
images on a fine grid. This type of data exhibits several distinctive characteristics that
pose a number of challenges (Zhu et al., 2022). For example, a degree of spatial corre-
lation is almost universally presented (Scouten et al., 2006; Bowman et al., 2008), and
failure to take into account both spatial correlation and smoothness in statistical anal-
ysis can result in significant inaccuracies in both prediction and estimation, reducing
the overall statistical power (Zhu et al., 2014). Functional data analysis (FDA) offers

advanced tools to effectively analyze and understand these complex data structures



(Wang et al., 2016). In this article, we present a functional regression framework that
incorporates FDA techniques and considers the 3D functional information of a complex
object as the response variable in the analysis. This approach is different from tradi-
tional multivariate data analysis as FDA considers the continuity of the underlying
function and models the data in the functional space rather than treating them as a
set of vectors (Ramsay and Silverman, 2005).

Specifically, we consider the observed data objects as realizations of a continuous
stochastic process Y (z), where z = (21, 22,23) €  is a 3D coordinate in a bounded
domain  C R?, and Y(2) represents the real-valued outcome of interest. We have
n randomly selected objects, each with a corresponding functional observation Y;(z),
which are considered to be independent copies of the process Y (z). It is common
for data on complex objects to contain noise, for example, due to limitations in data
collection techniques. To account for individual variations and measurement errors in
our analysis, we propose the following general functional object response regression

model: for any z € (),
Yi(z) = pu(z) +ni(z) + o(2)ei(z), i=1,...,n, (1.1)

where p(z) is the mean function, 7;(z) is the random process representing the functional
random effect of object i, o(z) > 0 is a deterministic function, and ¢(z) is a white
noise measurement error with mean zero and variance one. We assume that 7;(z)
and ¢;(z) are mutually independent, and 7;(z) are i.i.d. copies of a stochastic process
n(z) € Ly(€2) with mean zero and covariance function G, (z, 2") = Cov{n;(z),n:(z")}.
In this article, we present a comprehensive framework for estimation and inference
of the mean function pu(-) in model (1.1), along with theoretical support. Statistical

inference is crucial in data-driven decision making as it accounts for the uncertainty
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caused by noise in the data collected for complex objects. The prevailing analytic
technique in 3D imaging analysis regards each voxel as a unit and makes a univariate
statistical inference, as noted by Lazar (2008) and Nathoo et al. (2019) among others.
In this case, many hypotheses are tested simultaneously, and the resulting multiple test-
ing corrections are stringent. Furthermore, the resulting P-values are not independent
because of spatial correlation in the complex object data. To address these challenges,
we propose a novel technique for constructing simultaneous confidence corridors (SCCs)
with guaranteed coverage probability to address the uncertainty in statistical inference
for complex 3D objects. SCCs provide valuable insights into the global behavior of
functions and can be used to identify significant regions, as well as quantify the dif-
ference between two groups. In medical imaging, SCCs can aid in locating effective
regions in the images with high confidence and enhance the interpretability of results
by visually representing effective regions, facilitating further analysis.

Several related studies on complex objects exist in the FDA literature. Petersen
et al. (2019) introduced the Fréchet regression model, which utilizes the conditional
Fréchet mean as a framework for regression analysis with responses that are metric
space-valued objects and predictors that are Euclidean vectors. Dubey and Miiller
(2019) subsequently established the consistency of the sample Fréchet mean and de-
rived a central limit theorem for the sample Fréchet variance, providing a means to
quantify the variation around the Fréchet mean. Dai et al. (2018) considered an intrin-
sic principal component analysis for smooth Riemannian manifold-valued functional
data and studied its asymptotic properties. Zhu et al. (2014) proposed a multiscale
adaptive and sequential smoothing (MASS) method for studying the relationship be-

tween massive imaging data and a set of covariates of interest. While these studies have



explored the limiting distributions of the proposed estimators, they have not provided
clear solutions for rigorous statistical inference.

In the literature, various methods have been proposed for constructing confidence
bands for mean functions of 1D/2D functional data, such as simulation-based tech-
niques (Degras, 2011; Cao et al., 2012b; Cao and Wang, 2018), functional principal
component (FPC) based approach (Goldsmith et al., 2013), and geometric approach
Choi and Reimherr (2018). Additionally, SCCs have also been developed for coefficient
functions for varying coefficient models for 1D/2D functional responses (Zhu et al.,
2012; Gu et al., 2014; Chang et al., 2017; Wang et al., 2020c). Despite these efforts,
constructing SCCs for complex 3D data objects remains a challenge and, to the best of
our knowledge, has not yet been addressed in the literature. In this article, we aim to
fill this gap by providing the first attempt at constructing SCCs for the mean function
of complex 3D objects.

Making inferences for complex 3D objects, such as the human brain in medical
imaging, presents significant challenges due to their irregular and complex boundaries.
These boundaries, which are not defined by simple geometric shapes like rectangles,
make it difficult to apply traditional statistical methods. While conventional techniques
such as kernel smoothing (Zhu et al., 2014), tensor smoothing (Li and Zhang, 2017)
and wavelet smoothing (Morris and Carroll, 2006) may be used for 3D objects on
rectangular domains, they often exhibit the “leakage problem.” This issue refers to poor
estimation performance over complex domains as information may be inappropriately
borrowed across boundaries, resulting in inaccurate estimation. To address this issue,
we consider using trivariate penalized spline smoothing based on triangulations (TPST)

introduced in Li et al. (2022), which was specifically developed for smoothing data



collected from point clouds of arbitrary shapes. This TPST method is effective in
handling complex domain boundaries, denoising, and preserving the inherent geometric
features and spatial structures of the data, making it a promising solution for analyzing
complex 3D objects.

To develop the SCC, efficient estimators for the covariance function G, (v,v’) as
well as the corresponding eigenvalue and eigenfunctions are necessary. Although various
approaches to estimate these components have been proposed for 1D/2D functional
data (Yao et al., 2005; Wang et al., 2020c), they are unsuitable for 3D functional
objects due to several challenges. Firstly, the method requires a smoother for a 6D
covariance function over a complex domain. Secondly, storing the covariances becomes
increasingly difficult as the number of observations from each object grows. Lastly,
traditional FPC analysis procedures become infeasible with a large amount of data.
To tackle these challenges, we propose a novel and efficient method for estimating the
model components. The approach can significantly accelerate the computation in FPC
analysis and makes it feasible to process 3D objects with hundreds of thousands of
observations.

In this paper, we propose an extension to the existing SCC construction procedure
that allows for statistically quantifying differences between two sets of imaging data,
which is often encountered in medical imaging studies. Our method provides a way to
identify and locate regions where significant differences exist between the two groups.
The proposed spline estimator and accompanying SCC have been shown to be asymp-
totically equivalent to the ideal scenario with known actual signal and computationally
efficient even for large data volumes. Furthermore, our simulation studies have demon-

strated the correct coverage probability, ensuring that the probability of the true mean
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function falling within the SCC is close to the nominal level. This framework provides
improved precision in statistical inference for complex 3D object analysis, particularly
in identifying significant regions.

The rest of the article is organized as follows. In Section 2, we describe the model
setup based on the observed data, the TPST estimator of the mean function pu(-) in
model (1.1) and establish its asymptotic properties under the FDA framework. In
Section 3, we propose asymptotic SCCs for the mean function based on the TPST es-
timators. The specific implementation details, including the selection of triangulation,
spline basis functions and smoothing parameters in the TPST estimation, and estima-
tion of other unknown components required for constructing the SCCs, are thoroughly
discussed in Section 4. Simulation studies and comparisons with existing methods are
presented in Section 5, and a case study on brain imaging is presented in Section 6.
In Section 7, we conclude the article with some discussions. Technical proofs of the-
oretical results and additional results from the simulation studies are provided in the

Supplementary Material.

2. Mean Function Estimation via Trivariate Penalized Spline Smoothing

In this section, we present an efficient smoothing technique for estimating the mean

function in the functional regression model (1.1).

2.1 Discretization of the Functional Response and Model Setup
As mentioned, we consider observations from n complex objects over a 3D domain ).
In many practical applications, the continuous response process Y;(z) is only observed

on a discrete location grid points {z1, z2,...,2n}, where z; € Q indicates the jth



location of observation. In the context of 3D imaging, z; refers to the jth voxel of
the image. The discretized observations for the ith object are represented as {Y;; =
Yi(z;) : z; € Q}?:’]Y’j:l. For clarity, we demonstrate our method with this uniform
spacing setting below. However, it is important to note that this uniform spacing is
not required. As long as the grid is sufficiently dense to ensure accurate numerical
integration, our method will perform effectively regardless of the spacing pattern.

In classical FPC analysis, we often assume there is a spectral decomposition:
Gy(z,2") = > 70 Men(2)Yr(2), where the pairs of eigenvalue and eigenfunction se-
quences { g, ¥ (2)}52, satisfy Ay > XAg > -+ >0, D07, A\p < 00, and {4y ()}, con-
stitute an orthonormal basis of L?*(€2). Using the Karhunen-Lo’eve expansion, the func-
tional random effect 7;(z) in model (1.1) can be represented as 7;(z) = >, & dr(2),
where ¢1.(2) = vVMtbr(z), and the coefficients &;,’s are the FPC scores, which have
zero means, unit variance, and are mutually uncorrelated.

With the discretized data observations and the Karhunen-Lo’eve expansion, model

(1.1) can be equivalently written as

Y = p(z;) + Z&k%(%’) + o (2z5)ei;,

k=1

where p(+) is the unknown mean function, typically assumed to be smooth in the FDA
framework, and ¢;; = £;(z;). As aforementioned, complex 3D objects are typically col-
lected on an irregular domain with arbitrary shape, and the TPST method proposed
in Li et al. (2022) is one of the smoothing techniques that can effectively handle this
type of complex objects. Below, we delve into the details of the estimation procedure,
including triangulations, trivariate spline basis functions, and the construction of pe-
nalized spline estimators. The asymptotic results of the proposed mean estimator are

also presented.



2.2 Trivariate Splines over Triangulations

In the following, let T" be a tetrahedron, a 3D convex hull formed by four non-coplanar
points. A collection of H tetrahedra, A = {Ti,..., Ty}, forms a triangulation of a
polygonal domain © = U T), when any two tetrahedra in A intersect at most at
a vertex, edge, or triangular face. There are various triangulation algorithms for 3D
domains, such as the MATLAB functions delaunay, distmesh/distmeshnd (Persson
and Strang, 2004), the TetGen software (Si, 2015), and the CGAL library (Project, 2020).

Next, we provide a brief overview of trivariate splines over a triangulation. More
in-depth descriptions can be found in Lai and Schumaker (2007) and Li et al. (2022).
Consider a non-degenerate tetrahedron 7' = (vy, vq, v3,v4), With vertices vy, vs, vs,
and v,. For any point z € R3, there is a unique representation in the form z =
bivy + byvy + b3vs + byvy, with by + by + b3 + by = 1, where by, by, b3 and by are
called the barycentric coordinates of the point z relative to the tetrahedron 7. The
Bernstein polynomials of degree d relative to tetrahedron T can be defined as Bg}fl(z) =
d!/ (il kDB bLbEDL . Then for any T € A, we can write the polynomial piece of spline s
restricted on T' € A as slr = 30,41 pyig VB, where vy = {v5, i+ j+k+1=d}
are called B-coefficients of s.

For a nonnegative integer r, let C"(£2) be the set of all r-times continuously differ-
entiable functions over 2. Given a triangulation A and a positive integer d > r, let
SHA)={s € C(Q):s|r € Py(T),T € A} be a spline space of degree d and smooth-
ness 7 over the triangulation A\, where Py is the space of all polynomials of degree less
than or equal to d. To simplify notation, we denote {B,, }meam be the set of degree-d
trivariate Bernstein basis polynomials for Sj(A), where M is the index set for all the

Bernstein basis polynomials. Then, for any function s € Sj(A), we can represent it by
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the following basis expansion:

= Y Bu(z)mm = B(2)", (2.1)

meM

where v" = (v,,,m € M) is the spline coefficient vector.

2.3 Penalized Spline Estimators for the Mean Function

We propose estimating pu(-) based on the pooled data from all n complex objects
{Yi; }?:’]Y,j:l using the penalized spline method. To simplify notations, for any index
a = (a1, as,a3) of order |a|] = a; + as + a3, we denote the derivatives of function s by
Des = glols/ 031 0,2073. We consider the following penalized least squares problem:

et Z ;{Ym 9(z)} + pa€(9), (2:2)
where E(g) =341 (:121> (>, ‘“) Jo{D%g(z)}?dz is the roughness penalty, and p,, is the
roughness penalty parameter.

To ensure smoothness in the splines, linear constraints must be imposed on the
spline coefficients « in (2.1). These constraints are satisfied by requiring « to satisfy
H~ = 0, where H is the matrix representing the smoothness conditions across shared
edges or faces of tetrahedra, and depends on the smoothness parameter r and the
structure of the triangulation. As a result, the minimization problem in (2.2) becomes

Z Z{Y —B'(2;)7}* + puy ' P, subject to Hy = 0, (2.3)
i=1 j=1
where the block diagonal penalty matrix P satisfies v Py = £(B~); see Li et al. (2022)
for the exact form of P.
To eliminate the constraints, we employ the QR decomposition. This results in

= QR, where Q is orthogonal and R is an upper triangular matrix. Let p denote
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the rank of H. The first p columns of Q are represented by Qq, while Ry is a matrix of
zeros. Then, we have H'" = (Q; Qg)(g;). The condition Hy = 0 is equivalent to the
existence of 6 such that v = Q0. Denote Y.; =n '3 Vi;, Y = (Y.1,...,Y.n)T,
U = BQ,, and D = Q; PQ,. With these definitions, the minimization problem in

(2.3) can be converted to a penalized regression problem that is free of constraints:
3 2 PnpgTAT B 2 | PnpT
IY —BQa6|"+ —0'Q, PQ,6 = ||[Y — UG|" + ~6 D6, (2.4)

and the minimizer of (2.4) is given by 0 = (UTU + n7'p,D)"'UTY. Thus, the

estimator of y and () are 4 = Q.0 and 7i(z) = BT (2)7, respectively.

2.4 Convergence of the Penalized Estimators

In this section, we examine the asymptotic behavior of the proposed trivariate spline
estimator fi(-). We begin by introducing some necessary notations and definitions.
According to (Lai and Wang, 2013), for a non-degenerate tetrahedron 7' € A, we let
|T'| denote its longest edge length, and g7 be the radius of the largest ball that can be
inscribed in T'. The shape parameter of 7" is then defined as mr = |T'|/or. The size of
A is given by |A| := max{|T|,T € A}, which is the length of the longest edge. Let
g(2) be a function defined on the closure of the domain €. The regular L? norm of
g is denoted as ||g||z2(q), given by [lgllr2@) = {J;, ¢°(z)dz}"/?. The supremum norm
of g is denoted as ||g||c. and is defined as ||g|lcco = SUP,cq|9(2)]. In addition, we
use |glyco0 = Z|a\§v |1 D%gl| () to denote the maximum norms of all the vth order
derivatives of g over . For 1 < ¢ < oo and £ > 1, let W5(Q) = {g : |g|r.q0 < 00,0 <

k < ¢} be the standard Sobolev space. We next introduce some technical conditions.

(A1) The trivariate function p € W*1°°(Q) for an integer ¢ > 1.
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(A2) For any k > 1, &4 ’s are i.i.d. random variables with zero mean, unit variance,
and E|&|*T% < +4oo for some constant 6, > 0. For any i = 1,...,n, j =
1,...,N, g;’s are i.i.d with zero mean, unit variance, and E|e;;[*T% < +o0 for
some constant dg > 0.

(A3) For any z € Q, o(2z) € CV(Q) with 0 < ¢, < 0(2) < C, < oo; for any k,
Yr(z) € CW(Q) and the variance function 0 < cg < G, (2, 2) < Cg < .

(A4) The triangulations is m-quasi-uniform, that is, there exists a positive constant 7

such that (minpep o) HA| < 7.

(A5) As N — 0o, n — oo, N~'n?2(+ 1) Jog(n) — 0, the triangulation size satisfies that
N7'log(n) < |APP < min{n+92)/(1+%2) N~ og~1(n), n=3/C4+21 " and penalty

parameter p, = o{min(n'2N|A["2, nN3Z| AT, nNJA[/2)},

The above conditions are reasonable and commonly assumed in the literature.
Assumption (A1) is a standard requirement for the true underlying functions in non-
parametric estimation. It can be relaxed to u(-) € C(O(Q) if the underlying signal from
the complex objects is not very smooth. Assumptions (A2) and (A3) are commonly
used in the field, as seen in Cao et al. (2012b), Cao et al. (2012a), Wang et al. (2020c),
Yu et al. (2021) and Li et al. (2021). Assumption (A4) suggests using more uniformly
spaced triangulations with smaller shape parameters; see Lai and Wang (2013); Li et al.
(2022). This assumption emphasizes the importance of well-shaped triangles, without
small or obtuse angles, to ensure numerical stability and accurate representation of the
domain. Assumption (A5) imposes a condition on the relationship between the number
of objects n and the number of observations N per object and specifies the required

growth rate of the spline space dimension relative to n and N. This requirement aligns
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with established practices in 1D and 2D FDA settings (Wang et al., 2020a,c), and can
guide us in determining the appropriate level of triangulation fineness.
The convergence rate of fi(-) is provided Theorem 1 for both L? and uniform conver-

gence. Please refer to the Supplementary Material for a detailed proof of this theorem.

Theorem 1. Suppose Assumptions (Al)-(A4) are satisfied and NY3|A| — oo as

N — o00. Then, the TPST estimator of u(-) is consistent and satisfies

~ Pn Pn 0+1 1
—0pd " + 1+ ——F——-7+]|A Ulet1c00 + —=
H'U’ :uHL2 P {nN| A |7/2 |'U’|27007Q ( nN| A |11/2> ‘ ‘ | |€+1, RY; \/ﬁ

1
1.
V nN]AP/Q}
In addition, if Assumption (A5) holds, we have ||fi — pllsc = Op{n~'"2log"*(n)} and

172 = pllz: = Op(n=1/2).

Remark 1. Theorem 1 provides the convergence rate of the TPST estimator fi(-) to
the true mean function p(-). The first term in the order of || — p||z2 shows the bias
brought by the roughness penalty. When the tuning parameter is sufficiently small,
the second term represents the bias arising from approximating an arbitrary function
i using a trivariate spline. The last two terms demonstrate the estimation variances
arising from the individual variations 7; and random noise ¢;.

Note that various factors, such as the refinement of the triangulation, the smooth-
ness and degree of the trivariate spline, the choice of penalty parameter, and the char-
acteristics of the unknown mean function influence the convergence rate. As discussed
in Section 5, the polynomial degree d and the triangulation size |A| have a direct im-
pact on computational demands. This result also provides a guideline on how to choose
the triangulation. As the sample size increases and more data points become available,

a finer triangulation can be considered for a more accurate estimation of the mean



14

function. In addition, a finer triangulation is needed when there are rapid changes in

the mean function or when the domain is highly curved or complex.

Remark 2. Theorem 1 also highlights the impact of the “curse of dimensionality” on
the convergence rate of the TPST estimator for the mean function of 3D images, in com-
parison to the BPST estimator for the mean function of 2D images introduced in Wang
et al. (2020c). Specifically, when considering data observed on a 2D domain, the BPST
estimator for the mean function u(z), z € R?, exhibits a faster convergence rate, repre-
sented as Op {ﬁ%]ubm,g + <1 + ﬁ) A 41,000 + 072 + (nN)_l/Q\A\_l},
where N is the number of observations in one 2D object, and |A| is the size of the 2D
triangulation. On the other hand, the TPST estimator proposed in this paper for the

mean function u(z) in 3D objects, where z € R3, exhibits a slower convergence rate.

3. Simultaneous Confidence Corridors (SCCs)

In this section, we build upon the TPST estimators in Section 2 to develop SCCs to
quantify the uncertainty associated with the estimators. We begin by constructing
SCCs for the mean function in a one-sample scenario and propose an efficient FPC
method to estimate the required covariance function and associated eigen components.
We then expand our results to a two-sample scenario, providing a solution for charac-

terizing differences between the mean functions of two groups of complex objects.

3.1 One-sample SCC

We start by considering the covariance operator G,(z,z') = > ;_, Mti(2)¢x(2") for
z, z' € Q. We define a standardized Gaussian process ((z) with zero mean and unit

variance such that E{(z) = 0, EC*(z) = 1, and covariance function E((z)((z) =
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G (z,2){G,(z,2)G,(2',2")} /2, 2,2 € Q. We denote the 100(1 — a)th percentile of
the distribution of the absolute maximum of ((2) as ¢;_q, such that P{sup,.q |((z)] <
G1-a} =1—afor ae(0,1).

To explore theoretical properties, we define an “oracle” estimator fi(z) = u(z) +
n~t 3" mi(z). Obviously, obtaining the true value of fi(z) is impossible since the
data are only observed on the finite location grid points {z; : j = 1,..., N} and are
subject to noise. To demonstrate that the difference between the TPST estimator and

the oracle estimator is negligible, we further make the following assumption.

(A6) For k € {1,...,x} and an integer s > 0, ¢p(z) € WTE2(Q), 37 ||ok]leo < 0.
pun ' NTHAT2 3T 2,00 = o(1), (Lbpun ™ NTHA[TZ) S0 AP [k ls1,00
= o(1) for a sequence {k,}>2; of increasing integers, with lim,, ,, k, = k. Mean-
while, Y77, 1 |#klle = 0(1). The number & of nonzero eigenvalues is finite or

k is infinite while the variables &;’s are i.i.d. for 1 <17 < 00,1 < k < o0.

Assumption (A6) emphasizes the smoothness requirement of the FPCs and the
i.i.d. condition of FPC scores &;;’s is used to demonstrate the oracle efficiency of the

proposed estimator.

Theorem 2. Under Assumptions (A1)-(A6), for any o € (0,1), as N — oo and

—-1/2

n — 00, P {sup,cqn'?|fi(z) — u(2)|Gy(z,2) 2 < qi_a} = 1—a and supeq |i(z) —

fi(z)| = op(n~"2).

Remark 3. Theorem 2 explores the asymptotic properties of the “oracle” estimator.
Specifically, as the sample size n increases, the probability that the uniform difference
between the sample mean function and the true mean function, scaled by the standard

deviation of the estimation error, does not exceed the critical value ¢,_, approaches
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1—a. Therefore, we have P {1u(z) € fi(z) £ n~2q1_oG,(2z,2)"? z€Q} = 1—a, as
n — oo. In addition, the theorem shows that the uniform bound of difference between
the TPST estimator 7i(-) and the “oracle” smoother fi(-) is at op(n'/?) rate. That is,

the TPST estimator fi(-) is oracally efficient.

Using Theorems 1 and 2, we can derive the following asymptotic SCCs for u(z)

over z € ).

Corollary 1. Suppose Assumptions (A1)-(A6) hold. For any a € (0,1), as N — o0

and n — oo, an asymptotic 100(1 — a)% exact SCC for u(z) is

P{u(z) € fi(z) + n\2q .G, (z,2)"? z € Q} - 1-a.

3.2 Estimation of FPC analysis

In practice, to construct SCCs as derived in Section 3.1, it is necessary to estimate
the FPC, such as the variance-covariance function G,(z, 2’) and its eigenvalues and
eigenfunctions.

For any object « = 1,...,n and grid point j = 1,..., N, we calculate the residual
by ﬁij =Y,;; — i(z;). Then, we apply the TPST smoothing method again to these
residuals {(RZ], z;j)}L, to obtain an estimator for each 7;(z). Specifically, for each
i=1,...,n, we define the TPST estimator of 7;(z) as

ni(z) = argmm Z{ — 9i(2; } + 01 E(3i), (3.1)
gi€Sy(
where the triangulation A* and smoothness penalty p! used to estimate 7;(z) in this
context may differ from those introduced in Section 2.

Let mi(z) = ZmGMB (z)7 3% be the TPST estimator defined in (3.1) and let
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Bry = 01 YA o /y\fn) We can estimate G,(-, ) by
Gylz,2) =0 Y i2)i(2) = 3. . BuwBu(2)Bw(2),  (32)
i=1 meM m/eM

and we estimate the eigenfunctions v (-) using the following eigenequations:

/Q G (2, 2)Be(2)dz = Mbul2), (3.3)

where 1,’s satisfy Ja wk z)dz =1 and [, wk wk/( Jdz = 0 for k' < k. If N is suffi-
ciently large, the left hand side of (3.3) can be approximated by Zjvzl é\ﬂ(Zj? zj/)zzk(zj)A(zj),
where A(z;) is the volume of the voxel z;.

Theorem 3 below characterizes the uniform weak convergence of @n(z, z') and the
convergence of @k and Xk To establish Theorem 3, we require the following additional
assumption, which outlines the requirements for sample size and the triangulation

method employed to obtain the TPST estimator of {n;}?_, as presented in (3.1).

(A7) As N — o0, n — oo, for some 0 < d3 < 1 and s > 0 given in Assumption (A6),
N7Ipt/st0+ 0 N|A, P — oo, and n?|A,[%/logn — oo, where A, is the

triangulation used to obtain the TPST estimator of n;, i = 1,...,n, in (3.1).

Theorem 3. Under Assumptions (A1)-(A7), we have the following results:

(i) The spline estimator @n(z, Z') in (8.2) uniformly converges to G,(z, 2") in prob-

ability, i.e., SUp(, . eo2 |CA¥77(z, z') — Gy(z,2')| = op(1).

(ii) ||x — nll = 0p(1), s — M| = 0p(1), fork=1,...,x

Even though there is an infinite number of terms in the Karhunen-Loéve represen-

tation of the covariance function theoretically, in FPC applications, it is common to
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truncate the spectral decomposition at an integer . This integer is often chosen to ac-
count for a predetermined proportion of the variance (Hall et al., 2006; Li et al., 2013).
Alternatively, one can select the number of the principal components using the Akaike
information criterion (AIC) suggested by Yao et al. (2005), or the Bayesian information
criterion (BIC) proposed by Li et al. (2013). In our subsequent numerical studies, we
select x as the number of eigenvalues required to explain 95% of the variation observed
in the data.

After k is determined, we consider the following spline approximation for (-).

- - ~ T
Let B(z) = {Bm(z)};eﬂ7 and denote B = {B(zl), . ,B(zN)} . Then, for any k =
1,..., Kk, we can approximate 1 (-) by @//J\k(z) =D el Qo Bum (%), Where Gy ’s are coef-
ficients of the spline estimator subject to &;]§T]§&k = N with ay, = (@1, - - - ,aij)T.

The estimates of eigenfunctions and eigenvalues correspond v, and A\, can be obtained

by solving the eigenequations,

~

/ Go(z, 2 )(2)d2' = Nhi(2), k=1,... k. (3.4)

By Equation (3.2), solving (3.4) is equivalent to solve, for k =1,... k,

> 3> @B Bu(z) / Bo(2)Bi(2)dz =X\ Y G Bn(2),

meMm’eM leEM mem
that is, let 8 = {B\mm’}m,m/e/% then N~'B(z) 8B Bay, = \,B(2)"&. By simple al-
gebra, one needs to solve N‘lgﬁTEak = Xk&k, for any k = 1,..., k. Consider the fol-
lowing Cholesky decomposition: BTB = LgL}. Therefore, solving (3.4) is equivalent
to solve \yLLoy = N~'LLBLELLay, that is, Ay and N~V2LLéy, k=1, ..., k, are the
eigenvalues and unit eigenvectors of N~'LLBLy, satisfying that | N~2LLay|? = 1
In other words, @, is obtained by multiplying N'/2(L})~" immediately after the unit

eigenvectors of N*1L£BLB, hence 12}\;@() is obtained.
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3.3 Statistical Comparison of Two Independent Groups Using SCCs

While one-sample SCCs are often the focus of many analyses, there are cases where it is
also essential to compare two groups, such as healthy control subjects versus patients.
In this section, we expand our method to cover two-sample problems and build SCCs
for the difference between the mean functions of two independent groups, similar to
a two-sample t-test. These two-sample SCCs enable us to evaluate the differences
between two groups with quantified uncertainty.

Suppose we have two groups of objects, each with sample sizes n; and ns, re-
spectively, defined on a common region 2. For group H = 1,2, let Gy, (2,2') =
Sor_i Omk(2)omK(2") be a positive definite function and fig(-) be the spline estimates
for the group mean function gy (-).

Let V(z,2') = Gi,(2,2') + 7Goy(2,2'), where 7 = lim,, .o n1/n2. We define
W(z), z € Q, as a standardized Gaussian process with mean 0, variance 1, covariance
EW(2)W(2")] = {V(z,2)} Y2V (z,2"){V (2, 2')}7'/2, and denote g5, as the (1 —a)-

th quantile of the absolute maximal distribution of W (z).

Theorem 4. Suppose Assumptions (A1)-(A6) hold. For any a € (0,1), as ny, ny —

oo, limny /ny — 7> 0,

1/2)/~ o~ N -
2dsp ny (11 — ) (2) — (1 — p2)(2)| < qroa b = 1—a
z€Q V(z,z)

Remark 4. According to Theorem 4, we can construct an asymptotic 100(1 — )%

exact SCC for (py — p2)(2) as (1 — pf2)(z) + nl_l/2q127a{V(z, z)}1/2,

Remark 5. It is important to note that the assumption of equal resolution for objects
from both groups is made for the simplicity of the proof. However, this assumption

can be relaxed without significantly affecting the validity of the theorem. In practical
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applications, it is not uncommon for objects collected from different groups to have
different spatial resolutions, and Theorem 4 can still be applied in such scenarios by

making necessary modifications.

4. Implementation

In this section, we address the key considerations in selecting the triangulation, spline
basis, and penalty parameters in the TPST estimation, and provide systematic and
effective strategies for choosing these parameters. Furthermore, we provide a procedure
for constructing the SCCs described in Section 3 and propose a modification to deal
with situations where the measurement errors do not satisfy the assumptions. This
modification allows for a more robust and practical application of the SCC method to

a broader range of analysis scenarios.

4.1 Triangulation Selection

The selection of an appropriate triangulation is a crucial aspect of estimating the mean
functions p and the individual variation function 7;(-), as well as constructing the SCCs.
Several factors influence the level of triangulation required to estimate the regression
function accurately. One such factor is the inherent complexity of the domain itself.
3D domains characterized by high curvature or intricate shapes typically necessitate a
finer triangulation.

According to Theorem 1, the characteristics of the function being estimated also
play a vital role in selecting the level of triangulation. Functions with rapid changes or
localized features may require finer triangulation to capture these nuances accurately.

Moreover, Theorem 1 also indicates that the number of objects n and the number of
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observations N per object impact the appropriate level of triangulation. With larger n
and N, finer triangulation can be considered to attain more precise estimations of the
target function. However, to ensure reliable estimation, it is recommended that each
tetrahedron contains a minimum of L(dg?’) /2| observations, depending on degree d of
the spline basis.

To strike a balance between accuracy and computational efficiency in the estima-
tion, we suggest prioritizing a finer triangulation when estimating the overall mean
function p compared to the individual variation n;. This is because the mean function
represents the overall trend or pattern in the data, and its accuracy is typically crucial
in constructing the SCC. Finer triangulation helps capture the subtle variations and
details in the mean function, which may lead to a more precise estimation. However,
this doesn’t mean we need to choose a really fine triangulation. The theoretical find-
ings from Section 3 indicate that the choice of triangulation has a minimal effect on the
performance of the T'SSS estimator as long as the triangulation is fine enough to cap-
ture the underlying pattern. On the other hand, n; describes the individual variation
from the mean function. While it is still important to obtain a reasonably accurate
estimation, it often exhibits more localized variations and may require a different level

of detail than the mean function. Therefore, a coarser triangulation can be used to

estimate 7;, as long as it adequately captures the major patterns and variations.

4.2 Spline Basis Selection
Selecting the spline basis is generally more manageable than choosing the triangulation.
The parameters for the spline space S}(A), specifically d and r, can be predetermined

by the user or chosen using techniques such as K-fold cross-validation (CV) or general-



22

ized cross-validation (GCV). For a fixed triangulation, we consider a sequence of values
d=2,3,...,9. For each value of d, a TPST estimator can be obtained by selecting
the smoothing parameter A that minimizes the GCV as described in Section 4.3, and
we choose d that minimizes the GCV. Simulation studies in Section 5 and Section S1
of the Supplementary Material provide evidence that the choice of d may impact the
accuracy of the estimator. Specifically, a higher value of d provides greater flexibility
in the estimator but increases the risk of overfitting. Conversely, a lower value of d
may lead to underfitting and insufficient capture of the true underlying pattern.

Similar to the choice of triangulation, it is advisable to use a higher value of d when
the goal is to enhance accuracy and capture local structures in the estimation of the
mean function. This allows for a more detailed representation of the complex features
in the data. On the other hand, when estimating the individual variation 7;, it may
be more appropriate to employ a slightly oversmoothed function achieved by using a
lower degree of d. This can help reduce noise and highlight the overall trends in the
individual variation while avoiding excessive complexity.

Similarly, the smoothness condition r also affects the estimation accuracy and
computational complexity. In practice, commonly used smoothness conditions include
r =0 and r = 1. A higher smoothness condition (such as r = 1) results in smoother
estimates but may oversmooth the data, leading to the loss of important details. Con-
versely, a lower smoothness condition (such as r = 0) allows for more flexibility in
capturing local variations but may result in a rougher estimation. The choice of r
should be guided by the specific characteristics of the data and the desired trade-off

between smoothness and fidelity to the underlying patterns.
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4.3 Roughness Penalty Parameter Selection

A suitable value of the roughness penalty parameter p, needs to be chosen to achieve
a good fit of the data. A smoother fitted function with more significant fitting errors
is enforced with a large value of p,, while overfitting may result from a small p,,.
To measure the out-of-sample performance of the fitted model, we consider the GCV
criterion, as recommended in the literature (Mu et al., 2018; Wang and Wang, 2019;
Wang et al., 2020b; Yu et al., 2020; Mu et al., 2020; Kim and Wang, 2021). Specifically,
the roughness penalty parameter is chosen by minimizing the following expression over
a grid of values of p,: GCV(p,) = Y — S(p.)Y|?/[N{1 — tr{S(p,)}/N}?], where

S(p,) =U(UTU +n"1p,D)"1UT is the smoothing matrix.

4.4 Estimating the Quantile in SCCs

Since the quantile ¢;_, used in Corollary 1 cannot be obtained analytically, we use
a numerical simulation method to approximate it. First, we consider the bootstrap
technique and simulate (,(2z) by @;1/2(z,z) . X,lg/QZM"ng(z), where {Zy,, k =
1,...,k, b=1,..., B} are independent standard normal variables. Then, the quan-
tile ¢1_, can be estimated by the corresponding empirical quantile of these maximum
values by taking the maximal absolute value for each copy of (,(2).
For two-sample case, denote V(z, z') = (A}’ln(z, z') + T@gn(z, z'), then we simulate
K1 K2
Wy(2) = {V(z,2)} {Zﬂfzm,bwz) — (m/nz)'"? ZXiéQsz,b%k(z)} L ZEQ.
k=1 k=1
Similarly, the quantile ¢i2, can be estimated by the empirical quantile of level 1 — «

of the B simulated Hﬁ/\bﬂoo’s, b=1,...,B.
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4.5 Adapting SCC to Account for Measurement Error

In this subsection, we propose a modification to the SCC procedure presented in Section
3 to handle objects that may not be feasible to satisfy Assumptions (A2) completely
and (A3) regarding measurement errors.

In one-sample case, we first compute the estimate of o%(z;), for any j =1,..., N,
using 62(z;) = n~t Y1, 8,8, where &, = Ry — i(2;), Ry is the residual for the
ith object at the j-th voxel and 7;(2z) is the TPST estimator given in (3.1). Next,
we denote £(z) = ﬁ(z)TF]_V}px nTINTEY ijzlﬁ(zj)a(zj)sij. We estimate the

variance-covariance function of 8(z), G.(z, z') = Cov{&(z),8(2')}, by
o~ ~ N ~ ~ ~
G.(z,2) = n_lN_QB(z)TI‘]’V?p {Z B(Zj)/O'\Q(Zj)B(Zj)T} Iy, B(z),
j=1

where I'y , is given in (S2.9) in the Supplementary Material. We introduce a modified
estimator EA](z, z') = én(z, z')+ n@s(z, z') and adjust the approximation procedure of

quantile ¢;_, as follows. First, we simulate
K N
Glz) = Sz, 2) {Z N0u(2)20 + B2 T, Y ﬁ(zna(zj)ZS?} ,
k=1 j=1
where Z,gbg and Z](l;) are independent standard normal variables with 1 < k < k,1 <
7 < N. Then, the ¢_, can be estimated by the corresponding empirical quantile
of the B simulated values of ||(y||s. Finally, the SCC can be constructed as ji(z) £
nV2q_ .Sz, 2)V2, z € Q.
For the two-sample case, we can modify the procedure similarly. First, for H =1, 2,

we define Gy (z) be the estimator of o(2), Sy(z, 2') = @n,H+nH(A¥E7H, and =(z,2') =
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il(z, z') + nl/ngig(z, z'). Then, to estimate ¢i2,, we simulate

1/2 k2
o~ n
Wy(2z) = { } {Z >\1/2Z(k£¢1k () — (n_;> Z}@/z 0 510% 2)
7) n 1/2 A
1
+B TI‘Nlp NZB z;)o1(z;)Z Lie — (n_g) TI‘Nlp NZB zj)02(2z;) QJE},

where Zg’i:’g and Zg’;}s are independent standard normal variables with 1 < k < kg,1 <
j < N for H=1,2. Next, to estimate g2, we calculate the empirical quantile of the
B simulated HWbHOO, where b = 1,..., B. Finally, based on this estimate, we construct

a modified SCC for py(z) — pa(2) as (fiy — fia)(2) £y P20 {E(z, 2) }/2.

5. Simulation Studies

In this section, we conduct Monte Carlo simulations to evaluate the finite-sample per-
formance of the proposed SCCs for the mean functions of complex 3D objects. To
further demonstrate the superiority of the TPST estimators, a comparison with other
competitors in the literature is provided in Section S1 of the Supplementary Material.
The results highlight the superior performance of TPST, especially its ability to handle
irregular domains.

The data are generated from the following model

= u(z;) + Z \/A_kfikwk(zj) +0(25)ei5, 25 = (215, 225, 235) € €, (5.1)
k=1

fore =1,...,nand 7 = 1,..., N. We consider two irregularly shaped domains: a
rectangle with a hole defined as ; = {z € [0,1]3 : z; € [1/3,2/3] or 25 ¢ [1/3,2/3]}
and a ball-shaped domain defined as Q5 = {z € [0,1]* : (21 — 0.5)® + (20 — 0.5)* +
(23 — 0.5)% < 0.5%}. Data are generated on these domains using model (5.1) by first

creating data on M? equally spaced grid points in [0, 1], with M being 25 and 35, then
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removing the points outside of €2, resulting in N points. The sample size n is varied to
evaluate the performance under both small and large sample sizes, with values of 50,
150, 300, and 600. To examine the performance under different scenarios, we choose
the following mean functions: ui(z) = 32{(2; — 0.5)% + (29 — 0.5) + (23 — 0.5)%};
po(2z) = 1.25(21 + 25 + 23)3; and p3(z) = 4exp{(z1 — 0.5)% + (22 — 0.5)> + (23 — 0.5)?}.

The random noise ¢;; is i.i.d as N(0,1) for ¢ = 1,...,n and j = 1,..., N with
o(z) =0.2{1 — (2; — 0.5)% — (25 — 0.5)> — (23 — 0.5)?}. To simulate the within-object
dependence, we set & A N(0,1) fori = 1,...,nand k = 1,...,k, with K = 3.
The eigenvalues and eigenfunctions are Ay = 0.5, y = 0.2,A3 = 0.1 and ¢;(z) =
c18in(mzy) + c1a, Yo(2) = cycos(mz), ¥3(2) = c3(z3 — 1/2). The constants c¢;1, ¢12, Co
and c3 are chosen separately for different domains to ensure that fQ Y2(z)dz =1 and
fQi Ui(2)Up(2)dz = 0 for i = 1,2, k, k' = 1,...,k and k' # k. Specifically, cﬁ) =1,
c%) ~ 0.3674, cgl) = 1.3342 and cgl) = 3.3665 when €2y is considered, while cﬁ) =1,

2 2 0.2240, i) ~ 1.6154 and ¢ ~ 4.1552 for (.

5.1 Coverage Rate of One Sample SCC

The effectiveness of the TPST method proposed depends on d, r, and the choice of
triangulations. In our simulations, we set smoothness of » = 1 and degrees d = 4, and
use two different triangulations for each domain, /A; and As. For the rectangle with
a hole domain , Figure 1 (a) and (b) show that there are 96 and 144 tetrahedra in
Ay and A o, respectively. For the ball-shaped domain y, Figure 1 (¢) and (d) show
that there are 176 and 332 tetrahedra in Ay and Aj s, respectively.

We evaluate the reliability of the proposed one-sample SCCs of the mean functions

by calculating the empirical coverage rate (ECR) for each replication. The ECR is
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Figure 1: Triangulation of domain €2; and €.

determined by testing if the true mean function is covered by the SCC at all grid
points. Table 2 summarizes the results of 500 replications on the ball domain 2, for
the true mean functions pq, puo and ps, with a nominal coverage level of 1 — «, where
a is set to 0.10, 0.05, and 0.01, respectively. The corresponding average width (AWD)
of the SCC for each setting is also reported.

Table 2 reveals that as the sample sizes increase, the ECRs approach to the nominal
confidence level and the AWDs decrease. These findings support our conclusion in
Corollary 1. The majority of the cases show that the ECRs reach the nominal coverage
level at around n = 150 ~ 300 regardless of the settings. Additionally, we observe
that the choice of triangulation has minimal impact on the performance of the SCC,
demonstrating the robustness of the proposed method. Our results in Section S1 of
the Supplementary Materials also show that the estimation performance of TPST is
not significantly impacted as long as the triangulation is sufficiently fine and properly

constructed.

5.2 Power of hypothesis test based on Two Sample SCC

The SCC can also be used to calculate P-values in hypothesis testing. For example,

when comparing the means of two independent populations, the P-value calculated
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Table 1: Empirical coverage rates (ECRs) in percentage and corresponding average
widths (AWDs) of the SCCs for mean functions py, po, and pus over domain Q. The
AWDs are shown in parentheses.

Number of Grid Points (M?)

Sample 25 x 25 x 25 35 x 35 x 35
Size a=".10 a=.05 a=.01 a=.10 a=.05 a=.01
n VAV AN VAV AR VAN VAN Ay VAN VAR AN A AN

Mean Function: gy
50 8.2 8.4 914 912 980 974 8.4 8.4 918 912 978 974
(.614) (.617) (.684) (.688) (.821) (.825) (.608) (.610) (.678) (.681) (.815) (.818)
150 90.2 90.0 946 948 982 984 904 90.0 946 946 982 984
(.360) (.362) (.400) (.403) (.481) (.483) (.356) (.358) (.397) (.399) (.478) (.479)
300 90.8 91.0 944 942 988 988 90.8 90.8 942 942 988  98.8
(:255) (.257) (.284) (.286) (.341) (.343) (.252) (.254) (.281) (.283) (.339) (.340)
600 89.8 90.0 946 946 994 994 90.0 898 948 948 994 994
(.180) (.182) (.201) (.202) (.241) (.243) (.179) (.179) (.199) (.200) (.240) (.241)

Mean Function: pq
50 8.2 8.2 912 914 976 974 8.2 84 916 910 976 974
(.610) (.613) (.681) (.683) (.818) (.821) (.606) (.608) (.677) (.678) (.814) (.816)
150 90.0 882 942 942 980 982 90.2 898 946 946 982 984
(.358) (.358) (.399) (.399) (.480) (.480) (.355) (.356) (.396) (.397) (.477) (.478)
300 90.8 90.8 944 942 988 988 90.8 906 944 944 98.8  98.8
(.255) (.256) (.284) (.285) (.341) (.343) (.252) (.253) (.281) (.282) (.339) (.340)
600 89.8 898 946 946 994 994 896 896 948 948 994 994
(.180) (.181) (.201) (.202) (.241) (.242) (.178) (.179) (.199) (.200) (.239) (.240)

Mean Function: pus
50 8.2 8.4 912 914 978 974 8.4 8.4 912 908 97.6 974
(.610) (.613) (.681) (.683) (.818) (.821) (.606) (.608) (.677) (.678) (.814) (.816)
150 90.2 896 946 948 982 982 904 90.2 946 946 982 984
(.359) (.361) (.400) (.402) (.480) (.482) (.355) (.357) (.396) (.398) (.477) (.479)
300 90.8 91.0 944 942 988 988 90.8 90.6 944 944 988  98.8
(.255) (.256) (.284) (.285) (.341) (.343) (.252) (.253) (.281) (.282) (.339) (.340)
600 89.6 898 946 946 994 994 896 896 946 948 994 994
(.180) (.181) (.201) (.202) (.241) (.242) (.178) (.179) (.199) (.200) (.239) (.240)

using the two-sample SCC provides an indication of the strength of evidence against
the null hypothesis of equal means. In this study, we evaluate the power of the two-
sample test based on the two-sample SCC by conducting the hypothesis test for the

difference of the following two independent population means:
Hy: m(z) = pe(z), forall z€ Qy vis. Hy: pi(2z) # pa(z) for some z € Q.

As with the data generation process outlined in Section 5.1, two groups of data are
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Table 2: Empirical coverage rates (ECRs) in percentage and corresponding average
widths (AWDs) of the SCCs for mean functions py, pe, and us over domain Qy. The
AWDs are shown in parentheses.

Number of Grid Points (M?)

Sample 25 x 25 x 25 35 % 35 x 35
Size a=.10 a=.05 a=.01 a=.10 a=.05 a=.01

n Dar Das Dax Doy Doy Dan Doy Das Doy Lag DNgy Dan
Mean Function:

50 86.2 8.6 91.8 920 982 976 8.0 864 91.2 914 98.0 98.0

(.609) (.612) (.678) (.682) (.812) (.816) (.595) (.599) (.665) (.668) (.801) (.805)

150 90.0 89.6 93.8 946 982 98.0 90.2 898 948 946 980 974

(.356) (.358) (.396) (.398) (.476) (.478) (.348) (.350) (.389) (.391) (.468) (.470)

300 91.2 914 940 942 990 990 916 91.2 944 948 99.0 99.0

(.252) (.254) (.281) (.282) (.338) (.339) (.247) (.248) (.275) (.277) (.333) (.334)

600 89.8 89.6 95.0 948 992 99.0 904 904 96.0 96.2 994 99.4

(.178) (.180) (.199) (.200) (.239) (.240) (.175) (.176) (.195) (.196) (.235) (.236)
Mean Function: s

50 86.2 8.8 91.8 914 982 97.8 860 864 91.0 914 98.0 98.0

(.606) (.608) (.675) (.677) (.810) (.812) (.594) (.598) (.664) (.667) (.800) (.804)

150 89.6 89.6 94.0 942 98.0 98.0 904 89.8 948 948 978 97.6

(.354) (.356) (.394) (.396) (.474) (.476) (.347) (.349) (.388) (.390) (.468) (.470)

300 91.0 916 940 942 990 990 916 91.2 944 948 99.0 99.0

(.252) (.254) (.281) (.282) (.337) (.339) (.247) (.248) (.275) (.277) (.333) (.334)

600 89.8 89.6 95.0 948 992 99.0 904 906 96.0 96.2 994 99.4

(.178) (.180) (.199) (.200) (.239) (.240) (.175) (.176) (.195) (.196) (.235) (.236)
Mean Function: pg

50 86.2 8.8 91.8 914 982 97.8 860 864 91.0 914 98.0 98.0

(.606) (.608) (.675) (.678) (.810) (.812) (.594) (.598) (.664) (.667) (.800) (.804)

150 90.0 89.8 93.8 942 98.0 98.0 904 89.6 948 948 978 97.6

(.354) (.356) (.394) (.396) (.474) (.476) (.347) (.349) (.388) (.390) (.468) (.470)

300 91.0 91.6 940 942 99.0 99.0 916 912 946 948 99.0 99.0

(.252) (.254) (.281) (.282) (.337) (.339) (.247) (.248) (.275) (.277) (.333) (.334)

600 89.8 89.8 952 948 992 99.0 904 906 96.0 96.2 994 99.4

(.178) (.180) (.199) (.200) (.239) (.240) (.175) (.176) (.195) (.196) (.235) (.236)

generated in the ball domain €2, with 35 x 35 x 35 grid points using the model

Yiij = pa(25) + OV ijtn(z)) + 0(25)ei, H =1,2,
k=1

where with abusing of notations, u1(z) = 32{(2; — 0.5)? + (22 — 0.5)® + (23 — 0.5)?},

po(2z) = pi(2) + 0(z1 + 29 + 23)° and o(z) = 0.15. The parameter § measures the

discrepancy between mean functions p; and ps; thus, larger values 0 shift the second
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Figure 2: Design of p; and ps in the simulation study of two-sample SCC.

group data further away from the first, therefore more in favor of H,. The design of
the two sample mean functions within the domain €25 is depicted in Figure 2. In this
simulation experiment, we select § from 0, 0.005 and another 10 grid points evenly
spaced from 0.01 to 0.1.

We reject Hy if the constant function of zero is not covered entirely by the SCC
constructed for the uo — 1. Figure 3 displays the rejection rates out of 500 iterations
as 0 varies, for significance level o = 0.10, 0.05 and 0.01, respectively. At 6 = 0, the
rejection rate represents the empirical probability of Type I error, while for § > 0, the
rejection rate corresponds to the empirical power. We can tell from Figure 3 that our
method provides an efficient and powerful tool for two-sample inference. At § = 0, the
rejection rates are close to or equal to the significance level a. As the sample size n
and discrepancy parameter 0 increase, the empirical power increases rapidly to reach
a maximum of 1. As the significance level a decreases, the empirical power increases
more quickly. Even with a moderately small sample size n = 150 and a significance
level of a = 0.05, the proposed method can detect slight differences between two groups

of data. This highlights the robustness of the method, even with small sample sizes
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and stringent significance levels.
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Figure 3: Empirical type I error and power of two-Sample test for different significance
levels () in simulation studies on €2y and 25 domains.

6. Real Data Analysis

Today’s medical studies rely heavily on large imaging data to gain insights into diseases
like Alzheimer’s disease (AD), which is the most common cause of dementia in the aging
population. Despite its high prevalence, there is currently no cure or specific treatment
to halt its progression. Early diagnosis of AD is crucial as new drug therapies may
potentially slow down its progression, as per recent studies (Leifer, 2003). FDG-PET
is a widely available in vivo method of investigating brain metabolism regionally (Ishii,
2014), and it has become one of the most promising tools for the early diagnosis of AD
(Brown et al., 2014). In this section, we implement the proposed procedures to locate
the significant effect of AD and understand the association between PET images and
cognitive impairment.

The data for this study was obtained from the Alzheimer’s Disease Neuroimag-
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ing Initiative (ADNI) study, which can be found at http://adni.loni.usc.edu. In
ADNI1 and ADNI GO studies, a total of 447 FDG-PET scans were acquired from
participants aged between 55 to 90 years, including 112 cognitively normal (CON)
subjects, 213 subjects with mild cognitive impairment (MCI), and 122 subjects diag-
nosed with Alzheimer’s disease (AD). Figure 4 illustrates examples of slices of the PET
images and the triangulations used to analyze the scans.

In this study, the TPST method is applied with a smooth parameter of r = 1 and a
degree of d = 8 for both mean and covariance function estimation. The proposed two-
sample SCC procedure is then implemented by grouping the subjects based on their
diagnosis results. Figure 4 (c) reports the significant regions identified by comparing
neural FDG-PET scans between AD and CON groups. As shown, there is less glucose
uptake in classic default mode network areas (d-f) as expected, in AD patients com-
pared to CON participants. These areas are most active “at rest” and are thought to
be critical for integrating attention, autobiographical memory, and associated memory
traces. Learning and memory, as well as recognition areas, are also seen for a large
region extending from inferior to medial temporal cortices (a-b) in Figure 4 (¢). While
atrophy in these areas is a quintessential MR biomarker for AD onset and progression,
hypometabolism is seen in this region for patients showing pronounced memory decline.
Finally, the head to the main body of the caudate (c¢) in Figure 4 (c) was seen. While
this is a classic if often ignored finding, the extent here is larger and more posterior.
Curiously, by contrast, more uptake was seen in pre- and post-central gyri (1), the tha-
lamus (2), and most of the hindbrain, including the brainstem and cerebellum. These
are basic sensory processing areas, including the “what” and “where” visual pathways,

somatosensory pathways, and the primary motor cortex for initiating movement. These
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(a) Example of PET Image (b) Triangulation (c) Significant regions

Figure 4: (a) An example of a PET image; (b) the triangulated domain of a human
brain; and (c) visual representation of significant regions in the comparison between
subjects in the CON and AD groups, based on the coverage of zero by the SCC. The
regions marked in red indicate areas where zero exceeds the upper SCC threshold, while
regions in blue indicate areas where zero falls below the lower SCC threshold.

results may support the Sensory Deficit Theory, which suggests that decline in sensory
processing leads to cognitive decline. Similar findings have been discussed in existing
works, such as Mullins et al. (2018); Halawa and Marshall (2018); Yassine et al. (2022).
These works suggest that our proposed statistical inference procedure for analyzing
complex 3D objects may contribute to the understanding of factors associated with

Alzheimer’s Disease (AD) and aid in the detection of AD development.

7. Conclusions and Discussion

The challenge of analyzing complex objects such as 3D imaging in medical research
has long been a difficult problem due to the complexities in developing statistical
methods that effectively handle irregularly shaped data. In this study, we proposed a
statistical inference procedure that overcomes these difficulties and provides a powerful
tool for identifying specific regions within the object where the signal is strong or where

differences exist between different groups of subjects.
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The contributions of this article are significant in several ways. From a scientific
perspective, our proposed method provides a general procedure and systematic solution
for complex object/image analysis problems, specifically the localization of significant
regions. From a mathematical analytics viewpoint, our approach is efficient and sys-
tematic, addressing the complex 3D object analysis with irregular domains, unlike ex-
isting methods that are restricted to regular boundaries and require large memory and
computation power. From a statistical methodology perspective, our proposed method
provides a general statistical framework for functional regression models with complex
object responses, which can be used to develop many models and extensions, such as
function on scalar regression. Lastly, fusing images of the same target acquired with
varying resolutions from multiple sensors or study groups is a crucial issue in the field
of image fusion. Our proposed estimation and inference framework enables seamless
extension of the SCC to accommodate objects collected with diverse resolutions.

Given the positive outcomes of this study, there are various avenues for future
research. One area of investigation could be focused on overcoming the challenges
posed by the enormous size of complex 3D object data. With the increasing availability
of high-resolution imaging technology, the size of complex object datasets continues to
grow, making them difficult to handle and analyze efficiently. A potential solution is
to investigate parallel computing techniques, such as distributed computing, to speed
up the analysis process. It is essential, however, to thoroughly evaluate the theoretical
guarantees of these methods before implementation. This presents a valuable area for
future study and exploration.

Finally, it would be worthwhile to extend the procedure to a larger and more diverse

dataset to determine its ability to generalize across different populations. Through on-
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going improvement and refinement of techniques for analyzing complex medical imaging
data, we can continue to expand our understanding of the underlying mechanisms of

diseases like Alzheimer’s and improve treatments for these debilitating conditions.
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